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Abstract

In this article a new Data-Driven formulation of the Particle Filter framework
is proposed. The new formulation is able to learn an approximate proposal
distribution from previous data. By doing so, the need to explicitly model all
the disturbances that might affect the system is relaxed. Such characteristics
are particularly suited for Terrain Based Navigation for sensor-limited AUVs,
where typical scenarios often include non-negligible sources of noise affecting
the system, which are unknown and hard to model. Numerical results are pre-
sented that demonstrate the superior accuracy, robustness and efficiency of the
proposed Data-Driven approach.
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1 INTRODUCTION

Terrain Based Navigation (TBN) is a term used to refer to
a class of algorithms that takes advantage of variations of
the terrain to obtain navigation position fixes, in a pro-
cess that is similar to what happens for instance with the
use of Global Navigation Satellite Systems (GNSS). In fact,
information about the terrain, or bottom topography, can
be very powerful not only for the case of TBN, but also,
for example, for proximity navigation relative to drifting
iceberg, as suggested in [1].

Underwater TBN is a fairly recent topic, with the first
body of work on the topic dating from the early 1990s,
with the initial approaches focused on using dense sen-
sors, able to map large areas of terrain within a single
measurement acquisition step. The experimental valida-
tion of such approaches was also consistently coupled
with the use of high-grade INS. However, recently, the
study of TBN for sensor-limited Autonomous Underwater
Vehicles (AUVs) has been reported by several authors, for

example [2,3]. Sensor-limited systems refer to a class
of vehicles equipped with low-information sonar like
Doppler Velocity Log (DVL) or altimeters, but also low
accuracy inertial measurement units (IMU).

The use of low grade IMUs motivates a tightly-coupled
integration between all the sensors, but also requires an
online estimation of critical sensor errors 4. Accurate
modelling of such errors will definitely yield better per-
formance in terms of navigation accuracy of the system.
However this requires a thorough understanding of the
underlying physical properties of the system, but also a
detailed modelling of those sources of error, which is not
always easy or even possible to achieve. For a complete and
up to date review of state of the art TBN algorithms for
AUVs, the reader is referred to [5].

This article presents a novel data-driven approach to
underwater TBN for sensor-limited systems. Data-driven
methods do not depend on an explicit and detailed model
of the environment. Instead, these methods are based on
statistical models or machine learning techniques, which
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try to capture trends from previously collected data. The
learned trends can then be used to predict future states of
the system. In this article new data-driven formulations
of the Particle Filter (PF) are proposed, that can be more
robust and efficient than traditional PF formulations when
in presence of strong non-modelled disturbances. More-
over, this can be achieved without an explicit modelling of
the drifting error sources that affect the system. A typical
application foreseen for the proposed approach would be
of low grade AUV, without a DVL, and navigating under
the influence of currents.

The remainder of this article is organized as follows.
Section 2 presents a brief overview of related work, while
Section 3 introduces the Data-Driven Particle Filter. Addi-
tionally, Section 4 details on the learning process of the
proposed approach. Section 5 gives some numerical results
attesting the performance of the proposed approach, using
two different methods, namely using Least Squares and
Gaussian Processes, with Section 6 presenting some con-
cluding remarks.

2 BACKGROUND AND RELATED
WORK

A state-space model for the underwater TBN problem can
be expressed by the following difference equations:

xk = 𝑓 (xk−1,uk) + wk (1a)

zk = (xk,uk) − dk + vk (1b)

Equation 1a represents the state transition equation. The
state vector, xk, assumed to be Markovian, consists of the
vehicle's two-dimensional horizontal position, referenced
to a north-east-down earth-fixed frame. For sensor-limited
systems, an augmented state vector is sometimes used, in
order to accommodate not only the position, but also the
vehicle attitude and angular rates, as well as critical sen-
sor errors that might need to be estimated. uk contains
the position updates as calculated from the INS, and wk
represents the process noise.

The measurement model Equation 1b compares the
measurements from the observation vector, zk, to the
bathymetric map function, , with a projection-based
scheme used to project the measured ranges into the
three-dimensional space [4]. Because the vehicle is not
navigating at the surface when acquiring the measure-
ments, the depth of the vehicle, dk, is also taken into
account. Analogously to the motion model, measurement
noise is described by vk.

TBN is a strong non-linear problem, mostly due to
the strong nonlinearities inherent of the terrain map
(xk,uk). Therefore, the interest on using non-parametric

non-linear Bayesian methods, like the Particle Filter (PF)
or the Point-Mass Filter (PMF), to address this problem is
obvious. While both the PF and the PMF have been suc-
cessfully demonstrated to handle the problem of terrain
navigation, there has been a strong preference towards the
use of PFs, which in fact have become the primary choice
for addressing the problem of underwater TBN. Multiple
authors have adopted the Sequential Importance Resam-
pling (SIR) PF to address underwater TBN, particularly for
sensor-limited systems [2,6–8]. However, it is known that
in some situations the SIR-PF can fail, for example if new
measurements appear at the tail of the prior distribution,
or if the likelihood of the measurements is relatively too
peaked. One of the root causes for this is the assumption
that the process model can be used as a suitable proposal
distribution of the PF. However, this is not always true, and
the topic of generating better proposal densities has in fact
received significant attention by researchers in the past.

The Hybrid SIR PF [9] first, and later the Unscented Par-
ticle Filter (UPF) [10] where among the first algorithms
designed to generate better proposal densities. It has
been theoretically demonstrated that particle filters with
a proposal distribution obtained using the UKF outper-
form existing filters, however the additional computation
requirements needed are very significant. An alternative
for generating better proposal distributions, but with more
modest computational requirements, has been proposed
[11]. Such an approach uses a Kalman linear smooth-
ing estimator for generating the proposal distribution. The
main difference to the previous, is that only a single pro-
posal is generated for all the particles, being in that sense a
more efficient approach. However, the use of the Kalman
smoother precludes its use when in presence of highly
non-linear models or multimodal distributions.

In the context of TBN, the choice of a suitable pro-
posal distribution has also been studied recently. In [7]
the Mixture Particle Filter (MPF) and the Prior Particle
Filter (PPF) have been proposed, both based on using a
non-informative uniform distribution as proposal density.
Simulation results demonstrated the superiority of the PPF
in terms of the asymptotic convergence of the filters. Later,
a suitable compact support for the uniform distributions
was derived, using the Fisher information matrix of the ter-
rain [12]. In a similar approach, in [13] a PF is also used,
with subsets of the particles being weighted with different
weighting functions.

3 DATA-DRIVEN PARTICLE
FILTERS

The Particle Filter is a numerical approximation to the
recursive Bayes Filters that uses a weighted set of particle
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to approximate the posterior density, p(xk|zk). PFs borrow
ideas from Monte Carlo methods, Importance sampling,
and Resampling, in order to perform this approximation.
While this representation is only approximate, as the num-
ber of sampled particles Ns increases it is guaranteed to
converge for the true solution. Moreover, this approxima-
tion can represent a much broader space of distributions
than, for example, the Kalman Filter, that is restricted
to Gaussian distributions only [14]. Notwithstanding, this
realization of the Bayes Filter suffers for the curse of
dimensionality, as its complexity increases exponentially
with the dimension of the problem. For a detailed insight
of the PF framework the interested reader should refer to
[15] and the references therein.

3.1 SIR particle filter
The SIR-PF is, perhaps, the most widely known implemen-
tation of the particle filter framework, mostly due to its
simplicity. In the SIR-PF the dynamical model p(xk|xk− 1)
is used as the proposal distribution q(∶). By sampling new
particles directly from the process model, the SIR-PF over-
comes the need to find an optimal proposal distribution,
which is sometimes hard or even impossible to derive. The
other aspect that differentiates the SIR-PF is its adaptive
strategy for resampling. While other variations of the PF
might resample every time step, SIR-PF adopts an adap-
tive strategy, using the effective number of particles, Neff,
for monitoring the depletion of the particle set.

The performance of the SIR-PF is then dependent of hav-
ing a process model that accurately describes the system.
When this is not the case, and there are non-modelled
disturbances affecting the system, the process model dis-
tribution is, in some sense, distant from the true proposal
distribution. In such situations, the SIR-PF is known to
become very sensitive to outliers, leading to poor perfor-
mance and sometimes even to divergence from the true
solution. In order to alleviate this problem, the use of
Robust Particle Filters has been proposed by some authors,
for example [16]

3.2 Data-driven approaches
The main idea behind the Data-Driven PF (DD-PF) here
proposed is then to learn an approximate proposal density,
by capturing trends from previously collected data. Such
data will then be used to find a suitable proposal distribu-
tion, that is somehow better than the process model. The
proposed DD-PF can be implemented following the gen-
eral PF structure, according to Algorithm 1, with the only
difference being the learning process, which must be per-
formed in the beginning of each iteration, on lines 6 to 11.

The nature of this learning process will be detailed in the
following section.

By using previous data, the historic of previous esti-
mated states, it is possible to predict a likely next state
of the filter. This information can be valuable in gener-
ating a suitable proposal density. The proposal density,
q(xk|xk− 1, zk), will then be approximated as

q(xk|xk−1, zk) ≈  (𝜇D,ΣD) (2)

with  (𝜇D,ΣD) being the Gaussian distribution with the
mean and covariance matrix 𝜇D and ΣD, respectively,
whose values are learnt from the data using a suitable
learning algorithm. For every iteration of the filter a new
proposal density needs to be estimated.

The learning algorithm to be implemented will use
the previous w position estimates of the filter,  =
{x̃k−w, … , x̃k−1}, together with its respective time instants,
 = {k − w, … , k − 1}, to make an informed prediction
of the new state of the filter at the current time step, x̂k,
as well as provide an estimate of the uncertainty of such
prediction. These values, respectively 𝜇D and ΣD, will then
be used to generate an appropriate proposal density, as
indicated by Equation 2.

{𝜇D,ΣD} = ( ,) (3)

Even though the true proposal distribution q(xk|xk− 1, zk)
is dependent on the observations, they are not explicitly
used in the learning process. However, the contribution
of previous observations is indirectly considered through
the posterior of the previous time-steps. Two alternative
implementations of the DD-PF were implemented, one
using the Least Square algorithm for the learning process
(DD-PF-LS), and the other one using Gaussian Processes
(DD-PF-GP). This will be detailed in the following section.
These formulations were primarily designed for address-
ing the problem of underwater TBN for AUVs. Therefore,
this constraints the learning step to be performed online,
and integrated with remaining steps of the filter.

The convergence of Particle Filters has been widely
addressed in the literature, for example in [17]. In what
follows some literature results that provide valuable indi-
cations about the convergence of the proposed DD-PF
will be highlighted. The DD-PF differs to the standard
SIR-PF only on the proposal distribution, which in the
present case is approximated by a Gaussian distribution,
with parameters learnt from past data.

The convergence properties of PFs with generic proposal
distributions has been addressed in [18], with the authors
noting that the convergence of PFs with Gaussian proposal
distribution is ensured as long as the ratio of the optimal
importance distribution and its approximation is bounded.
Moreover, the covariance matrix should also be bounded
from below. By following a similar approach, and by noting
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the similarity between the KF and the proposed learning
procedures, it should perhaps be possible to ensure the
convergence of the proposed filters DD-PF, under certain
terrain conditions. Nevertheless, and following the stan-
dard practices within the field of TBN, in the remaining
sections we will present a set of Monte Carlo simulation
that will be able to demonstrate the performance of the
proposed filters.

4 LEARNING THE PROPOSAL
DENSITY

For the sake of simplicity, it was chosen to decouple the
learning process in its two components, x and y, respec-
tively. Recalling the assumption that AUVs have relatively
slow dynamics, characterized by smooth motions and
without any sudden changes of velocity, this assumption is
rather mild. Additionally, such assumption also favours a
less computationally demanding learning process, as basi-
cally any correlations between the two directions are disre-
garded. Therefore, two independent data-driven learning
mechanisms will exist. The x will be computed as

{𝜇D,x,ΣD,xx} = ( ,x} (4)

with the y component being computed in an analogous
process.

To generate an appropriate Gaussian approximation of
the proposal distribution the mean and covariance matri-
ces are build such that 𝜇D =

[
𝜇D,x, 𝜇D,𝑦

]T and ΣD =
diag

(
ΣD,xx,ΣD,𝑦𝑦

)
. The obtained Gaussian distribution is

going to be highly correlated with the historic data used
in the learning process, particularly when using the Least
Squares, which explicitly models the motion of the vehicle
with constant velocity model. Nevertheless, this correla-
tion is in fact expected, due to the assumed straight-line
motion of the vehicles, and should in fact favour a good
performance of the filter.

4.1 Least squares regression
Recalling the aforementioned low-dynamics and con-
stant velocity assumptions made above, a one-dimensional
model of vehicle moving with a constant velocity can be
modelled as

xi = 𝛽0 + 𝛽1ti (5)
where ti, the input, corresponds to time, while xi, the
output, corresponds to the position of the vehicle. The
parameters 𝛽0 and 𝛽1 correspond to the initial position of
the vehicle and its velocity. By collecting a series of input
and output observations, {ti, xi}w

i=1, the parameters B̃ =
[𝛽0 𝛽1]T can be determined using the closed-form expres-
sion for the Ordinary Least Squares (OLS) algorithm:

B̃ = (ΦTΦ)−1ΦTY (6)

where𝛷 is the w× 2 matrix of time inputs and Y is the w× 1
matrix of the output position observations. In this way, it
is possible to learn the parameters 𝛽 that better fit previ-
ous data. Then, a new position of the vehicle, xn, at time
instant tn, can then by extrapolated by using the estimated
parameters, 𝛽:

xn =
[

1 tn
]

B̃ (7)
This extrapolated value will the output of the data-drive
learning mechanism.

The OLS algorithm just presented is adequate to esti-
mate static parameters. However, when the parameters
are time-varying, the use of a recursive version of the
OLS algorithm is more appropriate. The Recursive Least
Squares (RLS) algorithm is a recursive formulation of the
least-square problem, where new estimates of the parame-
ters are updated with new input and output observations.
The use of a forgetting factor 𝜆 can be interpreted as a
weighting factor, giving less weight to older data and more
weight to recent data, thus promoting the estimation of
slowly varying parameters [19]. Analogously to the OLS
approach, the RLS algorithm can be implemented with the
following set of recursive equations:

Bk = Bk−1 + Lk−1(Yk − ΦT
k Bk−1) (8)
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where
Lk = Pk−1Φk

(
𝜆 + ΦT

k Pk−1Φk
)T (9)

and
Pk =

(
I − LkΦT

k
)

Pk−1
1
𝜆
. (10)

Equations 8-10 have a structure similar to most recur-
sive estimation schemes, as for example the Kalman Filter,
with Equation 8 updating the parameters estimates at each
step based on the error between the actual output and the
modelled one. Pk is the usual covariance matrix, while
Lk is the gain matrix. Finally, each element of 𝜇D can be
obtained by replacing Bk into to (7). Additionally, the diag-
onal elements of ΣD stem directly from matrix Pk of the
corresponding regression.

4.2 Gaussian processes
Gaussian Processes (GPs) are a non-parametric method
that can be thought of a generalization of the Gaussian
probability distribution to infinitely many variables. GPs
are fully specified by a mean function m(x) and covariance
function k(x, x′):

𝑓 (x) ∼ (m(x), k(x, x′)) (11)

In most applications there is no prior knowledge about
the mean function, m(x). Because GPs are, by definition,
a linear combination of random variables with normal
distribution, this is commonly assumed to be zero. The
covariance function, k(x, x′), can be in general any function
that takes any two arguments, such that k(x, x′) gener-
ates a non-negative definitive covariance matrix K. The
covariance function implicitly specifies certain aspects of
the process being modelled, such as smoothness and peri-
odicity, among others. One of the frequently covariance
function is the squared exponential, defined as:

k(x, x′) = 𝜎2
𝑓

exp
(
− 1

2l2 |x − x′|2) . (12)

It can be shown that using the squared exponential as
a covariance function is equivalent to regression using
infinitely many Gaussian shaped basis functions placed
everywhere, and not just the training points [20].

In a learning problem GPs are then used to predict the
output y∗ given the test inputs x∗. Recalling that a Gaussian
Process is a set of random variables which have a consistent
Gaussian distribution with mean zero, we can represent
such problem as:[

𝑦
𝑦∗

]
∼ 

(
0,
[

K(X ,X) + 𝜎2
nI K(X ,X∗)

K(X∗,X) K(X∗,X∗)

])
, (13)

where 𝜎n is the variance of independent and identically
distributed noise affecting the observations, and the dif-
ferent K matrix are built using any function k(x, x′) able
to perform as a covariance function. Therefore, and con-
sidering the use of w training points, K(X,X) will be an

w × w matrix, K(X,X∗) being an 1 × w matrix and, natu-
rally, K(X∗,X) is w × 1 matrix. As the number of training
point w increases, computation of the different covariance
matrix can become challenging.

Remembering that y and y∗ are jointly Gaussian random
vectors, then

𝑦∗|𝑦 ∼  (𝑓∗, cov(𝑓∗)) (14)
where

𝑓∗ = kT
∗ C−

N 1𝑦 (15)
and

cov(𝑓∗) = k∗∗ − kT
∗ C−1

N k∗ (16)
The mean value of the prediction, 𝑓∗ in Equation 15, gives
the best estimate for y∗. Similarly, the variance cov(f∗) is an
indication of the prediction's uncertainty. In the Equations
above k∗ = K(x, x∗), CN = K(X ,X) + 𝜎2

nI and k∗∗ =
K(X∗,X∗), with 𝜎n being the variance of the noisy inputs.

The choice of the hyperparameters 𝜃 can play a relevant
role in the prediction process. In the case of a covariance
function given by (12), 𝜃 = {l, 𝜎f, 𝜎n}. While the values for
each element of 𝜃 could be made empirically, given some
knowledge of the system, a more dynamic strategy could
be adopted by maximizing the log likelihood of the train-
ing outputs given the inputs. The interested reader should
refer to [20]. For more details on this.

Analogously to what was presented in the previous sub-
section, at each iteration of the DD-PF-GP independent
GPs will be used for prediction. These individual GPs will
be trained with historic data from the previous w time steps
and yield the elements of 𝜇D, by using (15). AccordinglyΣD
will be a diagonal matrix, with the elements in the diago-
nal given by (16). Similarly to the DD-PF-LS, at time k the
different matrix K in (13) are generated using for that the
outputs of the filter from time instant k − w to k − 1. The
predicted mean and covariance matrix of the proposal dis-
tribution being estimated with then be the outputs of the
GP regression, calculated using (14-16).

5 NUMERICAL RESULTS

In this section the feasibility of the proposed DD-PF is anal-
ysed. The case under analysis considers a sensor-limited
AUV under the influence of unmodelled disturbances.
Such disturbances can be caused by lack of proper knowl-
edge of the system, for example using sensors with unmod-
elled error sources, or by external sources, for example
when the vehicle is subject to currents that cannot be mea-
sured. In what follows, only the horizontal position of the
vehicle will be considered.

The simulations compare results obtained between the
two proposed approaches, namely the DD-PF-LS and the
DD-PF-GP, with two state-of-the-art filters being used for
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underwater TBN, namely the SIR-PF and the PPF. The
SIR-PF is not only the most widely used implementation
of the PF framework, but also it has often been mentioned
in the literature concerning TBN for sensor-limited AUVs.
At the same time, the PPF has recently emerged as a robust
solution for TBN problems.

The different set of simulations that will be presented
are based on AUV trajectory with a constant surge veloc-
ity. For the simulated linear trajectories the heading of the
vehicle was then considered to be always constant, while
for the circular trajectories it was considered the heading
to be varying at a constant rate. Such trajectories will then
be affected by un-modelled disturbances. Simulated sonar
measurements have been generated, at a rate of one per
second, and consisting on a four beam sonar sensor, in a
Janus configuration, similar to a DVL. The ranges returned
from each of the beam were them corrupted with Gaussian
noise. For that purpose, a synthetically generated bathy-
metric map was used. The different parameters being used
in the simulations are shown in Table 1. For reference, the
numerical results that are going to be presented are based
on simulations performed on Matlab environment, and
running on a laptop equipped with an Intel Core i3-2350M
processor with 2 cores, and 4 giga byte of RAM memory.
Additionally, and for the sake of simplicity the GPML Tool-
box for Matlab [21] was used for implementing the GPs of
the DD-PF-GP filter

In order to assess the convergence of the different filters
to the true solution the ensemble Root Mean Square error
(RMSE) of independent runs of the filters will be evalu-
ated. The time-indexed RMSE metric for a two-dimension
position, defined as follows, will be used:

RMSEk =

√√√√ 1
M

M∑
r=1

(x̂k,r − xk)2 + (�̂�k,r − 𝑦k)2 (17)

where M is the number of independent MC runs of the fil-
ter. In what follows, M was set to one hundred. The RMSE

TABLE 1 Filter parameters used in the simulations

Filter Settings

Number of Particles (N) 100
Process Noise (𝜎w)

√
5m

Measurement Noise (𝜎v) 1m
Resampling Threshold (Nthr) 0.6N
Initial Position (𝜎po)

√
5m

Sensor Settings
Number of Beams 4
Sensor Noise 0.2m
Learning Settings
Forgetting Factor (𝜆) 0.9
Learning window (w) 10

was chosen for the sake of simplicity, but other metrics to
compare performances of different PFs could have been
used, like for example the Kullback-Leibler divergence
[22].

Another feature of interest is the computational com-
plexity of the filter. This is particularly relevant for
sensor-limited systems, due to the limited computational
power available on-board the vehicles. In order to com-
pare the complexity of both DD-PF and SIR-PF two metrics
can be used, namely the number of resampling steps per-
formed, and the elapsed time for each run of the filter.
These two metrics should provide an indication on the
relative efficiency between each of the filters.

The number of required resampling steps is an interest-
ing metric to consider, as it is known that the resampling
stage represents an important share of the total computa-
tional complexity of PFs. At the same time it is the only step
of the PF that cannot be run in parallel. However, the num-
ber of times a resampling algorithm is run does not provide
any information on the increase in the global computation
time of the filter. Despite such values being implementa-
tion dependent, they can be compared among each other,
to assess the relative efficiency.

5.1 Linear trajectories
Initial simulations were performed to evaluate the perfor-
mance of the DD-PF for a vehicle moving on a linear tra-
jectory, but subject to external disturbances. Considering
the vehicle surge velocity to be of 1 m/s−1, the disturbances
were set up to be of 0.3 m/s−1 in both X and Y directions.
The trajectory performed by the vehicle can be seen in
Figure 1. Additionally, these trajectories are overlaid on the
contour levels of the topography of the bottom. It can be

FIGURE 1 Simulated Linear Trajectories with the real trajectory
(solid line), and the INS only trajectory (dashed) [Color figure can
be viewed at wileyonlinelibrary.com]

http://wileyonlinelibrary.com
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seen that while the INS derived trajectory is only of 250
meters, the absolute error in position of the vehicle when
subject to disturbances is of roughly 100 meters. This is
equivalent to a disturbance affecting the vehicle of around
40% the distance travelled (DT), an already quite signif-
icant disturbance, and in line with some sensor-limited
AUVs available.

Figure 2 illustrates the performance of each of the filter
under analysis. It is noticeable the similar shape between
the output of all the filters, highlighting the different levels

of terrain information throughout the path followed by the
vehicle. The SIR-PF, the PPF and the DD-PF-LS have simi-
lar performance, with their RMSE ranging below 3 meters.
It should be noted that the DD-PF-LS achieved the lowest
RMSE, of only 2.2 meters. At the same time, from these
plots it is also possible to infer that the position outputs
of the SIR-PF are particularly more noisy and less smooth
than all the others. This can be relevant if, for example, the
output of the TBN filter is going to be used as input to a
main navigation filter, as suggested by some authors [23].

FIGURE 2 Comparison of the ensemble RMSE achieved by the filters for linear trajectories [Color figure can be viewed at
wileyonlinelibrary.com]

FIGURE 3 Comparison the complexity of the filters for linear trajectories [Color figure can be viewed at wileyonlinelibrary.com]

http://wileyonlinelibrary.com
http://wileyonlinelibrary.com
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Figure 3 illustrates the complexity of the filters, by show-
ing both the the number of resampling steps for each
MC run, but also their elapsed time. From Figure 3a it
is possible to conclude that both the DD-PF-LS and the
DD-PF-GP require less resampling steps than the remain-
ing. In fact, the DD-PF-LS is the most efficient one, per-
forming resampling of its particles 40% less often than
the standard SIR-PF, and 67% less often than the PPF. As
for the DD-PF-GP, it also performs better when compared
to the SIR-PF and the PPF. These are good indicators of
the validity of the proposed approach. In line with these
results, Figure 3b shows the time of batch processing each
of the MC runs, for each of the filters. From there the
main conclusion is that the DD-PF-LS is the filter run-
ning faster, requiring on average 17% less processing time
than the SIR-PF. As expected, the PPF performs slightly
slower than the SIR-PF, mostly due the additional number
of resampling steps. However, perhaps not so surprisingly,
the DD-PF-GP is the filter that is slower. This is justified
by the GP learning framework, which requires additional
computations.

5.2 Circular trajectories
A second batch of simulations was performed, similar to
the previous one but this time considering circular trajec-
tories. Besides the change of the heading of the vehicle at a
constant rate, all other conditions, including bottom topog-
raphy and level of disturbances present, remained the
same. The trajectory performed by the vehicle is illustrated
in Figure 4.

Similarly to before, Figure 5 presents the ensemble
RMSE of all the filters being considered. In these simula-
tions the SIR-PF, with an ensemble RMSE of 2.7 meters,

FIGURE 4 Simulated Circular Trajectories, with the real
trajectory (solid line), and the INS only trajectory (dashed line)
[Color figure can be viewed at wileyonlinelibrary.com]

outperformed its competitor. Once again, the DD-PF-LS
was more accurate than the DD-PF-GP, in this case by a
small margin, while the PPF obtained the worst results,
with an ensemble RMSE of 3.9 meters. While the SIR-PF
performed better, as it obtained a smaller RMSE, it should
be noted that the trajectories obtained by the DD-PF-LS
are significantly smoother then all the others, which is
a highly desirable characteristic as it suggests a steadier
trajectory of the vehicle.

As before, the complexity of the filters was also eval-
uated, with Figure 6a comparing the number of resam-
pling steps per run for this batch of simulations. Similarly
to before, the number of resampling steps required by
both the DD-PF-LS and the DD-PF-GP is significantly less
than for the SIR-PF. By comparing these numbers here
obtained, with the ones obtained for linear trajectories,
it can be noticed an increase in the number of resam-
pling step for both the SIR-PF and the DD-PF-LS, with
the DD-PF-GP performing resampling of its particle on
approximately the same number of times as in the linear
trajectories. Figure 6b details the elapsed time for each of
the filters, and it presents some similarities with Figure 3b.
Here again, the DD-PF-LS is the filter achieving better
results, with lower processing time, demonstrating that
increase of complexity related to the data-driven mecha-
nism was more than compensated by requiring a smaller
number of resampling steps.

5.3 Low level of disturbances
The simulations presented so far address situations on
which an AUV is following linear or circular trajectories,
and subject to the effect of unmodelled disturbances at
relatively high levels, that amount to approximately 40%
of the distance travelled. This was in fact the main sce-
nario behind the derivation of the two presented DD-PF
algorithms. In what follows, we will study the behaviour
of the aforementioned filters when the non-modelled dis-
turbances are relatively smaller or even non-existent. For
such analysis the simulations for linear trajectories were
repeated, but now with smaller levels of disturbances.
The purpose of such simulations is to study if the DD-PF
also performs well when the process model is a more
appropriate approximation of the true proposal density.
Two different situations were assessed, one with distur-
bances amounting to 15% of the distance travelled, and
another one without any disturbances. It should be noted
that the process noise 𝜎w was maintained in the same
levels as before. A summary of the obtained results can be
found on Table 2, which shows the ensemble RMS and the
average resampling steps of each filter, and for each
simulated scenario. Additionally, and for an increased
statistical significance, the standard deviation of these val-
ues is also provided.

http://wileyonlinelibrary.com
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FIGURE 5 Comparison of the ensemble RMSE obtained by all the filters for circular trajectories [Color figure can be viewed at
wileyonlinelibrary.com]

FIGURE 6 Comparison the complexity of the filters for circular trajectories [Color figure can be viewed at wileyonlinelibrary.com]

The obtained results are highlighted in Table 2. From
there, it can be concluded that the DD-PF-LS performs
relatively better than the SIR-PF an the PPF for all the
foreseen scenarios, closely followed by the DD-PF-GP. At
the same time, it is also more efficient, as the DD-PF-LS
requires less resampling steps, and is processed in signif-
icantly less time. Interestingly, the SIR-PF also presents a
higher standard deviation of its RMSE value, at least twice
as much as the observed for the DD-PF-LS, which is also an
indication of it's wobbly trajectory. Recalling from Figure 2,
the RMSE plots for the PPF and the DD-PF-LS were much
smoother than the ones for the SIR-PF, and a similar
result is expected here. A close look to Table 2 reveals

that the RMSE of the SIR-PF remains fairly constant when
the disturbances are lower or even non-existent, which is
counter-intuitive. However, this reflects the fact that the
process noise was kept in the same levels for all the sce-
narios, which can be unadjusted and excessive when the
disturbances are not so high.

In order to confirm that, the simulations were repeated,
but this time adjusting the process noise to values com-
patible with the level of disturbances. A summary of the
obtained results can be found on Table 3. As before, the
tuning process for both the SIR-PF and the PPF consisted
on adjusting the process noise to the lowest possible value,
but while still being able to converge to the true trajec-

http://wileyonlinelibrary.com
http://wileyonlinelibrary.com
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TABLE 2 Summary of the simulations for linear trajectories and different level of disturbances

Dist. (%DT) SIR-PF PPF DD-PF-LS DD-PF-GP
RMSE Res. steps RMSE (std) Res. steps RMSE (std) Res. steps RMSE (std) Res. steps
(std) (m) (std) (m) (std) (m) (std) (m) (std)

40% 2.95 (2.16) 229 (2.9) 2.39 (1.43) 299 (0.0) 2.09 (1.31) 101 (1.1) 5.16 (3.16) 159 (11.1)
15% 2.62 (1.51) 233 (2.9) 1.15 (0.48) 299 (0.0) 1.05 (0.47) 99 (1.1) 1.28 (0.48) 150 (3.1)
0% 2.95 (1.92) 247 (3.6) 1.03 (0.31) 299 (0.0) 1.00 (0.35) 102 (1.2) 1.23 (0.34) 147 (3.4)

TABLE 3 Summary of the simulations for linear trajectories and different levels of disturbances with adjusted process noise

Dist. (%DT) SIR-PF PPF DD-PF-LS DD-PF-GP
RMSE Res. steps RMSE (std) Res. steps RMSE (std) Res. steps RMSE (std) Res. steps
(std) (m) (std) (m) (std) (m) (std) (m) (std)

40% (𝜎w =
√

5) 2.95 (2.16) 229 (2.9) 2.39 (1.43) 299 (0.0) 2.09 (1.31) 101 (1.1) 5.16 (3.16) 159 (11.1)
15% (𝜎w =

√
1) 0.57 (0.31) 25 (0.8) 0.38 (0.10) 150 (0.4) 0.78 (0.18) 296 (0.0) 0.69 (0.22) 296 (0.0)

0% (𝜎w =
√

0.3) 0.90 (0.45) 65 (0.9) 4.25 (2.38) 298 (0.5) 2.71 (1.5) 296 (0.0) 2.69 (1.5) 293 (1.6)

TABLE 4 Summary of the simulations for different number of particles

Number Particles SIR-PF PPF DD-PF-LS DD-PF-GP
RMSE (std) Res. steps RMSE (std) Res. steps RMSE (std) Res. steps RMSE (std) Res. steps
(m) (std) (m) (std) (m) (std) (m) (std)

100 2.95 (2.16) 229 (2.9) 2.39 (1.43) 299 (0.0) 2.09 (1.31) 101 (1.1) 5.16 (3.16) 159 (11.1)
200 2.81 (2.19) 233 (2.4) 2.26 (1.42) 299 (0.0) 2.00 (1.28) 104 (1.2) 2.10 (1.21) 176 (5.4)
500 2.73 (2.08) 235 (2.0) 2.19 (1.34) 299 (0.0) 1.99 (1.21) 104 (1.0) 2.05 (1.49) 180 (5.5)

tory, for each particular setting of disturbance levels. The
used values are also indicated on Table 3. As for both the
DD-PF-LS ans the DD-PF-GP, the value for the variance of
the process noise remained the same as of the simulations
above.

As before, Table 3 shows the ensemble RMS and the
average resampling steps of each filter, and for each sim-
ulated scenario, as well as the standard deviations of such
values. From there the main conclusions are that when the
disturbances are relatively mild or non-existent, the ben-
efits of the proposed approach are less evident. It can be
seen on Table 3 that with disturbances of around 15% of
the distance traveled, and with adjusted process noise, the
SIR-PF outperforms by a small margin the DD-PF-LS and
the DD-PF-GP, but is the PPF that achieves a lower RMSE.
However, the SIR-PF performs resampling on significantly
less iterations than all the others, which is a good indica-
tor of the lower complexity of the filters, as demonstrated
in the previous subsection. As for the case when there
are no disturbances present the SIR-PF performs signifi-
cantly better than all the others, achieving a lower RMSE
while at the same time being significantly more efficient.
Furthermore, comparing the RMSE of the DD-PF in
Tables 2 and 3 seems to indicate that the DD-PF is not as
robust to large external disturbances as its counterparts.

5.4 Number of particles
Following the simulations presented on the previous
subsections, a final batch of simulations was performed
to study the influence on the number for particles on the
previous the presented results. To do so, the simulations
of Section 5.1 were re-done, but now using a different
number of particles. All the remaining parameters were
not changed. The obtained results are summarized on
Table 4, which compares the results when using 100 par-
ticles, presented previously, with the new results using
200 and 500 particles. As before, Table 4 presents both
the ensemble RMS and the average number of resampling
steps for each of the filters, but also the standard deviation
of those values.

An increase on the number of particles seems to cause a
small decrease on the observed RMSE for both the SIR-PF
and the PPF. It should be noted however that by increasing
the number of particles by a factor of five, only improved
the RMSE by a meager 0.3 meters for the case of the SIR-
PF, and 0.2 meters for the PPF. The increase on the number
of particles seems to have a negligible effect on the RMSE
of the DD-PF-LS. Thus, the overall tendency is that an
increase of the number particles seems to cause a slight
increase in this number, but not very significant.

For the case of the DD-PF-GP, increasing the number of
particles from 100 to 200, did decreased the RMSE quite
significantly, to less than half. However, further increasing
the number of particles to 500 does not seem to yield
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significantly better results. It is interesting to note that
with an higher number of particles the DD-PF presents
an RMSE which is lower than the SIR-PF, which seems to
suggest that the DD-PF requires more particles, and thus
more computational load, in order to perform better than
the standard PF.

6 CONCLUSIONS

In this article a new data-driven approach for the problem
of underwater TBN was proposed. Differently from the
standard SIR-PF, the DD-PF here presented tries to esti-
mate the proposal distribution by learning from the data.
This can be particularly advantageous when some of the
disturbances present can't be modelled accurately. Two
alternative learning methods have been proposed, the
DD-PF-LS and the DD-PF-GP. Using a series of numeri-
cal examples the performance of the proposed filters was
assessed, and compared to both the SIR-PF and the PPF.
It has been demonstrated that under the effect of unmod-
elled strong disturbances the DD-PF-LS can outperform
the usual SIR-PF and the PPF, achieving lower RMSE.
On top of that, the DD-PF-LS has also been demonstrated
to be significantly more efficient than both those filters,
requiring less resampling steps and being processed faster.
Additionally, the DD-PF-LS was also demonstrated to be
more flexible, adapting to difference levels of disturbances
with only small variatons on its performance. On the other
hand, the simulations presented show that the DD-PF-GP
always takes requires more time, mostly due to the use of a
computationally expensive GP framework. Moreover, the
DD-PF-GP was unable to cope with high levels of distur-
bance, even though it performed remarkably well for the
other analysed scenarios.

While the simulations for the DD-PF focused only on a
two-dimensional position estimation problem, the DD-PF
is still applicable for situations requiring a complete nav-
igation solution, including estimation of the full pose of
the vehicle. In such situations, the DD-PF could be used,
for example, to generate position updates to a main navi-
gation filter, as for example suggested in 23. Future work
would include a further study on the use of GPs as a
learning methods, perhaps investigating alternative mean
and covariance functions. At the same time, it would
be interesting to assess if the use of such nonparametric
algorithm could be more appropriate for a wider range of
application scenarios.
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