
Relatório Final

Preparação para a Dissertação

MIEEC 2010/2011

By

Nuno Mota

Table of Contents

1. Introduction 5

2. State of the Art on Multimedia Streaming 6

2.1. Introduction 6

2.2.Video Technologies 6

2.2.1.MPEG-2/H262 7

2.2.2.H.264/MPEG-4 AVC 9

2.2.3.Containers 10

2.2.4.Ogg 11

2.2.5.Transport Stream - MPEG-2 part 1 12

2.3.Network Protocols 12

2.3.1.RTP/RTSP 12

2.3.2.RTCP 15

2.4.Web Services 16

2.4.1.WSDL 16

2.4.2.SOAP 17

2.4.3.REST 19

2.5.Web Standards 20

2.5.1.HTML5 20

2.5.2.CSS3 20

2.5.3.PHP 21

2.6.Software Streaming Solutions 21

2.6.1.Darwin Streaming Server 21

2.6.2.VLC 21

2.6.3.LIVE555 Media Server 21

2.7.Programming Tools 22

2.7.1.Qt 22

2.7.2.JavaFX 22

3. System architecture 24
2

3.1.Server 24

3.2.WebAdmin 25

3.3.Client 26

4. Work Plan 27

5. References 28

3

List of Tables

Table 2.1 - Levels
Table 2.2 - Profiles
Table 2.3 - WSDL elements
Table 4.1 - Work Plan

List of Figures

Figure 2.1 - Quantization
Figure 2.2 - intra-frame
Figure 2.3 - B-frame
Figure 2.4 - Group Of Pictures
Figure 2.5 - Ogg container
Figure 2.6 - Mpeg-2 Transport Stream Hierarchy
Figure 2.7 - RTP packet
Figure 2.8 - RTSP Sequence
Figure 2.9 - RTST Sequence
Figure 2.10 - Options command
Figure 2.11 - Control commands
Figure 2.12 - RTP ports
Figure 2.13 - RTP protocol
Figure 2.14 - WSDL environment
Figure 3.1 - Server Diagram
Figure 3.2 - WebAdmin Diagram
Figure 3.3 - Client/Server Diagram

4

1. Introduction

Nowadays, millions of users have access to digital contents through many
applications that didnʼt exist a couple of years ago. Both on the internet as well as in digital
television, the viewer transported himself from a passive usage, to a place where he can
access any type of contents and information. The revolution of IPTV brought thousands of
new possibilities, from choosing the camera view in a football match, to selecting the
favorite shows, series, or a selection of movies without the need to wait for the scheduled
time.

In the television market, these choices are dictated by the Service Providers and
each service has an associated cost. Normally the user needs to rent a Set-top Box (STB)
to be able to get the most out of these services, which a basic set-up doesnʼt provide.
However, in the internet these type of services have proliferated and in a few countries
users have access to some free services. But most of these applications are paid,
because digital contents also means copyright contents. In most of the cases the specific
software for this type of applications is proprietary, which means you either buy a license
or pay to create your own software.

The goal of this dissertation is to develop a tool that can provide videos and other
contents in this kind environment, a Video-on-Demand (VoD) application. The users must
be able to visualize the information of all the contents available and access them inside
the same application. This information must be retrieved from the server, which collects
information from the appropriate websites. The server should have the capacity to serve
several users and at the same time be able to be configured through a web admin
interface.

There is several open source software capable of streaming and receiving contents
on the internet but they are just a mere startup point for this project, because they donʼt
fulfill the basic requisites of the application we are looking for. The solution is to use this
existing tools and start building up our application.

5

2. State of the Art on Multimedia Streaming

2.1. Introduction

In this chapter I will present the state of the art of multimedia standards and
streaming solutions. First Iʼm going to describe some of the most important video coding
techniques available and the most relevant file formats for multimedia data.

Afterwords an overview of the main network streaming protocols will be given and
some necessary tools to implement a web services communication. The software solutions
will also be given, specially products where the General Public Licenses (GPL) applies or
other free/open-source software that can provide the best results for our application.

2.2. Video Technologies

Video is a sequence of pictures, in which each picture is described by an array of
pixels. The red, green and blue signals (RGB) can be expressed as luminance (Y) and
chrominance (UV) components. The chrominance may be reduced according to the
luminance without affecting the picture quality. The CCIR recommendation 601 defines
how the YUV video signals can be described as pixels. Each of these pixels can have
millions of colors associated to a number of bits. In each second, several of this pictures,
called frames, can be reproduced and a minimum of 15 frames is necessary to obtain a
“moving image”.

 In the CCIR recommendation 601 a normal video would be 720pixels x 480 pixels x
30 frames and if each pixel had 16 bits of resolution, the video data rate would be around
165Mbit/s. This transmission rate is too high for a user-level application and also the CPU
would take time to process such load. According to ANACOM, in Portugal more than 2
million users have cable internet, where speeds go up to 24Mbit/s.

To solve this problem several ways were created to compress video and audio, to
reduce them to a size possible of being transmitted at lower speeds without loosing to
much quality. The Moving Pictures Experts Group (MPEG), a committee created by the
International Organization for Standardization (ISO), was established to create the
standard of codification of digital content. The MPEG has 3 groups: MPEG-1,2 and 4.
Each group is divided in several parts which include, systems component which specifies
container formats, video coding specifications, etc. The most relevant to multimedia
streaming are: MPEG-2 Systems and Video parts, MPEG-4 part 10 and 14. All the above
standards requires a license granting rights to manufacture and sell products under this

6

standards or use such products to provide video content for profit, otherwise if it is for non
profit use only H264 is royalty free.

Besides MPEG thereʼs also other type of video codecs and systems, open-source
formats, that can be applied in this case.

2.2.1. MPEG-2/H262

This standard is used nowadays in all kinds of digital applications, for example Digital
Video Broadcast(DVB). It involves four parts and itʼs primarily goal is coding CCIR 601 or
higher resolution videos to achieve lower data rates, without compromising the quality of
these videos. For now we will only discuss the part 2 of this standard that specifies the
video coding.

It can achieve lower data rates from 4 Mbit/s up to 16Mbit/s, but for HDTV content
and movie productions it goes up to 80Mbit/s. The principle is to remove redundant
information prior to transmission. A main feature of this standard is the three types of
compression it has: an intra-frame I-frame, a predictive frame P-frame and a bidirectional
predicted frames B-frame. Two major techniques are employed: intra-frame Discrete
Cosine Transform (DCT) coding and motion-compensated inter-frame prediction.

In intra-frame DCT a quantisation process is used to reduce the required number of
bits to be transmitted in an image block. The quantized DCT block is then scanned for low-
frequency coefficients and occurrences of zero-value coefficients. The list of values
produced are entropy coded using a variable-lenght code (VLC).

Figure 2.1 - Quantization

In other words, I-frame uses spatial reduction and takes advantage of the incapacity
of the human eye, called the phsycovisual redundancy, to notice certain changes in a
picture.

7

Figure 2.2 - intra-frame

 P-frames can have a higher compression because they use motion-compensated
inter-frame prediction, which means theyʼre based on precedent frames, I-frames or P-
frames. B-frames have the highest compression of the three frames because it uses the
past and future frames as reference, but the B-frames itself cannot be used as a
reference.

Figure 2.3 - B-frame

 All these frames are ordered in a sequential way to create a Group Of Pictures
(GOP). From figure 2.4 we can see all the layers that compose the video.

Figure 2.4 - Group Of Pictures

8

Given that most applications nowadays donʼt support the full implementation of the
standard, some levels and profiles were created to satisfy these needs. In the profile are
defined algorithmic tools for compression, and chromatic format. In the levels we can
specify maximum resolution and maximum data rate transfer.

Levels
Max. width,

pixels
Max. height,

lines
Max. Frame

Rate
Max bit rate,

Mbit/s
Application

Low

Main

High-1440

High

352 288 30 4 Set-top boxes

720 576 30 15 DVD, SD-DVB

1440 1152 60 60 HDTV

1920 1152 60 80
Movie

productions

Table 2.1 - Levels

Profiles Picture Coding Chroma Format Scalable Modes Application

Simple Profile

Main Profile

SNR Profile

Spatially Scalable
Profile

High Profile

I, P 4:2:0 none Video-conference

I, P, B 4:2:0 none STB, DVD, HDTV

I, P, B 4:2:0
signal to noise ratio

scalable
TDT

I, P, B 4:2:0 spatial-scalable HDTV

I, P, B 4:2:0 e 4:2:2 SNR e Spatial -

Table 2.2 - Profiles

2.2.2. H.264/MPEG-4 AVC

This standard was created with the goal of reducing substantially the data rate
transmissions of the other standards, for example MPEG-2, without increasing too much
its complexity and implementation costs. Studies show that if well implemented, it can
reduce up to 50% of data rate when compared to other models. Another objective was to
be able to use it in several types of applications with different networks, because an
increasing number os services, for example HDTV, needed higher coding efficiency.

The standard specification is divided into two parts: the video coding layer (VCL) is
responsible for coding the video, and the network abstraction layer (NAL), the part that
formats the coded video in a way that can be used in several transport layers or storage

9

media. This standard has similar specifications as other video codecs, because it uses
inter-prediction with motion compensation, transform and encoding processes to achieve a
H264 bitstream.

A macroblock is used to make a prediction of the previous coded data in two ways,
from the same frame (intra prediction) or from already coded and transmitted frames (inter-
prediction). These methods are more adjustable than other standards.

A reconstruction filter is applied to every macroblock in order to reduce blocking
distortion. With this technique the images are improved and results in a small residual after
prediction.

This standard also includes detailed information on how to represent video data and
other information. The raw H264 stream consists of a series of pieces called the Network
Application Layer Units (NAL unit). These can include two things: information to proper
decode the stream called parameters, and the video frames itself called slices.

When it comes to profiles and levels, we now have 17 profiles with several improved
features and 16 levels with maximum bit rates from 64 Kbit/s in the baseline profile to
960Mbit/s in the highest profile (High 4:4:4 Predictive Profile - Hi444PP). We can also
have levels of resolution from 128x96@30.9 in the first level to 4096x2304@26.7 in the
top level.

The blu-ray discs use this standard because the video has better quality at the same
bit rate as others, providing more viewing hours. Most of the internet content providers
also use this standard for video transmission. For example Youtube uses mostly H264, but
with all the infrastructures costs, it now moving to a new standard called WebM that uses a
video codec called VP8, which is open source. Nevertheless, H264 is still fully supported
by Microsoft and Apple, and VP8 has still a long way to go to become fully developed.
Some researches indicate that H264 has better quality with the same data rates and that
the VP8 standard may have some patent issues because of its similarity to the H264
specifications. Thereʼs also an open source video codec called Theora, supported by
Firefox and Opera but in compression-wise itʼs worst than VP8 and H264.

2.2.3. Containers

Most of the streaming software available supports all the standards described in this
paper. Using containers has it advantages even if it increases the payload. With the
appropriate containers, we can have audio, video and other information related (e.g
subtitles) multiplexed into one single file adding the ability to seek the content more easily.

10

Like video codecs, video containers have much importance in a video. These
containers describe how the video file is organized as a file in the computer and later
network protocols are responsible for streaming this data over the internet. So the most
important thing is to find a container suitable for video files which is going to be streamed
form a server. The protocols that the files are supposed to be streamed are RTP with
RTSP protocol for control purposes. This protocols are also detailed in this report in the
Network Protocols section.

The containers that I found most important for this type of multimedia context are the
following: OGG, Transport Stream (MPEG-2 part 1) , and Matroska. When we look at the
specifications of the last one we can see that itʼs a good wrapper for HTTP streaming,
however itʼs not meant to be used with RTP for one reason, RTP and Matroska both have
timing and channel mechanism which would be unreasonable to use two times.

2.2.4. Ogg

Ogg is a free video container used for streaming or for data storage. It's supposed to
be as simple as possible with only three major principles: framing, ordering and interleave.
It has a simple seeking design when being played, which means an immediate stream
capture only with 128kB of data. Choosing any timeline of the Ogg file should then be very
quick. The Ogg container uses Ogg pages to build a stream with a unique serial number.
Several elementary streams can be multiplexed in one single stream. This means that Ogg
is a very powerful video container for media streaming where unreliable channels and
information loss is very common.

Figure 2.5 - Ogg container

11

2.2.5. Transport Stream - MPEG-2 part 1

The Transport Stream (TS) belongs to the MPEG-2 part 1: Systems. Its main
characteristic is to allow multiplexing of several streams, like Ogg, to have a synchronized
output. It's mostly used in DVB applications and offers an error correction system in
channels where reliability is not an issue. The packets in the transport layer are 188 bytes
in length, one synchronization byte (0x47), three one-bit flags a 13-bit packet identifier,
followed by other options and payload data. Eventually, the communication medium may
add error correction bytes to the packet, depending on the transmitting signal. The packet
identifier is responsible for identifying the different programs/channels present in the
transport stream. Thereʼs also a feature called Program Clock Reference, that enables a
decoder to synchronize audio and video.

Figure 2.6 - Mpeg-2 Transport Stream Hierarchy

Broadcast industry nowadays uses this standard because multiplexing and
demultiplexing of the streams can be done in hardware and because the encoder clock
and decoder clock are synchronized.

2.3. Network Protocols

2.3.1. RTP/RTSP

The most important streaming protocol is the Real-time Transport Protocol (RTP).
RTP is a standard that delivers real-time data streams, carrying audio and video over
unicast or multicast network services. Itʼs typically used on top of User Datagram Protocol
(UDP), but it runs in other network or transport protocols. A RTP header is different from a
UDP stream making it easier for a firewall to block and inspect the stream. RTP does not
ensure that data is delivered sequentially, nor does it guarantee the delivery of the

12

packets. The sequence numbers included in the RTP will tell the receiver how to properly
reconstruct the sequence.

Figure 2.7 - RTP packet

This protocol supports different kinds of media types such as the ones described in
this work: H.264 and MPEG-2. For each type of media, RTP has different ways of dealing
with the payload.

Another important feature is Real Time
Streaming Protocol (RTSP) which is an
application level protocol. Real-time streaming
Protocol is design to control the media streams,
sending the directives to the streaming server.
This protocol works like an HTTP connection, the
only difference is that RTSP is a stateful protocol.
In other words, a session identifier is created to
keep track of sessions; so thereʼs no need for a
permanent TCP connection.

A simple VLC server was setup and
wireshark was used to log this protocols. In this
case, the RTSP behavior observed in the
wireshark logs is detailed in figure 2.8.

Initially the client asks the server for
possible control commands with the command
Option. Then he asks for a description of the
URL in question and this is where the Session
Description Protocol comes in. The SDP is a
f o r m a t u s e d t o d e s c r i b e t h e m e d i a

13

communication sessions, with the intent of session announcement, session invitation and
also parameter association. It doesn’t deliver the media itself, itʼs only used to negotiate
between end points all the media properties involved in the communication.

After receiving the description, the client needs to know how the media is going to be
transported, so he uses the Setup command. Then he starts the streaming issuing the
Play control, and begins to receive the data through UDP connections. The
Get_Parameter is a control used to check the serverʼs liveness. More commands could be
performed, like Pause, Record and Set_Parameter.

RTP protocol normally uses two UDP connection ports, each one for video and audio
streams. The port numbers are even and given to the client in the Serverʼs Setup.

In figure 2.9 we can see all the RTSP commands, exchanged between client and
server. The TCP connections corresponds only to Server and Client controls, and no
permanent connection is needed when exchanging data.

Figure 2.9 - RTSP Sequence

Figure 2.10 - Options command

14

Figure 2.11 - Control commands

In figure 2.10 we can understand how the command information is sent. The rest of
the information is visible through the bytes section in wireshark. An example of a RTSP
reply and a Describe query is also visible.

However, RTSP protocol lacks some features. For example, after the reply options
we can acknowledge that we only have two possible commands while viewing the stream:
Play and Pause. Others like seeking, fast-forward and reverse play, also called Trick Play
functionality, are not available. This means that our streaming software should feature this
commands with the basic RTSP support.

Figure 2.12 - RTP ports

Figure 2.13 - RTP protocol

As explained before, RTP protocol, sends its data through two UDP connections, one
for video another for audio, as we can see in figure 2.12. In this example the two even
ports used are: 32820 and 32818. Figure 2.13 refers to the same log, viewed in figure 2.12
after a protocol decoding, where we can see the sequence numbers.

2.3.2. RTCP

Real Time Transport Control Protocol (RTCP) is associated with RTP and its main
goal is to provide a control channel for each media session. It provides information of
reception statistics and current activities. With this information it is able to properly

15

configure any problem with the connection due to its unreliability. RTCP is carried over the
same protocol as RTP. This may be an important protocol if we are interested in an
adaptive situation where, for example, different bit-rates may be achieved, or just for
monitoring purposes.

 It works on a report basis with two functions available: sender reports (SRs) and
receiver reports (RRs). The sender reports, detail the number of packets exchanged which
provides a way to calculate the proper mean data rate for the all session or for every
transmission interval. The receiver reports includes statistics like: packet loss, highest
sequence number received and a moving average of the inter-arrival jitter of the media
packets, which gives an indirect view of the playout buffer used in the receiver.

2.4. Web Services

Web of Services is based on a message-type design found on the web in enterprise
solutions and maintained by the World Wide Web Consortium (W3C). Itʼs described as a
machine-to-machine interaction. The basic platform used nowadays is HTTP + eXtensible
Markup Language (XML) but others elements exist like Simple Object Access Protocol
(SOAP) and Web Services Description Language (WSDL). In the Web 2.0 movement the
big web services providers started to develop open Application Programming Interfaces
using this technologies so developers could create new services.

2.4.1. WSDL

As web services and communications protocols are standardized, with so many new
services created everyday itʼs important to describe this communications in a structured
way. With aid of XML grammar, WSDL describes network services with a collection of
network endpoints, called ports, capable of exchanging messages. Ports can be described
as collections of operations supported by the service.

Element Defines

<type>

<message>

<port-type>

<binding>

The data types used by the webservice

The messages used by the webservice

The operations performed by the webservice

The communication protocols used by the web service

Table 2.3 - WSDL elements

16

WSDL defines a binding mechanism to relate a specific protocol, data format or
structure to an operation.

Figure 2.14 - WSDL enviroment

An example of a WSDL document follows:

<definitions>

<types>
 definition of types........
</types>

<message>
 definition of a message....
</message>

<portType>
 definition of a port.......
</portType>

<binding>
 definition of a binding....
</binding>

</definitions>

2.4.2. SOAP

Simple Object Access Protocol (SOAP) is a simple way to exchange structured and
typed information between agents in a spread environment using XML grammar. It does
not specify a programming model or implementation semantics but rather defines a way to
encode data in packed modules. With this, SOAP can be used in a large variety of
services.

The SOAP message consists of a mandatory Envelope with a SOAP Body and an
optional SOAP Header. This envelope is the element that identifies the XML document as
a SOAP message. The SOAP Body contains the call and response information. One
element was described in the SOAP Body to handle error and status information, the Fault

17

element. The SOAP Header provides a way to add extensions without the prior knowledge
of both agents, examples include authentication, payment etc.

<?xml version="1.0"?>
<soap:Envelope
xmlns:soap="http://www.w3.org/2001/12/soap-envelope"
soap:encodingStyle="http://www.w3.org/2001/12/soap-encoding">

<soap:Header>
...
</soap:Header>

<soap:Body>
...
 <soap:Fault>
 ...
 </soap:Fault>
</soap:Body>

</soap:Envelope>

The SOAP messages are exchanged through HTTP requests like HTTP POST or
HTTP GET.

POST /InStock HTTP/1.1
Host: www.example.org
Content-Type: application/soap+xml; charset=utf-8
Content-Length: nnn

<?xml version="1.0"?>
<soap:Envelope
xmlns:soap="http://www.w3.org/2001/12/soap-envelope"
soap:encodingStyle="http://www.w3.org/2001/12/soap-encoding">

<soap:Body xmlns:m="http://www.example.org/stock">
 <m:GetStockPrice>
 <m:StockName>IBM</m:StockName>
 </m:GetStockPrice>
</soap:Body>

</soap:Envelope>

The server then processes the request and answers with an HTTP response.

HTTP/1.1 200 OK
Content-Type: application/soap+xml; charset=utf-8
Content-Length: nnn

<?xml version="1.0"?>
<soap:Envelope
xmlns:soap="http://www.w3.org/2001/12/soap-envelope"
soap:encodingStyle="http://www.w3.org/2001/12/soap-encoding">

<soap:Body xmlns:m="http://www.example.org/stock">
 <m:GetStockPriceResponse>
 <m:Price>34.5</m:Price>
 </m:GetStockPriceResponse>
</soap:Body>

</soap:Envelope>

18

http://www.w3.org/2001/12/soap-envelope
http://www.w3.org/2001/12/soap-envelope
http://www.w3.org/2001/12/soap-encoding
http://www.w3.org/2001/12/soap-encoding
http://www.example.org
http://www.example.org
http://www.w3.org/2001/12/soap-envelope
http://www.w3.org/2001/12/soap-envelope
http://www.w3.org/2001/12/soap-encoding
http://www.w3.org/2001/12/soap-encoding
http://www.example.org/stock
http://www.example.org/stock
http://www.w3.org/2001/12/soap-envelope
http://www.w3.org/2001/12/soap-envelope
http://www.w3.org/2001/12/soap-encoding
http://www.w3.org/2001/12/soap-encoding
http://www.example.org/stock
http://www.example.org/stock

2.4.3. REST

The Representational State Transfer (REST) was introduced by Roy Fielding. This
architecture has nothing to do with the other webservices described above, but it shares
some similarities like the use of XML as a document format and the use of HTTP forms.
The motivation for REST was to capture the characteristics of the Web which has highly
desirable architectural properties: scalability, performance, security, reliability, and
extensibility.

There are four basic commands that REST uses: HTTP GET, POST, PUT and
DELETE. This brings interesting properties, for example, HTTP GET has no side effects
as it is only an information retrieval and a very simple one. However this architecture is not
only to gather information but to process, update and delete resources. Any information
that can be named can be a resource: a document, an image, an stock information. This
resources are identified by a Uniform Resource Identifier (URI).

Example of an information retrieval:

http://stockquoteserver.example/query?symbol=MSFT

WSDL can also be used in REST services using an HTTP binding and all methods
are supported:

<binding name="HttpBinding" interface="m:GetTemperature"
 type="http://www.w3.org/2005/08/wsdl/http">
 <operation ref="m:location" whttp:method="GET"
 whttp:location="{country}/{city}"/>
</binding>

This allows for an HTTP GET on http://weather.example/Sweden/V%C3%A4xj
%C3%B6 with the respective response:

HTTP/1.1 200 Here's the temperature for you
Content-Type: application/xml
…

<weather xmlns="…">
 <temperature>23</temperature>
</weather>

19

http://stockquoteserver.example/query?symbol=DIS
http://stockquoteserver.example/query?symbol=DIS
http://www.w3.org/2005/08/wsdl/http
http://www.w3.org/2005/08/wsdl/http

2.5. Web Standards

2.5.1. HTML5

HyperText Markup Language (HTML) has been in use in the world wide web since
1990. Twenty one years have passed and a lot has changed. This standard was first
introduced by Tim Berners-Lee and published in 1995 as HTML 2.0 by the Internet
Engineer Task Force (IETF) in the RFC 1966 and has had several improvements over the
years. The later HTML 4.0 has some features that now are obsolete and the need to
improve some characteristics was increasing.

In 2009 the group that was developing the HTML joined with W3C to create the next
generation of HTML the HTML5. This standard is not yet official because itʼs considered a
work in progress, however, most modern browsers have some HTML5 support. The goal
of this new standard was to handle todayʼs internet use and so it needed to follow a few
rules to prevent some mistakes of the past. For example, it was established that there was
a need to reduce external plugins (like Flash), that the standard should be device
independent to be able to adapt to any application and it should have better error handling.

New interesting features are now included in HTML5: the video and audio elements
are incorporated for media playback, new input type attributes were created, new content
specific elements were introduced like the article, footer, video, audio, progress and many
others. New local data objects were created to handle large amounts of data because the
previous feature, cookies, was not suitable. In the event section several new events were
created to deal with window events, media events, keyboard and mouse events.

2.5.2. CSS3

Cascading Style Sheets (CSS) defines a way to display HTML elements. HTML was
intended to contain the content of a document and never to contain tags for formatting.
Adding color tags and other formatting tags brought a lot of difficulties to web developers.
These styles were added by W3C to HTML 4.0 to overcome those problems and to save
lot of work in design implementation. The external style sheets are stored in CSS files.

CSS3 is an improvement of past releases and is divided in several modules:
Selectors, Box Model, Backgrounds and Borders, itʼs able to deal with Text Effects,
Animations and much, much more.

20

2.5.3. PHP

The Hypertext Preprocessor (PHP) is an open-source scripting language that can be
embedded into HTML to provide a dynamic web page creation. Instead of writing lots of
commands to output HTML we include instructions that do “something”. Using this
language is very easy and brings a lot of new features to HTML design.

One advantage in using PHP is that many webservices can be easily developed
because it supports several protocols. It can be used in all major operating systems,
including Linux, and it has support for most of the web servers today.

2.6. Software Streaming Solutions

2.6.1. Darwin Streaming Server

Darwin Streaming Server (DSS) is the open source version of Appleʼs Quicktime
Streaming Server. It uses RTP and RTSP protocol to deliver media streams to clients
across the Internet and with its webadmin interface it provides a highly configurable
environment. Various platforms are supported and it is intended to stream Quicktime and
MPEG-4 media. Features like Authorization, Spam Defense and RTSP redirection are
included.

2.6.2. VLC

Almost everything that VLC plays it can be also streamed. VLC is the most famous
open source media player and was created in 2001. It can play almost any media file
available and stream most what it plays and can be used in every platform Windows, Mac,
Linux, Unix, etc.

For encoding and decoding most of it video files it uses a library called libavcodec
from the FFmpeg project, but it also includes its own muxer and demuxers. For its serving
capabilities VLC uses the LiveMedia library from LIVE555 to support RTSP, RTP and SDP.

2.6.3. LIVE555 Media Server

LIVE555 Media Server is a complete RTSP server based on the LIVE555 Streaming
Media library. This includes source-code set of C++ libraries for multimedia standards
RTP/RTCP/RTSP suitable for embedded streaming applications. It can stream TS and
H264 elementary files, among others. Thereʼs also the possibility to stream to set-top
boxes that require raw UDP streaming, rather than standard RTP streaming. It can also
stream its RTP(and RTCP) packets over TCP for firewall purposes.

21

The server supports RTSP ʻtrick playʼ functionality for some media types. Seeking ,
Fast forward and Reverse play is possible for TS files for example. Some non-official
developers have developed some extra functionalities like ʻtrick playʼ to other video
formats, but still lack the official approval. The latest release included a tool to wrap H264
elementary streams to TS containers to take advantage of the trick play functionality. Other
encoding and decoding tools are also available as test programs, which is very useful.

2.7. Programming Tools

2.7.1. Qt

Qt is a programming framework that brings several libraries to support multiple
features and facilitate their integration in our applications. It has been in the market for 15
years and since then it has seen a major development. Itʼs indicated for advanced and
highly innovative applications and devices.

The success behind this framework is that it brings all the tools needed to develop
advanced GUI applications with embedded multimedia characteristics. The use of native
APIs of each supported platform provides full advantage of the system resources with a
native look and appeal. The Phonon Multimedia framework library makes it easy to include
audio and video in Qt applications and besides that Qt also brings a native XML support
library.

In terms of licensing Qt as three strands:

• Commercial license where we can create proprietary applications without the
obligation to share the source code and modifications;

• LGPL license where proprietary applications are possible but under the LGPL
license and all the source code must be provided;

• GPL license does not give the possibility of proprietary applications and all source
code must be provided.

2.7.2. JavaFX

JavaFX is a way to create expressive, multi-rich content which brings capability,
performance to our applications. It uses a set of essential technologies, tools and other
resources required to develop and create powerful content, able to be used in multiple
devices. It has also lots of flexibility because of its intuitive Java platform.

22

The Java language derives much from C and C++ but it has simpler object model
and fewer low-level facilities. This language was created by Sun in 1995 and itʼs known for
its capability to run in any platform.

23

3. System architecture

The goal of this dissertation is to create a VoD environment, beginning from a multi-
functional server, to an end-user appealing application. The system is to be composed of
three major applications: the server interface, the webadmin interface, to control the server
and the client application. All these applications must run in a Linux environment and use
open-source software for development.

One important topic of this service is the Web Services Application Programming
Interface (API), created to provide a set of rules to use the services and resources that this
application will offer. This API will have two relevant groups, the administration and the
client interface. A WSDL will be used to describe this set of rules of our web service.

3.1. Server

The server will have the following characteristics:

• the main interface which is responsible for communicating with both agents, the
administration and the client and should also be able to control/monitor the streaming
server for QoS , status and error messages;

• the streaming server, that should run as a stand-alone process and provide
feedback to the serverʼs main interface;

• the uploaded video files should be handled by the interface and the appropriate
support created, from the uploaded file, using the appropriate tools;

• this multimedia data should be stored in the serverʼs computer;

• the main interface will require a database to store all the clients information and all
the video contents information like Title, Cast, Director and other retrieved information;

The best solution, so far for the streaming server, seems to be Live555 Streaming
Server, because itʼs practical and accessible for further development. This server is built
on a set of C++ libraries, which means that the Serverʼs main interface should use the
same programming language to facilitate interconnectivity and take advantage of some
video codification tools. The use of a stand-alone server gives the possibility to build a
scalable server where the main interface may control several streaming servers. This
means that if the use of the server starts to increase, another computer and network
connection may be setup to provide sufficient bandwidth for a reliable service. To provide

24

the streaming server control, a TCP/IP connection must be used, to assure reliability and
accessibility to multiple streaming servers.

!"#$"#%

&'()%()*"#+',"%

-".!"#$(,"/% 0'*'1'/"%

2345666%
/"#$"#%

78(")*%
!*#"'9%

Figure 3.1 - Server Diagram

3.2. WebAdmin

To customize and configure the servers behavior and working requisites, a web
interface will be created. This environment will consist of a webpage designed with
HTML5, CSS3 and a PHP framework to implement all the needed tools. The interface will
communicate with the server via a web services API and itʼs important to highlight that this
type of dimensioning will give us a decentralized solution. With the admin interface, video
files and contents which can be retrieved from the appropriate websites, will be uploaded
to the servers local storage or database respectively.

The videoʼs information should be retrieved from official websites like IMDB, this
information must be serialized by the adminʼs interface and then uploaded to the servers
DataBase.

!"#$%

&'()*+,-)%

.)*/)*%#,0'%

&'()*+,-)%

1)2%

.)*/0-)3%

0'()*+,-)%

-%

Figure 3.2 - WebAdmin Diagram

25

3.3. Client

The Clientʼs only concern may be to properly play the video stream, but this
application should use the state-of-art tools to create the best multimedia experience and
usability. One of the programming tools ideal for this part of the project may be the JavaFX
platform because of its capability to bring a feature-rich application.

Every communication will start in the client. After a successful login to the services,
he will be able to search for the content available in the server. When it chooses a movie/
series, all the respective information will be shown, and if itʼs eligible he can play the
content.

!"#$%&'(

!"#$%%%&

'()*()&
+,-.&"./()0,1(&

23"&
4(56()*-1(6&

"./()0,1(&

'/)(,7-.8&

9:-(./&

Figure 3.3 - Client/Server Diagram

26

4. Work Plan

The work will be divided in three major parts. Part 1 will integrate the literature
revision among with the work planning and the web services methods definition. The
second part will contain all the implementation work. Initially the streaming server solution
and the interaction with main interface will be designed. Afterwords, the web services will
be implemented, and at the same time itʼs important to build some of the the webadmin
and the clientʼs web services interface. The final work will contemplate some experimental
tests to check that the application is fully functional and then the final report writing.

A weekly report will be made to keep track of the thesis work. This reports will be
posted online, in a project website where all the relevant information will be present. A To-
Do list will also be made with all the important tasks to be carried out each week.

WorkWork Deadline

Part 1
Literature Revision and Work Planning

Part 1
API methods definition

Part 2

Implementation of the serverʼs main interface and streaming
server interaction

Part 2 Implementation of the serverʼs main interface web servicesPart 2

Implementation of the webadmin interface

Part 2

Implementation of the clientʼs interface

Part 3
Final test experiments for debugging purposes

Part 3
Final Report Writing

20 Fev

25 Fev

18 Mar

8 Apr

29 Apr

20 May

23 May to 27 May

30 May to 30 Jun

Table 4.1 - Work Plan

27

References

1. Free Foundation Software . [Updated 29 June 2007]. GNU GENERAL PUBLIC
LICENSE. Available from http://www.gnu.org/licenses/gpl.html

2. P.N. Tudor. 1995. MPEG-2 VIDEO COMPRESSION. In: Electronics &
Communication Engineering Journal, December 1995. Available from http://
www.bbc.co.uk/rd/pubs/papers/paper_14/paper_14.shtml

3. ANACOM. 2010. Serviço de Acesso à Internet - 3º trimestre de 2010, November
2010. Available from http://www.anacom.pt/render.jsp?contentId=1059837

4. MPEG 2011. Moving Picture Experts Group. Available from http://
mpeg.chiariglione.org/

5. Victor Lo. A Beginners Guide for MPEG-2 Standard. City University of Hong Kong.
Available from http://www.fh-friedberg.de/fachbereiche/e2/telekom-labor/zinke/mk/
mpeg2beg/beginnzi.htm

6. Iain Richardson, 2007-2008. Overview of H.264 / AVC. Vcodec whitepaper. Vcodex
Limited. Available from http://www.vcodex.com/h264overview.html

7. S. Wenger,M.M. Hannuksela,T. Stockhammer, M. Westerlund and D. Finger. RTP
Payload Format for H.264 Video. Internet RFC 3984 February 2005

8. Jason Garrett-Glaser. [Updated June 2010]. Diary Of An x264 Developer. Available
from http://x264dev.multimedia.cx/archives/377

9. Xiph.Org, 2010. Ogg Documentation. Available from http://www.xiph.org/ogg/doc/
oggstream.html

10. MultimediaWiki. MPEG-2 Transport Stream. MediaWiki. Available from http://
wiki.multimedia.cx/index.php?title=MPEG-2_Transport_Stream

11. H. Schulzrinne, S. Casner, R. Frederick and V. Jacobson. RTP: A Transport Protocol
for Real-Time Applications. Internet RFC 3550 July 2003

12. H. Schulzrinne, A. Rao and R. Lanphier. Real Time Streaming Protocol (RTSP).
Internet RFC 2326 April 1998

13. J. Ott and C. Perkins. Guidelines for Extending the RTP Control Protocol (RTCP).
Internet RFC 5968 September 2010

14. E. Christensen, F. Curbera, G. Meredith and S. Weerawarana. Web Services
Description Language (WSDL) 1.1. [Updated 15 March 2001]. W3C 2011.

15. N. Mitra and Y. Lafon. SOAP Version 1.2 Part 0: Primer (Second Edition). [Updated
27 April 2007]. W3C 2011

28

http://www.gnu.org/licenses/gpl.html
http://www.gnu.org/licenses/gpl.html
http://www.bbc.co.uk/rd/pubs/papers/paper_14/paper_14.shtml
http://www.bbc.co.uk/rd/pubs/papers/paper_14/paper_14.shtml
http://www.bbc.co.uk/rd/pubs/papers/paper_14/paper_14.shtml
http://www.bbc.co.uk/rd/pubs/papers/paper_14/paper_14.shtml
http://www.anacom.pt/render.jsp?contentId=1059837
http://www.anacom.pt/render.jsp?contentId=1059837
http://www.anacom.pt/render.jsp?contentId=1059837
http://www.anacom.pt/render.jsp?contentId=1059837
http://mpeg.chiariglione.org/
http://mpeg.chiariglione.org/
http://mpeg.chiariglione.org/
http://mpeg.chiariglione.org/
http://www.cityu.edu.hk/
http://www.cityu.edu.hk/
http://www.fh-friedberg.de/fachbereiche/e2/telekom-labor/zinke/mk/mpeg2beg/beginnzi.htm
http://www.fh-friedberg.de/fachbereiche/e2/telekom-labor/zinke/mk/mpeg2beg/beginnzi.htm
http://www.fh-friedberg.de/fachbereiche/e2/telekom-labor/zinke/mk/mpeg2beg/beginnzi.htm
http://www.fh-friedberg.de/fachbereiche/e2/telekom-labor/zinke/mk/mpeg2beg/beginnzi.htm
http://www.vcodex.com/h264overview.html
http://www.vcodex.com/h264overview.html
http://x264dev.multimedia.cx/
http://x264dev.multimedia.cx/
http://x264dev.multimedia.cx/archives/377
http://x264dev.multimedia.cx/archives/377
http://www.xiph.org/ogg/doc/oggstream.html
http://www.xiph.org/ogg/doc/oggstream.html
http://www.xiph.org/ogg/doc/oggstream.html
http://www.xiph.org/ogg/doc/oggstream.html
http://wiki.multimedia.cx/index.php?title=MPEG-2_Transport_Stream
http://wiki.multimedia.cx/index.php?title=MPEG-2_Transport_Stream
http://wiki.multimedia.cx/index.php?title=MPEG-2_Transport_Stream
http://wiki.multimedia.cx/index.php?title=MPEG-2_Transport_Stream

16. Fielding, Roy Thomas. Architectural Styles and the Design of Network-based
Software Architectures. Doctoral dissertation, University of California, Irvine, 2000. ch
5.

17. Hass, Hugo. Reconciling Web Services and REST Services. [Updated 2005]. W3C
2011

18. I. Hickson. HTML5 A vocabulary and associated APIs for HTML and XHTML.
[Updated 19 February 2011]. W3C 2011

19. W3schools 2011. CSS3 Tutorial. Refsnes Data. Available from http://
www.w3schools.com/css3/default.asp

20. M. Achour, F. Betz, A. Dovgal, N. Lopes, H. Magnusson, G. Richter, D. Seguy and J.
Vrana. PHP Manual. [Updated 18 February 2011]. PHP Documentation Group

21. MAC OS FORGE. Darwin Streaming Server [Updated 16 Jun 2008]. Apple Inc.
Available from http://dss.macosforge.org/

22. VideoLan project. VLC. VideoLAN organization. Available form http://
www.videolan.org/

23. LIVE555. LIVE555 Streaming Server. Live Networks, Inc. Available from http://
www.live555.com/mediaServer/

24. Qt Development Frameworks. QT. Nokia Corporation. Availabe from http://
qt.nokia.com/products/

25. JavaFX. Oracle Corporation. Available from http://javafx.com/

29

http://www.w3schools.com/css3/default.asp
http://www.w3schools.com/css3/default.asp
http://www.w3schools.com/css3/default.asp
http://www.w3schools.com/css3/default.asp
http://dss.macosforge.org/
http://dss.macosforge.org/
http://www.videolan.org/
http://www.videolan.org/
http://www.videolan.org/
http://www.videolan.org/
http://www.live555.com/mediaServer/
http://www.live555.com/mediaServer/
http://www.live555.com/mediaServer/
http://www.live555.com/mediaServer/
http://qt.nokia.com/products/
http://qt.nokia.com/products/
http://qt.nokia.com/products/
http://qt.nokia.com/products/
http://javafx.com/
http://javafx.com/

