
FACULDADE DE ENGENHARIA DA UNIVERSIDADE DO PORTO

Jitter Extraction Tool

Luís Cruz

PROVISIONAL VERSION

Master in Electrical and Computer Engineering

Supervisor: José Carlos Alves (Prof.)

March, 2011

c© Copyright by Luís Cruz, 2011

Some rights reserved

You are free:

to Share — to copy, distribute and transmit the work.

Under the following conditions:

Attribution — You must attribute the work in the manner specified by the author

or licensor (but not in any way that suggests that they endorse you or your use

of the work).

Noncommercial — You may not use this work for commercial purposes.

No Derivative Works — You may not alter, transform, or build upon this work.

With the understanding that:

Waiver — Any of the above conditions can be waived if you get permission from the copy-

right holder.

Other Rights — In no way are any of the following rights affected by the license:

• Your fair dealing or fair use rights;

• The author’s moral rights;

• Rights other persons may have either in the work itself or in how the work is used, such as

publicity or privacy rights.

Notice — For any reuse or distribution, you must make clear to others the license terms of this

work. The best way to do this is with a link to this web page.

Contents

1 Software Selection 1
1.1 Existent Solutions . 1
1.2 Programming Language Requisites . 1
1.3 Python Programming Language . 2
1.4 Python Configuration . 3
1.5 Conclusion . 3

2 Jitter Extraction Tool 5
2.1 Introduction . 5
2.2 Q-scale on discrete events . 5
2.3 Q-scale Linearization . 6
2.4 extract_jitter tool . 7

2.4.1 Linearization . 7
2.4.2 Multi-thread . 7
2.4.3 How to use . 8
2.4.4 Results . 8

2.5 Conclusion . 9

References 13

i

ii CONTENTS

Version 0.10 (May 12, 2011)

List of Figures

2.1 Different Values for A resulting on different jitter values 6
2.2 Gaussian Jitter decomposition using extract_jitter tool 10
2.3 Dual Gaussian Jitter decomposition using extract_jitter tool 10
2.4 Dual-Dirac Gaussian Jitter decomposition using extract_jitter tool 10
2.5 Periodic and Gaussian Jitter decomposition using extract_jitter tool 11
2.6 Square and Gaussian Jitter decomposition using extract_jitter tool 11

iii

iv LIST OF FIGURES

Version 0.10 (May 12, 2011)

List of Tables

2.1 Total Jitter Expected . 9
2.2 Total Jitter obtained for BER=1e-14 . 9
2.3 Total Jitter obtained for BER=1e-12 . 9

v

vi LIST OF TABLES

Version 0.10 (May 12, 2011)

Abbreviations and Symbols

BER Bit Error Ratio (Number of errors divided by the number of transmitted bits)
BERT Bit Error Ratio Tester
CAD Computer-Aided Design
CASE Computer-Aided Software Engineering
CDF Cumulative Density Function
CDR Clock and Data Recovery
CSV Comma Separated Values
DDJ Data Dependent Jitter
DJ Deterministic Jitter
EDF Empirical Distribution Function
IC Integrated Circuits
ISI Inter-symbol interference
PCS Phase Changing Speed
PDF Probability Density Function
PLL Phased-looked Loop
RMS Root Mean Square
RJ Random Jitter
SerDes Serializer/Deserializer
TIE Time Error Interval
TJ Total Jitter

vii

viii Abbreviations and Symbols

Version 0.10 (May 12, 2011)

Chapter 1

Software Selection

1.1 Existent Solutions

The development of new Integrated Circuits (IC) starts by developing a behavioral model of the

circuit, allowing the system engineers to identify the correct platforms/solutions that must be im-

plemented.

During the platform specification, system engineers define the blocks that must be imple-

mented as well as the block parameter’s like: gain, frequency response, bandwidth, maximum

response delay, etc. The correctness of the block specification will be dictated by the accuracy

of the behavioral models, at this point system engineers don’t use languages like spice or even

verilog-A, because it will require unnecessary work that will reduce the ability to choose between

different platform solutions.

System engineers tend to use MATLAB or even ADS (Advanced Design System) tools, pro-

viding an abstraction layer to the real implementation allowing the development of accurate be-

havioral models. Such tools require a depth knowledge of the proprietary programming languages

supported, requiring from engineers extensive training before starting the behavioral model cre-

ation. The use of proprietary languages reduces the number of engineers that have the skills

to work as system engineers. MATLAB and ADS licenses are expensive reducing even more the

number of engineers that have access to them. The ideal solution will be to have the ADS/MATLAB

engine on a form of free programming language allowing a bigger number of engineers to under-

stand and work at system level.

1.2 Programming Language Requisites

There are different programming languages suitable to use on the tool development, Octave is one

of them. Octave is a MATLAB clone that supports the majority of MATLAB instructions, but as

MATLAB the number of users is restricted and it will require also a previous extensive training.

Octave isn’t fast [1] and has limited support, reducing the ability to produce an interesting tool.

1

2 Software Selection

The programming language that will be use on the software tool development will have to

respect the following requisites:

• Free

• Relatively fast

• Built-in signal processing functions

• Built-in plot functions

• Built-in probability functions

• Built-in functions for "electronic engineers"

• Support for interactive debugging

• Support for multi-threading

• Support for graphical interface

• Easy to use

1.3 Python Programming Language

Scientific groups are trying to use open source software to address the new projects, the use of

Python for Scientific purposes has been increasing. Due to this fact new libraries are being added

to python making it a really scientific tool.

Python is very well spread with good support forums on the internet, it’s easier to find doc-

umentation and tutorials. One of the major advantages is related with portability, python doesn’t

need to be compiled, the same code will work in Windows, Linux and MacOS, reducing the inter

operability problems, the user only needs to instal the python interpreter on their machine to be

able to run python code.

Python packages extend the base python functions giving to the end user a powerfully en-

gine to produce scientific tools. Numpy and scipy packages extend python to support: statistics,

numerical integration, linear algebra, fourier transforms, signal processing, image processing, spe-

cial functions, powerful N-dimensional array object, random number capabilities, between others.

Numpy and scipy were build in c language ensuring good performance. matplotlib Package is a

python 2D/3D plotting library which produces publication quality figures in a variety of hardcopy

formats and interactive environments across platforms. Pyrex package is a language specially de-

signed for writing Python extension modules. It’s designed to bridge the gap between the nice,

high-level, easy-to-use world of Python and the messy, low-level world of C. Python also has a

command line interpreter, making it user friendly. Graphical user interface development can be

done using PyQt package, that has a substantial set of GUI widgets. multiprocessing is a package

Version 0.10 (May 12, 2011)

1.4 Python Configuration 3

that supports spawning processes using an API similar to the threading module. The multipro-

cessing package offers both local and remote concurrency, effectively side-stepping the Global

Interpreter Lock by using subprocesses instead of threads. Due to this, the multiprocessing mod-

ule allows the programmer to fully leverage multiple processors on a given machine. There is the

possible to perform calculations on the graphics card, pygtk package is the responsible for such

capability.

Python is very easy to use with object oriented support. The variable manipulation doesn’t

require a type definition, such type will be dynamically allocated.

1.4 Python Configuration

On this project python 2.6 version was used due to the code stability and bigger support on the

internet. The reader can be asking why it wasn’t used python 3.x, this version it’s a complete

different distribution with a different engine and orientation. Python 2.6 was selected due to the

extensive support and packages availability. Python(x,y) was used to provide a complete and stable

environment removing the need to install the different packages one-by-one.

Python(x,y) is a free scientific and engineering development software for numerical compu-

tations, data analysis and data visualization based on Python programming language, Qt graphi-

cal user interfaces, Eclipse integrated development environment and Spyder interactive scientific

development environment. Python(x,y) can also be defined as a scientific-oriented Python Distri-

bution based on Qt and Eclipse, its purpose is to help scientific programmers used to interpreted

languages (such as MATLAB) or compiled languages (C/C++ or Fortran) to switch to Python.

Python(x,y) supports interactive debugging, allowing the user to place breakpoints across the

code under development as the possibility to dynamically check the variables value. Python(x,y)

interactive mode provides the necessary support aid during the development phase.

1.5 Conclusion

Version 0.10 (May 12, 2011)

4 Software Selection

Version 0.10 (May 12, 2011)

Chapter 2

Jitter Extraction Tool

2.1 Introduction

Jitter decomposition is very important to predict the system behavior for long bit sequences. Usu-

ally this type of analysis are preformed over IC samples using expensive laboratorial equipment.

The intent of this work is to present a tool capable of doing it but free.

extract_jitter tool uses the Q-scale method to extract the deterministic and random jitter com-

ponents. The user just need to provide a jitter histogram file on a csv (comma separated values)

file format to gen_hist.exe executable file to obtain a pdf file with the jitter extracted components.

2.2 Q-scale on discrete events

As described on chapter ?? Q-scale can be expressed as:

Q(x) =
√

2er f−1 [1−BER(x) ·A] (2.1)

Total jitter is determined by integrating the probability density function (PDF) separately

from left and right to determine the symmetric cumulative density function (CDF). The width

of this curve at the specified BER (or confidence interval) gives the total jitter. Meaning that

BER(x) = CDF(x) =
∮ x′=∞

x′=−∞
PDF(x′)dx′. Of course CDF(x) is purely theorical, but it can how-

ever be calculated using the EDF (Empirical Distribution Function), summing the jitter histogram

from the left extreme to the desired value of x.

EDF(x = hi) =

k=i−1
∑

k=0
Hk

k=N−1
∑

k=0
Hk

=
1

Ptotal

k=i−1

∑
k=0

Hk (2.2)

Now, for the purpose of calculating Q(x) and keeping with the tradition of previous jitter

discussions, it’s necessary to calculate the left and right sides of the Q-scale, since the designer is

interested in both variations in timing jitter, before and after the mean timing value. The first thing

5

6 Jitter Extraction Tool

2 1 0 1 2
Time(s) 1e 11

2

1

0

1

2

3

4

Q
(x

)

µl =-9.71487638445e-12

σl =3.47208833069e-12

A_l= 3.0

µr =9.59607342993e-12

σr =4.29900545453e-12

A_r = 3.0

we_l= 0.547418176138 we_r = 0.452581823862

σ=3.84633599078e-12

µ=1.93109498144e-11

Q-scale

(a) Non-improved linear approximation

2 1 0 1 2
Time(s) 1e 11

2

1

0

1

2

3

4

Q
(x

)

µl =-1.16944141828e-11

σl =3.06924459247e-12

A_l= 6.6287230552

µr =1.09693877385e-11

σr =3.98475343601e-12

A_r = 4.5

we_l= 0.531433613388 we_r = 0.468566386612

σ=3.4982212632e-12

µ=2.26638019213e-11

Q-scale

(b) Improved linear approximation

Figure 2.1: Different Values for A resulting on different jitter values

to do is to obtain the mean position value and then calculate the respective BER:

BERl(x) = EDFl(x = hi) =
k=imean−1

∑
k=0

Hk (2.3)

BERr(x) = EDFr(x = hi) =
k=imean

∑
k=N−1

Hk (2.4)

In practice, these two functions are joined at the median of the histogram (the bin containing

the median, or the bin which 50% of the total population is in that bin or those with lower index).

Consequently, 50% of the total population also falls within that bin and those bins with higher

index.

2.3 Q-scale Linearization

Jitter decomposition tool is based on Q-scale method using a linear approximation to extract ran-

dom and deterministic jitter values. Since Q(x) = x−µ

σ
, the relation between Q(x)and x can be

given by a line, with slope = 1
σ

and y− intersept = −µ

σ
. The intent of extract_jitter tool is to find

such values.

During the linearization process the variable A will be changed to reduce the error between

Q(x) and the obtained linear approximation. The designer must be aware that a wrong value of

A can result on wrong values for random and deterministic jitter extraction values. On Figure

2.1 it’s clearly seen the difference on the extracted jitter values. These differences are cause by

a bad linearization, because Q(x) is far from a straight line (the designer should only take into to

consideration values where Q(x)> 0).

extract_jitter tool divides the jitter histogram in two parts (left and right) and then process the

data of each part independently. It’s important to note that each piece has their own coefficient

,Ar or Al , allowing a correct linearization of each side. The use of two independent coefficients is

Version 0.10 (May 12, 2011)

2.4 extract_jitter tool 7

mathematically accurate because each side has their own deterministic jitter, different coefficients

allows the consideration of different DJ profiles on each side.

In terms of linearization it’s also interesting to notice that to correctly extract the jitter compo-

nents it’s necessary to consider only low probability events, because Q-scale method assumes that

RJ follows a gaussian distribution and DJ can be defined by two dirac functions, if the designer

uses high probability values the obtained results will be certainly wrong since the idea behind

this method is no longer valid. The golden value can be obtained following this approach: Let’s

consider 15 as the maximum number of consecutive equal bits transmitted, using a PRBS function

to generate the random bits results on an event probability of: 1
215 = 3.05e−5. Mapping it into the

Q-scale, results on Q(3.05e−5) = 4.008. In conclusion to obtain accurate jitter values the provided

jitter distribution function must generate Q(x) function with values bigger than 4.008.

2.4 extract_jitter tool

2.4.1 Linearization

The linear approximation is the tool core, since everything will depend of it. The idea was to

change the coefficient A limiting the minimum and maximum values, using the Newton’s method

to find the next A value that reduces the quadratic error between the obtained line and Q(x), the

error is only considered for Q(x)> 0. The Newton’s method can have convergence issues,this was

addressed by defining a maximum number of iterations, after that number the linear approximation

stops and it’s used the A value that returns the lower error. The algorithm also stops when the error

is bellow than 0.001.

The number of interactions needed to find a coefficient that reduces the error of the linear

approximation was reduced by using the second order derivation function (when possible). Ai+1

can be defined as:

Ai+1 = Ai−
dQ(x)

dx
d2Q(x)

dx

(2.5)

Proper linearization was also ensured by ensuring that the linearization error differences are

only considered when Q(x) has values lower than zero, this ensures that Q(x) can be described as

the convolution of two dual-Dirac functions and gaussian distribution.

2.4.2 Multi-thread

One of the major advantages of using a programming language to create this software tool, is the

possibility to use threads and queues. Since the jitter extraction can be divided in two parts, the

jitter extraction can run on each side independently. Based on this fact the software also divides

the work in two threads, one calculates the jitter of the left side and the other calculates the right

side.

Version 0.10 (May 12, 2011)

8 Jitter Extraction Tool

Current processors have multi-threading capabilities, the introduction of multi-thread native

support on extract_jitter tool allows the designers to obtain jitter decomposition values faster,

making use of the capabilities of current processors.

2.4.3 How to use

Jitter extraction software can be found under: , the user need to have a software capable of opening

rar files, like 7-Zip, to be able to start working. Next it’s necessary to provide the jitter histogram.

The extract_jitter.rar file also provides three examples that can be found under examples directory.

The user can create their own file, to do that it’s just necessary to follow this steps:

• Create a file called <file_name>.csv

• Inside <file_name>.csv separate the histogram hits by new lines

• Each histogram hit (line), should have the time and hits value separated by comma: time,

hits

• When the histogram was completely described it’s just necessary to save and close the file

• On the command line and inside extract_jitter directory perform the following command:

gen_hist.exe <file_name>.csv

• The jitter tool will create a file named <file_name>_Qscale.pdf containing the jitter extrac-

tion values

In order to make the software more generic there is no indication of the total jitter value for

the desired BER, but the user can obtain this value through:

T J(BER) = Qr BER ∗σr ∗wer + |Ql BER ∗σl| ∗wel + |µr−µl| (2.6)

Where:

Qr BER =
√

2er f−1 [1−BER ·Ar]

(2.7)

Ql BER =
√

2er f−1 [1−BER ·Al]

2.4.4 Results

Tables 2.1, 2.2 and 2.3 summarize the obtained results using different types of jitter with different

number of acquisitions. Jitter distribution functions were obtained trough the application of the

math formulas with the application of the convolution when needed, resulting on accurate expected

jitter values allowing an accurate comparison between the expected and obtained results.

Version 0.10 (May 12, 2011)

http://paginas.fe.up.pt/~ee10005/soft/extract_jitter.rar

2.5 Conclusion 9

Jitter Type DJ real RJ Real TJ(1e-14)real Tj(1e-12)real
Gaussian only 0 4.000 61.2 56.24
Dual Gaussian 0 4.472 68.42 62.88
Dual Dirac Gaussian 10 3.000 55.9 52.18
Periodic Gaussian 16 2.000 46.6 44.12
Square Gaussian 17 2.500 55.25 52.15

Table 2.1: Total Jitter Expected

Jitter Type DJ Obtained RJ Obtained TJ(1e-14)Obtained Error(%)
Gaussian only 0.514 4.174 65.88 17.14
Dual Gaussian 0.761 4.840 76.61 21.84
Dual Dirac Gaussian 9.379 3.098 58.3 11.73
Periodic Gaussian 10.963 2.344 48.13 9.09
Square Gaussian 10.926 2.876 56.53 8.4

Table 2.2: Total Jitter obtained for BER=1e-14

Jitter Type DJ Obtained RJ Obtained TJ(1e-12)Obtained Error(%)
Gaussian only 0.514 4.174 61.29 8.97
Dual Gaussian 0.761 4.840 70.79 12.58
Dual Dirac Gaussian 9.379 3.098 54.61 4.66
Periodic Gaussian 10.963 2.344 45.34 2.77
Square Gaussian 10.926 2.876 53.11 1.83

Table 2.3: Total Jitter obtained for BER=1e-12

The jitter histograms with lower probability values tend to result on more accurate values after

jitter decomposition, this fact is expected due to the intrinsic characteristics of the dual-Dirac

method.

Figures 2.2, 2.3, 2.4, 2.5 and 2.6 contain the waveforms used to obtain teh results of tables 2.1,

2.2 and 2.3.

2.5 Conclusion

The extract_jitter tool is very easy to use and provides good results. It’s always necessary to

understand that DJδδ is always lower than DJpp, but T Jδδ is higher than T Jpp for low BER. This

tool allows the designers to predict the IC behavior on a early stage or even to reduce the cost with

a tool to extract jitter.

The accuracy of the results increases with the increase of the Q(x) maximum value, this is

mainly due to the reason that for low probability values the influence of deterministic jitter is neg-

ligible, but at higher probability values, the Q-scale technique doesn’t provide accurate results,

Version 0.10 (May 12, 2011)

10 Jitter Extraction Tool

20 15 10 5 0 5 10 15 20
0.00

0.02

0.04

0.06

0.08

0.10

0.12

µ1 =-3 σ1 =4

(a) Gaussian jitter distribution

20 15 10 5 0 5 10 15
Time(s)

2

1

0

1

2

3

4

Q
(x

)

µl =-2.33834399062

σl =4.3340231922

A_l= 2.0

µr =-2.85218306129

σr =4.05183409742

A_r = 2.01737967556

we_l= 0.433577671643 we_r = 0.566422328357

σ=4.1741849881

µ=0.513839070668

Q-scale

(b) Q-scale

Figure 2.2: Gaussian Jitter decomposition using extract_jitter tool

20 15 10 5 0 5 10 15 20
0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

µ1 =-3 σ1 =3

µ2 =2 σ2 =4

(a) Dual Gaussian jitter distribution

30 20 10 0 10 20
Time(s)

2

0

2

4

6

Q
(x

)

µl =-4.42350150701
σl =4.39110597388
A_l= 2.0

µr =-3.66164998603
σr =5.33932542685
A_r = 2.27970736917

we_l= 0.524162814895 we_r = 0.475837185105

σ=4.84230404924

µ=0.761851520987

Q-scale

(b) Q-scale

Figure 2.3: Dual Gaussian Jitter decomposition using extract_jitter tool

20 15 10 5 0 5 10 15
0.00

0.05

0.10

0.15

0.20

µ1 =0 σ1 =3

Dj−−>µ2 =-5 µ2 =5

(a) Dual-Dirac Gaussian jitter distribution

20 10 0 10 20
Time(s)

2

1

0

1

2

3

4

Q
(x

)

µl =-4.46374571408

σl =3.13106477045

A_l= 3.456

µr =4.91507971106

σr =3.05042890787

A_r = 3.52512

we_l= 0.580415071752 we_r = 0.419584928248

σ=3.09723117784

µ=9.37882542514

Q-scale

(b) Q-scale

Figure 2.4: Dual-Dirac Gaussian Jitter decomposition using extract_jitter tool

Version 0.10 (May 12, 2011)

2.5 Conclusion 11

10 5 0 5 10
0.00

0.05

0.10

0.15

0.20

0.25

µ1 =0 σ1 =2

Pj−−>µ2r=-8 µ2l=8

(a) Periodic and Gaussian jitter distribution

15 10 5 0 5 10 15
Time(s)

2

1

0

1

2

3

4

5

6

Q
(x

)

µl =-5.36053769233
σl =2.30651335619
A_l= 3.78700063253

µr =5.60198104719
σr =2.37918209211
A_r = 5.11615735156

we_l= 0.485270647466 we_r = 0.514729352534

σ=2.34391808758

µ=10.9625187395

Q-scale

(b) Q-scale

Figure 2.5: Periodic and Gaussian Jitter decomposition using extract_jitter tool

15 10 5 0 5 10 15
0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

µ=0 σ=2.5

DJsq=17.0

(a) Square and Gaussian jitter distribution

20 10 0 10 20
Time(s)

2

1

0

1

2

3

4

5

6

Q
(x

)

µl =-5.5590583335
σl =2.8263371578
A_l= 4.61142742737

µr =5.36727625796
σr =2.92678098153
A_r = 4.27866372156

we_l= 0.506936763908 we_r = 0.493063236092

σ=2.87586231457

µ=10.9263345915

Q-scale

(b) Q-scale

Figure 2.6: Square and Gaussian Jitter decomposition using extract_jitter tool

Version 0.10 (May 12, 2011)

12 Jitter Extraction Tool

even when the linearization is correctly performed, since deterministic jitter is mixed with gaus-

sian jitter resulting on super overestimated random jitter values (by nature Q-scale overestimates

random jitter).

The availability of this software on early stages of the design allows the designers to have

an idea of the overall jitter on the system allowing them to take preventive actions increasing the

robustness of the IC.

Version 0.10 (May 12, 2011)

References

[1] Brian Guilfoos Judy Gardiner Stanley Ahalt Ashok Krishnamurthy Jose Unpingco Alan
Chalker Andy Warnock Juan Carlos Chaves, John Nehrbass and OH Siddharth Samsi Ohio
Supercomputer Center, Columbus. "a high-level scripting languages productivity and per-
formance evaluation". HPCMP Users Group Conference (HPCMP-UGC’06), 2006. http:
//www.osc.edu/research/cse/projects/octave_python.pdf.

13

http://www.osc.edu/research/cse/projects/octave_python.pdf
http://www.osc.edu/research/cse/projects/octave_python.pdf

	Front Page
	Contents
	List of Figures
	List of Tables
	1 Software Selection
	1.1 Existent Solutions
	1.2 Programming Language Requisites
	1.3 Python Programming Language
	1.4 Python Configuration
	1.5 Conclusion

	2 Jitter Extraction Tool
	2.1 Introduction
	2.2 Q-scale on discrete events
	2.3 Q-scale Linearization
	2.4 extract_jitter tool
	2.4.1 Linearization
	2.4.2 Multi-thread
	2.4.3 How to use
	2.4.4 Results

	2.5 Conclusion

	References

