
Faculdade de Engenharia da Universidade do Porto

The Aleph System Made Easy

João Paulo Duarte Conceição

Thesis submitted for the degree of

Integrated Master in Electrical and Computers Engineering

Telecommunications Major

Orientator: Lubomı́r Popeĺınský (Ph.D)

Co-orientator: Rui Camacho (Ph.D)

July 2008

Abstract

This dissertation presents the background knowledge required to understand the con-
cept of ILP1 in general and the Aleph2 System in particular. To comprehend ILP it’s
necessary understand two major concepts: Data Mining (process of discovering patterns
in data) and Machine Learning (computer programs that improve with experience). There
are many languages to develop ILP systems, and, the Aleph system uses Prolog, a program-
ming language associated with artificial intelligence and computational linguistics. About
the Aleph System it will be explained its settings, modes, determinations and types. This
dissertation goal is the development of a graphical user interface for the Aleph System.
With this interface it will be easy for non ILP reseachers to perform data analysis with
Aleph. The user will be able to create files to be read by Aleph without knowing Prolog.
The results given by the interface (using a Prolog compiler) are presented in a language
very close to English. The created inputs and given results can be saved in different files.
Final conclusions about the development of this interface are presented in the end of this
document.

1Inductive Logic Programming
2A Learning Engine for Proposing Hypotheses

i

ii

Acknowledgments

There are some persons who have contributed, in one way or another, to make this
dissertation possible. I would like to express here my gratitude to them:

• I wish to thank Professors Rui Camacho and Lubomı́r Popeĺınský, supervisors of
this dissertation, for their advice, guidance and patience;

• Thanks to Knowledge Discovery Group for all the useful information that they pro-
vided to me and also for sharing with me their experience;

• Thanks to Nelson Costa for the valuable suggestions, support and for his help;

• Special thanks to my family, in particular, my father, my mother and my grand-
mother for giving me me all the support to develop the dissertation under the Eras-
mus Programme.

• And last, but not least, many thanks and a warm gratitude to my girlfriend Leihla,
for her patience and constructive criticism, for giving me support and strength to
make all this come true.

João Paulo Duarte Conceição

iii

iv

Contents

Abstract i

Acknowledgments iii

1 Introduction 1
1.1 Context and Motivation . 1
1.2 Goals . 2

2 Introduction to Data Mining and Machine Learning 3
2.1 Data Mining . 3
2.2 Machine Learning . 6
2.3 Fielded Applications . 7

2.3.1 Screening Images . 7
2.3.2 Load Forecasting . 8
2.3.3 Diagnosis . 8
2.3.4 Other Applications . 9

3 Inductive Logic Programming 11
3.1 Introducing ILP . 11
3.2 Problems . 12
3.3 Language Bias . 13
3.4 Completeness and Consistency of a Hypothesis 14
3.5 Dimensions . 16
3.6 Description of ILP Systems . 17

4 A Learning Engine for Proposing Hypotheses 19
4.1 Aleph System . 19
4.2 Basic Aleph Algorithm . 19
4.3 Requirements . 20
4.4 Mode Declarations . 20
4.5 Types . 22
4.6 Determinations . 22
4.7 Positive and Negative Examples . 23
4.8 Parameters . 23
4.9 Other Characteristics . 24
4.10 Using Aleph . 24

v

vi CONTENTS

5 Prolog 27
5.1 Overview . 27
5.2 Syntax . 27
5.3 Programming . 28
5.4 Lists . 30
5.5 Working With Files . 31

6 Aleph Graphical User Interface 33
6.1 Introduction and Requirements . 33
6.2 Project Development Tool . 34
6.3 Prolog Compiler . 35
6.4 Adaptive Pattern . 35
6.5 Architecture . 39
6.6 Using Aleph Interface . 40
6.7 Test . 42

7 Conclusions 43
7.1 Future Work . 43
7.2 Final Considerations . 43

A Aleph Basic Settings 45

B Javadoc 47

References 61

List of Figures

2.1 Data mining as a process of knowledge discovery. 4
2.2 Typical data mining system architecture. 5
2.3 Artificial Intelligence System. 7

3.1 Intersection of Machine Learning and Logic Programming resulting in ILP. 11
3.2 Completeness and consistency of a hypothesis. 15
3.3 Characteristics of various ILP systems. 18

6.1 Adaptive Pattern Example. 36
6.2 Adaptive Pattern for YAP. 38
6.3 Aleph Interface Architecture. 39
6.4 Presentation Menu. 40
6.5 Aleph Interface. 42

vii

viii LIST OF FIGURES

Chapter 1

Introduction

1.1 Context and Motivation

Nowadays we are surrounded by a huge amount of information. That quantity has the
tendency to continue to increase. The hard disks of the computers have more capacity
to store information and with the prices decreasing, it leads to an exponential growth
of stored information. Ubiquitous electronics record our decisions, our choices in the
supermarket, our financial habits, our comings and goings.[1]. In general, all our choices
are stored in databases. Data mining is primarily used today by companies with a strong
consumer focus: retail, financial, communication, and marketing organizations.[2] The
amounts of information makes it impossible to be analyzed by human experts. Automatic
data analysis is therefore required. This situation lead to the appearance of Data Mining 1.
In Data Mining, the information is stored electronically and the searches are autonomously
done by a computer based in some patterns with the objective of solve a problem and
simultaneously understand the content of the database. Data mining can be viewed as a
result of the natural evolution of information technology [3]. In this context were developed
techniques and algorithms of Artificial Intelligence that permit the computers to learn.
The primary goal of these techniques is automatically extract information from databases
using computational and statistical methods. Simultaneously adopt these decisions to
the problem we want to solve in order to optimize his functional procedure and give the
possibility to get conclusions based on founded patterns. It is possible that hidden among
large piles of data are important relationships and correlations. Machine learning methods
can often be used to extract these relationships [4]. In the research area of Machine
Learning and the development of logical programs is Inductive Logic Programming (ILP)
[5]. There are many ILP systems, to use most of them it is necessary to have some
knowledge of ILP and how the system works. The ILP system called ”A Learning Engine
for Proposing Hypotheses” (Aleph) is one of these systems and is the focus of my work.

1We use Data Mining even when referring to the whole process of Knowledge Discovery in Databases
– KDD

1

2 Introduction

1.2 Goals

The primary objective of this dissertation is the study, project, development and test
of an interface for the Aleph ILP system. This interface should be usable by any non ILP
researcher and it should be possible to construct models easily, so that anyone with basic
knowledge about informatics can use this system. With the Aleph system we may con-
struct several models and show them to the user for him to choose. After the models are
created, it’s possible to compile them and obtain some results. The results are presented
in a language very close to English. This language was choosen, because it’s universal and
can be understood by a large portion of population in the world.

The partial goals are:

• Study and understand the concepts of Data Mining and ILP;

• Study the Aleph System;

• Design, develop and test the Aleph Interface for the Aleph System;

Chapter 2

Introduction to Data Mining and

Machine Learning

2.1 Data Mining

The amount of data in the world, seems to go on and on increasing, without an end
at sight. Personal computers make it easy to save things that we previously have trashed.
Progress in digital data acquisition and storage technology has resulted in the growth of
huge databases [7]. The hard disks are getting bigger and bigger and inexpensive making
easy to postpone decisions about what to do with all this stuff, solving the problem by
just buying another disk and keeping it all. But as the volume of data increases, inex-
orably, the proportion of it that people understand decreases, alarmingly. Automatic data
analysis is therefore required and this situation lead to the appearance of Data Mining.

People have been seeking patterns in data since human life began. Hunters seek pat-
terns in animal migration behavior , farmers seek patterns in crop growth, politicians seek
patterns in voter opinion, and lovers seek patterns in their partners responses [1]. The ma-
jor reason that data mining has attracted a great deal of attention in information industry
in recent years is due to the wide availability of huge amounts of data and the imminent
need for turning such data into useful information and knowledge. The information and
knowledge gained can be used for applications ranging from business management, pro-
duction control, and market analysis, to engineering design and science exploration.

Data Mining derives its name from the similarities between searching for valuable
business information in a large database [11]. Its objective is to solve problems by analyzing
data already present in databases and is defined as the process of discovering patterns in
that data. The process must be automatic or (more usually) semiautomatic. The patterns

3

4 Introduction to Data Mining and Machine Learning

discovered must be meaningful in that they lead to some advantage, usually an economic
advantage. The data is invariably present in substantial quantities [1]. Exists two kinds
of patterns: one can been as black box whose innards are effectively incomprehensible
and the other is seen as a transparent box whose construction reveals the structure of the
pattern. The kind of patterns that can be examined and be used to inform future decisions
we call it structural. This kind of patterns help us to explain something about the data.
All these knowledge discovery in databases is described in Figure 2.1, and consists of an
iterative sequence of the following steps[3]:

• data cleaning (to remove noise or irrelevant data);

• data integration (where multiple data sources may be combined);

• data selection (where data relevant to the analysis task are retrieved from the
database);

• data mining (an essential process where intelligent methods are applied in order to
extract data patterns);

• pattern evaluation (to identify the truly interesting patterns representing knowledge
based on some interestingness measures);

• knowledge presentation (where visualization and knowledge presentation techniques
are used to present the mined knowledge to the user).

Figure 2.1: Data mining as a process of knowledge discovery.

2.1 Data Mining 5

After this process, the interesting patterns are presented to the user, and may be
stored as new knowledge in the knowledge base. In this way, we can say that a data
mining system is composed with six components, as the Figure 2.2 shows:

Figure 2.2: Typical data mining system architecture.

These components are:

• database, data warehouse or other information repository (data cleaning and data
integration will be applied to these type of information repositories);

• database or data data warehouse server (responsible for fetching the relevant data,
based on the data mining request);

• knowledge base (it is the domain knowledge that is used to evaluate the interesting-
ness of resulting patterns);

• data mining engine (consists on a set of functional modules for tasks such as char-
acterization, association analysis, classification, evolution and deviation analysis);

6 Introduction to Data Mining and Machine Learning

• pattern evaluation module (to identify the truly interesting patterns representing
knowledge based on some interestingness measures);

• graphical user interface (this module is used to do communication between the users
and the data mining system in a interactive way. The user can specify a data mining
query or task to help the search);

2.2 Machine Learning

The field of Machine Learning is concerned with the construction of computer programs
that automatically improve with experience. Many successful applications of Machine
Learning exist already, including systems that analyze past sales data to predict customer
behavior, recognize faces or spoken speech, optimize robot behavior so that a task can
be completed using minimum resources, and extract knowledge from bioinformatics data
[12]. At the same time, there have been important advances in the theory and algorithms
that form the foundations of this field [8].

Machine Learning draws on concepts and results from many fields, including Statis-
tics, Artificial Intelligence, Philosophy, Information Theory, Biology, Cognitive Science,
Computational Complexity, and Control Theory. There are some important engineering
reasons that make Machine Learning so important, some of them are:

• it is possible that in large piles of data are important hidden relationships and
correlations. Machine Learning methods can be used to extract these relationships;

• human designers often produce machines that do not work well as desired in the
environments in which they are used. Machine Learning methods can be used to
improve the existing machine designs;

• machines can adapt to a changing environment reducing the need for constant re-
design;

• the amount of knowledge available about certain tasks might be too large for explicit
encoding by humans. Machines might be able to capture more knowledge than
humans would want to write down;

• with the vocabulary changes, the discoveries made by humans and all the rest of
new events in the world, redesigning the existing systems to new knowledge is not
comfortable, but with machine learning methods it is possible to track much of that
knowledge;

As mentioned before, Machine Learning usually refers to the changes in systems that
perform tasks associated with Artificial Intelligence. Figure 2.3 shows the architecture of a

2.3 Fielded Applications 7

typical Artificial Intelligence agent. This agent perceives and models its environment and
computes appropriate actions, perhaps by anticipating their effects [4]. The changes made
to any of the components shown in the Figure 2.3 might count as learning. Depending on
the system, different learning methods can be employed.

Figure 2.3: Artificial Intelligence System.

2.3 Fielded Applications

This section is about Data Mining and Machine Learning used applications and will
show you how important and useful is using them.

2.3.1 Screening Images

Scientists have been trying to detect oil slicks from satellite images to give early warning
of ecological disasters and illegal dumping. To detect oil slicks in a manual way it is too
expensive and requires highly trained personnel. To solve this, a hazard detection system
was developed in order to screen images for subsequent manual processing. Machine

8 Introduction to Data Mining and Machine Learning

Learning allows the system to be trained on examples of spills and non spills supplied
by the user and lets the system control the trade off between undetected spills and false
alarms. In this system the input will be a set of raw pixel images from a radar satellite
and the output is a much smaller quantity of images with putative oil slicks marked by a
specified color. The processing operations for this are:

• normalize the images with standard image processing operations;

• identification of suspicious dark regions;

• extraction of some attributes (size, shape, area, etc.) from each region;

• apply standard learning techniques to the resulting attributes.

2.3.2 Load Forecasting

It is important to determine future demand power as far in advance as possible in the
electricity supply industry. In order to do this, an automated load forecasting has been
developed and has been in use for the past decade to generate hourly forecasts for 2 days
in advance. To create this automated and sophisticated load forecasting it was necessary
to collect 15 years of data. Electric load shows periodicity at three frequencies:

• diurnal, where usage has an early morning minimum and midday and afternoon
maxima;

• weekly, where demand is lower at weekends;

• seasonal, where increased demand during winter and summer for heating and cooling;

Special days such as Christmas, Thanks-giving and New Year’s day have significant
variation from the normal load and are each modeled separately by avering hourly loads
for that day over the past 15 years. It was created a database with some fields, such as
temperature, humidity, wind, speed and cloud for each hour of the 15 years, along with
the difference between the actual load and that predicted by the model.
The conclusion taken is that the system as the same performance as trained human fore-
casters, but the system is much faster, taking just some seconds to forecast a day, instead
of hours by humans.

2.3.3 Diagnosis

Diagnosis is one of the principal application where Machine Learning is used to. Usually
the handcrafted rules used in these kind of systems perform better that Machine Learning
ones, but these last can be useful in situations where the manual producing rules are too
intensive to make. Some devices, such as motors and generators are inspected regularly
by technicians to see if there’s any problem with them. The primary goal of this model is

2.3 Fielded Applications 9

not to see wheter or not a fault existe, but to diagnose the kind of fault. The attributes
were run through an algorithm in order to produce a set of diagnostic rules. These rules
were shown to an expert and he was not satisfied with it, because he couldn’t relate it to
his knowledge and experience, so it was necessary to had background knowledge after the
generated rules. After this the results were very complex, although the expert liked them
because now he could relate him with his knowledge.
After these tests the conclusions indicate us that the learned rules were superior to the
handcrafted ones.

2.3.4 Other Applications

There are a large number of other applications of Machine Learning, in this section I’ll
briefly debrief some of them.
Other machine application is when a costumer reports a problem and the company must
decide what type of techician should be assigned for that ptoblem. In biomedicine machine
learning is used to predict drug activity by analyzing the chemical properties of drugs and
their three-dimensional structure. In chemistry it has been used to predict the structure of
some organic compounds, using magnetic ressonance spectra. At last, Machine Learning
is also being used to predict the human preferences on TV programs and also for intrusion
detection, recognizing unusual patterns on some operations.

10 Introduction to Data Mining and Machine Learning

Chapter 3

Inductive Logic Programming

3.1 Introducing ILP

Inductive Logic Programming (ILP) is a research area at the intersection of Machine
Learning and Logic Programming [5]. Its objective is to learn logical programs from
examples and knowledge in the domain.

Figure 3.1: Intersection of Machine Learning and Logic Programming resulting in ILP.

From Logic Programming ILP inherits its representation formalism, various techniques
and a theoretical base. From Machine Learning inherits an experience and orientation
approach for practical applications such as techniques and tools to induce hypotheses
from examples and build intelligent learning machines [9].

ILP has several advantages, such as [15]:

• complex models can be constructed;

• ILP uses a powerful representation language;

• easy to understand the given results;

• it’s possible to add information about the domain;

• there are a lot of domains where ILP can be used;

11

12 Inductive Logic Programming

• almost all ILP systems are available online.

At the same time ILP has some disadvantages, such as [15]:

• in complex situations it takes long time to get the results;

• it’s necessary a experienced in ILP user to use the systems;

• the search space grows very quickly with the number of relations in the background
knowledge.

The ILP differs from the Machine Learning methods because of the representation
language and its ability to use knowledge in the domain. This knowledge has a very im-
portant place to the learner, which task is, to find from examples an unknown relationship
in terms of relations already known from that domain.

The knowledge in the domain is used in the construction of hypotheses and it’s a
very important characteristic in ILP. In one hand, when this knowledge is relevant it
can substantially better the results of the learner in terms of precision, efficiency and its
potential knowledge induced. On the other hand, some of this knowledge is irrelevant and
will have opposite effects. The art of the ILP is to select and formulate the background
knowledge to be used in the learner task [9]. ILP systems have been applied to various
problem domains. Many applications benefit form the relational descriptions generated
by the ILP systems [13].

3.2 Problems

In a general way ILP can be described by a knowledge theory from the initial back-
ground knowledge and some examples E = E+ ∪ E−, where E+ represents the positives
examples and E− represents the negatives examples of the concept to be learned.

The objective of the ILP is to induce a hypothesis H that, with the given background
knowledge B, explains the examples E+ and is consistent with E− [5]. Although in most of
the problems, the given background knowledge, the examples and the hypotheses should
satisfy a joint of syntactic restrictions S, called bias of the language. That language bias
defines the space of formulas used to represent hypotheses and can be considered as part
of the background knowledge. The empiric learner of a single concept (predicate) in ILP
can be formulated in this way:

• A set of examples E described in a language Le with: positive examples, E+ and
negative examples, E−;

3.3 Language Bias 13

• An unknown predicate p, specifying the relationship to be learned;

• A language description of hypotheses, Lh, specifying the syntactic restrictions in the
definition of the predicate p;

• The bias S, that define the space of hypotheses;

• The theory of the background knowledge B, described in a language Lb, defining
predicates that can be used in the definition of p and can give additional information
about arguments from the examples of the target relation.

• An operator between Le and Lh with relationship to Lb which determine if an
example it’s covered by a closure expressed in Lh.

Find:

• A definition H for p, expressed in Lh, so that B ∧H = E+ and B ∧H 6= E−;

3.3 Language Bias

Any mechanism employed by a learning system to constrain the search for hypotheses
is named a bias [5]. The language bias defines the space of formulas used to represent
hypotheses and can be considered as part of the background knowledge. Bias can either
determine how the hypotheses space is searched (search bias) or determine the hypotheses
space itself (language bias) [5]. In general there are three ways how to limit the size of
the set generated by a refinement operator: to define bias, to accept assumptions on the
quality of examples, or to use an oracle [14].

The search bias refers to how the system makes the search between the space of clauses.
The exhaustive search is responsible to run all the space clauses and the heuristic searches
indicates us which parts of the search should be used or ignored.

The language bias defines the space of formulas used to represent hypotheses. By
selecting a stronger language bias the search space becomes smaller and learning more ef-
ficient; however, this may prevent the system from finding a solution which is not contained
in the less expressive language [5]. The bias should be weak enough to allow complete and
consistent programs and, simultaneously, enough to have a good performance.

There’s also the validation bias which refers to when the system should stop. For
instance, one condition to stop could be when a correct hypothese is found.

With the exception of the examples and the counterexamples of the concept, there are
some factors that in one way or another influence the hypotheses selection that origin the
bias. These factors are:

14 Inductive Logic Programming

• the language which is used to describe the hypotheses;

• hypotheses space which the program can use;

• the procedure which define the order of how the hypotheses are considered;

• the condition that define if a search procedure should stop for a given hypothese or
if should continue searching for a better one.

3.4 Completeness and Consistency of a Hypothesis

After we choose the examples and concepts, it is necessary to verify if a given example
belongs to that concept. When that condition is satisfied we say that the concept descrip-
tion covers the object description, or that the object description is covered by the concept
description [5]. The problem of the learner to a single concept C can be defined has:

Given a joint E, with positive and negative examples of a concept C, find a hypothesis
H, described in a given language of description of concepts Lh, so that:

• All positive example e ∈ E+ are covered by H, and

• Neither of the negative examples e ∈ E− are covered by H.

To this test, a function covers(H, e) can be defined. This function returns true if e is
covered by H, and false otherwise [9]. This function can redefined to a joint of examples
in this way:

covers(H,E) = {e ∈ E | covers(H, e) = true}

A hypothesis H is complete with respect to examples E if it covers all the positive
examples, i.e., covers(H,E+) = E+ [5]. A hypothesis H is consistent with respect to
examples E if it covers none of the negative examples, i.e., if covers(H,E−) = 0 [5]. There
are four situations that can occur depending how the hypothesis H cover the negative and
positive examples as shown in the Figure 3.2:

(a) H complete and consistent, covers all positive examples and none of the neg-
ative examples;

(b) H incomplete and consistent, does not cover all positive examples and does
not cover none of the negative examples;

3.4 Completeness and Consistency of a Hypothesis 15

(c) H complete and consistent, covers all positive examples and covers some neg-
ative examples;

(d) H incomplete and inconsistent, does not cover all positive examples and cov-
ers some negative examples.

Figure 3.2: Completeness and consistency of a hypothesis.

The cover function can be redefined to consider also the background knowledge B :

covers(B,H, E) = covers(H ∪B,E)

When we consider the background knowledge, the completeness and consistency also
have to be redefined as shown below.

16 Inductive Logic Programming

A hypothesis H is complete, in relation to the background knowledge B and to the
examples E, if all positive examples are covered:

covers(B,H, E+) = E+

A hypotheses H is consistent in relation to the background knowledge B and to the
examples, if none of the negative examples is covered:

covers(B,H, E−) = 0

3.5 Dimensions

ILP systems can be divided, following some basic characteristics, in various dimensions
[9]:

1. Can learn one single concept or multiple concepts (predicates). In case of learning
single concept, the observations are examples of the concept. In the case of learning
multiple concepts, its objective is to learn these definitions, and make relations
between them.

2. Can be necessary that all examples be given before the process of the learner takes
place (batch learner or non-incremental) or can use special individual training, given
one by one, during the process of learning (incremental learner);

3. Can need a specialist or the user during the process of learning to verify the valid
generalizations or classify new examples. In this case, the system is called interactive,
otherwise, non-interactive.

4. Can make up new predicates. Doing that, amplifies the usable background knowledge
and can be useful in the task of learn a concept. Those systems are called systems
with inductive construction.

5. Can accept an empty hypotheses (theory), learning a concept from the beginning or
can accept an initial hypotheses that is reviewed during the learning process.

6. Can use background knowledge in an intentional or extensional way. In one hand
the extensional theory is represented only by facts (without variables), on the other
hand the intentional theory have facts or variables leading to a reduced description
of the concept.

3.6 Description of ILP Systems 17

Recent ILP systems are divided in two extremes: in one extremity are the non-
interactive systems with non-incremental learning. These ones learn a unique predicate
from the beginning and are called empirical ILP systems. In the other extremity stay
the interactive systems and theory reviewers that learn multiple predicates and are called
interactive ILP systems. The empirical ILP systems tend to learn a single predicate using
a large collection of examples [9]. The interactive ILP systems learn multiple predicates
from a joint of examples and consults the user [9].

3.6 Description of ILP Systems

In this section will be described some ILP systems and their basic characteristics [9]:

FOIL - is an empirical system that learns multiple predicates from a non-interactive
and non-incremental mode, realizing a top-down search in the hypothesis space.

Progol - an empirical system that can learns multiple predicates in a non-interactive
and non-incremental way. Realizes searches from general to specific from a top-down ap-
proach.

GOLEM - empirical system that learn one unique predicate at a time from a non-
interactive and non-incremental way using bottom-up search.

FORS - empirical system that realizes prediction from examples and background
knowledge in problems from classes with real values. It learns a unique predicate at a
time from a non-interactive and non-incremental way doing a top-down search in the hy-
pothesis space.

MIS - an interactive system and theory reviewer. It learns a definition of multiple
predicates in a incremental way. Realizes a top-down search and it was the first ILP ac-
cepting background knowledge from an intentional and extensional way.

Tilde - it’s a learning system based on decision trees. These trees can be used to
classify new examples or transform in a logical program.

LINUS - an empirical, non-interactive and non-incremental ILP system. It transforms
ILP systems to a attribute-value representation.

Figure 3.3 shows the characteristics of the various ILP systems:

18 Inductive Logic Programming

Figure 3.3: Characteristics of various ILP systems.

The table of the Figure 3.3 is composed by the following columns:

1. System: name of the system;

2. TD: if the system uses a top-down search;

3. BU: if the system uses a bottom-up search;

4. Predictive: if the finding task of knowledge is predictive. In this case, classification
rules can be generated;

5. Descriptive: if the finding task of knowledge is descriptive. In this case, only true
properties from the examples are observed;

6. Inc and N-Inc: if the system uses incremental or non-incremental learning, respec-
tively;

7. Int and N-Int: if the system is the type interactive or non-interactive, respectively;

8. Mult-Pred: if the system can learn multiple predicates.

Chapter 4

A Learning Engine for Proposing

Hypotheses

4.1 Aleph System

The ”A Learning Engine for Proposing Hypotheses” (Aleph) System was developed
to be a prototype to explore ideas in ILP and was written Prolog. Since then, the imple-
mentation has evolved to emulate some of the functionality of several other ILP systems.
Some these of relevance to Aleph are: CProgol, FOIL, FORS, Indlog, MIDOS, SRT, Tilde
e WARMR [10]. The Aleph has a powerful representation language that allows to rep-
resent complex expressions and simultaneously incorporate new background knowledge
easily. Aleph also let choose the order of generation of the rules, change the evaluation
function and the search order [9]. Allied to all this characteristics the Aleph system is
open source making it a powerful resource to all ILP researchers.

4.2 Basic Aleph Algorithm

The Aleph follows a very simple procedure that can be described in 4 steps [10]:

1. Select an initial example to be generalized. When there are not more examples, stop;

2. Construct of the more specific clause based on the restrictions language and the
example selected in the last procedure. To this clause, we call bottom clause. To
this step we call saturation.

3. Search for a more general clause than the bottom clause. These searches use the
algorithm Branch-and-Bound. To this step, we call reduction.

4. Add the best clause to the theory, remove all redundant examples and return to step
1.

19

20 A Learning Engine for Proposing Hypotheses

4.3 Requirements

The Aleph uses three files to construct a theory. In order to work properly, these three
files should all have the same name. These are:

• file.b: contains the background knowledge (intentional and extensional), the search,
language restrictions and types restrictions and the system parameters. All this
content is in the form of Prolog clauses. This file can also contain any directives
understood by the Prolog compiler being used;

• file.f: contains the positive examples (only ground facts) to be learned with Aleph;

• file.n: contains the negative examples (only facts without variables). This file may
not exist (Aleph can learn only by positive examples).

In order to use Aleph, a prolog compiler is needed. To compile Aleph it can be used
one of these two platforms: Yap or SWI Prolog. Both of these compilers are open source
and can be downloaded from the Internet1.

4.4 Mode Declarations

The mode declarations stored in the file.b describe the relations (predicates) between
the objects and the type of data. That declarations allows to inform Aleph if the relation
can be used in the head (modeh declarations) or in the body (modeb declarations) of the
generated rules [9]. The declaration modes also describe the kind of arguments for each
predicate, and have the follow format:

mode(Recall number, PredicateMode)

The Recall number (also called recall), define the limit number of alternative instances
for one predicate (used for non determinate predicates). A predicate instance it’s a sub-
stitution of types for each variable or constant. The recall can be any positive number
greater or equal to 1 or ’*’. If it’s known the limit of possible solutions for a particular
instance, it’s possible to define them by the recall. For instance, if we want to declare the
predicate parent of(P,D) the recall should be 2, because the daughter D, has a maximum
of two parents P. In the same way, if the predicate was grandparents(GP,GD) the recall
should be 4, because the granddaughter GD has a maximum of four grandparents GP.
The recall ’*’ is used when there are no limits for the number of solutions to one instance.

1YAP: http://www.dcc.fc.up.pt/∼vsc/Yap/
SWI Prolog: http://www.swi-prolog.org/

4.4 Mode Declarations 21

The Modes indicates the predicate format, and can be described has:

predicate(ModeType1, ModeType2, ... , ModeTypen)

The ModeTypes can be organized in one of two ways: simple or structured. The simple
modes can be one of:

• ’+’, specifying that when a predicate p appears in a clause, the corresponding argu-
ment it’s an input variable;

• ’-’, specifying that the corresponding argument is an output variable;

• ’#’, specifying that the corresponding argument is a constant.

A structured ModeTypes is of the form f(...) where f is a function symbol, each
argument of which is either a simple or structured ModeType [10]. An example of this
kind of ModeType is:

:- mode(1,mem(+number,[+number|+list])).

Example: for the learning relation uncle of(U,N) with the background knowledge par-
ent of(P,D) and sister of(S1,S2), the mode declarations could be:

:- modeh(1,uncle of(+person,+person)).
:- modeb(*,parent of(-person,+person)).
:- modeb(*,parent of(+person,-person)).
:- modeb(*,sister of(+person,-person)).

The declaration modeh indicate the predicate that will compose the head of the rules
[9]. For this case, modeh inform us that the head of the rules should be uncle of(U,N)
where U and N are from the type person. The symbol ’+’ that appears before the type
indicates us that the argument of the predicate is a input variable. In this way, the head of
the rules can be of the type uncle of(U,N), and not, for instance, uncle of(john,ana). The
symbol ’-’ indicates us it’s an output variable. Instead of ’-’, if the symbol ’#’ appeared,
indicates us that the argument could be a constant. The modeb declaration indicate that
the generated rules can have, in the body of the rules, the predicate parent of(P,D), where
P and D are from the type person. The first modeb declaration in the example can be
used to add parent of in the body of the rules and add one or more parent(s) to a daughter
(observe that call numbers have the value ’*’). Similarly, the second declaration modeb

22 A Learning Engine for Proposing Hypotheses

let the predicate parent of be used in the body of the rules to find one or more daughters
of a parent. At last, the third modeb declaration can be used to find one or more sister
of a person.

4.5 Types

Types have to be specified for every argument of all predicates to be used in construct-
ing a hypotheses [10]. To the Aleph, these types are names and these names means facts.
For example, the description of objects for the type person could be:

• person(john)

• person(leihla)

• person(richard)

• ...

Variables of different types are treated distinctly, even if one is a sub-type of the other
[10].

4.6 Determinations

Determination statements declare the predicated that can be used to construct a hy-
potheses [10]. This declaration take the follow format:

determination(Target Pred/Arity t, Body Pred/Arity b).

The first argument is the name and arity of the target predicate [10]. It’s the predicate
that will appear in the head of the induced rule. The second argument it’s the name of the
predicate that can appear in the body of the rule. A possible determination for a relation
called uncle of(U,N) is:

determination(uncle of/2, parent of/2).

Typically, lots of declarations should be done for a target predicate. In case of non
declared determinations, the Aleph doesn’t construct any rule. Determinations are only
allowed for 1 target predicate on any given run of Aleph: if multiple target determinations
occur, the first one is chosen [10].

4.7 Positive and Negative Examples 23

4.7 Positive and Negative Examples

The positive examples of the concept to be learned should be stored in the file with
extension .f and the negative examples in the file with extension .n. For instance, to learn
the concept uncle of(U,N), we could have the follow positive examples in the file with
extension .f:

• uncle of(Sam,Henry)

• uncle of(Martha,Henry)

• ...

And the follow negative examples in the file with extension .n:

• uncle of(Lucy,Charles)

• uncle of(Lucy,Dominic)

• ...

4.8 Parameters

The Aleph let us define a variety of restrictions to be learned in the hypotheses space,
such as a search of new values and available parameters in that space [9]. The predicate
set allows the user to define a value of the parameter Parameter:

set(Parameter,Value)

We can also get the current value of a parameter:

setting(Parameter,Value)

And for last, the predicate noset, change the current value for its pattern value.

noset(Parameter)

More information about the most common settings allowed for the Aleph System can
be found in the Appendix A.

24 A Learning Engine for Proposing Hypotheses

4.9 Other Characteristics

The Aleph has other important characteristics like:

• Instead of selecting one initial example to be generalized, it’s possible to choose more
than one. If we choose more than one initial example, it’s created a bottom clause
to each one of them. After the reduction step, the best of all reductions it’s added
to the theory;

• Let us construct the more specific clause, defining the place where the bottom clause
it’s constructed;

• The search clauses can be changed, using other strategies instead of using the Branch-
and-Bound algorithm;

• It’s possible to remove redundant examples to give a better perspective of the result
clauses.

4.10 Using Aleph

Now that the information about the Aleph System was debriefed, it’s important to
know how to use it. In this document it will only be explain how to run it from the YAP
compiler, although the usage of SWI Prolog it’s very similar. To run and use Aleph, 7
steps are needed:

1. Download the file aleph.pl;

2. Download and install one of the two Prolog compilers (YAP or SWI Prolog);

3. Create the three files 2 .b, .f and .n;

4. Run the YAP Prolog compiler from a console terminal;

5. Now that the compiler is open we have to give him the file to compile. In this case
the file to compile is aleph.pl:

:- [’aleph.pl’].3

6. The next step is to load the files .b, .f and .n:

read all(filestem).

2These three files have the same filestem. The file .n is optional
3If the file aleph.pl isn’t in the same directory as the YAP executable, it is necessary to write the

directory where the compiler can found this file. For instance,
:- [’/home/aleph.pl’].

4.10 Using Aleph 25

7. And for last the command induce will construct the theories:

induce.

26 A Learning Engine for Proposing Hypotheses

Chapter 5

Prolog

5.1 Overview

The name Prolog is an abbreviation for programmation en logique (French for pro-
gramming in logic) and it was created in 1972. It is a logic programming language and
is associated with artificial intelligence and computational linguistics. It was one of the
first logic programming languages created and nowadays remains among in the most pop-
ular programming languages. Firstly this language had the purpose to work on language
processing, but now it’s used in many areas, such as: games, expert systems, automated
answering systems and control systems. Prolog is very useful for working with databases,
mathematics and language parsing applications.

Prolog is called a declarative language, i.e., the logic programming is expressed by rela-
tions and the execution is done by calling queries over these relations (defined by clauses).
The called term is the Prolog single data type that allows to construct the relations and
the queries. Logic programming is a programming paradigm based on mathematical logic.
In this paradigm the programmer specifies relationships among data values (this consti-
tutes a logic program) and then poses queries to the execution environment (usually an
interactive interpreter) in order to see whether certain relationships hold [17].

The goal of the Prolog is to find a resolution refutation of one negated query. If this
negated query is refuted successfully then the query is set to false. Prolog allows the use
of impure predicates for checking if the value of a predicate may have some side effects,
such as printing a value to the screen.

5.2 Syntax

The term is the Prolog single data type that allows to construct the relations and the
queries. There are four kinds of terms in Prolog: atoms, numbers, variables and complex

27

28 Prolog

terms (or structures) [16].

An atom is composed by a sequence of characters that will be read by Prolog as a
single unit. They are usually words written in Prolog code without any special syntax.
Although if the atom has a space or use a capital letter then it has to be surrounded
by single quotes in order to distinguish them from variables, for instance: ’the atom’ or
’Atom’.

Numbers can be floats or integers. Real numbers aren’t particularly important in
typical Prolog applications [16]. Integers are useful for counting the elements of a list.

Variables are strings with letters, numbers and/or underscore characters. These kind
of terms need to begin from a capital letter or with an underscore. The single underscore
is called an anonymous variable and it means “any term“. This type of variable does not
represent the same value everywhere it occurs within a predicate definition.

The complex terms are composed by two arguments: an atom called “functor“ and a
number of arguments. The number of arguments is called the term’s arity and an atom
with arity of zero can be called an atom. The arguments are put in ordinary brackets,
separated by commas, and placed after the functor [16]. The complex terms can be so
complex as we want to, for instance, it’s possible to have the structure:

walk(X,grandparent(grandparent(grandparent(pieter))))

In this case the functor is ’walk’ and has two arguments: the variable ’X’ and a
complex term ’grandparent(grandparent(grandparent(pieter)))’. This structure has the
functor ’grandparent’ and another complex term ’grandparent(grandparent(pieter))’ and
so on.

5.3 Programming

A Prolog program is a set of procedures (the order is indifferent), each procedure
consists of one or more clauses (the order of clauses is important) [18]. The objective of
the Prolog programs is to describe relations using clauses. These clauses can be facts or
rules. A rule consist in calls to predicates, which are called the rule’s goals and they have
the form:

Head :- Body.

5.3 Programming 29

This kind of rule can be read as “Head is true if Body is true“. A fact is a rule without
any body:

person(maria).

This fact is also equivalent to the rule:

person(maria) :- true.

After the facts and rules are built it’s possible to make queries about those knowledge.
For instance, making the query:

?- person(maria).

This query means “Is maria a person? “ and the answer should be:

Yes

It’s also possible to make a query such as:

?- person(X).

Which means “What things are persons? “ and the answer should be:

X = maria

It’s possible to add a program to the Prolog database using the consult command. The
consult command adds the clauses and facts a the specified text file to the clauses and
facts already stored in the Prolog database [18]. This command can be used in this way:

30 Prolog

?- consult(’name of the file with the program’).

It’s also possible to reconsult a program file adding new procedures to the Prolog
database. If there are procedures in the database with the same name as any procedure
in the reconsulted file, then the existing one will be replaced. This command can be used
like this:

?- reconsult(’name of the file with the program’).

The command listing give us the actual content of the Prolog database and it can be
used in this way:

?- listing.

The Prolog program starts when one procedure of the loaded program is called. This
procedure can be called in this way:

?- procedure name(parameters).

Where parameters is the name of the procedure of the Prolog program. The halt
command is used to stop the execution of the Prolog program:

?- halt.

5.4 Lists

In Prolog a list is represented between square brackets. An empty list is represented by
[]. When calling a predicate, we can create a list containing the elements a,b,c by typing:

[a,b,c].

It’s also possible to append lists using the command append This command need three
arguments where the two first arguments represent the two lists that we want to append
and the third is the result of the append. For instance, if we write the query:

5.5 Working With Files 31

?- append([a,b,c],[d,e],X).

Writing this query, the answer should be:

X = [a,b,c,d,e]

It’s also possible to define a list using [X|Y] and represents a list whose head is X, and
whose tail (the rest of the list) is Y:

?- append([H|Tail],List,[H|NewTail]).

5.5 Working With Files

This section will show how to read and write from and to files. If we have a file with
all predicates definitions in a format .pl it’s possible to call it, using:

:- [allpredicates].

Where allpredicates.pl is the name of the file we want to read. If, for example, the pred-
icate definitions provided by one of the files are already available, because it already was
consulted once, Prolog still consults it again, overwriting the definitions in the database
[16]. It’s also possible to use the command ensure loaded which will check if the file .pl
has already been loaded. If not, the file is loaded, if yes, Prolog will check whether it has
changed since last loading. If the file has been changed, he will read it, otherwise goes on
processing the program. This command can be used has:

:- ensure loaded([listpredicates]).

Besides reading files, it’s also important to know how to write results to files. To write
to a file, a stream is needed. Streams can be seen as connections to files. To open a file
and connect it to a stream it can be done with:

?- open(+FileName,+Mode,-Stream).

32 Prolog

The argument FileName is the of the file that the user wants to read. Mode it can be
one of: read, write or append. In the first one, the file is opened for reading and the others
are both for writing. Although in all these cases, the file is created in case it doesn’t exist.
After finishing the operations with the file, it should be closed by using the command
close:

?- close(Stream).

Where Stream is the name of the stream associated to that file. In case, for instance,
that we want to write something to a file the correct way is doing:

?- open(filetest, write, os), write(os, something to write), close(os).

Chapter 6

Aleph Graphical User Interface

6.1 Introduction and Requirements

The work project is the development of a graphical user interface for the Aleph System.
This interface should allow the creation of new models and read existing ones as well.
After reading or create new models, the interface should take some conclusions about
these models using the YAP Prolog compiler. The primary objectives of this interface are:

• it should be easy for non ILP researchers to construct models;

• the user should be able to construct this models without knowing how Prolog works;

• a small explanation about the settings, modes and types of the Aleph should be
presented to the user while he’s working with it;

• after compile the models, the conclusions should be shown in a language very close
to English.

It’s possible to use this interface in Linux or Windows Operating Systems. There are
some differences in the development of the interface for supporting both, specially when
it refers to save, load files and the compile procedure as well. Although the usage for the
user is the same.

To develop this interface, the Java programming language was used. It was chosen
this language, because it’s considered a much simpler and easy to use object-oriented pro-
gramming language when compared to the popular programming language, C++. Par-
tially modeled after C++, Java has replaced the complexity of multiple inheritance in
C++ with a simple structure called interface, and also has eliminated the use of pointers.
Allied to all these advantages, Java is one of the first programming languages to consider
security as part of its design. Because of the use of Java, one of the requirements to the

33

34 Aleph Graphical User Interface

user is to have a Java Virtual Machine (JVM)1 installed in the computer. A JVM is a set
of computer programs and data structures which use a virtual machine to execute other
computer programs and scripts.

6.2 Project Development Tool

The tool used for the development of the graphical user interface in Java was the
Eclipse software. This tool is an open source2 software and is an Integrated Development
Environment (IDE) written primarily in Java. With this tool it’s possible to install plug
ins written for the Eclipse and it has allied some advantages, such as:

• it’s possible to edit, compile, link and debug the source code files of the project;

• the project can have a large scale;

• no makefile is needed to run it;

• there are many plug ins for several purposes offered as freeware, shareware or com-
mercial basis.

Eclipse has its basis on the Rich Client Platform (RCP), constituted by:

• a standard bundling framework called Equinox OSGi;

• Core platform responsible to run the plug ins;

• the Standard Widget Toolkit (SWT) which is a toolkit for use in designing applica-
tions with graphical user interfaces;

• JFace which is a class viewer which provide some help for handling in common
programming tasks;

• the Workbench providing views, editors, perspectives and wizards.

To use Eclipse software, a Java Runtime Environment (JRE)3. JRE is a group from
Java Development Kit (JDK) containing the executables and important archives which
constitute the platform Java. The JRE already includes the JVM.

1It can be downloaded from here:
http://www.java.com/en/download/windows ie.jsp?locale=en&host=www.java.com:80

2It can be downloded from here: http://www.eclipse.org/downloads/
3It can be downloaded from here: http://java.sun.com/j2se/1.4.2/download.html

6.3 Prolog Compiler 35

6.3 Prolog Compiler

To compile the Aleph System, a Prolog compiler is required. There were two software
options: using YAP or SWI-Prolog. For the development of this project, the YAP Prolog
compiler was chosen to be attached on the interface. Both of the compilers are similar,
although the SWI-Prolog uses a graphical interface and this is a reason to choose YAP
instead the SWI-Prolog, because this way it’s possible to use the compiler without showing
it to the user.

YAP (Yet Another Prolog) has been developed since 1985 and it was written in as-
sembly, C and Prolog. Nowadays the whole system is now written in C. This compiler
is compatible with ISO-Prolog standard, Quintus and SICStus Prolog and besides Aleph,
YAP it’s also used in another two applications: FSA Utilities Toolbox 4 and SceX: A Sym-
bolic Music Processing System5. YAP is a Prolog compiler that works interactively, you
can type a code and in a interactively way see its output when it is running. Allied to
these features, YAP is open source6, making it a powerful compiler for the Aleph System.

6.4 Adaptive Pattern

An Adaptive Pattern, or also called Wrapper is a type of software that is used to
attach other software components. In simple words, a wrapper encapsulates a single data
source to make it usable in a more convenient way than the original unwrapped source.
Wrappers can be used to present a simplified interface, to encapsulate diverse sources so
that they all present a common interface, adding functionalities to the data source, or
exposing some of its internal interfaces [19]. In other words, the adaptive pattern is useful
in situations where an already existing class provides some or all services you need but
does not use the interface you need.

All wrappers have the same basic logical model [19]:

• The application operate in a language X;

• The application get responses in model Y;

• The wrapped data source is operated in a language Z;

• The wrapped data source responds with results expressed in model W.

4More information in: http://www.let.rug.nl/∼vannoord/Fsa/
5More information in http://www.ncc.up.pt/SceX/pnSceX 4.html
6It can be downloaded from here: http://www.dcc.fc.up.pt/∼vsc/Yap/downloads.html

36 Aleph Graphical User Interface

The objective of the wrapper is to convert the language X commands to language Z
and the model W results to model Y. The differences between wrappers are on the models
they support and in the sophistication of the functionality they provide.

A good example to better understand what is a wrapper is the use of a socket wrenche.
A socket wrench is a tool that uses separate, removable sockets to fit many different sizes.
In this case, a socket attaches to a ratchet, providing that the size of the drive is the same.
Typical drive sizes in the United States are 1/2” and 1/4”. Obviously, a 1/2” drive ratchet
will not fit into a 1/4” drive socket unless an adapter is used. A 1/2” to 1/4” adapter has
a 1/2” female connection to fit on the 1/2” drive ratchet, and a 1/4” male connection to
fit in the 1/4” drive socket [20]. This can be seen in the Figure 6.1.

Figure 6.1: Adaptive Pattern Example.

In the development of the Aleph graphical user interface, an adaptive pattern is needed
in order to establish a link between the interface and the YAP compiler. The interface will
use the YAP compiler in order to the interface show the results in a language very close
to English. The solution to solve this problem in this project can’t be called exactly an
adaptive pattern, but kind of it. As mentioned before, YAP can receive some arguments
when it’s called and besides others, these arguments can be: the .pl file that you want to
read, the files .b, .f and .n, the command to make the theories and other to write these
theories to an output file. All this can be done in just one line when the YAP Prolog
compiler is called:

yap -l aleph.pl -g read all(filestem). -z induce. > out.txt

The argument -l compile the Prolog file, in this case aleph.pl, before entering the top-
level. The argument -g run the goal, in this case read all, where this goal will be converted

6.4 Adaptive Pattern 37

from an atom to a Prolog term. The filestem is the name of the files .b, .f and .n. The
argument -z means to run the goal, in this case induce, as top-level, where this goal will
be converted from an atom to a Prolog term. At last, the symbol > indicate to write in
a output file, in this case out.txt.

It’s also important to mention that to this command work properly, the file aleph.pl
has to be in the same directory as the YAP executable file. If not, it’s possible to write
the directory before the name of the file. The filestem (files .b, .n and .f) has to be in the
same directory as the file aleph.pl. And for last it’s also possible to define the directory
for the output file before it’s name.

After know how to write this command it was necessary to re-arrange a way to write
this command in a console. The solution found to this problem was creating a file format
.sh for Linux and a file .bat for Windows where their content is that command. The
content of these two files is very similar but has some differences. The file yap.bat has the
next content:

SET YAP ILP ROOT=%1\Yap-5.1.1\bin
%YAP ILP ROOT%\yap -l %YAP ILP ROOT%\aleph.pl -g read all(’%2’). -z induce. >

%1\out.txt
%*

Where %1 is the first argument received, which will be the directory where the Aleph
interface was run and %2 is the second argument, which will be the name of the filestem
to compile.

In a similar way, the content of the file.sh is:

export YAP ILP ROOT=$1/Yap-5.1.2/ARCH
$YAP ILP ROOT/./startup -l $YAP ILP ROOT/aleph.pl -g ’read all(’$2’).’ -z ’induce.’
> $1/out.txt
$*

Having the files .sh and .bat created, it’s possible to call them from a Java class:

Runtime rt = Runtime.getRuntime();
rt.exec(”yap.sh ” + directory() + ” ” + selectedItem,null,new File(directory()));

These two Java lines run the file yap.sh located in the directory returned by the function
directory(). This function returns the directory where the Aleph graphical user interface

38 Aleph Graphical User Interface

is being called. The variable selectedItem has the name of filestem. For instance, if the
directory where the Aleph interface was run is: /home/workspace and the filestem for
compile (selectedItem) is train, the command sent to write in the console is:

/home/workspace/yap.sh /home/workspace/ train

Where /home/workspace/ is the first argument to enter in the file .sh and train is the
second one.

After the file .sh has run, the interface will read the file out.txt, compile it inside
the Aleph interface in order to write the conclusions in a language near English. The
Figure 6.2 shows how all these procedures work:

Figure 6.2: Adaptive Pattern for YAP.

6.5 Architecture 39

6.5 Architecture

This section shows how the Aleph Interface Java code is organized. The code it is
divided in two packages: gui and compiler. The first one is responsible for the creation
and management of all the graphical user interface. The second one reads the created
input files and using the YAP Prolog compiler shows the results to the user. These
packages trade information and each one have classes which trade information as well.
The Figure 6.3 shows how the code is organized and how the information is traded from
each class and package:

Figure 6.3: Aleph Interface Architecture.

In the Appendix B B it’s explained what which one of these classes do.

40 Aleph Graphical User Interface

6.6 Using Aleph Interface

This section will show how to use the Aleph Interface in various phases of project
configuration.

Running the executable Java file of Aleph Interface, the user has the possibility to
choose from 3 options as the Figure 6.4 shows:

• Create a new project. Choosing this option, the user will have to choose also the
workspace and a name to the new project;

• Load an existing project. In this case, a box will be displayed for the user choose
the project that he wants to load;

• Help. Choosing this option, the user has the opportunity to know more about the
Aleph Interface and a webpage with the Aleph Manual is also displayed in the default
web browser.

Figure 6.4: Presentation Menu.

When the user wants to create a new project, a few steps need to be followed:

1. Define settings;

6.6 Using Aleph Interface 41

2. Add at least one modeh and one or more modeb. For each modeb the Aleph Interface
automatically add the determination;

3. Add types;

4. Create the files .n and .f manually.

The Aleph Interface is constituted by:

1. On the top there is a menu. This menu is divided in five sections: File, Edit, Search,
Run and Help. The section File allows the user to create, load and save projects or
switch workspace. The Edit section allows basic editions on the project files, such as:
cut, copy, paste and select all. Search section contains some utilities to find a string
or go straight to a choosen line. The Run section allows the user to compile the
projects. At last, the Help section has some information about the Aleph Interface
and the Aleph System;

2. A tool bar with the most common utilities of the Aleph Interface. These buttons
are all contained in the menu;

3. On the left there are three tabs: one to define settings, other for modes and deter-
minations and other for types;

4. There is a state bar on the bottom responsible to show to the user on which line the
scroll is positionated and the total number of lines selected;

5. The center is divided in two parts: one is for the projects (including the files .b, .n
and .f) and the other part is to show the theories of the projects after compile them.

To better understand the organization of the Aleph Interface, the Figure 6.5 shows a
view of it:

42 Aleph Graphical User Interface

Figure 6.5: Aleph Interface.

As shown in the Figure 6.5 there two tabs for settings: the first one with the most
common settings and one that contains all settings of the Aleph system. For each setting
a short explanation is displayed and only acceptable values are accepted by the Aleph
Interface.

After creating the three files, it is necessary to compile them. To compile the user need
to use the run button displayed on the tool bar or can also use the menu. Information
and conclusions of YAP compilation are shown and theories are simplified and displayed
in a more understandable way.

6.7 Test

The test of the Aleph Interface was a very important step in the development of this
software. With this step the interface is now more robust making it more powerful and
the chance of find an error has decreased. Many bugs were found, specially concerning in
adding modes and how the results are shown to the user, although all founded bugs were
successfully removed. It’s important to mention that to run this interface it’s necessary to
run it in a directory without spaces. This problem is concerned by the the use of a Shell
file or Bat file to call the YAP Prolog compiler. Many other solutions were tried to solve
this problem but were not successful.

Chapter 7

Conclusions

7.1 Future Work

Future work on the Aleph Interface is related with the improvement of the system with
additional functionalities for increasing its usability. Some of these functionalities are:

• the creation of a button or menu item which when pressed can organize the code
of the file .b. For instance to put all settings, modes, determinations and types
together;

• an option to check if there’s any prolog error and tell to the user on which line that
error was found;

• add a new tool bar tab to help the user to create or edit the files .n and .f;

• the development of the help contents to explain the functionalities of the Aleph
Interface.

7.2 Final Considerations

All the proposed objectives for this project were successfully achieved. Now it’s possible
to create or edit models without prolog knowledge. These models can be saved and opened
using the interface, and the results can be saved as well. The results are shown in a
language very close to English to improve their perpection and allied to all these features,
the interface can be used in Windows or Linux. With all these characteristics it’s possible
to conclude that this interface allows non ILP researchers to create the models, which was
the first goal of this work.

43

44 Conclusions

Anexo A

Aleph Basic Settings

This appendix shows the basic settings that can be defined in the Aleph System and in
the Aleph Interface as well. For each setting this appendix also inform which type of input
should be inserted and gives a short explanation of what the setting does. The default
values are also presented. All this information was taken from the Aleph Manual1.

Setting: clauselength

Type: integer
Options: positive integer
Default Value: 4
Usability: set(clauselength,+V)

Sets upper bound on number of literals in an acceptable clause.

Setting: evalfn

Type: options
Options: coverage, compression, posonly, pbayes, accuracy, laplace, auto m, mestimate,
entropy, gini, sd, wracc, or user
Default Value: coverage
Usability: set(evalfn,+V)

Sets the evaluation function for a search.

Setting: i

Type: integer
Options: positive integer
Default Value: 2

1To view all settings, check the Aleph Manual:
http://web.comlab.ox.ac.uk/oucl/research/areas/machlearn/Aleph/aleph toc.html

45

46 Aleph Basic Settings

Usability: set(i,+V)

Set upper bound on layers of new variables.

Setting: minpos

Type: integer
Options: positive integer
Default Value: 1
Usability: set(minpos,+V)

Set a lower bound on the number of positive examples to be covered by an acceptable
clause. If the best clause covers positive examples below this number, then it is not added
to the current theory. This can be used to prevent Aleph from adding ground unit clauses
to the theory (by setting the value to 2). Beware: you can get counter-intuitive results in
conjunction with the minscore setting.

Setting: noise

Type: integer
Options: integer greater or equal to 0
Default Value: 0
Usability: set(noise,+V)

Set an upper bound on the number of negative examples allowed to be covered by an
acceptable clause.

Setting: search

Type: options
Options: bf, df, heuristic, ibs, ils, rls, scs id, ic, ar, or false
Default Value: bf
Usability: set(search,+V)

Sets the search strategy. If ’false’ then no search is performed.

Anexo B

Javadoc

This appendix describes the function of each Java class of the Aleph Interface, the
public functions of each class and the public variables. It’s also described the entry argu-
ments of each one and the return values. This information was taken from the exported
Javadoc.

Package: compiler
Class: Linux

public class Linux
extends java.lang.Object

This class is responsible for:
- preparing the files to be read from the YAP Prolog compiler;
- run YAP using a SHELL file;
- delete the temporary files created for the compilation.

public Linux(java.lang.String selectedItem)
The constructor of the class Linux.
Parameters:

selectedItem - The project name which the user wants to run.

Package: compiler
Class: TakeConclusions

public class TakeConclusions
extends java.lang.Object

47

48 Javadoc

This class is responsible for write the conclusions done by the YAP Prolog compiler in a
easier way to understand them.

public TakeConclusions(java.lang.String selectedItem, java.lang.String allText)
The constructor of the class TakeConclusions.
Parameters:

selectedItem - The project name which the user has chosen to run.

allText - The text which YAP produced for the selected project after running it.

Package: compiler
Class: Windows

public class Windows
extends java.lang.Object

This class is responsible for:
- preparing the files to be read from the YAP Prolog compiler;
- run YAP using a BAT file;
- delete the temporary files created for the compilation.

public Windows(java.lang.String selectedItem)
The constructor of the class Linux.
Parameters:

selectedItem - The project name which the user wants to run.

Package: gui
Class: AboutAlephInterface

public class AboutAlephInterface
extends javax.swing.JFrame

This class displays a window with some information about the Aleph Interface.

public AboutAlephInterface()

The constructor of the class AboutAlephInterface.

Javadoc 49

Package: gui
Class: CompilerBox

public class CompilerBox
extends javax.swing.JFrame

This class displays a window where the user can select one of the opened projects to
run in the YAP Prolog compiler.

public CompilerBox()
The constructor of the class CompilerBox.

Package: gui
Class: CompilerBox

public class ContentPane
extends javax.swing.JPanel

This class is responsible for:
- create the Tabbed Panes for the inputs, outputs and tool bar;
- call the class which creates the State Bar.

public ContentPane()
The constructor for the class ContentPane.

public static javax.swing.JTabbedPane createTab
The Tabbed Pane for the inputs (files .b, .n, .f).

public static javax.swing.JTabbedPane createTabResults
The Tabbed Pane for the outputs after running the project in the YAP Prolog Compiler.

public static javax.swing.JTabbedPane createTabToolBar
The Tabbed Pane for the settings, modes and types.

Package: gui
Class: CreateContentTab

public class CreateContentTab
extends javax.swing.JPanel

50 Javadoc

This class is responsible to create the content of each Tabbed Pane of the inputs and
the outputs. This content includes a Text Area and a Scroll Pane (if necessary). In the
inputs it’s also included another Text Area which shows the line numbers.

public CreateContentTab(java.lang.String name, java.lang.String data, int location)
The constructor of the class CreateContentTab.
Parameters:

name - The name of the file which will be placed in the title of the Tab.

data - The content to put on the Text Area.

location - The location distinguish an input tab from an output tab. If location it’s
equal to 1 it means it’s an input. If it’s equal to 2 it’s an output.

public javax.swing.undo.UndoManager getUndoManager()
This function returns the object undoManager for the selected tab when it’s called. Each
tab of input has its own undoManager object. It’s also useful to use this function to know
if the project is already saved.
Returns:

The object undoManager.

Package: gui
Class: CreateMenu

public class CreateMenu
extends javax.swing.JMenuBar

This class is responsible for the creation of all the menu bar.

public CreateMenu()
The constructor of the class CreateMenu.

public javax.swing.JPopupMenu getJPopupTabInputs()
This function displays a Popup Menu when the user clicks with the third button of the
mouse in one input tab.
Returns:

The object which displays all the options.

Javadoc 51

public javax.swing.JPopupMenu getJPopupTabResults()
This function displays a Popup Menu when the user clicks with the third button of the
mouse in one output tab.
Returns:

The object which display the save option.

Package: gui
Class: CreateToolBar

public class CreateToolBar
extends javax.swing.JToolBar

This class it’s responsible for the creation and management of the Tool Bar.

public CreateToolBar()
The constructor of the class CreateToolBar.

public static javax.swing.JButton jSaveButton
Button used to save a project in the current workspace. It alternates from enabled/disabled
according to the undo button. If undo button is enabled the save button is enabled as
well. If undo button is disabled, the save button is also disabled.

Package: gui
Class: GoToLineWindow

public class GoToLineWindow
extends javax.swing.JFrame

This class displays a window where the user can go straight to a choosen line.

public GoToLineWindow()
The constructor of the class GoToLineWindow.

public static void viewActualLineNumber(int linenumber)
This function refresh the actual number of line in the gotoline window.
Parameters:

linenumber - The number of line where the caret position is.

52 Javadoc

public static void viewTotalNumberOfLines(int totallines)
This function refresh the total number of lines in the gotoline window.
Parameters:

totallines - The total number of lines of the selected input tab.

public void putVisible()
When the user wants to open this window, just put it visible.

Package: gui
Class: Interface

public class Interface
extends javax.swing.JFrame

This class is responsible for the creation and management of the Frame of the interface.

public Interface()
The constructor of the class Interface.

Package: gui
Class: LoadSaveFiles

public class LoadSaveFiles
extends javax.swing.JFileChooser

This class it’s responsible for the management of save and load files.

public void setWorkspace(java.lang.String workspace)
This function refresh the workspace when the user change it in the Workspace window.
Parameters:

workspace - The directory to change the workspace.

public void loadManager(java.lang.String filter)
This function displays a file chooser to the user and sends the information of the files to
be read to the class loadTheReceivedFile.
Parameters:

Javadoc 53

filter - The type of files which can be read.

public void loadTheReceivedFile(java.io.File selectedFile)
This function loads a file and shows its content in a new tab.
Parameters:

selectedFile - The name of the file to be load.

public void saveManager(int flagOpenSaveDialog) throws java.io.IOException
This function is responsible for the management of the input files to be saved.
Parameters:

flagOpenSaveDialog - This flag is used to know if it’s necessary to display a file chooser
for the user choose the directory where to save the project, or if it’s just to save the project
in the workspace.

Throws:

java.io.IOException - In case it’s not possible to save in the choosen directory.

public void saveTheReceivedFile(java.lang.String nameOfFile) throws java.io.IOException
This function saves the project in the workspace and changes the title of the input tab for
the choosen name of file.
Parameters:

nameOfFile - The name of the file to be saved.
Throws:

java.io.IOException - In case it’s not possible to save in the choosen directory.

public void saveOutput() throws java.io.IOException
This function saves the selected output file.
Throws:

java.io.IOException - In case it’s not possible to save in the choosen directory.

Package: gui
Class: NewProjectWindow

public class NewProjectWindow

54 Javadoc

extends javax.swing.JFrame

This class displays a window where the user can write the name of the new project.

public NewProjectWindow()
The constructor of the class NewProjectWindow.

Package: gui
Class: PresentationMenu

public class PresentationMenu
extends javax.swing.JFrame

This class it’s responsible to show the presentation window which is displayed when the
user runs the Aleph Interface.

public PresentationMenu()
The constructor of the PresentationMenu class.

public static void main(java.lang.String[] args)
The main method.

Package: gui
Class: SearchWindow

public class SearchWindow
extends javax.swing.JFrame

This class displays a window where the user can:
- find words in the text;
- replace the founded words for other word;
- replace all the founded words for other word.

public SearchWindow()
The constructor of the SearchWindow class.

public static java.util.List foundedWords
An array list with all the positions of the word that the user wants to find/replace.

public void findNext(int flagSearchWindow, java.lang.String textToFind)

Javadoc 55

This function is responsible for the management of find text in the selected input tab.
Parameters:

flagSearchWindow - This flag is used to know if the search was called from the search
window or from the menu bar.

textToFind - The text which the user wants to search.

Package: gui
Class: StateBar

public class StateBar
extends javax.swing.JPanel

This class creates the State Bar and show to the user the actual and the total num-
ber of lines for the selected input tab.

public StateBar()
The constructor of the class StateBar.

public static void viewLineNumber(int lineNumber, int totalLines)
This function refreshes the actual and total number of lines.
Parameters:

lineNumber - The actual number of line of the selected input tab.

totalLines - The total number of lines of the selected input tab.

Package: gui
Class: TabbedPaneOperations

public class TabbedPaneOperations
extends java.lang.Object

This class is responsible for the management of all tabs in the interface. It includes:
- add new tabs;
- close a project, all tabs or just one tab;
- display option panels if the user close a project and haven’t saved it yet;
- refresh the tool bar tabs when the user change from the input tabs.

56 Javadoc

public javax.swing.JTabbedPane addTabs(javax.swing.JTabbedPane jTabbedPane, java.lang.String
name, java.lang.String description, java.lang.String data, int location)
This function is responsible for add a new tab for a Tabbed Pane.
Parameters:

jTabbedPane - The choosen Tabbed Pane. This tab can be to the tool bar, to the
input or to the output.

name - The name of the tab.

description - The tool tip text to appear in the tab.

data - The content to be added in the tab.

location - The position where the tab should be added.

Returns:

The object Tabbed Pane.

public void closeTabInputIfNecessary()
This function close the Inputs tab (if exists) when it’s called.

public void closeProjectManager()
This function is responsible for the management when the user wants to close a project.
It includes:
- check if the project was already saved;
- create the tab Inputs if all projects were closed;
- create the tab Results if all projects were closed;
- refresh the tool bar.

public void closeAllTabsManager()
This function is responsible for the management when the user wants to close all tabs.

public int checkIfThereAreProjectsToBeSaved()
This function check if there are projects that weren’t saved.
Returns:

If there’s any file that wasn’t saved returns 1, otherwise returns 0.

Javadoc 57

public javax.swing.JTextArea getEnabledTextArea()
This function is used to return the object text area of the selected input tab.
Returns:

The object of the selected input text area.

public javax.swing.JTextArea getEnabledTextAreaResults()
This function is used to return the object text area of the selected output tab.
Returns:

The object of the selected output text area.

public javax.swing.JTextArea getEnabledTextAreaLineNumbers()
This function is used to return the object text area with the line numbers of the selected
input tab.
Returns:

The object of the selected input text area with the line numbers.

public javax.swing.JTextArea getTextAreaInCertainTab(int positionTab)
This function is used to return the object text area of a certain input tab.
Returns:

The object of the input text area in the position described in its argument.

Package: gui
Class: ToolBarAllSettings

public class ToolBarAllSettings
extends javax.swing.JPanel

This class is responsible for the creation and management of all Settings displayed in
the tool bar and write them in the selected input tab.

public ToolBarAllSettings()
The constructor of the class ToolBarAllSettings.

Package: gui
Class: ToolBarBasicSettings

58 Javadoc

public class ToolBarBasicSettings
extends javax.swing.JPanel

This class is responsible for the creation and management of the basic Settings displayed
in the tool bar and write them in the selected input tab.

public ToolBarBasicSettings()
The constructor of the class ToolBarBasicSettings.

Package: gui
Class: ToolBarModes

public class ToolBarModes
extends javax.swing.JPanel

This class is responsible for the creation and management of Modes displayed in the
tool bar and write them in the selected input tab.

public ToolBarModes()
The constructor of the class ToolBarModes.

Package: gui
Class: ToolBarTypes

public class ToolBarTypes
extends javax.swing.JPanel

This class is responsible for the creation and management of Types displayed in the tool
bar and write them in the selected input tab.

public ToolBarTypes()
The constructor of the class ToolBarTypes.

Package: gui
Class: WorkspaceTree

public class WorkspaceTree
extends javax.swing.JFrame

This class create and displays a tree with all available folders where the user can choose

Javadoc 59

the workspace.

public WorkspaceTree(int flag, int root)
The constructor of the class WorkspaceTree.
Parameters:

flag - This flag is used to know if it’s necessary to display the new project window to
the user after choose the workspace.

root - To open the selected directory.

60 Javadoc

References

[1] Frank, E. & Witten, I. H. (2005). What’s All About. In Data Mining Practical Ma-
chine Learning Tools and Techniques, Chapter 1, pages 3-39. The Morgan Kaufmann
Series in Data Management Systems, 2nd Edition, San Francisco, CA.

[2] Palace, B. (Spring 1996). Data Mining Overview. Technology Note prepared for
Management, AGSM-UCLA. Available in:
http://www.anderson.ucla.edu/faculty/jason.frand/teacher/technologies/
palace/index.htm
Last access in 9th of July of 2008.

[3] Kamber, M. & Han, J. (2000). Introduction. In Data Mining Concepts and Tech-
niques, Chapter 1, pages 3-21. Morgan Kaufmann, 1st Edition.

[4] Nilsson, N. J. (1996). Introduction. In Introduction to Machine Learning, Chapter 1,
pages 1-15. Stanford, CA

[5] Lavrač, N. & Džeroski, S. (1994). Introduction. In Inductive Logic Programming,
Techniques and Applications, Chapter 1, pages 3-21. Ellis Horwood, New York.

[6] Lavrač, N. & Džeroski, S. (2001). Relational Data Mining Applications: An Overview.
In Relational Data Mining, Chapter 14, pages 339-360. Springer, Berlin.

[7] Smyth, P., Mannila, H. & Hand, D. (2001). Introduction. In Principles of Data Min-
ing, Chapter 1, pages 5-20. The MIT Press Cambridge, Massachusetts, London.

[8] Mitchell, T. M. (1997). Preface. In Machine Learning. McGraw Hill.

[9] Ferro, M. (July 2004). Programação Lógica Indutiva & Sistemas de Programação
Lógica Indutiva. In Aquisição de conhecimento de conjuntos de exemplos no formato
atributo valor utilizando aprendizado de máquina relacional, Chapters 3 and 4, pages
20-50. Master thesis, ICMC-USP. Available in:
http://www.teses.usp.br/teses/disponiveis/55/55134/tde-16112004-095938/

[10] Srinivasan, A. (March 2007). The Aleph Manual. Oxford University. Available in:
http://web.comlab.ox.ac.uk/oucl/research/areas/machlearn/Aleph/ aleph toc.html
Last access in 9th of July of 2008.

[11] Thearling, K. (2008). An Introduction to Data Mining: Discovering Hidden Value in
your Data Warehouse. University of Illinois. Available in:
http://www.thearling.com/text/dmwhite/dmwhite.htm
Last access in 9th of July of 2008.

[12] Alpaydin, E. (2004). Preface. In Introduction to Machine Learning. The MIT Press.

61

62 REFERENCES

[13] Muggleton, S. H. . Inductive Logic Programming. Imperial College, DC. Available in:
http://www.doc.ic.ac.uk/∼shm/ilp.html
Last access in 9th of July of 2008.

[14] Popeĺınský, L. (July 2000). Inductive Logic Programming. In On Practical Inductive
Logic Programming, Chapter 3, pages 24-34. Doctorate thesis, FEE-CTUP, Prague.
Available in:
http://www.fi.muni.cz/usr/popelinsky/thesis/thesis.ps.gz

[15] Camacho, R. (October 2007). Indução de Programas em Lógica. Notes for the lecture
Knowledge Extraction, FEUP-UP, Porto. Available in:
http://paginas.fe.up.pt/∼ec/files 0708/slides/ilp.pdf
Last access in 9th of July of 2008.

[16] Striegnitz, K., Blackburn, P. & Bos, J. (2006). Learn Prolog Now. Introductory Course
to Programming in Prolog. Available in:
http://www.coli.uni-saarland.de/∼kris/learn-prolog-now/html/index.html
Last access in 9th of July of 2008.

[17] Mead, J. J. & Lu, J. (May 2003). Prolog a Tutorial Introduction. Comparative
Programming Languages, CSD-BU, Lewisburg, PA. Available in:
http://www.soe.ucsc.edu/classes/cmps112/Spring03/languages/prolog/ PrologIn-
tro.pdf
Last access in 9th of July of 2008.

[18] Bartak, R. (1998). Guide to Prolog Programming. On- line guides, FMP-CU, Prague.
Available in:
http://kti.mff.cuni.cz/∼bartak/prolog/contents.html
Last access in 9th of July of 2008.

[19] Wells, D. (April 2006). Wrappers. Object Services and Consulting, Inc., United States.
Available in:
http://www.objs.com/survey/wrap.htm
Last access in 9th of July of 2008.

[20] Huston, V. (2007). OO design, Java, C++. Design Patterns resources. Available in:
http://www.vincehuston.org/dp/adapter.html
Last access in 9th of July of 2008.

	Frontpage
	Abstract
	Acknowledgments
	1 Introduction
	1.1 Context and Motivation
	1.2 Goals

	2 Introduction to Data Mining and Machine Learning
	2.1 Data Mining
	2.2 Machine Learning
	2.3 Fielded Applications
	2.3.1 Screening Images
	2.3.2 Load Forecasting
	2.3.3 Diagnosis
	2.3.4 Other Applications

	3 Inductive Logic Programming
	3.1 Introducing ILP
	3.2 Problems
	3.3 Language Bias
	3.4 Completeness and Consistency of a Hypothesis
	3.5 Dimensions
	3.6 Description of ILP Systems

	4 A Learning Engine for Proposing Hypotheses
	4.1 Aleph System
	4.2 Basic Aleph Algorithm
	4.3 Requirements
	4.4 Mode Declarations
	4.5 Types
	4.6 Determinations
	4.7 Positive and Negative Examples
	4.8 Parameters
	4.9 Other Characteristics
	4.10 Using Aleph

	5 Prolog
	5.1 Overview
	5.2 Syntax
	5.3 Programming
	5.4 Lists
	5.5 Working With Files

	6 Aleph Graphical User Interface
	6.1 Introduction and Requirements
	6.2 Project Development Tool
	6.3 Prolog Compiler
	6.4 Adaptive Pattern
	6.5 Architecture
	6.6 Using Aleph Interface
	6.7 Test

	7 Conclusions
	7.1 Future Work
	7.2 Final Considerations

	A Aleph Basic Settings
	B Javadoc
	References

