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Abstract 

This thesis presents an application of the Evolutionary Particle Swarm Optimization (EPSO) 

meta-heuristics in power system reliability analysis. The developed technique belongs to a new 

class of reliability assessment methods, the Population Based (PB) methods, which cleverly 

perform a search in the huge state space of the traditional power systems for the states considered 

as failure states.  

Usually, the reliability of the power systems is evaluated according to two different approaches: 

the analytical methods and the simulation methods. The first type tries to describe the immensity of 

power systems in a closed mathematic model. This characteristic is its Achilles heel: the more 

complex is the power system under evaluation the more intricate it is to construct that model; the 

assumptions made and simplifications adopted for making it possible typically lead to lack of 

significance in the results provided. On the other hand the simulation methods, based on the 

statistical theory, estimate the reliability indices by random sampling of system states. Even though 

the problem of system size was relatively mitigated with the use of simulation methods, there was 

another problem:  in view of the fact that normally power systems are very reliable, it is necessary 

to analyze a considerable number of states, including non-failure states, to compute estimates with 

a certain degree of confidence. The PB methods conjugate the best of the two disciplines: they are 

fairly immune to the system size and do not need to evaluate large amounts of states, especially if 

the characteristics of power systems are taken into account.  

Several meta-heuristics were used to perform the search, namely Genetic Algorithms (GA), 

Particle Swarm Optimization (PSO) and a discrete version of PSO, the Binary Particle Swarm 

Optimization (BPSO). Nevertheless, EPSO was never used to perform that search. Moreover few 

efforts have been made to increase the PB methods efficacy, measured by how good the estimation 

of the reliability indices is, and efficiency, measured by the ratio of different states visited against 

the total number of states visited. Therefore, in this thesis, an EPSO based method for assessing the 

adequacy of power systems generating capacity is proposed, which tries to reduce the 
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computational effort and simultaneously increase the diversity in the population, by using different 

spreading techniques, to avoid visiting time and again states which were already visited. 

The results obtained by EPSO will be compared with the work of other researchers in PB 

methods as well as with the results of the two traditional methods of reliability assessment. 
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Resumo 

Nesta tese é apresentado uma aplicação da meta-heurística Evolutionary Particle Swarm 

Optimization (EPSO) na análise de fiabilidade de um sistema eléctrico de energia. A técnica 

desenvolvida pertence a uma nova classe de métodos de avaliação de fiabilidade, denominados 

métodos populacionais, que inteligentemente pesquisam o enorme espaço de estados dos sistemas 

de energia por aqueles que são considerados como estados de falha. 

Geralmente, a fiabilidade dos sistemas de energia é avaliada segundo duas diferentes 

disciplinas: os métodos analíticos e os métodos de simulação. O primeiro tipo de métodos tenta 

descrever a imensidão do tamanho do sistema de energia por um rigoroso modelo matemático. Esta 

característica é o seu calcanhar de Aquiles: quanto maior é o sistema mais difícil é a sua 

modelização e, para o conseguir, normalmente realizam-se aproximações que podem por em 

questão a validade dos seus resultados. Por outro lado os métodos de simulação, baseados na 

estatística, fornecem estimativas dos índices de fiabilidade por amostragem aleatória de estados do 

sistema. Ainda que o problema do tamanho do sistema viesse bastante atenuado com a utilização 

dos métodos de simulação, existe outro contratempo: os modernos sistemas de energia são bastante 

fiáveis e, portanto, é necessário amostrar um número considerável de estados, incluindo estados 

que não contribuem para a formação das estimativas índices, os estados que não tem falha, com um 

certo grau de confiança. Os métodos populacionais conjugam o melhor das duas disciplinas: são 

amplamente imunes ao tamanho do sistema em análise e não necessitam de avaliar grandes 

quantidades de estados, sobretudo se for considerado na construção do modelo de base 

populacional, as características dos sistemas de energia. 

Várias metaheurísticas foram utilizadas para realizar a pesquisa de estados, a saber, os 

Algoritmos Genéticos (GA), o Particle Swarm Optimization (PSO) e uma discreta versão do PSO, 

o Binary Particle Swarm Optimization (BPSO). No entanto a meta-heurística EPSO nunca foi 

utilizada para realizar esta pesquisa. Além disso poucos foram os esforços realizados para aumentar 

a eficácia dos métodos populacionais, medida pela diferença entre as estimativas dos índices 
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fornecidos por este tipo de método e o seu valor real, bem como a sua eficiência, medida pelo rácio 

entre o número de diferentes estados visitados e o número efectivo de estados visitados. Mediante 

esta análise é proposto nesta tese um método de base populacional baseado na meta-heurística 

EPSO para avaliar a capacidade de produção de um sistema de energia, tentando reduzir o esforço 

computacional e simultaneamente aumentar a diversidade na população, ou seja, evitar a visita a 

estados previamente registados, através da utilização de diferentes técnicas de repulsão.  

Os resultados obtidos serão comparados não só com o trabalho de outros investigadores na área 

dos métodos populacionais mas também com os resultados dos dois métodos tradicionais de 

avaliação de fiabilidade. 
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Chapter 1 

Introduction 

In this Chapter the problem to be addressed will be explained as well as its context and the 

ideas that will be defended.  Initially a general overview about the importance of the power systems 

reliability evaluation it will be performed. Then a distinction will be made about the two main 

categories of reliability assessment: adequacy and security. Subsequently the motivation for the 

work developed will be justified. Finally the organization of this thesis will be explained.  

1.1. The importance of power systems reliability evaluation 

Presently we can define a power system as a system that delivers to its costumer’s two different 

types of products: electric energy and reliability. As a matter of fact, the economic development of 

a country is strictly correlated with the reliability of its power system since most of its economic 

agents rely on this type of energy to boost up their activity. Therefore constant interruptions on 

electric energy supply can reduce dramatically their income forcing them to buy reliability, usually 

in the form of emergency generators. In the worst of scenarios the economic agent will be forced to 

move its activities to another country affecting not only the economic sector but also the social 

environment. Typically the short term government measures in order to avoid this situation are to 

offer these enterprises different types of benefits, like tax reductions, financial compensations or 

facilities in the acquisition of patrimonial assets. Nevertheless, in time, heavy investments in the 

electric power system will be needed since low reliability generally leads to an unsustainable 

development. The main aspect to be retained is that the power systems constitute a basic element 

for the improvement of both economic and social sectors of a modern society. 

The first power systems were relatively small in size. Their first purpose was to supply the 

public illumination grid. The development of electric energy powered devices firstly for the 
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industry and later for domestic use, lead to the widespread of electric energy consumption and 

consequently to the enlargement of the powers systems size. As a result the modern power systems 

are extremely complex, progressively more interconnected, with national or even continental 

dimensions. The high number of components, geographically distributed throughout a country or 

continent, coupled with the demand uncertainties and the availability of energy resources, make the 

design and operation of these systems a highly complex task. 

The basic function of an electric power system is to supply the load demand as economically as 

possible within pre-defined continuity, quality and security patterns. However due to the enormous 

quantity of components in these systems, combined with their unique operation characteristics, 

there is a possibility of failure of the entire system simply by failure of a crucial or a group of 

crucial components. The good news is that these types of events have a low probability of 

occurrence. The most common security scenario is the strategic disconnection of a certain number 

of costumers in order to maintain the security of supply. However the same question arises: how 

much does the frequent failure of the system cost, considering all its possible consequences? In 

order to decrease the probability as well as the frequency and the duration of these events 

investments have to be made. However the tendency is to postpone those investments and to 

operate the electric systems in their limits. Managing all these contradictory requirements is the 

constant struggle of the decision makers when it comes to reinforce the electric system in order to 

increase its reliability. 

Recently the institutional changes in the electric sector, such as the progressive deregulation or 

the former electric utilities privatization, with the purpose of creating an electric market, have given 

another degree of importance to the continuity of service: now it is the responsibility of the 

electricity provider to assure a continuous power supply, usually established in a contract, 

especially in the case of a very important client. Moreover the operation paradigm of the electric 

power systems is also changing. New concepts as distributed generation, micro-grids and the 

raising penetration of energy from intermittent sources, have brought the need to fully describe the 

entire energy system in order to correctly evaluate its reliability. 

1.2. Adequacy vs. security 

At this moment the necessity is clear for reliability studies whose main objective is to obtain 

performance indices for the behavior of the power systems, which can be used in the decision 

making process. However one must distinguish between reliability adequacy and reliability 

security. Reliability adequacy is related to the existence of sufficient resources within the system to 
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meet the customer demand and the system operational requirements. This includes resources for 

generation, transmission and distribution needed to “carry” the energy to the individual 

consumption points. The adequacy evaluation is associated with the static conditions and does 

not include the dynamics of the system and the response to the transient perturbations: the 

different system states are evaluated without taking into consideration possible instability that may 

be introduced by failure of the system components. On the other hand the security is related to the 

system ability to respond to the dynamic or transient disturbances that might occur. Thus the 

security evaluation is associated with the reaction of the system to any disruption to which it can be 

subjected. This includes sudden loss of generation and/or transmission capability that can lead to 

transient instability, frequency instability, voltage instability among others. Most of the currently 

available techniques for assessing the reliability are in the field of adequacy evaluation. The ability 

to evaluate the security is still very limited mainly due to the complexity associated with the 

modeling of the dynamic behavior of the electric power systems. Most of the assessed reliability 

indices are, in fact, adequacy indices and not security indices, although they are commonly 

designated as so [1]. This thesis will be focused in the assessment of adequacy indices. 

1.3. The purpose of this thesis 

Monte Carlo remains the standard method to calculate estimates of reliability indices in power 

systems. This statistically based method has gained importance over analytic models since the 

emergence of enough computing power in the beginning of the 90’s coupled with the adoption of 

efficient convergence acceleration techniques. The two basic advantages of Monte Carlo were: 

  

• Allowing simulation of realistic characteristics of systems, even those not necessarily 

reducible to formal mathematical models; 

• Allowing the calculation of distributions and not only of mean values (in its simplest form, 

allowing the estimation of variance). 

 

Non-chronological models became successful then. However, as it is usual in such cases, the 

growth in computer power opened the way to the desire to perform chronological simulations and 

this became demanding of increased computing power. At the same time, even non-chronological 

models became more complex because of the availability of computing power at desktop level. As 

it happened in many other cases in the development of science and technology, the moment one has 
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available more computing power this becomes almost at once insufficient for the new and more 

complex models one wishes to run. 

Recently, an alternative to Monte Carlo started to emerge: Population Based (PB) methods. 

While Monte Carlo is a statistically based method, relying on the theorems of sampling to provide 

an estimate of a result plus some interval of confidence, PB methods are methods that try to search 

only for the meaningful subset of the state space and are enumeration methods. If all states 

contributing to a certain index could be identified and their probabilities known, the index would be 

calculated exactly. PB methods try therefore to discover, if not the totality, the majority of states so 

that a good approximation of the index is computed. Notice that visited states of the current 

developed PB methods are similar to those sampled by the non-chronological Monte Carlo: there is 

no sequential relation between them.  

The methods are called PB because they rely on meta-heuristics that have a population of 

solutions (individuals, particles) as their core. In this class one may count Evolutionary Algorithms 

(EA) – Evolution Strategies (ES) / Evolutionary Programming (EP) or Genetic Algorithms (GA) – 

and Particle Swarm Optimization (PSO) algorithms. They all were traditionally developed to be an 

optimization tool but the problem now is the discovery of a set of states that have maximum 

contribution to the index to be calculated – so, some mechanism to generate diversity must be kept, 

otherwise all solutions would tend to converge to a maximizing state and space exploration would 

be hampered.  

In this thesis a new PB method is presented, using a brand new meta-heuristic: Evolutionary 

Particle Swarm Optimization (EPSO). This meta-heuristic proved in the past its superiority in 

relation to the other types of EA [2] mostly due to its robustness in finding consecutively better 

solutions for a wide range of variation of its strategic parameters. Although this can be a good 

property for optimization problems, in search algorithms it is necessary to create some diversity in 

the population in order to maximize the number of visits of significant states and to avoid the visit 

to repeated ones. Therefore it is necessary to include in the traditional EPSO algorithm some sort of 

forgetting mechanism as well as a spreading instrument between the elements of the population (in 

EPSO they are called particles) when some type of convergence into a specific zone of the search 

space is detected. The first objective can be accomplished by moving constantly the population 

objective, for instance, using a bi-objective fitness assignment process [3] and regular forgetting of 

the best particle in the population, and using a fitness assignment method which penalizes the 

already visited states. The second objective can be achieved by adding an extra term to the particle 

velocity taking into consideration the proximity between them and the number of the similar cases. 

Additionally, in this thesis, another method will be used to maximize the diversity in the population 

taking into concern a new social cognitive model for the swarm: not only the position of the best 
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particle in the population influences movement of a particle but also the position of its nearest best 

particle. With this feature a more intensive search is expected, in the local zones of the search 

space. 

The proposed methodology will be tested in the reliability adequacy assessment of the 

generating capacity of a world-wide benchmark power system, to have a basis of comparison with 

the results of others PB methodologies. Also a comparison with the results provided by a non-

chronological Monte Carlo simulation will be done. 

1.4. Organization of this thesis 

This thesis is organized in the following manner. In Chapter 2 a brief overview is performed 

about the traditional methods of reliability adequacy assessment. The analytical methods will be 

distinguished from the probabilistic methods and, among the probabilistic methods, the analytical 

approach and the simulation approach will be explained. Then the main lines of the most important 

EA will be introduced. Finally will be performed an overview of the new PB methods stating 

important works in the area and showing their particularities. 

In Chapter 3 the traditional EPSO algorithm is described in detail. After this description the 

ideas of the proposed methodology will be detailed. Then a brief introduction to the reliability 

adequacy indices of the problem addressed in this thesis is presented as well as how they are 

assessed in the particular reliability adequacy evaluation. Next an introduction to the process of 

fitness assignment is presented, with the inclusion of the bi-objective approach. Subsequently a 

brief description of the diversity techniques and the way that they are incorporated in the proposed 

algorithm will be carried out. Finally the EPSO based search algorithm will be fully described in its 

particular steps for a systematic application. 

In Chapter 4 the performance of the EPSO is illustrated, based on the search algorithm 

proposed in Chapter 2 in the evaluation of the generating capacity of a benchmark power system. 

To accomplish that, first the effect of each fitness function is evaluated, as well as the effect of each 

spreading technique in the improvement of the search efficacy and efficiency. Then the EPSO 

reliability algorithm, proposed in this thesis, which includes the best of these means to create 

diversity, will be compared with a search methodology proposed in the literature in order to exhibit 

its merits and eventually its demerits. 

Finally, in Chapter 5, the main conclusions of this work will be summarized and some 

suggestions or guidelines for future work will be offered. 
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Chapter 2 

State of the art 

In this Chapter a brief review of the state of the art of power systems reliability assessment 

techniques will be made. As it is known this type of analysis is very complex and its intricacy 

increases with the growth in system size. On the other hand, these types of studies are fundamental 

to determine whether it is necessary to perform investment in order to optimize, from an economic 

point of view, the planning and operation of the power systems. To measure the power systems 

reliability the scientists developed several methods to solve each specific reliability problem. In this 

thesis the generating capacity adequacy assessment problem will be addressed. Therefore, the next 

subsections of this Chapter will be focused on the methods developed to solve this specific 

problem, with special attention to the ones which were recently developed since they are the vital 

subject of this thesis. 

Firstly an overview of the general subject of power systems reliability assessment will be 

presented. Then two different approaches will be distinguished for evaluating the adequacy of the 

generating capacity: the deterministic approach and the probabilistic approach. Further, the 

probabilistic approach will be also divided in its main two schools: the enumeration methods and 

the simulation methods. Finally the new reliability assessment technique will be presented, which 

can be considered also a probabilistic enumeration method but with an increase of efficiency as it 

will be shown. 

2.1. Power systems reliability adequacy assessment – an overview 

Reliability assessment of real size electrical power systems is a complex problem. The 

historical reasons for this complexity are the enormous number of components that this type of 
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systems possesses, the distinctive ways that these components may fail, and the singularity of the 

system operation.  

As a matter of fact there are several ways to produce electricity, each one with its own 

characteristics. Moreover in some of these generators there is an uncertainty associated to the 

availability of the primary source of energy. Combined to these facts, the power flow through the 

electric network obeys to the 1st and 2nd Kirchhoff laws, unlike the common transportation 

problem, which has only to verify the 1st Kirchhoff law, and, to maintain the stability, the system 

power production must always equal the losses in the electric grid plus the randomness of the 

customer demand. Therefore understanding how the electric power systems works is essential to 

assess its reliability. 

Taking into account the previous mentioned facts, it is usual to divide the electric power 

systems in their main functional zones. These are: 

 

• Generation; 

• Composite generation/transmission; 

• Distribution.  

 

This division was first proposed in [4] introducing the concept of hierarchical levels. The 

hierarchical level one, HLI, refers to generation facilities and their ability to supply the system 

demand; the hierarchical level two, HLII, refers to the composite generation/transmission systems 

and its capacity to deliver energy to the bulk supply points; the hierarchical level three, HLIII, 

refers to the complete system including distribution and its aptitude to assure the power and the 

energy demand of the individual consumers.  

This partition allowed the development of specific techniques to quantify the reliability, 

according to the zone characteristics and the reliability study in question. For instance, one of the 

traditional reliability studies is the adequacy of the generation capacity. In this particular study it is 

frequent to ignore the influence of the network and to aggregate all of the system demand in one 

single bus powered by all system plants. These simplifications allow to assess the reliability of the 

power system generation subset and to draw conclusions on whether is necessary the construction 

of new power plants to enhance the security of supply. However, if the transmission system is not 

properly sized, a large amount of costumers may not be supplied, even though the generation 

subset is considered reliable. Therefore care must be taken in the application of a specific technique 

because the results provided are only valid in the scope of the problem formulation and its 

simplifications. 
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Nowadays we witness the progressive deregulation of the electric sector. In the past, utilities 

were vertically oriented, frequently owned and controlled by the governments, comprising power 

production, transmission and delivery. Hence the planning and operation of the electric power 

systems were made in a monopolistic scenario and the reliability concerns were basically focused 

in the security of supply. Scale economics was the rule. The division of these utilities in 

production, transmission, distribution and commercialization was made to increase competition, to 

give the electricity consumers the opportunity of choosing their electric provider, and to allow that 

the future of the electricity power system is in the hands of their agents. Electricity is now treated 

as a commodity and the concept of consumer is being replaced by the term costumer. Reliability is 

a responsibility of the system agents (except costumers, obviously), imposed by the market 

regulator in the form of targets that have to be satisfied or otherwise they will incur in monetary 

penalties. This fact combined with the increased amount of generation in the distribution subset 

from intermittent sources, makes more difficult to solve any reliability related problem and HLIII 

studies are now growing on importance.  

This thesis addresses the static reserve problem by applying Population Based methods instead 

of the classical Monte Carlo simulation, namely adopting a special and new technique called 

Evolutionary Particle Swarm Optimization (EPSO). This problem is included in the HLI type of 

studies and measures the adequacy of the generating capacity considering future decommissioning 

of old power plants, the possibility of failure of the ones in service as well as outages due to 

scheduled maintenance, and the load growth estimates in a long-term horizon. It differs from the 

operating reserve problem, which evaluates the actual capacity to meet a given load level in a 

short-term horizon, being the fundamental difference between static and operating reserve, the 

period of time in study.  

2.2. The deterministic approach 

Several techniques were developed to tackle the power production adequacy problem. Two 

approaches can be identified: the deterministic approach and the probabilistic approach. 

The deterministic approach is a simple method to measure the adequacy of the generating 

capacity and was widely used in the past by the electric utilities to support their decisions. In a few 

words, this approach quantifies the electrical power system reliability using a pre-specified rule 

based on the past experience of the utilities. Therefore, each utility adopted different criteria 

according to its internal organization and the electrical power system in question. Some of these 

criteria can be found in the specialized literature or in the utilities handbooks. A typical worldwide-
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known example of this approach is the Planning Generating Capacity [1], which determines the 

minimum necessary installed capacity, which is equal to the expected maximum demand plus a 

fixed percentage of the expected maximum demand. Also it is common to determine the static 

reserve, which is the difference between the generating capacity and the expected maximum 

demand, using as reference the capacity of the largest generating unit. 

As the reader may have noticed, these deterministic criteria are not suitable for the reliability 

assessment of today’s electrical power systems. From an economic point of view, this type of 

approach leads in most cases to solutions that waste financial resources without apparent 

justification, as this approach does not consider the stochastic behavior of the electrical power 

systems or, in other words, disregards the way in which this systems operates, the way that its 

components fail and the randomness of the system load. The main advantages of this approach are 

the straightforwardness and robustness of their results since the criteria used by the utilities were 

usually developed to be on the side of the security of supply. However, due to its limitations, this 

approach can also lead to under-investment solutions and probably to an unacceptable number of 

interruptions on load supply. Quantifying the cost of load curtailment is far behind the context of 

this thesis, but it is easy to understand that the modern society does not tolerate a too frequent 

failure of the electrical power systems. On the other hand this same society does questions the 

unjustified investment of large amounts of money to improve power system reliability. Therefore 

each dollar, euro or another currency invested to improve the system reliability has to be justified. 

For this reason the deterministic approach is being gradually replaced by probabilistic methods, 

although several utilities still use the deterministic approach (such as the n-1 criterion), especially 

in the transmission system. 

2.3. The probabilistic approach 

The probabilistic approach is the soundest way to assess power system reliability since this 

approach incorporates the fact that there is an uncertainty associated to the events that can occur in 

this type of systems. The most common types of uncertainties that can be found in the electric 

power systems are: 

 

• The components state; 

• The weather state; 

• The hydrological resources state; 

• The load state. 
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These types of uncertainties are incorporated in the probabilistic approach using stochastic 

models. The classical reference is the Markov model, which uses the exponential distribution to 

represent the duration of the system events, leading to constant transition rates between states [5]. 

For this reason this type of stochastic model is called the homogeneous Markov model and it is 

attractive because of its mathematical elegance, allowing the inclusion of different system states 

and the way that the system evolves from on state to another. The stationary probability, which is 

the probability of a state occurrence when the Markov process tends to the infinity, or, in other 

words, the expected value of the state probability, is calculated from the transition rates between 

different states.  

 

 

Figure 2.1.  Two-state Markov model for a system component, where � is the expected failure rate and � is 

the expected repair rate. 

 

Modeling the durations of system events by the exponential distribution is extremely helpful on 

a mathematical point of view. However the duration of a specific type of event may not follow this 

distribution, like the case of the duration of the components repair. Several efforts had been made 

to conceal this fact and in [6] is presented a technique that enables the use of bell-shaped duration 

distributions such as the Weibull distributions in the homogeneous Markov models. In [7] is 

discussed the use of others non-exponential distributions in the Markov process. 

The probabilistic approach is subdivided in analytical methods and simulation methods. The 

analytical methods describe the system behavior through a mathematical model and assess the 

system reliability by the numerical calculation of the mean values of the desired system reliability 

indices. This type of approach was used up to the 80´s basically for its low computational effort. 

However if a complex system is considered, several assumptions and simplifications have to be 

made for analytical tractability. Therefore there is a great possibility of these methods to provide 

unrealistic results.  
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The simulation methods, often called Monte Carlo simulation methods, estimate the reliability 

indices by the random sampling of scenarios. These types of methods have the advantage to 

incorporate multiple system dependencies and characteristics, electrical and nonelectrical, which is 

extremely difficult to represent in the analytical methods. 

2.3.1. The analytical methods 

In order to evaluate the adequacy of the generation capacity two methods can be clearly 

defined: the basic probability methods and the frequency and duration (F&D) methods [1].  

The first one uses the concept of unavailability, which is the probability of finding the 

generation unit out of service, to construct, in a recursive manner, the so called Capacity Outage 

Probability Table. Usually, the unavailability of a generation unit, also known as Forced Outage 

Rate (FOR), is computed assuming a two state homogeneous Markov model to describe its 

operation cycle. This model is widely used on this type of study due to its simplicity. For instance, 

to completely describe generation system reliability it is only necessary to know the mean time to 

failure and the mean time to repair of the unit in question which can be obtained for analyzing the 

history of the unit in question. It is also possible to include in this type of study more detailed 

models to cover the unit’s specific operation conditions like peaking service [8].  

The calculation of the Capacity Outage Probability Table is no more no less than the 

enumeration of all system states and their probability of occurrence, each state represented by its 

outage capacity. The result is the discrete probability distribution of an outage occurrence. For very 

large systems it is common to truncate this table by rejecting the states which possess a probability 

inferior to a pre-specified threshold, with the purpose of reducing the computational effort. In [1] 

can also be found another approximation method to this table by a continuous distribution, valid for 

very large systems.  

After obtaining all the entrances of this table a discrete convolution with the system load curve 

is made to obtain the loss of load risk. To do this mathematical operation first the individual peak 

loads of the load curve are arranged in a descending order creating the cumulative load model. 

Then, for each value of the Capacity Outage Probability Table the number of hours, days or weeks 

is computed (depending on the base of the load diagram) where the load exceeds the capacity in 

service. Dividing this number for maximum number hours, days or weeks of the load curve, the 

probability of the load being higher than the capacity in service is obtained for each particular state. 

This probability multiplied by the probability of the respective entry in the Capacity Outage 

Probability Table gives the loss of load probability for this particular state. The next step is to add 
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the individual values of the loss of load probability to acquire the system loss of load probability.  

It is also possible to compute the loss of load risk multiplying the obtained value by the maximum 

number of hours, days or weeks of the load diagram. However if the diagram is in an hourly base, 

for example, the result of the risk of loss of load cannot be extrapolated to another base like days or 

weeks.  

The described process can be summarized in the following mathematical formula: 

 

 ���� = ∑ 	
������ × 	�� > 
���� − ���  , (2.1) 

 

where ���� is the Loss of Load Probability reliability index, 	
�� is the probability of the 

generation capacity being ��  
��, ���� is the maximum generation capacity, 	�� >

���� − ��� is the probability of the load exceeds the capacity of the state � and � is the 

dimension  of the Outage Probability Table. 

This method also allows the calculation of energy indices. As a matter of fact the area bellow 

the load curve gives the total energy consumed in the period of study. Therefore, as it is easy to 

compute the number of hours, days or weeks that it will be a load curtailment, it is also easy to 

obtain the expected value of the loss of energy. This approach can also take into account in the 

indices calculation the effect of scheduled maintenance, the uncertainty in the load forecast and the 

FOR uncertainty [1]. 

The indices calculated by the basic probability methods are the expected value of the number of 

hours in which the load exceeds the generation capacity and the expected value of energy not 

supplied in a given period of time. The focus of the F&D perspective is to provide indices that 

indicate the frequency of occurrence of a generation outage and the expected duration of these 

interruptions. These are the main advantages of the F&D methods. Their main disadvantage is the 

more complicated mathematical concepts that this type of approach possesses. To apply and to 

master these types of methods it is crucial to understand the concept of frequency and the concept 

of state transition. 

The F&D methods require the knowledge of the transition rates between the states that 

constitute the chosen homogeneous Markov model. Like the basic probability methods, the 

reliability indices are calculated through the convolution of the load model and the recursive 

constructed generation model. The F&D methods can also incorporate the uncertainty on the load 

forecast.  In [1] and [9] the fundamental development of these types of methods can be found.  

In [1] one can also found two different methods to analyze the adequacy of the generation 

capacity in interconnected systems, which are the Probability Array Method and the Equivalent 

Assisting Unit Method that can also be formulated in the basic probability approach and in the 
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F&D approach, analyzing the effect of tie line capacity. As it is known, the electric power systems 

are progressively more interconnected and the effect of adjacent areas in the reliability analysis of 

the generation capacity cannot be forgotten. 

2.3.2. The simulation methods – Monte Carlo 

Simulation techniques, often known as Monte Carlo simulation, estimate the reliability indices 

by simulating the random behavior of the system.  There are two major types of Monte Carlo 

simulation: the non-chronological type and chronological type. In the non-chronological type the 

samples are obtained by producing “snapshots” of the system state, without any dependence on 

time between samples. Alternatively, in the chronological type, a virtual or fictitious clock is set in 

motion and, with the flow of time, sequences of events are randomly generated, like a “story of the 

life” of the simulated system.  

The number of the needed samples for given level of accuracy is independent of the system size 

(depends on the variance of the variable under estimation), which makes Monte Carlo simulation 

appropriate to assess the reliability of very large systems. Also, Monte Carlo methods have the 

advantage to provide information about the variability of the reliability indices as they provide their 

underlying probability distributions [10]. Quoting [11] “the probability distribution provides both a 

pictorial representation of the way the indices vary and important information on significant 

outcomes, which, although they occur very infrequently, can have very serious system effects. 

These effects, which can easily occur in practice, may be neglected if only average values are 

available”. 

Due to the incredible increase of the computational capabilities in the last two decades and the 

development of variance reduction techniques the Monte Carlo methods are the most commonly 

used methods for reliability assessment. However, in order to guarantee a certain degree of 

confidence in the estimates provided by these types of methods, a large number of samples have to 

be randomly obtained. Furthermore the number of samples needed depends on the system 

reliability which means that, for very reliable systems, the number of samples necessary to assure 

that the estimated indices belongs to the pre-specified confidence interval can be extremely large.  

The Monte Carlo simulation methods can be divided in two approaches: the non-chronological 

approach and the chronological approach. In the non-chronological approach the system states are 

randomly sampled without any preoccupation with the chronology of the system operation. A non-

chronological system state is obtained by sampling the state of all system components according to 

their probability of failure. Therefore it cannot model time correlations or sequential events. In the 
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chronological approach, the up and down cycles of all components are sampled in accordance with  

their probability distribution and a system operating cycle is obtained by combining all the 

component cycles [12]. For that reason this technique allows to include in the reliability evaluation, 

chronological issues like the time-dependent load curve as well as the hydrological affluences or 

the sequential behavior of the system components. For instance, there is a correlation between the 

load curve and the unit’s operation cycle. As a matter of fact some units are in service for long 

periods of time and others are only started when they are needed and normally operate for 

relatively short periods, usually when the system load is near its peak value.  The first unit type is 

called base load unit and the second type peaking unit. This dependency cannot be easily 

incorporated in a non-chronological reliability evaluation scheme (although there is a specific 

Markov process to model the operation of peaking units [1] which requires more detailed data than 

the traditional two state Markov model, usually extremely difficult to obtain) making the flexibility 

the main advantage of the chronological approach. On the other hand the main disadvantage of the 

chronological approach in relation to the non-chronological approach is the enormous computing 

time and effort required to verify the same convergence criteria. 

In [10] two methods for single-area generating system adequacy assessment can be found: the 

State Duration Sampling Method and the State Sampling Method. The first method belongs to the 

chronological Monte Carlo simulation type. The second method is a non-chronological Monte 

Carlo type.  

2.3.2.1. State Duration Sampling method 

The first operation of the State Duration Sampling method is to generate the unit operation 

history by sampling the time to failure and the time to repair, according to the probability 

distribution of these random variables, assuming a two state model to describe the unit operation. 

This concept can easily be extended to multiple states modeled units, by sampling the time for all 

possible transitions from the current state. The next residence state will be the one which have the 

lowest transition time. This process is repeated in order to obtain the sequence of duration of the 

unit’s state. The next step is to superimpose the load curve with the system available capacity curve 

to calculate the reliability indices.  

The chronological simulation stops when the coefficient of variation of an index, usually, the 

expected energy not supplied because of its lowest convergence “speed”, is inferior to a threshold 

value. The coefficient of variation of an index � is defined as: 
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 � = �
�/!
�  , (2.2) 

 

where !
� is the estimated expectation of the index and �
� is the standard deviation of the 

estimated expectation.  

 

 

Figure 2.2.  Illustration of the evolution of the estimative of a reliability index using Monte Carlo methods. 

 

The main advantages of the State Duration Sampling method are: 

 

• The easiness in the calculation of frequency indices; 

• The use of non-exponential distributions to model unit state durations; 

• The trouble-free inclusion of peaking unit.  

2.3.2.2. State Sampling method 

In the State Sampling method, the unit state is obtained by generating an uniformly distributed 

number in a [0,1] range which is compared with the unit FOR. If the random number is inferior to 

the unit FOR, the unit is considered unavailable otherwise it is considered available. Therefore the 

system state is a random combination of all generating unit system states. This process can be 

States sampled

Monte Carlo estimative 
of the reliability index

Real value of the 
reliability index
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extended to a derated state unit model or to a multiple state unit model since this method only 

needs the probabilities data of the generating unit states.  

In view of the fact that the non-chronological sample corresponds to a “snapshot” of the system 

state, the superimposition of the load curve is no longer valid. So, to obtain the reliability indices 

the sample must be compared to all periods of time that the chronological load curve is subdivided. 

This process requires a huge computational effort. To suppress this fact three approaches can be 

identified:  

 

• Sample load states according to the load cumulative distribution function; 

• Create a multistep model of the annual load curve using, for example, cluster techniques; 

• Sample load states according to the multistep model cumulative distribution function. 

 

The convergence of the State Sampling method is analyzed in the same way as in the State 

Duration Sampling method.  

The State Sampling method has the advantage of accessing the reliability indices in a shorter 

computing time and memory storage than the State Duration Sampling method. However the 

calculation of frequency indices cannot be done as simply as they are obtained in the chronological 

approach. Also it is very difficult the use of non-exponential distributions to model unit state 

durations. 

The use of simulation methods in the assessment of generating system adequacy can be very 

useful in modeling complex systems. However to obtain reasonable results it is necessary to draw 

an extremely large number of system samples, mainly in the case of very reliable systems. The 

known way to overcome this problem is to reduce the standard deviation of the estimated 

expectation. This can be achieved with the so called variance reduction techniques. In [10] five of 

these techniques can be found which can be applied in power systems reliability evaluation. Further 

in [13] the formulation of the Control Variates technique and the Importance Sampling technique to 

composite generation-transmission reliability evaluation is presented. 

2.3.2.3. The Control Variates technique 

Quoting [10] “variance reduction is simply a mean to use known information about the 

problem.” This is the concept used in the Control Variates technique. This method assumes that it 

is possible, by an analytical method, outside and independent of Monte Carlo, to calculate an 

approximation for the value that is to be determined. Thus the Monte Carlo simulation is only used 
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to calculate the difference between the approximation and the solution of the problem. Choosing a 

correct control variable, which is the approximation for the desired value, is extremely important to 

obtain effective convergence acceleration. In the literature it is shown that in order to achieve a 

high convergence “speed”, the control variable and the value that is to be determined have to be 

strongly correlated. 

2.3.2.4. The Importance Sampling technique 

The Importance Sampling technique is based on the distortion of the probability density 

function of sampling in order to increase the probability of occurrence of relevant events and 

reduce it for those which are irrelevant. This method involves the use of a previous known 

auxiliary probability density function, obtained by an analytical method, from which the events are 

drawn. Like the Control Variates technique, the variance reduction depends on how similar is the 

shapes of the auxiliary probability function and the original probability density function. In other 

words, the knowledge contained in the auxiliary probability function allows to reduce the estimates 

variance obtained by the Monte Carlo process. It is as if the auxiliary function “explains" a good 

fraction of the variance, and therefore the efforts should focus specifically on the evaluation of the 

unexplained part.  

In these last few paragraphs, the benefits of combining the "knowledge" of analytical models 

with the flexibility of Monte Carlo to achieve high convergence performances become evident. 

However the reliability analysis still depends in the drawing of a large number of random samples 

in order to verify the value of the coefficient of variation. 

2.4. Evolutionary Algorithms 

The Evolutionary Algorithms (EA) are inspired in the biological evolution in order to find the 

optimal solution of a problem. In this type of metaheuristic the optimization process begins with 

the establishment of an initial population which is the set of possible solutions (individuals). Then, 

to each individual, the genetic operators’ reproduction, mutation, recombination and selection are 

applied, to generate a new slightly different set of individuals that, in general, have better fitness 

than their parents. Then this evolutionary process is recursively applied to the successive 

generations until a stopping criterion is satisfied. In the end, the population is filled with 

individuals with better evaluation than the ones in the initial population and the supreme individual 

is selected as the solution of the optimization problem.  
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A general EA, which can be applied to all its variants, is defined as follows: 

 

The EA are distinguished from one another through the individual chromosome (an array of the 

problem variables) coding/decoding processes. Therefore there are two fundamental types of EA: 

the phenotype methods and the genotype methods. In the phenotype methods the individual is 

constituted directly by the set of the problem natural variables and there is a one-to-one mapping 

between chromosomes and system solutions. Alternatively in the genotype methods each solution 

is coded in a sequence whose interpretation implies the use of an external algorithm which allows 

computing the “natural” set of the problem solutions – but there is no one-to-one mapping to the 

reverse process (converting a solution into a unique chromosome) cannot be done directly. The 

Evolution Strategies (ES) [14], developed by I. Rechenberg e H.-P. Schwefel, and the Evolutionary 

Programming (EP) [15], proposed by Lawrence J. Fogel, are typical examples of the phenotype 

methods. Genetic Algorithms (GA) [16] are usually also organized as phenotype methods. 

However, biology follows a genotype principle: one cannot reconstruct a chromosome from a 

human body because the chromosome is a “program” with instructions to build a body and not a 

one-to-one mapping between genes and body characteristics. 

 Procedure EA 

 Initialize a random population P of µ elements 

 Do 

Reproduction (introduce stochastic perturbations in the new population) – 
generate λ offspring… 

   …by recombination 

   …by mutation 

  Evaluation - calculate the fitness of the individuals 

Perform selection - of µ survivors for the next generation, based on the 
fitness value 

Until the convergence criteria is satisfied (based on fitness, on number of 
generations, etc) 

 End EA 
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2.4.1. Evolution Strategies / Evolutionary Programming vs. Genetic Algorithms 

The ES and the EP are very similar. In both meta-heuristics the individual represents a possible 

solution of the problem in its “natural” variables, unlike GA, in which an individual is traditionally 

represented by some binary coding of the solution. This distinction has been, however, erased in 

recent times, especially with the emergence of the so called GA with real chromosomes. Therefore, 

the distinction between EP/ES and GA has been lately relying on the relative importance of the use 

of the operators recombination and mutation, with GA preferring the former and EP/ES preferring 

the latter (this however not totally true for the most recent ES models). 

To maintain diversity and to push the population towards the optimum, the three algorithms 

rely in the following three operators: 

 

• Selection; 

• Mutation; 

• Recombination. 

 

The selection operator is what defines an algorithm as being “evolutionary”: is chooses those 

individuals that will survive into the next generation. It allows the process to favor the number of 

better performing individuals in the population throughout the evolutionary process. It has also 

been demonstrated that the application of elitism (the forced selection of the best individuals) 

favors in many cases the algorithm convergence. The selection can be done according to various 

techniques, being the following three the most used ones: 

 

• Elitism (typical in ES); 

• Stochastic tournament (typical in EP and GA); 

• Spinning roulette (used in many GA models). 

 

The mutation operator characteristics vary according to the representation of the individual. In 

ES/EP the mutation of an individual is made applying stochastic modifications in the vector of 

solutions. On the contrary, in GA, the mutation of an individual is accomplished by the random 

change of a pre-specified number of bits in the genotypic solution representation. Nevertheless the 

role of mutation is more important in ES/EP than in GA, where the main mechanism to generate 

new solutions is recombination. Self-adaptive mutation schemes an important feature of ES/EP 

(although also incorporated in GA but with not as much impact due to the lesser relevance of 
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mutation in these methods), making this type of algorithm more “intelligent” and more independent 

form the initial setting of the strategic parameters. There is also an important quality of ES/EP that 

is worth to be mentioned (and that is beneficial in the GA with real-valued chromosomes). 

Working with the natural variables of the problem makes it easy to understand the neighborhood 

structure created by the genetic operators and eventually modify them to enhance the performance 

of the algorithm. In GA, this is not at all easy whenever the individuals have a binary (string of 

bits) representation of the possible solutions where tiny changes can lead the individual to a very 

far place from the actual search zone, increasing the diversity but compromising the convergence 

speed. This is why in many GA implementations the authors defend the use of a Gray Code 

representation of the binary values – to have neighboring values differing in one bit only. 

2.5. Swarm Intelligence 

The Swarm Intelligence is a Population Based computing technique inspired in the collective 

behavior of a population of simple individuals that coordinate using decentralized control and self-

organization. This type of meta-heuristic takes advantage of the individual local interactions with 

one another and with their environment to tackle optimization and data analysis problems. 

Examples of systems studied by Swarm Intelligence are colonies of ants and termites, schools of 

fish, flocks of birds, and herds of land animals.  

One of the most used swarm intelligence algorithms is Particle Swarm Optimization (PSO) [17] 

[18]. This methodology was proposed by James Kennedy and Russel Eberhardt in 1995, claiming 

to be inspired in the observation of the behavior of bird flocks in the search of food. 

2.5.1. Particle Swarm Optimization 

PSO is a Population Based optimization algorithm. The optimization process begins with a 

randomly crated population which is constituted by the so called particles. Each particle contains a 

position vector (a potential solution of the problem) a velocity vector and a memory vector of its 

previous best position. It also has a value of fitness of the current position and the value of fitness 

of its best position. New individuals are created through the application of the “movement 

equation”: each member of the population is moved in the search space according to three vectors 

called inertia, memory and cooperation. The first vector leads the particle in its previous direction. 

The second vector attracts the particle towards its previous best position. Finally, the third vector 
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points the particle to the best solution ever found by the entire population. These movement 

“concepts” are summarized in the following equations: 

 

 "#$� = "# + &
0,1 × �� × 
* − �# +  &
0,1 × �+ × 
*, − �#  , (2.3) 

 

 �#$� = �# + "#$�  , (2.4) 

 

where - is the iteration number, � is the position of the particle, * is the personal best position, *, 

is the global best position, �� is the memory weight, �+ is the cooperation weight and &
0,1 is a 

random number drawn from the .0,1/ interval.  

 

 

Figure 2.3.  Illustrating the movement of a particle in PSO, influenced by the three terms: Inertia, Memory, 

and Cooperation [2]. 

 

It is also necessary to define in the beginning of the process the memory and the cooperation 

weights. The optimization process usually stops when a maximum number of iterations is reached.  

The initial experiments with PSO shown that this algorithm has a fast convergence speed to the 

optimum region. However, due to the excessive velocity of the particles, PSO suffered from lack of 

precision. Therefore several actions were adopted in order to reduce the particles velocity, such as 

the application of constriction coefficients, decreasing functions with the growth of iterations, and 

clamping the velocity to an interval. The precision problem was partially solved but another 

problem related to the convergence of PSO subsisted: the dependence on the weights value and the 

requirement for fine tuning. 
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2.6. Evolutionary Particle Swarm Optimization as a best of two worlds 

Unlike Evolutionary Algorithms, in PSO there is neither competition between particles nor 

self-adaptation of the strategic parameters.  The progression towards the optimum is governed by 

the movement equation which is responsible for the creation of new particles. On the other hand in 

the traditional Evolutionary Algorithms the mutation and recombination operators dictate the 

characteristics of the next generation.  However, the enrichment of the population with better 

individuals depends only on the selection operator. Furthermore, the convergence in PSO is 

strongly dependent on the value of the weights, contrarily to the Evolutionary Algorithms, were the 

self–adaptation of the strategic parameters is commonly used, giving a sort of intelligence to the 

evolutionary process.  

The recognition of the different advantages of both methodologies led to the birth of the 

Evolutionary Particle Swarm Intelligence (EPSO) [19] [20] in 2002. This Population Based method 

uses the PSO equation of movement to recombine the particles instead of the traditional 

mutation/recombination operators. This fact combined with the selection operator, gives to EPSO a 

fast convergence “speed” as these two operators cooperate on the improvement of the population. 

In addition EPSO was developed with a sense of self-adaptation, reducing the dependence on the 

pre-set value of the weights. Therefore EPSO can provide feasible solutions for a wide range of the 

weight values. Also, EPSO possesses a particular feature. The global best position, instead of being 

a static point in the search space, is randomly moved, according to the Gaussian probability 

distribution. As a result, even when the particles have already converged to a specific zone of the 

search space, the population continues to be disturbed. Results show that EPSO is superior to the 

traditional approaches of PSO and Evolutionary Algorithms.  

In powers systems EPSO was used with success in many applications, such as loss 

minimization and voltage control [19] [20], deriving optimal strategic decisions for an Energy 

Retailer, dimensioning of Power System Stabilizers, Double Fed Induction Generators PI controller 

tuning, among others. Therefore all the work on this thesis will be developed around this 

Evolutionary Algorithm. 

2.7. Reliability adequacy assessment using the new Population Based 
methods 

The Population Based (PB) methods evaluate the system reliability by enumeration of the 

system states. The main concept of this technique is to drive the individuals of the population in a 
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guided search through the state space in order to find the most significant ones. Usually a state is 

considered significant if it is a failure state and its probability is superior to a threshold value. Then, 

the obtained set of states is convoluted with the load curve to provide the reliability indices. 

From this point of view, this methodology is similar as the one used in the analytical methods 

(in fact, mainly due to the power systems dimension, the Capacity Outage Probability Table has 

also be truncated by the rejection of states which have a probability lower than a pre-specified 

value).  However, the results provided by PB methods are underestimates of the correct value since 

only a subset of the total failure states is obtained. Eventually if the total number of the states 

which contribute to the formation of an index are within this subset then the PB methods give an 

exact value. 

In the PB approach, the estimate of a reliability index is obtained from: 

 

 01 = ∑ 	��∈3 × 0�  , (2.5) 

 

where 01 is the estimate of the index, 	� is the probability of the state �, 0� is the value of the index 

in the state i, and D ⊆ U, i.e. D is usually a subset of all possible states U.  

The reader may now question the usefulness of this type of methods since there are analytical 

methods which have the advantage of theoretically assessing the correct values of the indices. 

However the analytical methods grow in complexity as the power system increases in size as well 

as the type of problem that is to be solved (for example assessing the reliability of the composite 

generation/transmission system). These facts act in favor of the PB methods for the reason that an 

individual is constituted by the state of all the components which the power system possesses. 

Therefore the complexity of the PB methods is widely immune to the system size and to the type of 

reliability study. 

The PB methods also have an advantage over Monte Carlo. As it was previously mentioned, 

Monte Carlo is statistically based method, relying on the theorems of sampling to provide an 

estimate of a result plus some interval of confidence. Therefore in order to guarantee that the 

estimate belongs to the interval of confidence a large number of samples have to be drawn. In 

addition some of these samples are not failure states (characteristic of power systems) which also 

have to be evaluated. Thus reducing the number of evaluations, especially in the HLII and HLIII 

type of studies where the minimum load curtailment has to be determined by an Optimal Power 

Flow, can decrease considerably the computational effort. In PB methods this reduction is effective 

since it works with a state array with the most significant states.  

However, in order to determine during the search process if the state is worth to be memorized, 

some methodology has to be defined. In [21] the adoption of intelligent pattern recognition 
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methods such as neural networks to discriminate between failure and success is used. In the 

particular reliability problem addressed in this thesis a state is classified as a failure state if the total 

generation capacity cannot meet the peak of the load curve.  

In [22] a simple modified GA is used to evaluate the generation capacity, not as an 

optimization tool but “as a search tool to truncate the probability states space and to track the most 

probable failure states”.  This methodology takes advantage of the chromosome concept allowing a 

binary representation of the system state according to the homogeneous two state Markov unit 

model.  Also the authors use the fact that some generators have the same characteristics (in this 

case, the same generation capacity and the same FOR) to calculate from one particular state the 

number of states which have the same probability and the same load curtailment, discarding the 

need to visit all states. In [23] GA is also used to the assessment of the annual frequency and 

duration indices in composite system reliability, with the same search philosophy, modeling the 

transmission lines by the same two state Markov process. To determine if a state is worth to be 

saved the fitness function uses a linear programming module in order to minimize load curtailment 

without violating system constraints. The load at each load bus is considered fixed and equal to its 

yearly maximum value. In [24] the application of a PSO based method, the Binary Particle Swarm 

Optimization (BPSO [25]) is presented for reliability evaluation of power-generating systems 

including time-dependent sources. The authors used BPSO for the reason that it allows the coding 

of the generators states in a vector of binary numbers according to the homogeneous two state 

Markov model. BPSO, in its formulation is quite similar to PSO. However, unlike the typical PSO, 

in BPSO the velocity is used as a probability to determine whether a bit will be 1 or 0. Therefore 

after calculating the actual velocity with the same equation used in the traditional PSO, its value is 

squashed using a logistic function. Then if a randomly generated number within .0,1/ is less than 

the squashed value, the bit is set to be 1, otherwise is set to be 0. 

In the previous mentioned works two different methodologies of fitness assignment can be 

defined. One is based on the maximization of the state probability for the states which are classified 

as failure states and which were not previously saved. Therefore the population is driven to the 

zone of the space state which possesses a smaller number of failure states.  The other methodology 

is based in the state severity by maximizing the product between the state probability and the 

respective load curtailment. This one takes into account the “weight” of the state in the reliability 

indices calculation. Nevertheless none of these works used a technique to enhance the search. As a 

result the algorithm may visit time and again the same states before the exploration of a new zone 

of the state space. 

In [3] a multi-objective version of PSO is used in the search for failure states to evaluate the 

composite system reliability. As it is known, in the classical PSO formulation there is a single 
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objective or center of attraction. Consequently, if this optimization approach is used the search can 

be prematurely stopped with a high probability of missing important states and repeating previous 

saved ones. To overcome this problem the proposed method defines conflicting objectives 

(maximizing probability and maximizing the curtailment of the loss of load state) so the particles 

never converge into any specific point of the state space and thereby end the search. The authors 

claim that this methodology allows a better control over the particle dynamics although they also 

reefer that “the convergence behavior showed considerable sensitivity to the size of the swarm” as 

well as to the value of the PSO weighs.  

2.8. Conclusions 

In this Chapter an overview of the actual state of art in the power systems reliability evaluation 

was presented, specially focused in the generation capacity adequacy problem. It discussed the 

validity of the deterministic approach. As it was seen, this type of approach is dropping out of use 

since nowadays many data exist associated to the cycle of operation of the system components. 

Furthermore, the increase of the computational capabilities allowed the reliability analysis of very 

large power systems. Therefore the probabilistic methods are now the most widely used methods 

for assessing power systems reliability. The calculation of the reliability indices in this type of 

methods can be accomplished by two different philosophies: the enumeration, corresponding to the 

analytical methods, and the simulation, related to the Monte Carlo methods. The first one has the 

theoretical advantage of determining the exact value of the reliability indices although it is almost 

impossible to use it in the analysis of very large systems. The second one estimates the value of the 

reliability indices as well as their probability distributions. The major drawback of these latter 

methods is the large number of samples needed to assure statistical validity of the results, 

especially in the case of very reliable systems. The new PB methods provide a guided search 

through the state space for the ones which contribute the most to indices formation. These 

intelligent methods of sampling can reduce dramatically the computational effort and provide a set 

of the most severe states. This set, convoluted with the load model, provides an estimative of the 

desired reliability indices.  

Nevertheless few efforts have been made to enhance the search process, or, in other words, to 

increase its efficiency, measured by the ratio of different states visited against the total number of 

states visited, and efficacy, measured by the difference between the  index exact value and the 

estimative provided by the PB method. In this thesis these questions will be explored in detail using 

EPSO as the PB method reference. 
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Chapter 3 

Modeling the problem with EPSO 

In this Chapter an EPSO based algorithm to evaluate the adequacy of the electric power system 

generating capacity will be presented. This method belongs to the PB methods family described 

earlier in Chapter 2. 

As it was seen, the main objective of these type of methods is to restrict as much as possible the 

search to a subspace of the huge state space, knowing in advance that the number of failure states is 

extremely small compared to the dimension of the space (characteristic of the power systems), 

being the search result a set of the meaningful states. Subsequently this set is convoluted with the 

system load model in order to assess the desired reliability indices. These are the main lines from 

which a PB method can be briefly described. 

First, the traditional EPSO algorithm will be described in detail, evidencing the similarities 

with the classic PSO and with the EA. This description will follow narrowly reference [2]. Second, 

the main lines of the proposed algorithm, EPSO reliability, will be drawn as well as the 

assumptions and the scope of the application of this methodology. Finally two approaches to 

enhance the search performance will be presented: the use of distinct fitness functions and the use 

of spreading techniques between particles. 

3.1. Formal description of EPSO 

In Chapter 2 the general lines which differentiate EPSO form the traditional EA and a 

particular Swarm Intelligence one called PSO were described. It was said that EPSO, instead of 

using the classical mutation and recombination operators relies on the general scheme of the 

movement rule of PSO to produce new individuals. As it is known, the movement rule of PSO is 

the only mechanism that pushes the swarm towards the optimum. Therefore, if joined together with 
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a selection operator, one may expect that these cumulative effects may improve the performance of 

an optimizing algorithm. Further, if the weights of the traditional PSO rule of movement have a 

considerable effect on the efficiency of the optimizing process, a self-adaptive scheme should 

include a mechanism for selecting weights in order to give to the algorithm the best performance 

possible in the progress towards the optimum. EPSO is the practical realization of these concepts. 

In EPSO each individual is called a particle, as in PSO. Each particle is constituted by the 

object and the strategic parameters (this terminology is inherited from the traditional ES). The 

object parameters correspond to the variables of the optimization problem. In contrast, the weights 

of the PSO equation of reproduction are the strategic parameters since they define the 

reproduction/recombination strategy of each particle. Given a population with a set of particles, the 

general scheme of EPSO is the following: 

 

 

In EPSO, the mutation of a strategic parameter 8 into 8∗ is accomplished using the following 

equation: 

 

 8∗ = 8 × .:;<=
0,1/>  , (3.1) 

 

 Procedure EPSO 

 Initialize a random population P of µ particles 

 Do 

  Replication – each particle is replicated r times 

  Mutation – each particle has its strategic parameters mutated 

Reproduction - each mutated particle generates an offspring through 
recombination, according to the particle movement rule, described below 

Selection - by stochastic tournament or other selection procedure, the best 
particles survive to form a new generation, composed of a selected 
descendant from every individual in the previous generation 

Until the convergence criteria is satisfied (based on fitness, on number of 
generations, etc) 

 End EPSO 
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where :;<=
0,1 is a random variable which follows the Lognormal distribution obtained from the 

Gaussian distribution with the mean value equal to 0 and the variance equal to 1, and ? is the 

externally fixed learning parameter which controls the amplitude of the mutations. 

The Lognormal distribution is widely used in the ES as an multiplicative scheme of mutation 

since, accordingly to this distribution properties, the probability of obtaining a new value 

multiplied by @ is the same as the one obtaining a new value multiplied by 1 @⁄ . 

Alternatively a multiplicative and an additive mutation scheme can be defined using the 

following equations: 

 

 8∗ = 8 × �1 +  � × =
0,1�  , (3.2a) 

 

 8∗ = 8 +  � × =
0,1  , (3.2b) 

 

where =
0,1 is a random variable drawn from the Gaussian distribution with mean value equal to 

0 and variance equal to 1, and �, like ?, is a fixed parameter to control the amplitude of mutations. 

However, in these particular cases, � must be small enough to avoid the strategic parameter 

become negative. 

Another characteristic of EPSO is the treatment of the global best. Instead of being attracted to 

the best point ever found by the population, the particles are driven to a sort of “foggy best-so-far 

region” where it is more likely to find the real global best solution. This is accomplished by 

randomly disturb the global best solution as follows: 

 

 BC∗ = BC +  8�D∗ × =
0,1  , (3.3) 

 

where BC is the global best position, =
0,1 is a random variable drawn from the Gaussian 

distribution with 0 mean vale and variance equal to 1, and 8�D∗   is the weight conditioning the 

amplitude of the disturbance which has also to be mutated. 

With this procedure the population continues to be “agitated” even when the particles have 

converged to the same region of the search space.  

The next step in the EPSO algorithm is reproduction. The birth of a new particle is as follows 

(see figure 3.1.): 

 

 E�
F$� = E�
F + G�
F$�  , (3.4) 

 

 G�
F$� = 8��∗ × G�
F + 8�H∗ × IB� − E�
FJ + 8�K∗ × IBC∗ − E�
FJ × L  , (3.5) 
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where B�  is the best point found by particle � in its past life up to the current generation, BC∗  is the 

best overall point found by the swarm of particles in their past life up to the current generation E�
F 
is the location of particle � at generation M, G�
F is the velocity of particle � at generation M, 8��∗  is 

the weight conditioning the inertia term, 8�H∗  is the weight conditioning the memory term, 8�K∗  is the 

weight conditioning the cooperation or information exchange term, and L is the communication 

factor (discussed below). 

 

 

Figure 3.1.  Illustration of the EPSO movement rule [2]. 

 

The communication factor L induces a stochastic star topology for the communication among 

particles. It is a diagonal matrix affecting all dimensions of an individual, containing binary 

variables of value 1 with probability 	 and value 0 with probability 
1 − 	; the 	 value controls 

the passage of information within the swarm and is 1 in classical formulations (this is the star). 

Therefore this stochastic scheme oscillates between the star arrangement and a selfish version 

called cognitive model where no communication exists and a descendent of an individual is built 

only of contributions from its ancestor line [2]. 

Selection is modeled from the Stochastic Tournament concept: among the offspring of each 

particle, one compares the best one with another particle randomly sampled, and the best is selected 

with probability (1 – luck), where the luck parameter is defined in .0,1/ but is usually small. If luck 

is equal to 0 we have elitist selection [2]. 

EPSO can also be interpreted as a PSO based algorithm with a self-adaptive scheme of the 

strategic parameters. This particularity gives to EPSO a global drift more adjusted to the landscape. 

Furthermore, because these weights are subject to mutation, this may give an extra chance for the 
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swarm to escape local minima (i.e., having particles that still explore other regions of space, 

because they may gain enough speed). On the other hand, EPSO also shows ability to focus and 

zoom in the optimum, precisely because mutations in the weights may favor the selection of the 

cooperation factor and reduce the importance of inertia and memory, if this strategy proves 

successful. This may in part explain why EPSO has shown, in many tests, robustness by 

consistently reaching the same optimum in a number of runs [2]. 

3.2. Introduction to the EPSO reliability algorithm  

To describe the proposed algorithm firstly it is necessary to refer to the adopted Markov model 

describing the behavior of the generating units. In this study it is assumed that all units are base 

load units and their state transitions follow the exponential distribution. Therefore, and considering 

these facts, the suitable Markov model is the two-state homogeneous model. This process was 

previously illustrated in the figure 2.1 in Chapter 2. 

According to this model the probability of finding the unit up, is as follows: 

 

 �NO = � 
� + �⁄   , (3.6) 

 

On the other hand, the probability of finding the unit down is defined as: 

 

 �PQR� = � 
� + �⁄   , (3.7) 

 

where � is the expected failure rate and � is the expected repair rate. 

These rates are computed according to the statistical data obtained by analyzing the “story of 

life” of the specific unit. According to the exponential distribution: 

 

 � = 1 ���0⁄   , (3.8) 

 

 S = 1 ���T⁄   , (3.9) 

 

where ���0  is the Mean Time To Failure and ���T  is the Mean Time To Repair. 

In the problem addressed in is common to call to the probability of finding the unit down as the 

FOR (Forced Outage Rate). 
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Another aspect, usual in electric power systems, is that some units are, according to this model, 

identical, i.e., possess the same generating capacity as well as the same expected failure and 

expected repair rates. This information, if carefully incorporated in the program, can lead to a 

decrease in computational effort. The algorithms developed in [22] and [23] use this property to 

calculate, from a single state, all the possible states that are identical to a given one. 

This leads us to adopt the following definitions: 

 

• A (system) state: a vector that corresponds to a particular instantiation of all units in their 

states of failure or in operation; 

• A case: corresponds to a set of (system) states comprising all combinations of � equal 

generators when only 	 are in a failure state. 
 

The state vector has in principle a dimension equal to the number of units of the system in 

question, since each dimension represents the state of the particular generating unit, which, 

according to the two-state Markov model, is up or down, represented by the number 1 and 0, 

respectively. However, this state vector can be further simplified if, instead of trying to find the 

state of a particular unit, the search is driven to find the number of equal units that are in the up 

state. This reduces considerably the “size” of the particle. For instance, if the power system 

contains 32 generators, which can be arranged in 9 different groups of equal generators, the 

dimension of the problem is reduced in 23. 

Each particle will be represented in this way: 

 

 E = UV�⋮V�
X  , (3.10) 

 

where � is the number of different units and V� is a real number which belongs to the interval 

/−0.5, @[\
V� + 0.5. where @[\
V� is the maximum number of equal units in the state up. 

According to this characterization, the position of the particle in the search space is a set of real 

values. Nevertheless, the definition of the problem suggests that a particle should be constituted by 

a set of integer values. Thus, in order to achieve this requirement, each dimension is rounded to its 

nearest integer value. 
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Figure 3.2.  Illustration of the rounding process. 

 

For instance if V� = −0.4, the correspondent integer value is V� = 0; if V� = 4.6 the number is 

rounded to 5. Note that the interval extremes are not included to avoid obtaining a negative number 

or a higher number than the maximum number of equal units. 

To complete the proposed model, it is necessary to define the limits for the velocity variation. 

The chosen scheme is as follows: 

 

 G = U"�⋮"�
X  , (3.11) 

 

where � is the number of different units and "� is a real number which belongs to the ._ × −1 ×

@[\
V� + 1.0, _ × 
@[\
V� + 1.0/ interval in which _ takes a value between /0,1/. 

This allows the particle to “fly” forward and backwards in the search space without any 

preference for some direction. The value of _ has to be carefully chosen. If the value of the 

velocity is too high the particles may bounce (explained in the next paragraph) from the extremes 

of the position vector, missing important system states. On the other hand, if this value is too low 

the population may be trapped in a particular region compromising the convergence velocity of the 

search process. The suggestion is to assume a number near 0.5 for the value of _. 

This method has another interesting feature. When some dimension of a particle reaches or 

surpasses any of its limits of variation, its value is set to the limit violated and its current trajectory 

is reversed, i.e., the velocity is multiplied by −1 with the purpose of bouncing back the particle to 

the search space. With this characteristic, the imprisonment of the particle at any of its limits is 

avoided (at least until the velocity naturally changes its signal, which can take several generations). 

3.3. Measuring the importance of the generating state 

The main objective of a reliability assessment study is to compute the so called indices which 

are the measure of the power system reliability. Until now, the focus was simply on the state of the 

system generating units. However, even when a great number of units are out of service it is 
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possible to have no load curtailment. Therefore the assessment of the reliability indices depends not 

only of the unit’s state but also on the state of the system load.  

It is usual to evaluate one year of system operation. As it is known, the system load fluctuates 

with time. Each hour, week, or month has its correspondent value of load (notice that in these types 

of reliability studies, the system load curve is a set of forecasted hourly, weekly or monthly peak 

load). If the system load has this kind of behavior, how is the importance of a unit being down 

defined?  Or, in other words, how is, in a “non-chronological way of the units state sampling”, the 

effect of the yearly variation of the load included? 

In the non-chronological Monte Carlo method there are two ways of including the load model 

in the reliability analysis: the comparison of the sampled generating state with every period of time 

that of the load curve is subdivided (which requires a tremendous computational effort) or sampling 

the state of the load according to its cumulative probability distribution. Only the first methodology 

is possible to implement in the proposed algorithm since the PB methods are not statistically based. 

In [22] and in [23] a state is classified as a failure state if the sum of the capacity of the individual 

units in service cannot meet the system peak load. If this requirement is verified and the probability 

of the state is above a specified threshold, the state is considered worth to be saved for posterior 

convolution with the annual load curve in order to assess the desired reliability indices – this will 

be referred to as a saved state. This characteristic adds another advantage to the PB methods over 

Monte Carlo methods: like the analytical methods, the construction of the generation model is 

independent of the system load. This is valid as long as the state load shedding is obtained using 

the system peak load [22][23].  

3.4. Assessing the reliability indices 

Almost in every “corner” of this thesis one refers to the term “reliability indices”. They were 

introduced as a measure of the system reliability.  

In the generating capacity adequacy assessment problem it is common to assess the following 

indices: 

 

• Loss of Load Expectation (LOLE); 

• Loss of Load Frequency (LOLF); 

• Loss of Load Duration (LOLD); 

• Loss of Energy Expectation (LOEE). 
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The LOLE (hour/year, day/year or week/year) index is the average number of hours, days or 

weeks (depending on the basis of the load model) in the evaluation period (usually a year) that the 

hourly, daily or weekly peak load is expected to exceed the available generating capacity. Its 

mathematical definition is as follows [10]: 

 

 ���! = ∑ 	� × ��∈`   , (3.12) 

 

where 	� is the probability of system state �, � is the evaluation period, and a is the set of all system 

states associated with loss of load. 

From this index, it can be calculated another one, which is the so called Loss of Load 

Probability (LOLP). 

 

 ���� = ���! �⁄   , (3.13) 

 

Usually the LOLE index (in hours, days or weeks per year) is preferred to the LOLP index due 

to its understandability (the LOLP index results from a sum of probabilities and therefore its value 

has no units). 

As it was shown, in the PB methods, first a set of meaningful states is found. Then this set is 

convoluted with the system load curve. Therefore, for each hour, day or week is necessary to 

analyze if all saved states result in load curtailment, or, in other words, it is necessary to compute 

the hourly, daily or weekly LOLP index. The yearly LOLE index is obtained by adding all the 

individual values of LOLP. 

 

 ���! = ∑ ∑ 	bb∈`′c���   , (3.14) 

 

where � is the �#d hour, day or week of the system load curve, � is the total number of hours, days 

or weeks of the system load curve, and a′ is the set of failure states for the hour, day or week �. 
The annual LOLP index can be calculated from equation (3.13). 

The LOLE index does not indicate the severity of the loss of load nor the frequency or the 

duration of these interruptions on supply. Nevertheless, the LOLE index is the most widely used 

probabilistic criterion in generating capacity planning studies [10]. 

The LOLF (occurrence/year) measures the number of times, during the evaluation period, that 

the occurrence of a load curtailment is expected. In the enumeration methods, such as the PB 

methods, is not easy to assess this type of index. This is one of the advantages of the Monte Carlo 

methods over the enumeration methods in which the concept of frequency is easily incorporated. 
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However, with the development of the F&D methods, the assessment of this type of index is no 

longer a hard task. 

For this particular problem, the LOLF is obtained like this [22][23]: 

 

Step 1) Calculate the frequency of all saved states using: 

 

 e� = 	� × �∑ �b�b�� − ∑ �F�F�� �  , (3.15) 

 

where 	� is the probability of the state �, � is the number of units down in the state �, @ is the 

number of units up in the state �, �b is the expected repair rate of the unit f, and �F is the expected 

failure rate of the unit M; 

 

Step 2) LOLF includes two components: frequency of generating capacity “FG” and frequency 

due to load change “FL”: 

 

 0V = ∑ ���0�c���   , (3.16) 

 

  ���0� = ∑ ebb∈`′   , (3.17) 

 

where � is the total number of hours, days or weeks of the system load curve, a′ is the set of failure 

states for the hour, day or week �, and eb is the frequency of the failure state f of the hour, day or 

week �. 
 

 0V = ∑ "� × 
����� − �����g�c��H   , (3.18) 

 

where � is the total number of hours, days or weeks of the system load curve, ����� is the value of 

the index LOLP at the hour, day or week �, and "� is a binary variable which takes the value 1 if the 

value between brackets is positive and the value 0 if the value between brackets is negative. 

 

Step 3) Finally, the annual LOLF is calculated as: 

 

 ���0 = 0V + 0�  , (3.19) 

 

The LOLD (hour/occurrence, day/occurrence or week/occurrence) index measures the expected 

duration of a failure. It is easily calculated if the LOLF and the LOLE indices are available. 
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 ���h = ���! ���0⁄   , (3.20) 

 

The final index is the LOEE (MWh/year). Although the previous indices can provide important 

information about the expected number of hours, days or weeks that the load cannot be supplied as 

well as the frequency and duration of these interruptions, there is no information about the severity 

of the system expected unavailability. The LOEE measures the expected energy that will not be 

supplied due to generation failure. Knowing that the area below the load curve corresponds to the 

annual energy demanded, it is easy to assess the LOEE index. Firstly it is necessary to compute, for 

each load value, the Expected Power Not Supplied (EPNS). Then each individual EPNS value is 

added to compute the annual LOEE index 

 

 ��!! = ∑ ∑ 	b × ��� − i[	b�b∈`′c���   , (3.21) 

 

where 	b is the probability of the failure state f, �� is the value of load at the hour, day or week �, 
i[	b is the generating capacity of the failure state f, and a′ is the set of failure states for the hour, 

day or week �; 
Another useful index can be calculated form LOEE which measures the capability of the power 

system to meet its annual demanded energy: the so called Energy Index of Reliability (EIR). The 

EIR index can be considered a normalized value of LOEE and is commonly used to compare the 

adequacy of systems that are very different in size. 

 

 !jT = 1 − ��!! !⁄   , (3.22) 

 

where E (MWh/year) is the annual energy demanded by the power system in study. 

3.5. Description of the distinct objective functions 

In the literature one may find the use two distinct fitness functions: maximization of the state 

probability and the maximization of the state probability multiplied by the load curtailment in 

relation to the peak of the annual system load curve. However, the fitness of a particle takes also in 

account if the particle has been previously saved and if the particle does not meet the requirements 

to enter the list where the most important system states are recorded.  

At this moment it is necessary to recall what a particle and a system state represent. The 

particle, as it was defined, represents the number of similar units which are in the state up. 
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However it may correspond to a great number of system states with equal probability and load 

curtailments as the single state that the particle seems to be. Therefore the rounded representation 

of the particle position will now be called a case which represents many system states. The number 

of similar states, k;	l, is calculated as follows: 

 

 k;	l = m=���n × m=H�Hn × … × m=���n  , (3.23) 

 

where m=���n is the number of combinations I�MJ = �!
F!×
�gF! , =� is the maximum number of equal 

units in the state up, �� is the actual number of equal units in the state up, given by the rounded 

representation of the particle position and � is the total number of different units. 

When a case is saved, the number of equal states is also saved. Therefore, it is possible to 

obtain a large number of system states saving only a few cases. However, care must be taken when 

calculating the system reliability indices. In every equation the set of all saved states, not cases, has 

to be considered. This is accomplished by multiplying the value of the case probability by the 

number of copies, reducing dramatically the necessary number of calculations. Each case can now 

be seen as a “single state” with its generating capacity and the correspondent probability of 

occurrence. 

This explanation was necessary to describe the process of fitness assignment which is described 

as follows: 

 

Step 1) Compute the probability of occurrence of the case: 

 

 	 = ∏ 
1 − 0�T� �r × 
0�T�sr����   , (3.24) 

 

where 	 is the case probability, � is the total number of different units, 0�T� is the common Forced 

Outage Rate, characteristic of the �#d set of equal units, [� is the number of units up of the �#d set of 

equal units, and *� is the number of units down of the �#d set of equal units. 

 

Step 2) Compute the number of the case copies using equation (3.23). 

 

Step 3) Compute the generating capacity of the case: 

 

 i[	 = ∑ [� × Vtu����   , (3.25) 
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where i[	 (MW) is the generating capacity of the case, � is the total number of different units, [� 
is the number of units up of the �#d set of equal units, and Vtu  (MW) is the generating capacity of the 

Markov model up state of the �#d set of equal units. 

 

Step 4) If the case probability is superior to a threshold and the generating capacity is inferior 

to the power system yearly peak load, go to the Step 5); else go to the Step 8). 

 

Step 5) Search if the case has not been previously saved (direct comparison between vectors). 

If the case has already been saved, go to the Step 7); else go to the Step 6). 

 

Step 6) The case fitness is calculated by one of the following functions: 

 

 max    	 S;*[*�:�-l  , (3.26) 

 

 max    	 S;*[*�:�-l × k;	l  , (3.27) 

 

 max    	S;*[*�:�-l × 
�y − i[	  , (3.28) 

 

 max    	S;*[*�:�-l × k;	l × 
�y − i[	  , (3.29) 

 

where 	S;*[*�:�-l is the case probability, k;	l is the number of equal states which can be 

obtained from the case, i[	 (MW) is the generating capacity of the case, and �y (MW) is the system 

yearly peak load. 

The value of the load curtailment calculated by �y − i[	 can be normalized, simply dividing 

this value by �y. 

 

Step 7) The case fitness is assigned a small value in order to decrease the chances of previous 

saved cases occurring in the next generations. As it will be discussed later in this thesis, only the 

current position of the particle is a set of real values. The particle best position ever and the 

population best position are a set of integer values. Therefore, it is legitimate to search the memory 

of all of the population particles in order to determine if the repeated case is the best case for any 

particle. If so the value of fitness of the particle best position is also assigned a small value to avoid 

the continuous pushing to a previous saved case, avoiding repetition. This idea was also 

implemented in [3]. 
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Step 8) The case fitness is assigned a small value since these category of cases does not fulfill 

the requirements for entering the list of cases. 

As it is shown, the process of fitness assignment tries to decrease the number of repeated cases. 

However, none of these fitness functions improve the search procedure. The only difference 

between maximizing the case probability and maximizing the case probability x load curtailment is 

that in the second one the severity of the case is taken into account, i.e., there is a “bonus” if the 

case generating capacity is low.  

The search procedure must discover the cases with high probabilities, which are the cases with 

a low number of units out of service, and simultaneously the cases with high load curtailment, 

which are the cases with low probability. According to this definition, the problem can be seen as a 

maximization of these two conflicting objectives: maximization of the case probability and 

maximization of the case load shedding. Therefore, a multi-objective fitness function can be 

formulated, to drive the search towards the decision space zones near the Pareto Front defined by 

the two objectives, where probably the most contributing cases for the construction of the 

reliability indices are located. 

In this thesis, will be used the “Dynamic Weighted Aggregation” approach proposed in [26].  
 

Figure 3.3.  Illustration of the optimizing procedure of two different fitness functions in the decision space. 
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This approach aggregates the  two objectives in a single objective function and dynamically 

changes the weights used for this aggregation using the following equations: 

 

 max     8�
- × z + 8H
- × {  , (3.30) 

 

 8�
- = |}��

2 × � × - �⁄ |  , (3.31) 

 

 8H
- = 1 − 8�
-  , (3.32) 

 

where 8�
- is the first objective, A, weight, 8H
- is the second objective, B, weight, - is the 

EPSO reliability iteration’s index, and � is the weight’s change frequency.  

Obviously this method is only valid for bi-objective problems. Notice that both objectives have 

to be equally scaled. Therefore, is necessary to determine the lowest and the higher value that each 

objective can take and convert them to a common scale using a utility function.  

The utility function selected is the linear function. However since the case probability can take 

very low values, a modification to the scale must be taken. The decimal logarithmic function is one 

very adequate way of performing this modification. 

The following steps describe the scaling procedure for a generic objective, �, which cannot take 

the value 0: 

 

Step 1) Calculate the parameters of the linear transformation: 

 

 @ = 1.0 
log���@[\
�� − log���@��
��⁄   , (3.33) 

 

 * = −@ × log���@��
��  , (3.34) 

 

Step 2) Calculate the scaled value of � using: 

 

 }k[:���log��
�� = @ × log��
� + *  , (3.35) 

 

where log���@[\
�� is the decimal logarithmic of the maximum value of the objective �, and 

log���@��
�� is the decimal logarithmic of the minimum value of the objective �. 

Notice that in the case of the load curtailment maximization this utility function cannot be used 

since the decimal logarithmic function is not defined for the value 0. Instead the following utility 

function is used: 
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 scaled
load curtailment = �ug���
�u   , (3.36) 

 

where Cap (MW) is the generating capacity of the case, and Ly (MW) is the system yearly load 

peak. 

For the probability x copies x load curtailment objective, its maximum and minimum (non zero, 

explained below) value is only obtained by a previous maximization procedure, using, for instance, 

the traditional formulation of EPSO with this single objective in other to find the fittest case. 

Nevertheless, when this objective is used in any fitness function in this thesis, single-objective or 

multi-objective, the load curtailment will be normalized using the equation (3.36). Therefore this 

singularity demands a new definition of the utility function for the probability x copies x load 

curtailment objective, described as follows, using also ζ for the representation of a generic 

objective which cannot take the value 0 (in this case, probability x number of copies): 

 

Step 1) Calculate the parameters of the linear transformation: 

 

 m = 1.0 
log�� �max Iζ × �ug���
�u J� − log�� �min Iζ × �ug���

�u J��   , (3.37) 

 

 b = −m × log�� �min Iζ × �ug���
�u J�  , (3.38) 

 

Step 2) Calculate the scaled value of ζ × �ug���
�u  using: 

 

 scaled Iζ × �ug���
�u J = � 0,   Ly − Cap = 0

m × log�� Iζ × �ug���
�u J +  b,   Ly − Cap > 0�  , (3.39) 

 

where Cap (MW) is the generating capacity of the case, Ly (MW) is the system yearly load peak, 

log�� �max Iζ × �ug���
�u J� is the decimal logarithmic value of the maximum value of the objective 

ζ × �ug���
�u , and log�� �min Iζ × �ug���

�u J� is the decimal logarithmic value of the minimum value of 

the objective ζ × �ug���
�u . 

 



Chapter 3 – Model the problem with EPSO 
 

43 

 

3.6. Description of the spreading techniques 

Although it may seem that the EPSO reliability has sufficient features to perform a satisfactory 

search, it is necessary to include some mechanisms to increase diversity or, in other words, to 

spread the population in the decision space. 

First of all, as the search procedure evolves, the best position is always changing, especially in 

the case of the bi-objective optimization. The main reason for that is the fitness assignment 

procedure. For instance, if a case has been the best one in the previous generation which was never 

been saved and survived to the current generation, its current fitness will be assigned a small value 

since it already belongs to the list of significant cases. Therefore, the search procedure can be 

enhanced if the best particle is changed in each generation according to the fitness of the particles 

in the current population. Additionally, if the best particle is maintained during a certain number of 

generations the population is encouraged to search the zone around it. Nevertheless if the number 

of these generations is high the process can be stuck in a given region. Both techniques will be 

addressed. 

The second technique is inspired in [27]. Often the particles are very “close” or “overlapped”, 

especially in the end of the search process where the particles velocity is insufficient to drive the 

search into another region. To avoid this situation, each case, obtained by rounding the particle’s 

position, is compared to the others in the current population. Then, accordingly to the distance to 

the other cases and their relative position, a value is calculated which will be added in the velocity 

update equation of the correspondent particle. The process is as follows: 

 

Do 

 

Step 1) Initialize an auxiliary vector with the length of the particle’s position with 0 in each 

dimension. 

 

Do 

 

Step 2) Measure the distance to the other particles in the population: 

 

 ��}-�s = �S;���
�� − S;���
�s�H  , (3.40) 
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where �S;���
�� − S;���
�s�H is the Euclidian norm of the vector defined by the difference 

of the rounded  position of the particle [ and the rounded  position of the particle *. 

 

Step 3) If the particles represent the same case is added to each dimension of the auxiliary 

vector the values 1 or -1, randomly chosen. 

 

Step 4) If the distance is within a specified threshold previously chosen, the auxiliary 

vector is added the difference between the two rounded positions of the particles. 

 

Step 5) If the distance is beyond this threshold the auxiliary vector remains equal. 

 

While all the distance between the actual particle and all the others in the population is not 

measured. 

 

Step 6) Scale each auxiliary vector dimension to avoid excessive velocity grown: 

 

 Do 

 

  Step 7) If the dimension of the auxiliary vector is equal to 0, then do nothing. 

 

  Step 8) If the dimension of the auxiliary vector is lower than -1 scale the value of 

the auxiliary vector dimension according to the following linear transformation: 

 

 @ = �−_ × 
@��"�:.�/ − @[\"�:.�/� �−1 − min 
auxvect��   , (3.41) 

 

 * = −1 − @ ×  −_ × @��"�:.�/  , (3.42) 

 

 }k[:��
auxvect.i/ = @ × auxvect.i/ + *  , (3.43) 

 

where @��"�:.�/ is the pre defined velocity minimum value for the dimension �, @[\"�:.�/ is the 

pre defined velocity maximum value for the dimension �, min
[�\ �k- is the  minimum value 

that each dimension of the auxiliary vector, [�\ �k-, can take (defined at the beginning of the 

algorithm) and _ is a reduction factor belonging to /0,1/ interval(defined at the beginning of the 

algorithm). 
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  Step 9) If the dimension of the auxiliary vector is higher than 1 scale the value of 

the auxiliary vector dimension according to the following linear transformation: 

 

 @ = �_ × 
@��"�:.�/ − @[\"�:.�/� �1 − max
auxvect��   , (3.44) 

 

 * = 1 − @ ×  _ × @��"�:.�/  , (3.45) 

 

 }k[:��
auxvect.i/ = @ × auxvect.i/ + *  , (3.46) 

 

where @��"�:.�/ is the pre defined velocity minimum value for the dimension �, @[\"�:.�/ is the 

pre defined velocity maximum value for the dimension �, max
[�\ �k- is the  maximum value 

that each dimension of the auxiliary vector, [�\ �k-, can take (defined at the beginning of the 

algorithm),and _ is a reduction factor belonging to /0,1/ interval(defined at the beginning of the 

algorithm). Note that the reduction factor is equal for both “negative” and “positive” scaling to 

avoid any preference in a particular direction. 

 

 While all dimensions of the auxiliary vector are not evaluated. 

 

Step 10) Sum the correspondent dimension of this vector to the velocity vector of the particle. 

 

While all particles are not evaluated. 

 

The idea in this technique is to let the relative distance between the particles decide if the 

velocity will be decreased or increased and how deeply will be this variation. Furthermore, this 

spreading technique will only be applied to the particles “very close”. The other ones will not be 

“harmed” and therefore the search procedure will not be significantly agitated ensuring a careful 

search of the actual zone in which the population is within. Further, the reduction factor is set in 

order to avoid excessive velocity variations, ruining the effect of the others components of the 

particle’s velocity on the next position computation. 

The third technique is based in [28]. The socio-cognitive learning process defined in the 

standard PSO an also in EPSO is based on the particle’s own experience and the experience of the 

most successful particle. In [28] is added to PSO a new dimension to this approach: each particle 

also learns from the experience of the neighboring particles that have a better fitness than itself. 
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The results shown by the authors proved that this methodology allows to obtain better results than 

the traditional formulation of PSO.  

The idea implemented in this thesis is to add a new term to the EPSO equation, which is used to 

calculate the particle´s new velocity, called neighbor term. This term is similar to the memory term, 

possessing its own weight which is also mutated thorough the generations, as it is represented in 

the following equation: 

 

G�
F$� = 8��∗ × G�
F + 8�H∗ × IB� − E�
FJ + 8�K∗ × IBC∗ − E�
FJ × L 

 + 8�D∗ × IB�¡�¢sQ£ − E�
FJ  , (3.47) 

 

where B�  is the best point found by particle � in its past life up to the current generation, BC∗  is the 

best overall point found by the swarm of particles in their past life up to the current generation, 

B�¡�¢sQ£ is the particle current generation nearest best position, E�
F is the location of particle � at 

generation M, G�
F is the velocity of particle � at generation M, 8��∗  is the weight conditioning the 

inertia term, 8�H∗  is the weight conditioning the memory term, 8�K∗  is the weight conditioning the 

cooperation or information exchange term, 8�D∗  is the weight conditioning the new neighbor term, 

and L is the communication factor. 

As it is clear in equation (3.47), to include the neighbor term in the calculation of the new 

velocity it is necessary to discover the nearest best particle in the current generation. To accomplish 

that, it is necessary to define a measure of the distance between particles and a measure of how 

much the neighbors are better than the particle in evaluation. In [28] a particle is considered to be 

the nearest best one if, in the whole population, it maximizes the following equation: 

 

 
0�-��}}
[ − 0�-��}}
* |��
[ − ��
*|⁄   , (3.48) 

 

where * is the particle to be assessed the nearest best particle, [  is a general particle of the swarm, 

0�-��}}
[ is the fitness of the particle [, 0�-��}}
* is the fitness of the particle *, ��
[ is �#d 

dimension of the position of the particle [, and ��
* is �#d dimension of the position of the particle 

*.  

However, in [28], the particle position is not seen as whole and the selection of the nearest best 

particle is performed for each dimension of the position vector. In this thesis it is assumed that the 

nearest best particle gives it experience of “flight” in the form of the reliability case that it 

represents. Therefore, the “distance” between particles is measured using the equation (3.40) since 
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now the distance between vectors is calculated. As a result, instead of selecting a nearest best 

particle for each dimension, is selected only the one which maximizes the following equation: 

 

 
0�-��}}
[ − 0�-��}}
* �S;���
�� − S;���
�s�H ⁄   , (3.49) 

 

where * is the particle to be assessed the nearest best particle, [  is a general particle of the swarm, 

0�-��}}
[ is the fitness of the particle [, 0�-��}}
* is the fitness of the particle *, and 

�S;���
�� − S;���
�s�H is the Euclidian norm of the vector defined by the difference of the 

rounded  position of the particle [ and the rounded  position of the particle *. 

Care must be taken when both particles represent the same case since, in these conditions, the 

Euclidian norm value is 0. When that happens, it is usual to assume a small constant value for the 

Euclidian norm, lower than the other possible distances (in this problem, the lowest distance, 

excluding “equal” particles, is 1). 

3.7. Stopping criteria 

Unlike the Monte Carlo methods, the PB methods are not statistical based. Therefore, it cannot 

be defined a degree of confidence which assures that the correct value of the index being estimated 

is within the correspondent interval of confidence (usually the estimates obtained by the Monte 

Carlo methods have a degree of confidence equal or higher than 95%). As it was previously shown 

in Chapter 2 the computation of the estimate of the reliability indices in the PB methods is made 

according to the equation (2.5). Therefore, the value of the index estimate grows as the number of 

the generations increases until a considerable quantity of the significant states for the index 

formation is not saved. When this occur the variation of the estimate in between generations is 

insignificant and the search procedure can be stopped.  
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Figure 3.4.  Illustration of the formation of the estimate of the desired reliability index as the number of 

generations increases. 

 

In this particular problem, the estimates of the reliability indices are computed after obtaining a 

set of significant cases (group of similar states). This set is achieved using a fixed value of load in 

order to know if the particular case has load curtailment. Therefore, during the search procedure an 

estimate of an index is computed, which is only used to analyze the convergence of the process. 

The chosen index is the Expected Power Not Supplied (EPNS) and it is calculated as follows: 

 

 !�=a = ∑ 	b × ��y − i[	b�b∈`¤   , (3.50) 

 

where 	b is the probability of the failure case f, �y is the value of the annual load curve peak, i[	b 

is the generating capacity of the failure case f, and a¥ is the set of failure cases. 

All in all the search process converges when the EPNS index stabilizes. This is said to be true if 

the relative change in the index stays below a threshold for a consecutive number of iterations: 

 

 ∑ ∆!�=aF !�=a < ¨⁄   , (3.51) 

 

where ∑ ∆!�=a F is the total change in the obtained in the EPNS estimate over M consecutive 

iterations, M being a predetermined integer, and ¨ is a predetermined threshold. 
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Another criterion is the maximum number of generations allowed, usually set considering the 

experience or sensitivity of the user. For a commercial application of a PB based method, this 

criterion is insufficient since the convergence depends on the initialization of the algorithm 

parameters (for instance, the dimension of the population). In this thesis the maximum number of 

generations criterion will be used for the reason that this is an academic work and above all for 

comparison with other methods which use this same convergence criterion. 

3.8. Description of the EPSO reliability algorithm 

After the introduction of the EPSO based algorithm core ideas as well as the basic reliability 

indices, now the steps of this methodology are explained in detail. This algorithm will follow 

closely the algorithm proposed in [22]. 

 

Step 1) 

 

• Initialize the size of the population; 

• Define the dimension of the problem; 

• Obtain the following reliability parameters of the generators: 

o FOR; 

o MTTF; 

o MTTR. 

• Obtain the power system annual load curve and figure its peak value; 

• Define the threshold probability for case rejection; 

• Initialize randomly the value of the weights, with a number sorted from the uniform 

distribution, &
0,1; 

• Initialize the learning parameter, ?; 

• Initialize the probability of communication between particles; 

• Define the range for the position variation; 

• Define the range for the velocity variation; 

• Define the fitness function to use: 

o If it is the ones define in (3.26), (3.27), (3.28) and (3.29) there is no setback; 

o If it is the one defined in (3.30) initialize the weight’s change frequency  � and 

determine the highest as well as the lowest value for each objective. 

• Define the spreading techniques to use; 
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• Define the maximum number of iterations which the global best position is not changed; 

• Define the reduction factor of the additional velocity as well as the maximum and 

minimum value that each dimension of the auxiliary vector can acquire; 

• Initialize randomly the value of the neighbor term weight, with a number sorted from the 

uniform distribution, &
0,1. 

 

Step 2) Randomly fill the population with particles and compute for each case its probability, 

the number of copies and the generating capacity using the equations (3.23), (3.22), and (3.24), 

respectively. 

  

Step 3) Create a case list and analyze if any particle of the current population meet the 

requirements to enter in it as described in the subsection 3.3. If the particle verifies the 

requirements, save the particle’s case, as well its probability, number of copies and generating 

capacity. 

 

Step 4) Update the fitness of all particles in the current population using the algorithm 

described in the subsection 3.5.. 

 

Do 

 

 Step 5) Update each particle’s its nearest best particle using the methodology described in 

the subsection 3.6.. 

 

 Step 6) Update each particle’s auxiliary vector which will be used in the computation of its 

new velocity using the methodology described in the subsection 3.6.. 

 

 Step 7) If the maximum number of generations without changing the global best position is 

reached, update its value using the methodology described in the subsection 3.6.. 

 

 Step 8) Replicate the population one of time. 

 

 Step 9) Mutate the strategic parameters of the replicated particles using equation (3.2b). 

 

 Step 10) Each particle generates an offspring according to (3.47) and (3.4). 
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 Step 11) Compute for each particles case its probability, the number of copies and the 

generating capacity using the equations (3.23), (3.22), and (3.24), respectively. 

 

 Step 12) Analyze if any particle meets the requirements for entering the list of significant 

cases as described in the subsection 3.3.. 

 

 Step 13) Update the fitness of all particles using the algorithm described in the subsection 

3.5.. 

 

 Step 14) Perform elitist selection among each particle’s both offspring. 

 

Until the maximum generation criteria, presented in subsection 3.7., is verified. 

 

Step 15) Compute the power system reliability indices suing the methodology described in the 

subsection 3.4.. Do not forget that each case represent a number of system states. Therefore when 

the calculation of the reliability indices the probability of each case must be multiplied by the 

number of copies of the case in other to account all the effective saved states. 

3.9. Conclusions 

In this Chapter the main lines of the EPSO based reliability algorithm and the validity of its 

application were presented. The reliability problem that will be addressed is the generating capacity 

adequacy assessment and therefore the proposed methodology was assembled around the 

particularities of this specific issue. Nevertheless is has to be mentioned that the spinal column of 

this methodology is based on the one proposed in [22].  

One has shown that several fitness functions could be built in order to guide the search of the 

algorithm in the system state space. One aims at exploring the region that concentrates cases (sets 

of systems states) with high probability and leading at the same time to high load curtailment, 

because these most likely give a higher contribution to the reliability indices sought. From a 

theoretical point of view it is not easy to tell which one will work better in specific cases, and 

testing in practical cases must be done. 

The next Chapter is devoted to applying and testing the competing models to the adequacy 

analysis of the generating capacity of a widely-known power system in order to discuss their 

advantages as well as drawbacks. 
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Chapter 4 

Solving the problem with EPSO 

In this Chapter the fundamental results of the methodology proposed in Chapter 3 will be 

presented: the EPSO reliability algorithm, which uses different schemes for creating diversity in the 

population in order to increase the number of feasible cases visited as well as to decrease the 

number of repeated ones. This can be accomplished by using different fitness functions in the 

fitness assignment procedure, by controlling the velocity of the particles, introducing new terms in 

the equation with which the particles new velocity is assessed (with the objective of spreading 

“similar” particles and to search more intensively the zone around each particle), and by constantly 

moving the population objective as well as erasing the memory of each particle every time that it 

represents a previous saved case. 

First of all a brief reference will be made to the power system which will have its generating 

capacity evaluated. Then the effect of each fitness function proposed in Chapter 3 will be analyzed 

in detail, in their efficacy and the efficiency characteristics associated with the search of the 

meaningful cases. This research led to the selection of the best performing fitness function, under a 

mix of techniques to generate diversity in the search. The best performing fitness function was then 

tested in different experiments, isolating each factor contributing to the dispersion of the swarm. 

This hopefully allows one to improve the strategies to generate dispersion in a fashion that leads 

the search in the most promising region. The results of the EPSO reliability algorithm will be 

presented and a comparison with the results provided by another search method, the MSGA [22] 

approach, will be made, to demonstrate the advantages of the ideas defended in this thesis. 

All the results presented were obtained with a C++ application developed for this purpose, 

which uses some pre-programmed modules of the traditional EPSO algorithm. 
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4.1. Institute of Electric and Electronic Engineers Reliability Test 
System 79  

The proposed methodology will be tested in the evaluation of the adequacy of the generating 

capacity of the IEEE RTS -79 [29]. This power system was developed to satisfy the need for a 

standardized data base to test and compare results from different power system reliability 

evaluation methodologies such as the one proposed in this thesis. Although the reliability 

information for the transmission network is described, only the generation data is needed as well as 

the load model, in order to solve the problem addressed in this thesis. 

The IEEE RTS-79 generation system is composed of 32 units. However there are only 9 

different types of units. Therefore, with the proposed methodology, the dimension of the position 

vector of an EPSO particle will be 9, resulting in a decrease in length of 23 in relation to the 

dimension of a GA individual in the method proposed in [22]. 

The annual peak load for this system is 2850 MW. Moreover the system load model can be 

described in a weekly, daily or hourly basis. In this thesis the hourly basis will be adopted since the 

results published in [22] come from the same type of load model. 
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Figure 4.1.  Topology of the IEEE RTS – 76 [29]. 

 

The value of the reliability indices for the generation capacity adequacy assessment problem 

assuming an hourly load model are known with good precision. The following table summarizes 

the value of the most important ones, obtained from [9] with analytical calculation. 
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Table 4.1.  IEEE RTS -76 generating capacity adequacy reliability indices. 

Adequacy reliability indices 

LOLE  (hour/year) 9.394179 

LOLF  (occurrence/year) 2.019717 

LOLD  (hour/occurrence) 4.651236 

LOEE  (MWh/year) 1176.3 

4.2. Evaluation of the performance of the different fitness functions 

As it was seen in the previous Chapter, there are two most used types of fitness function in the 

PB models for reliability assessment: the maximization of the case probability and the 

maximization of the case probability x the load curtailment. Nevertheless these fitness functions 

can also take in account the number of states that an each case represents. Moreover, in Chapter 3, 

a new fitness function based on a bi-objective formulation has been presented, where 

simultaneously a dynamic weighted aggregation of two distinct objectives is maximized. Therefore 

one can identify four different types of fitness function which will be compared in this subsection: 

the two single objective pre-described fitness functions with the inclusion of the number of states 

that each case represents and two bi-objective formulations corresponding to the maximization of 

the aggregation of the two used single objective fitness functions and the maximization of the 

aggregation of the case probability x number of copies x load curtailment. The parameters of this 

simulation can be found in the Annex B. 
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Figure 4.2.  Comparison of the LOLE estimation by different objective functions. 

 

The figure 4.2. illustrates the efficacy of the four different fitness functions. It seems that the 

maximization of the probability x number of copies x the load curtailment is the best fitness 

function. On the contrary, the DWA approach using the maximization of probability x number of 

copies + the load curtailment is the poorest one. In fact when the search is driven to the state space 

zone where the highest failures cases are, there is a decrease in the number of cases which verify 

the conditions to enter in the reliability list since their probabilities do not pass the threshold 

probability limit defined in the beginning of the search. The next figure illustrates this fact. 
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Figure 4.3.  Representation of the attributes probability and load curtailment of the cases visited during the 

search. Notice that case probability is in a decimal logarithmic scale for better display.  
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Figure 4.3., constituted by two graphics to illustrate the superposition of common visited cases 

in the different two methods of fitness assignment, shows why maximizing the load curtailment 

leads to a fewer number of cases counted as significant (saved): most of the cases visited are 

beyond the probability threshold. Moreover this figure also confirms the idea that there is a clear 

trade-off between the case probability and its load curtailment. Then we can assume that the most 

contributing cases for the calculation of the reliability indices are near the Pareto front defined by 

those two objectives. However, the case probability has a remarkable effect in the weight of the 

correspondent case in the reliability indices calculation. As a result, the search must not be blindly 

conducted to the Pareto front: instead the search must be done in the region defined by the Pareto 

front and the probability threshold and conducted gradually from the cases with high probability to 

the ones with a low probability to achieve a maximum convergence performance, i.e., increasing 

the number of the most important cases visited and simultaneously increasing the approximation of 

the estimated indices to its real value. 

 

 

Figure 4.4.  Evolution of the EPNS index for the peak load value as the number of the iterations increases. 
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probability weight is higher than the weight of the load curtailment.  It was also chosen that the 

weight probability would begin with the number one. At this time the reader must have already 

discovered why the curve of the DWA probability x number of copies + load curtailment has this 

behavior: when the weight of the probability objective is higher that the weight of the load 

curtailment objective there is a sudden increase of the EPNS estimated value; on the contrary, when 

the weight of the load curtailment is higher than the weight of the probability the estimation of the 

EPNS indices almost stops, suggesting that the search was conducted to unimportant zones of the 

space state. 

The other fitness functions have a similar convergence behavior. However why there is such a 

difference on their efficacy measured in figure 4.2.? It appears that when the search is conducted to 

the zones where there are the most probable states the process forgets the influence of the case 

generating capacity or, if the reader prefers, the case load curtailment. As it was demonstrated in 

Chapter 2, the reliability indices are calculated by convolution of the cases saved, counting, 

obviously, the number of copies each case, with the case generating capacity. For each hour of the 

load diagram, each case generating capacity is compared with the corresponding load value in 

order to identify the subset of the saved cases which must be considered as failure cases for the 

particular load value or, in other words, which has a generating capacity lower that the specific 

hour load value. One believes that the maximization of the case probability fails to encounter the 

cases with sufficiently low generating capacity in order to include the effect of the valley hours of 

the load diagram, having also a significant effect in the quality of the approximation to the loss of 

load probability during peak hours.  

 

Table 4.2.  Number of hours of the load model where LOLP is 0 for two different sampling strategies. 

Fitness function Number of hours 

Probability x copy 464 

Probability x copy x load curtailment 150 

 

Table 4.2. illustrates a comparison of efficiency resulting from the application of two fitness 

functions guiding the search in the state space. The cases sampled and saved when using the 

probability x copy function lead to no load disconnection, when considering all the possible load 

steps of the load curve, in a much larger number of hours than if the cases were sampled and saved 

from using the other function.  

The number of hours where the LOLP index obtained with the probability x number of copies x 

load curtailment objective is superior to the one obtained with the probability x number of copies 

objective, is equal to 7209. There is no further need to justify why the probability x number of 
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copies x load curtailment fitness function performs better than the probability x number of copies 

objective.  

This explanation also justifies why the DWA approach using these two objectives has an 

efficacy slightly superior to the probability x number of copies objective and somewhat inferior 

efficacy concerning the probability x number of copies x load curtailment objective: according to 

the weights change frequency, there are four different periods in the search process: in two of them 

the probability x copies objective has a weight superiority in relation to the probability x copies x 

load curtailment objective. Therefore, the search efficacy is degenerated mostly due to the two 

search periods where the population is driven to a search space region with high probability but 

with very low load curtailment values at peak level; thus the global contribution of these cases is 

uninteresting because for lower load values there will be no load curtailment.  

In relation to the efficiency of the four fitness function approaches, in figure 4.5. is shown that 

the probability x number of copies x load curtailment is the one with the lowest ratio of unfeasible 

cases visited versus the total number of cases visited and with the highest ratio of the significant 

cases saved versus the number of the total cases visited despite having the second highest ratio of 

repetitions.  

The significant cases ratio is almost similar in, at least, three of the four approaches. This 

reinforces the inference that the “quality” of the cases visited is perhaps more important than the 

quantity when it comes to the efficacy of the method. Actually the DWA approach using the 

probability x number of copies objective and the probability x number of copies x load curtailment 

has a lower significant cases ratio than the probability x number of copies maximization and still 

the DWA approach has a better efficacy than this one.  
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Figure 4.5.  Ratio of the number of significant cases saved versus the total number of cases visited and the 

repeated cases versus the total number of cases visited and the unfeasible cases visited versus the total 

number of cases visited, all represented in percentage. 

 

This figure also demonstrates that the DWA approach using load curtailment as one of the 

objectives has the poorest efficiency. In fact the highest unfeasible cases ratio of this approach is 

consistent to the fact that maximizing the cases load curtailment usually leads to zones of the 

search space where the correspondent case probability is lower that the pre-specified threshold. 

However the reader may say that this approach has the lowest ratio of repeated cases. This fact 

results from the changing of the search objective between two distant zones in the search space: the 

zone where the cases are more probable and the zone where the cases have the more load 

curtailment. Therefore is more probable that the cases visited are different from each other 

decreasing the ratio of repetitions.  

To put it briefly the case repetition is a consequence of the type of search: if the population is 

confined to a tight search space, such as the one that it is driven the population by three of the four 

fitness functions, is obvious that there will be more repetitions. On the contrary, if the search space 

is wide, like the one defined by the DWA fitness function using the load curtailment as one of its 

objectives (in a certain moment of the search is told to the population that the fittest cases are the 

ones with high load curtailment, or, if the reader prefers, with low probability), the repetitions will 

decrease along with the ratio of significant cases saved. 

0.00
2.50
5.00
7.50

10.00
12.50
15.00
17.50
20.00
22.50
25.00
27.50
30.00
32.50
35.00
37.50
40.00
42.50
45.00

Probability x copy  
maximization

Probability x copy x 
load curtailment  
maximization

DWA probability x 
copy + probability x 

copy x load 
curtailment  

maximization

DWA probability x 
copy + load 
curtailment  

maximization

Significant cases ratio Repeated cases ratio Unfeasable cases ratio



Chapter 4 – Solving the problem with EPSO 

63 

In order to complete this evaluation, the effect of the weights change frequency must be also 

discussed. To accomplish that was selected the DWA probability x number of copies x load 

curtailment objective plus the probability x number of copies objective and five simulations were 

performed with the following weights change frequency: 

 

• � = 37.5; 

• � = 75; 

• � = 375; 

• � = 1875; 

• � = 3750. 

 

 

Figure 4.6.  Comparison of the LOLE estimation for different weights change frequency, �. 
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Figure 4.7.  Ratio of the number of significant cases saved versus the total number of cases visited and the 

repeated cases versus the total number of cases visited and the unfeasible cases visited versus the total 

number of cases visited, all represented in percentage for different weights change frequency, �. 
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4.3. Evaluation of the performance of the different spreading 
techniques 

In order to evaluate the performance of the different spreading techniques first a search without 

any of them will be performed. This means that the best position of the population will be updated 

as in the traditional EPSO optimization algorithm as well as the best position ever found by particle 

in its past life (in the proposed search algorithm in this thesis, when a case is repeated it is searched 

in the memory of all particles in the current population if the repeated case is any personal best: if 

that is the case, the memory of the correspondent particles is erased) and there will be neither 

neighbor term nor additional speed. Then each individual spreading technique will be progressively 

added to the search algorithm, to make evident their advantages as well as their disadvantages.  

The simulation parameters are equal to the ones described in Annex C. Nevertheless, only one 

fitness function will be used in all simulations, the one previously identified as the most promising: 

the maximization of the probability x number of copies x load curtailment. 

4.3.1. Impact of forgetting the global best 

Firstly the impact in efficacy and the efficiency of forgetting the best particle throughout the 

search procedure will be measured as well as the variation of these performance indicators with the 

variation of the number of iterations where the global best position is maintained equal. Notice that 

the memory of the particles is updated according to the proposed algorithm in Chapter 3. Therefore 

two modifications to the original EPSO algorithm can be identified: in the way that the population 

best particle is updated and the reset of the particle’s memory every time that it represents a 

previous saved case. 
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Figure 4.8.  Comparison of the LOLE estimation for different number of iterations where the global best 

position is unchanged. 
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Figure 4.9.  Efficiency ratios, in percentage of the total number of cases visited, for different number of 

iterations where the global best position is unchanged. 

 

As it is shown in these last two figures, the first spreading technique is a success. Not only the 

efficacy was improved but also the efficiency of the search was increased dramatically especially in 

the ratio of significant cases saved as well as the ratio of repeated cases. This result is consistent 

with the principle that the population objective is always changing due to the process of fitness 

assignment: the cases already visited are given a small fitness to reduce the probability of 

appearance in the next generations. Therefore changing the population best particle according to 

the fitness of the particles of each generation is the same as changing the population global attractor 

encouraging the exploitation of new zones of the search space. This clearly favors the diversity in 

the population, unlike in traditional EPSO, were the high rate of repeated cases is mainly due to the 

restriction of the search to the zone of the particle ever found by the population. Moreover, 

changing the global attractor improved noticeably the efficacy of the search, since not only the 

number ratio of significant cases has improved but also its “quality” in terms of the reliability 

indices estimation. 

In relation to the effect of maintaining the global best position for a certain number of 

generations, it seems that this number cannot be too high. If that occurs, the penalty is the decrease 

of the search efficacy since the search is trapped in a zone for a too long time. On the other hand 

always changing the objective can also decrease the efficacy since the population has not enough 

time to perform an effective search in a determined zone. Nevertheless there is a slight difference 

between the efficacy of constant global best position changing and the efficacy of changing the 

global best position every five generations. Therefore any number between 1 and 5 is considered a 

feasible choice for the number of generations without updating the population global attractor.  
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Figure 4.10.  Evolution of the EPNS index for the system peak load considering different number of 

generations where the global best position is unchanged.  
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Figure 4.11.  Comparison of the LOLE estimation between standard EPSO methodology and modified 

version using an extra term in the calculation of the particle’s new velocity.  

 

As it is shown in figure 4.11., this spreading technique, as it was expected, leads to a better 
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Figure 4.12.  Efficiency ratios, in percentage of the total number of cases visited of the standard EPSO 

methodology and a modified version using an extra term in the calculation of the particles new velocity. 
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repetitions decreases in the proposed spreading technique and as a consequence the number of 

important  cases saved increases, improving the efficiency of the search. 

 

 

Figure 4.13.  Evolution of the EPNS index for the system peak load between the standard EPSO 

methodology and a modified version using an extra term in the calculation of the particles new velocity. 
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Figure 4.14.  Evolution of the ratio of case repetitions in percentage of the total number of case visited in 

each generation for the standard EPSO methodology and for a modified version using an extra term in the 

calculation of the particles new velocity. 
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of how good the neighbor is, is determined in the attribute space or, if the reader prefers, in the 

space where the case probability is represented as well as its load curtailment. Therefore this 

concept of neighboring, which relates the decision and the attributes space leads to an significant 

increase not only of the efficacy of the search but also of the convergence speed which is clearly 

represented in the figure 4.17.. 

 

 

 

Figure 4.15.  Comparison of the LOLE estimation between standard EPSO methodology and modified 

version of this methodology using an extra term in the calculation of the particle’s new velocity named 

neighbor term.  
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feasible one. Considering these facts the structure of neighboring is always changing as well as the 

nearest best neighbor of the particles. This seems to be the main reason why this spreading 

technique works so well: the rate of unfeasible cases visited stays equal, the rate of significant 

cases doubles and there is a decrease of the number of repeated cases. Moreover this technique is 

the only one in which it is evident an effective acceleration of the convergence speed right from the 

beginning of the search process. 

 

 

Figure 4.16.  Efficiency ratios, in percentage of the total number of cases visited of the standard EPSO 

methodology and a modified version of this methodology using an extra term in the calculation of the 

particles new velocity named neighbor term. 
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Figure 4.17.  Evolution of the EPNS index for the system peak load between the standard EPSO 

methodology and a modified version of this methodology using an extra term in the calculation of the 

particles new velocity named neighbor term. 

 

In these last two figures is obvious the gain in convergence speed and the gain in efficacy that 

this spreading technique provides. 
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Figure 4.18.  Comparison of the LOLE estimation between standard EPSO methodology and modified 

version considered the best search methodology which incorporates the tree spreading techniques. 

 

In figure 4.18. the efficacy benefits of using the combination of the three spreading methods 

become evident. Notice that there is a significant gain in the estimation of the reliability index 

LOLE by using the so called “best methodology”. Therefore it can be concluded that the three 

methods for improving the diversity combined with the maximization of the probability x number 

of copies x load curtailment increase the efficacy of the search. This is also evident in figure 4.20. 

in which the evolution of the index EPNS along the search procedure for the two discussed search 

methods is illustrated: after a few generations the convergence speed of the EPSO methodology 

with swarm spreading starts to increase due to the effect of these methods which prevent stagnation 

of the search procedure in one zone of the state space, avoids the repetition of the previous saved 

cases and provides a more intensive search in the zones near each particle.  
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Figure 4.19.  Evolution of the EPNS index for the system peak load between the standard EPSO 

methodology and a modified version considered the best search methodology which incorporates the tree 

spreading techniques. 
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Figure 4.20.  Evolution of the EPNS index for the system peak load between the standard EPSO 

methodology and a modified version considered the best search methodology which incorporates the tree 

spreading techniques. 
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Figure 4.21.  Representation of the attributes probability and load curtailment of the cases visited during the 

search procedure. Notice that case probability is in a decimal logarithmic scale for better display.  
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to be drawn from this figure. First the standard EPSO concentrates the search near the attribute 

space zone where the most probable cases with high load curtailment exist. This reinforces the idea 

that the search is referred to an area from a certain generation. The second conclusion is the 

extension of the search that the spreading techniques provide. This benefits the number of different 

cases visited and as well as the approximation of the estimative of the reliability indices to the real 

value. 

However figure 4.21. must be analyzed with care: it only represents the probability of each 

different case visited as well as its load curtailment. As it is known, each case represents a number 

of equal system states, in terms of reliability evaluation. Therefore the probability of the case must 

be multiplied by its number of copies to know its real contribution for the calculation of the 

reliability indices. The objective of this explanation is to alert the reader that although a case may 

have a probability below the threshold line, the number of system states that it represents may 

classify him as relevant. This characteristic should be the criterion for case rejection: if the 

probability x the number of copies that it represents is above a threshold value then the case would 

be classified as relevant and countable. The reason for the adoption in this thesis other criterion 

than this one was to have results that could be compared with the ones obtained by other 

methodology, namely the MSGA proposed in [22] which has the same criterion for classifying the 

feasibility of a case.  

We now present a quantitative comparison of the proposed search methodology, named EPSO 

reliability, with the results of other researchers, namely the MSGA approach [22]. The errors 

resulting from the MSGA approach in [22] have been recalculated to make them relative to the 

exact results, known form [9] and referred to in [30] which are also replicated in table 4.1.. The 

errors deriving from the application of the EPSO reliability have also been calculated relative to 

this same reference. The comparison is made in tables 4.3. to 4.5.. 

In these tables one may compare the estimation of the principal reliability indices obtained by 

these two methods in the evaluation of the adequacy of the generating capacity for the IEEE RTS-

79 with the annual load curve, with the same number of cases visited (in the MSGA methodology 

the number of individuals of a generation is 40 and it is performed 750 generations evaluating 

30040 cases, although phenotypic representation of the case differs from the proposed 

methodology in this thesis; in the EPSO reliability algorithm in each generation 80 cases are 

evaluated, as a result of the replication of the particles of the previous generation (there are two 

offspring) and it takes 375 generations resulting in a total of 30040 cases visited) and with the 

same criterion of case rejection. The results in table 4.3., 4.4., and 4.5. speak for themselves. 
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Table 4.3.  LOLE index comparison between the MSGA and the EPSO reliability algorithm.  

 
LOLE (hour/year) Absolute error (%) 

MSGA 9.324000 0.75% 

EPSO reliability 9.352507 0.44% 

 

Table 4.4.  LOLF index comparison between the MSGA and the EPSO reliability algorithm.  

 
LOLF (occurrence/year) Absolute error (%) 

MSGA 2.003700 0.79% 

EPSO reliability 2.010145 0.47% 

 

Table 4.5.  LOEE index comparison between the MSGA and the EPSO reliability algorithm.  

 
LOEE (MWh/year) Absolute error (%) 

MSGA 1163.00 1.13% 
EPSO reliability 1169.18 0.61% 

 

The absolute errors are calculated by comparison with the analytical results of the reliability 

indices for this power system reproduced in table 4.1..  

Table 4.6. presents a comparison between the two methodologies on the number of significant 

cases saved and the number of m significant system states visited. Note that although the number of 

saved cases is higher in the EPSO reliability algorithm, the number of significant system states is 

lower. However the estimation of the reliability indices provided by the EPSO reliability algorithm 

shows that this number of system states is more important for the accuracy of the indices estimative 

than the systems states visited by the MSGA algorithm. 

 

Table 4.6.  LOEE index comparison between the MSGA and the EPSO reliability algorithm.  

 
Nº of cases saved Nº of their repetitions 

MSGA 10428 19198310 

EPSO reliability 10906 18987932 

 

To gain statistical confidence in the results obtained, table 4.7. provides the results of 250 runs 

of the EPSO reliability algorithm with the same conditions of the earlier runs. 
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Table 4.7.  Statistical data for the 250 runs of the EPSO reliability algorithm. 

 
Average Standard Deviation 

LOLE (hour/year) 9.337799 0.013395 

LOLF (occurrence/year) 2.007116 0.002742 
LOEE (MWh/year) 1166.38 1.93 

Nº of cases saved 10699 94 
Nº of their repetitions 18665090 519461 

 

The aspect that is to be retained is the robustness of the results obtained by the EPSO reliability 

algorithm, expressed by its standard deviation, and the average value of the estimation of the 

reliability indices that, which however are still superior to the reliability indices estimative obtained 

in [22]. 

It would be interesting to benchmark the efficiency of the method presented in this thesis 

against a classical non-chronological Monte Carlo simulation. This work has not been done. 

Nevertheless, other researchers have reported a remarkable acceleration in computing time of PB 

methods over Monte Carlo. As the EPSO reliability algorithm proved to be more efficient that 

other published PB approaches, the advantage over Monte Carlo is considered established. 

4.5. Conclusions 

In this Chapter the main results of the EPSO reliability algorithm were presented, in the 

evaluation of the generating capacity of the IEEE RTS – 79. This presentation was performed step 

by step analyzing the effect on the efficacy and efficiency of the search of distinct fitness functions 

and different methods to achieve diversity.   

As it was demonstrated, the best guide, in terms of efficacy, to conduct the search is the 

maximization of the probability x number of copies x load curtailment. With this fitness function 

not only the probability of the case determines its relevance but also the load curtailment, 

calculated for the system peak load, which is a measure of the case generating capacity, becomes 

important. Therefore, with this fitness function it is guaranteed that the search is guided to the cases 

which contribute the most for the calculation of the reliability indices: the cases with low 

generating capacity and with high probability. This fact is essential to take into account in the 

system reliability indices calculation not only the effect of the hours where the load is at a low 

value but also to describe correctly all the ways the system can fail in the hours of peak load. This 

is the main advantage of this fitness function. On the other hand, maximizing only the case load 

shedding drives the search to ineffectual zones of the search space reducing dramatically the 
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number of entries in the feasible cases list. The DWA approach has a performance between the two 

objectives selected for the construction of the bi-objective function. It was also seen that the 

weights change frequency has an important effect in the efficiency and the efficacy of the search. 

Moreover, when the rate of changing of the aggregation weights is very low, meaning that the 

search will be guided to a specific objective for long periods, the weight of the objective which 

starts with the value one determines the behavior of the search. This means that at the end of the 

search procedure the efficiency and the efficacy will be similar to maximizing only this dominant 

objective. 

On the other hand all the proposed spreading techniques performed satisfactorily. In all three 

both the efficacy and the efficiency of the search is enhanced. Attending to that, the idea of 

incorporating them in the same methodology was successfully tested, with the expectation of 

achieving a superior performance than the one that the methods proposed in the literature possess. 

A comparative study between the EPSO reliability algorithm and the MSGA [22] method was 

conducted for the same reliability problem and with the same conditions and it was shown that 

EPSO reliability has a better performance than MSGA. Moreover it was demonstrated that EPSO 

reliability has consistently superior results than MSGA, in terms of efficacy and, in a particular 

point of view, in terms of efficacy, since it visits more feasible cases (though corresponding to a 

fewer number of system states) for a higher number of runs. 
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Chapter 5 

Conclusions and future work 

This Chapter will summarize the previously drawn conclusions, when the main results in 

Chapter 4 were analyzed, in a context of assessment if the objectives proposed for this thesis were 

attained. Then some guidelines to continue and improve the work on this thesis will be detailed. 

5.1. Objectives achieved 

In this thesis a new method was presented, which belongs to the new type of methods for 

assessing power system reliability, the PB (Population Based) methods, for evaluating the 

reliability of power systems generating capacity, namely its adequacy.  

First an overview of the traditional methods for solving this specific reliability problem was 

presented, namely the deterministic and the probabilistic methods with special focus on the two 

approaches of the last one: the analytical approach and the simulation approach. This overview was 

made not with the objective of detailing each specific characteristic of these methods but to 

demonstrate their advantages and disadvantages establishing a starting point to introduce the new 

type of methodologies for assessing power systems reliability: the PB methods. As it was described 

these methods rely on the use of meta-heuristics, namely EA, for constructing a list with the system 

states considered important for the computation of the reliability indices. Therefore an introduction 

to the most used EA was presented. Finally the work of some researchers on this area was detailed, 

introducing the main aspects of their search algorithms, which lead to the essence of this thesis: 

since most of the search methods did not use specific techniques to enhance the search, probably 

their performance could be improved using methods for creating diversity.  

The first idea in this thesis was to use the traditional EPSO algorithm with a slight modification 

of the phenotypic representation of a particle in relation to the known PB methods to perform the 



Chapter 5 – Conclusions and future work 

86 

search, which, per se, was a new application of this method constituting an additional contribution 

of the actual state of the art. Nevertheless, using the ideas exposed on the last paragraph and after 

analyzing the convergence behavior and the EPSO population dynamics during the search 

procedure, one realized that the diversity in the EPSO population could be created by the fitness 

assignment procedure and by the control of the particles velocity. To accomplish this, two main 

philosophies of fitness assignment were formulated : the single objective and the bi-objective using 

the DWA approach; and three methods were proposed for creating diversity: the continuous 

changing of the population objective as well as forgetting the best position of a particle if it 

represents a previous visited one; adding an extra velocity in case of convergence of the particles to 

a specific point of the search space; and introducing a new term in the equation from which the new 

velocity  is calculated, to enhance the search around each particle.  

The results show that the best fitness function was a single objective one, which maximizes the 

probability x the number of copies of each case x the normalized load curtailment. Moreover it was 

also verified in Chapter 4 that each method for creating diversity increased both measures of the 

search quality: efficacy and efficiency. Then the idea came of aggregating this information in order 

attain a superior performance methodology which was called EPSO reliability algorithm. Its 

advantages, namely in the efficacy and in the efficiency (although the efficiency measure was only 

superior in part) was confirmed by comparing the results obtained with EPSO with the ones of a 

search methodology named MSGA [22]. Moreover it was confirmed that the EPSO reliability 

algorithm provides robust solutions since the standard deviation of the obtained estimative of the 

reliability indices after a considerable number of runs was relatively low compared to its average 

value. However no conclusions were possible to be drawn, regarding the number of system states 

visited and the accuracy of the estimations, of the proposed method when compared with a non-

chronological Monte Carlo simulation due to the lack of data. 

To sum up in this thesis it was proved that EPSO with spreading techniques can be used as a 

search algorithm, extending its repertoire of applications in power systems problems, and also that 

the quality of the search can be enhanced in all of its aspects by using methods for creating 

diversity in the population. 
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5.2. Future work 

The results of the work developed in this thesis may be the inspiration for other research 

studies. Therefore a list of possible studies that can be made is now presented: 

 

• Give some sort of intelligence to the mechanism of changing the best position of the 

population. Instead of moving constantly the global attractor, the search would probably benefit if 

this point is only changed if the population is confined to a specific zone of the search space; 

• Apply the developed method in the generating capacity analysis of a real power system and 

compare its results with the ones provided by other PB methodologies; 

• Apply the developed system state representation in a HLII type of study. For this specific 

problem it would probably help in the construction of the particles position if the number of equal 

generators in each bus bar is taken in account. However the representation of the states of each 

transmission line cannot be forgotten; 

• Provide a spreading mechanism that detects if the particles are in a collision course in order 

to avoid repetitions. To accomplish that, one needs to analyze not only the particle position but also 

its velocity vector; 

• Apply in the fitness assignment method a fitness function based on the Pareto front. With 

this feature it will no longer be necessary to scale the value of each objective and perform an 

aggregation based approach. More of this subject can be found in [30]. 
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Annex A - IEEE RTS-76 

The unit parameters used in the evaluation of the IEEE RTS-76 generating capacity are 

described in the following table: 
 

Table A1  IEEE RTS-76 unit reliability data. 

Unit  Unit size 
(MW) 

MTTF 
(hour) 

MTTR 
(hour) 

FOR 

1 12 2940 60 0.020 
2 12 2940 60 0.020 
3 12 2940 60 0.020 
4 12 2940 60 0.020 
5 12 2940 60 0.020 
6 20 450 50 0.100 
7 20 450 50 0.100 
8 20 450 50 0.100 
9 20 450 50 0.100 
10 50 1980 20 0.010 
11 50 1980 20 0.010 
12 50 1980 20 0.010 
13 50 1980 20 0.010 
14 50 1980 20 0.010 
15 50 1980 20 0.010 
16 76 1960 40 0.020 
17 76 1960 40 0.020 
18 76 1960 40 0.020 
19 76 1960 40 0.020 
20 100 1200 50 0.040 
21 100 1200 50 0.040 
22 100 1200 50 0.040 
23 155 960 40 0.040 
24 155 960 40 0.040 
25 155 960 40 0.040 
26 155 960 40 0.040 
27 197 950 50 0.050 
28 197 950 50 0.050 
29 197 950 50 0.050 
30 350 1150 100 0.080 
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31 400 1100 150 0.120 
32 400 1100 150 0.120 

 

The hourly load model of the IEEE RTS-79 for an annual peak load of 2850 MW is calculated 

according to the following tables: 

 

Table A2  Weekly Peak Load in Percent of Annual Peak [29]. 

Week Peak Load Week Peak Load 

1 86.2 27 75.5 

2 90 28 81.6 

3 87.8 29 80.1 

4 83.4 30 88 

5 88 31 72.2 

6 84.1 32 77.6 

7 83.2 33 80 

8 80.6 34 72.9 

9 74 35 72.6 

10 73.7 36 70.5 

11 71.5 37 78 

12 72.7 38 69.5 

13 70.4 39 72.4 

14 75 40 72.4 

15 72.1 41 74.3 

16 80 42 74.4 

17 75.4 43 80 

18 83.7 44 88.1 

19 87 45 88.5 

20 88 46 90.9 

21 85.6 47 94 

22 81.1 48 89 

23 90 49 94.2 

24 88.7 50 97 

25 89.6 51 100 

26 86.1 52 95.2 
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Table A3  Daily Peak Load in Percent of Weekly Peak [29]. 

Day Peak Load 

Monday 93 

Tuesday 100 

Wednesday 98 

Thursday 96 

Friday 94 

Saturday 77 

Sunday 75 
 

Table A4  Hourly Peak Load in Percent of Daily Peak [29]. 

Hour 

Winter Weeks Summer Spring/Fall 
Weeks Weeks Weeks 

1-8 & 44-52 18-30 9-17 & 31-43 
Weekday Weekend Weekday Weekend Weekday Weekend 

12 pm -1 am 67 78 64 74 63 75 

1 am -2 am 63 72 60 70 62 73 

2 am -3 am 60 68 58 66 60 69 

3 am -4 am 59 66 56 65 58 66 

4 am -5 am 59 64 56 64 59 65 

5 am -6 am 60 65 58 62 65 65 

6 am -7 am 74 66 64 62 72 68 

7 am -8 am 86 70 76 66 85 74 

8 am -9 am 95 80 87 81 95 83 

9 am -10 am 96 88 95 86 99 89 

10 am -11 am 96 90 99 91 100 92 

11 - Noon 95 91 100 93 99 94 

Noon - 1 pm 95 90 99 93 93 91 

1 pm - 2 pm 95 88 100 92 92 90 

2 pm - 3 pm 93 87 100 91 90 90 

3 pm - 4 pm 94 87 97 91 88 86 

4 pm - 5 pm 99 91 96 92 90 85 

5 pm - 6 pm 100 100 96 94 92 88 

6 pm - 7 pm 100 99 93 95 96 92 

7 pm - 8 pm 96 97 92 95 98 100 

8 pm - 9 pm 91 94 92 100 96 97 

9 pm - 10 pm 83 92 93 93 90 95 

10 pm - 11 pm 73 87 87 88 80 90 

11 pm - 12 pm 63 81 72 80 70 85 
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Annex B - Evaluation of the performance of the 
different fitness functions simulation data 

In this Annex is enumerated the conditions of the referred simulations. 

 

 

Table B1  EPSO reliability unit data 

Unit type Unit size (MW) MTTF (hour) MTTR (hour) FOR  Number of equal units 

1 12 2940 60 0.02 5 
2 20 450 50 0.1 4 

3 50 1980 20 0.01 6 

4 76 1960 40 0.02 4 

5 100 1200 50 0.04 3 

6 155 960 40 0.04 4 
7 197 950 50 0.05 3 

8 350 1150 100 0.08 1 

9 400 1100 150 0.12 2 

 

 

General EPSO reliability algorithm parameters: 

 

• Maximum value of the particles position vector: 

 

Eu =

®
®®
®®
®®̄
5.54.56.54.53.54.53.51.52.5°±

±±
±±
±±
²
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• Minimum value of the particles position vector: 

 

E =

®
®®
®®
®®̄
−0.5−0.5−0.5−0.5−0.5−0.5−0.5−0.5−0.5°±

±±
±±
±±
²

 

• Velocity reduction factor: 0.5; 

• Population size: 40; 

• Learning parameter: τ = 0.3; 

• Probability of communication between particles: 0.6; 

• Threshold probability for case rejection: 1.0g�´; 

• System yearly peak load: 2850 MW. 

• Maximum number of iterations: 375. 

 

Spreading techniques: 

 

• Maximum number of iterations which the global best position is not changed: 1; 

• Reduction factor of the additional velocity: 0.225; 

• Maximum value of the auxiliary vector: 5; 

• Minimum value of the auxiliary vector: −5; 

• Use of the neighbor term. 

 

Fitness function: 

 

• Weight’s change frequency: � = 375; 

• Lowest value for the probability x copy objective: 

 

 ∏ 0�T� = 1.20796gD¶����   , (B1) 

 

where � is the total number of units of the IEEE RTS-79 and 0�T� is the Forced Outage Rate of 

the unit �. 
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• Highest value for the probability x copy objective: 

 

 ∏ 
1 − 0�T� = 2.36396g�����   , (B2) 

 

where � is the total number of units of the IEEE RTS-79 and 0�T� is the Forced Outage Rate of 

the unit �. 
 

• Lowest value for the probability x copy x normalized load curtailment objective 

(normalization performed using the system peak load): 0. Nevertheless, since the decimal 

logarithmic is not defined for the value 0, the next minimum value is selected for the construction 

of the linear transformation. After using EPSO as an optimization tool it appears that this value is 

equal to the one obtained with the equation (B1); 

 

• Highest value for the probability x copy x load curtailment objective: 3.83583gD. 
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Annex C - Evaluation of the performance of the 
different spreading techniques simulation data 

In this Annex is enumerated the conditions of the referred simulations. 

 

 

Table C1  EPSO reliability unit data 

Unit type Unit size (MW) MTTF (hour) MTTR (hour) FOR  Number of equal units 

1 12 2940 60 0.02 5 
2 20 450 50 0.1 4 

3 50 1980 20 0.01 6 

4 76 1960 40 0.02 4 

5 100 1200 50 0.04 3 

6 155 960 40 0.04 4 
7 197 950 50 0.05 3 

8 350 1150 100 0.08 1 

9 400 1100 150 0.12 2 

 

 

General EPSO reliability algorithm parameters: 

 

• Maximum value of the particles position vector: 

 

Eu =

®
®®
®®
®®̄
5.54.56.54.53.54.53.51.52.5°±

±±
±±
±±
²
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• Minimum value of the particles position vector: 

 

E =

®
®®
®®
®®̄
−0.5−0.5−0.5−0.5−0.5−0.5−0.5−0.5−0.5°±

±±
±±
±±
²

 

 

• Velocity reduction factor: 0.5; 

• Population size: 40; 

• Learning parameter: ? = 0.3 ; 

• Probability of communication between particles: 0.6; 

• Threshold probability for case rejection: 1.0g�´; 

• System yearly peak load: 2850 MW. 

• Maximum number of iterations: 375. 
 

Spreading techniques: 

 

• Maximum number of iterations which the global best position is not changed: 

 

o 1; 

o 5; 

o 10. 

 

• Reduction factor of the additional velocity: 0.225; 

• Maximum value of the auxiliary vector: 5; 

• Minimum value of the auxiliary vector: −5; 

• Use of the neighbor term. 

 

Fitness function: 

 

• Maximization of the probability x the number of copies x the normalized load curtailment 

(normalization performed using the system peak load). 
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Annex D - Submitted paper to publication in 
IEEE Transactions 

As a result of the advantages achieved by the developed strategy in this work, it was decided to 

write a paper where the main achievements and ideas of such strategy are presented.  In this Annex, 

one will do a brief and general presentation of the main topics that are focused in the referred 

paper. However it is important to underline that this paper is, at the moment, confidential, having 

been submitted for future publication in IEEE Transactions. Therefore only the first page is 

reproduced below. 
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Abstract – This paper reports the application of a 
population based method (EPSO – Evolutionary Particle 
Swarm Optimization) to calculate power system 
reliability. Population based methods appear as 
competitors to the traditional Monte Carlo simulation 
because they can be much more computationally efficient 
in estimating a number of reliability indices. The work 
reported in this paper demonstrates that EPSO variants, 
suited to the problem of exploring a zone in the state 
space instead of searching for a single optimizing state, 
are efficient in calculating a number of system reliabilitu 
indices such as power not supplied. The results obtained 
with EPSO are compared with Monte Carlo and with 
work of other researchers in population based methods. 

Index Terms – Reliability. Monte Carlo, evolutionary 
algorithms, particle swarms 

I.  INTRODUCTION 

ONTE CARLO remains the standard  method to 
calculate estimates of reliability indices in Power 

Systems.  
This statistically based method has gained 

importance over analytic models since the emergence 
of enough computing power in the beginning of the 
90’s coupled with the adoption of efficient 
convergence acceleration techniques. The two basic 
advantages of Monte Carlo were: a) allowing 
simulation of realistic characteristics of systems, even 
those not necessarily reducible to formal mathematical 
models, and b) allowing the calculation of distributions 
and not only of Mean values (in its simplest form, 
allowing the estimation of Variance). Non-
chronological models became successful then. 

However, as it is usual in such cases, the growth in 
computer power opened the way to the desire to 
perform chronological simulations and this became 
demanding of increased computing power. At the same 
time, even non-chronological models became more 
complex because of the availability of computing 
power at desktop level. As happened in many other 
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cases in the development of science and technology, 
the moment one has available more computing power 
this becomes almost at once insufficient for the new 
and more complex models one wishes to run. 

Recently, an alternative to Monte Carlo started to 
emerge: population based methods. While Monte 
Carlo is statistically based method, relying on the 
theorems of sampling to provide an estimate of a result 
plus some interval of confidence, population based 
methods are methods that try to search only for the 
meaningful subset of the state space and are 
enumeration methods. If all states contributing to a 
certain index could be identified and their probabilities 
known, the index would be calculated exactly. 
Population based methods try therefore to discover, if 
not the totality, the majority of states so that a good 
approximation of the index is computed. 

The methods are called population based because 
they rely on meta-heuristics that have a population of 
solutions (individuals, particles) as their core. In this 
class one may count evolutionary algorithms – 
evolutionary programming (EP) or genetic algorithms 
(GA) – and particle swarm optimization algorithms 
(PSO). They all were traditionally developed to be an 
optimization tool but the problem now is the discovery 
of a set of states that have maximum contribution to 
the index to be calculated – so, some mechanism to 
generate diversity must be kept, otherwise all solutions 
would tend to converge to a maximizing state and 
space exploration would be hampered.  

This paper presents new results confirming the 
efficiency of a population based method – EPSO, 
Evolutionary Particle Swarm optimization, over Monte 
Carlo to calculate reliability indices in a Power 
System. The results obtained will be compared with 
the results from other researchers and conclusions 
drawn from the experiments designed. 

Improving power system reliability calculation 
efficiency with EPSO variants 

Vladimiro Miranda, Fellow, IEEE, and Leonel Carvalho 
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