
FACULDADE DE ENGENHARIA DA UNIVERSIDADE DO PORTO

Automatic Characterization of
Differential High-Speed Digital

Interfaces

Luís Cruz

Master in Electrical and Computer Engineering

Supervisor: José Carlos Alves (Prof.)

July, 2011

c© Luís Cruz, 2011

Resumo

Neste trabalho foi desenvolvida uma ferramenta de análise de sinais. Esta ferramenta pode com-
plementar o ambiente de simulação de circuitos integrados, possibilitando ainda a geração de
diagramas de olho e análises de jitter.

Tradicionalmente o software utilizado para a analise de sinal é muito genérico, suportando
diferentes tipos de análises, resultando num ambiente mais complexo.

Este trabalho apresenta os diferentes tipos de jitter, condensando num só ficheiro as definições
importantes acerca do mesmo.

A fim de se ter uma melhor percepção da influência do jitter num canal, este trabalho apresenta
uma possível técnica de decomposição do mesmo. O método Q-scale foi usado na extracção das
componentes aleatória e determinística do jitter, tendo por base os diagramas de intervalo temporal
de erro. Este procedimento de extracção de jitter foi validado através do uso de histogramas de
referência, possibilitando a geração de gráficos do tipo bathtub e a obtenção do valor total de jitter
para uma determinada taxa de erros.

Os parâmetros de caracterização de uma interface podem ser estimados. Neste trabalho foi
apresentada uma técnica de extrapolação do digrama de olho. Esta técnica tem por base análises
estatísticas, seguindo um mecanismo similar ao da técnica Stateye.

A precisão da operação de transferência do domínio da frequência para o domínio dos tempos
é afectada pela máxima frequência disponível. Neste trabalho um novo método de extrapolação
da resposta em frequência, baseado nas relações da transformada de Hilbert, foi apresentado au-
mentando desta forma a precisão da conversão para o domínio dos tempos.

Engenheiros de sistema podem usar a ferramenta apresentada nas definições de arquitectura,
possibilitando a observação dos efeitos de cabos, PCBs e circuitos de recuperação de relógio em
termos de jitter e diagrama de olho.

i

ii

Abstract

In this work a free signal analysis tool was developed. This tool can complement the simulation
environment of an interconnection integrated circuit, giving the ability to perform jitter analysis
and eye diagram generations.

The traditional software for signal analysis is very generic, supporting different types of anal-
ysis, resulting in a more complex environment.

This work describes the different types of jitter, concatenating on a single document important
jitter definitions.

To understand the influence of jitter in a channel, this work presents a possible jitter decom-
position technique. The Q-scale method was used to proceed with the extraction of random and
deterministic jitter components, based in the time-interval error histogram. This decomposition
procedure was validated through golden time-interval error histograms. The jitter decomposition
procedure is able to produce bathtub plots and a total jitter value for a targeted BER.

Interface characterization parameters can be estimated. In this work an eye diagram extrapola-
tion technique was presented. Eye diagram extrapolation technique is based in statistical analysis
following an approach similar to Stateye.

Frequency response to time domain response accuracy is affected by the maximum available
frequency information. In this work a new frequency response extrapolation method, based on
Hilbert transform relations, was presented increasing in this way the accuracy of the domain con-
version.

System level engineers can use the presented tool to perform architecture definitions, allowing
them to observe the influence of cables, PCB’s and clock recovery units in jitter and eye diagrams.

iii

iv

Agradecimentos

Quase todo o meu tempo disponível foi dedicado a este projecto. Todos os dias, depois de 9 horas
de trabalho intenso, lá estava eu de volta, para mais umas 5 horas de dedicação. Passei a dormir
entre 4 a 5 horas por dia, a fim de poder chegar a este momento com um bom trabalho e com novos
conhecimentos.

Alguns dos efeitos estudados neste trabalho não são alvo de estudo nesta Universidade. Es-
pero sinceramente que este documento possa ser usado por futuros alunos, como base para novos
estudos.

As dificuldades sentidas foram colmatadas pelo incentivo familiar, dos colegas de trabalho e
dos grandes amigos. Sempre que precisava de discutir alguma coisa lá estavam eles, prontos a
ouvir e ajudar.

Aproveito esta parte do documento para fazer um agradecimento público aos colegas de tra-
balho, que sempre me apoiaram. Gostaria também de fazer um agradecimento especial aos caros
amigos: António Rocha, João Marcos e Mara Carvalho, pela preciosa ajuda que me deram nestes
momentos finais.

Por último queria agradecer à minha família, por ter tolerado a minha falta de comparência
nas reuniões familiares, sobretudo à minha esposa que me apoiou e ajudou desde o primeiro dia.

A todos o meu sincero MUITO OBRIGADO.

O Autor

v

vi

Contents

1 Introduction 1
1.1 Extent . 2
1.2 Actual verification process and difficulties . 2
1.3 Motivation and objectives . 4
1.4 Original contributions . 6
1.5 Thesis organization . 7

2 State of the Art 9
2.1 Jitter definition . 9
2.2 Jitter components . 12

2.2.1 Periodic jitter . 12
2.2.2 Data dependent jitter . 13
2.2.3 Bounded uncorrelated jitter . 16
2.2.4 Random jitter . 16

2.3 Total jitter . 19
2.4 Jitter measurement techniques . 20
2.5 Jitter decomposition techniques . 24

2.5.1 Dual-Dirac . 24
2.5.2 Q-scale . 26

2.6 Integrated circuits development process . 29
2.7 Verification environment . 31
2.8 System architecture simulation environment . 31
2.9 System modeling tools . 32
2.10 Software selection for signal analysis . 32

2.10.1 Existent solutions . 32
2.10.2 Programming language requisites . 33
2.10.3 Python programming language . 34
2.10.4 Python configuration . 34

2.11 Conclusion . 35

3 Jitter Extraction Tool 37
3.1 Introduction . 37
3.2 Q-scale on discrete events . 37
3.3 Q-scale linearization . 38
3.4 The extract_jitter tool . 39

3.4.1 Linearization . 39
3.4.2 Multi-thread . 39
3.4.3 How to use . 40

vii

viii CONTENTS

3.4.4 Results . 40
3.5 Conclusion . 41

4 Signal Analysis 45
4.1 Introduction . 45
4.2 Frequency domain to time domain . 46

4.2.1 Impulse response based on IFFT - considerations 46
4.2.2 Causality enforcement . 47

4.3 Frequency extrapolation . 47
4.4 Clock generation . 51
4.5 Edges extraction . 52
4.6 Data generation . 52
4.7 Convolution . 54
4.8 Clock recovery unit . 55

4.8.1 Clock recovery unit transfer function considerations 56
4.8.2 Plesiochronous system . 56

4.9 Cable model . 57
4.9.1 PCB FR-4 model . 59

4.10 Zero pole gain frequency domain representation 61
4.11 Time interval error measurement . 61
4.12 Eye diagram generation . 62
4.13 Analog parameters extraction . 64
4.14 Eye diagram extrapolation . 65
4.15 Conclusion . 67

5 Signal Analysis - Software Implementation 69
5.1 Introduction . 69
5.2 Signal generation . 69

5.2.1 Clock generation . 69
5.2.2 Edges extraction . 70
5.2.3 Clock multiplication . 71
5.2.4 Data generation . 71
5.2.5 External analog data . 73

5.3 Operation over generated signals . 74
5.3.1 Generic frequency domain to time domain conversion 74
5.3.2 CRU to impulse response generation . 75
5.3.3 HDMI reference equalizer . 75
5.3.4 Impulse response generation . 76
5.3.5 Clock recovery . 76
5.3.6 Convolution . 77
5.3.7 Generic filter . 77
5.3.8 Cable model . 78

5.4 Signal analysis . 79
5.4.1 Eye diagram mask . 79
5.4.2 Analog parameters extraction . 79

5.5 Report file generation . 80
5.5.1 HTML file generation . 82

5.6 Conclusion . 82

CONTENTS ix

6 Results 83
6.1 Introduction . 83
6.2 Proposed software tool accuracy . 83
6.3 Frequency response to time response analysis 87
6.4 Clock recovery topologies analysis . 90

6.4.1 CRU-TF influence on clock shared communication systems 90
6.4.2 CRU-TF influence on plesiochronous communication systems (without

frequency offset) . 91
6.4.3 CRU-TF influence on plesiochronous communication systems (with fre-

quency offset) . 92
6.4.4 CRU-TF influence on clock shared communication systems with high fre-

quency jitter components . 94
6.5 Transmitter characterization . 96

6.5.1 3.4Gbps transmitter characterization based on lab results 97
6.5.2 3.4Gbps transmitter characterization based on simulation results 98

6.6 Channel characterization . 101
6.7 Conclusion . 103

7 Conclusions and Further Work 105
7.1 Conclusions . 105
7.2 Further work . 105

A Channel Characterization Example 107
A.1 Python script . 109
A.2 Simulation html report file . 112

References 117

x CONTENTS

List of Figures

2.1 Jitter distribution examples . 10
2.2 Jitter subcomponents . 11
2.3 Sinusoidal timing jitter . 12
2.4 Sinusoidal clock jitter example (fs = 207e6, f j = 10e6, A j = 0.3 ·T bit) 14
2.5 Cable frequency characteristic . 17
2.6 Data patterns LFSR15 and LFSR15 waveforms at the input and output of the cable 17
2.7 DDJ probability density function for LFSR7 and LFSR15 systems 18
2.8 Probability density function for random jitter (µ = 0,σ = 2ps) 20
2.9 Probability density function for total jitter . 21
2.10 Eye diagram . 22
2.11 Eye diagram . 22
2.12 Translation from TIE to bathtub plot . 23
2.13 Convolution of dual-Dirac distribution with a single Gaussian 25
2.14 Convolution of three Dirac with a single Gaussian 25
2.15 dual-Dirac tail fitting . 26
2.16 Q-scale version of a bathtub plot . 27
2.17 Q-scale . 29
2.18 Total jitter with application of dual-Dirac method 30

3.1 Different values for A resulting on different jitter values 38
3.2 Gaussian jitter decomposition using extract_jitter tool 42
3.3 Dual Gaussian jitter decomposition using extract_jitter tool 42
3.4 Dual-Dirac Gaussian jitter decomposition using extract_jitter tool 42
3.5 Periodic and Gaussian jitter decomposition using extract_jitter tool 43
3.6 Square and Gaussian jitter decomposition using extract_jitter tool 43

4.1 FFT amplitude signal vector representation . 47
4.2 Frequency response of signal e−t∗500e6u(t) . 48
4.3 Impulse response of the time domain exponential signal 49
4.4 fs effect on time domain representation . 50
4.5 Frequency extrapolation (different methods) effect on time domain representation 51
4.6 Signal generation waveform . 53
4.7 PRBS mod7 block diagram . 54
4.8 Clock recovery unit block diagram . 56
4.9 Clock recovery unit transfer function block diagram 57
4.10 Cable lumped devices model . 58
4.11 A cascade connection of two-port networks . 59
4.12 PCB FR4 lumped model . 60

xi

xii LIST OF FIGURES

4.13 Time interval error . 61
4.14 Eye diagram examples . 62
4.15 Eye diagram matrix creation . 63
4.16 Eye diagram mask positioning detection . 64
4.17 Stateye waveform generation flow . 66
4.18 Eye diagram dual dirac waveform . 66
4.19 Eye diagram extrapolation . 67

5.1 Signal generation . 72
5.2 Input clock with rj=0.5ps Vs recovered clock 78
5.3 Signal generation . 81
5.4 Extrapolated eye diagram for BER = 1e−12 with σ = 5.4ps 81

6.1 Circuit used to validate python algorithms . 84
6.2 Cable and generic filter transfer functions . 84
6.3 Python Vs spice cable model effect on PRBS15 signal 85
6.4 Python Vs spice cable model + generic filter effects on PRBS15 signal 86
6.5 Python Vs generic filter effects on PRBS15 signal 86
6.6 PCB FR-4 frequency response profiles, microstrip (black dashed lines), and scal-

able model from [1] (black solid lines) and python implementation (blue solid
lines) for a 30-in trace . 87

6.7 Eye diagram comparison between python and lab 88
6.8 Switch effect when using f s = 50Ghz . 88
6.9 Switch effect when using f s = 20Ghz . 89
6.10 Switch effect when using f s = 20Ghz and proceeding with a frequency response

extrapolation to 50Ghz . 89
6.11 Cable transfer function . 91
6.12 CRU transfer function . 91
6.13 Jitter histogram, clock extracted from clock signal, PRBS15 as data with rj=1ps

and 5mV as amplitude noise . 92
6.14 Eye diagram, clock extracted from clock signal, PRBS15 as data with rj=1ps and

5mV as amplitude noise . 92
6.15 Jitter histogram, clock extracted from PRBS5 data with rj=1ps 93
6.16 Eye diagram, clock extracted from PRBS5 data with rj=1ps 93
6.17 CRU transfer function (1st order) . 93
6.18 Jitter histogram, clock extracted from PRBS5 data with rj=1ps, cable model, 5mV

of random amplitude noise and 2000ppm of frequency offset 94
6.19 Eye diagram, clock extracted from PRBS5 data with rj=1ps, cable model, 5mV of

random amplitude noise and 2000ppm of frequency offset 94
6.20 Jitter histogram, clock extracted from PRBS15 data with rj=1ps, cable model,

5mV of random amplitude noise and 2000ppm of frequency offset 95
6.21 Eye diagram, clock extracted from PRBS15 data with rj=1ps, cable model, 5mV

of random amplitude noise and 2000ppm of frequency offset 95
6.22 CRU transfer function for high frequency jitter tracking 96
6.23 Jitter histogram, when 100MHz of jitter frequency is added to the clock signal . . 96
6.24 Eye diagram, when 100MHz of jitter frequency is added to the clock signal . . . 97
6.25 Transmitter characterization based on lab results (jitter histogram, analog param-

eters) . 98

LIST OF FIGURES xiii

6.26 Transmitter characterization based on lab results (eye diagram, extrapolated eye
diagram) . 98

6.27 Transmitter characterization based on lab results (eye diagram jitter, extrapolated
eye diagram jitter) . 99

6.28 Simulation results - jitter histogram and eye diagram 100
6.29 Simulation results - jitter on eye diagram and analog parameters table 100
6.30 Eye diagram extrapolation based on simulation results 101
6.31 Generic examples . 101
6.32 PCB and cable transfer function . 102
6.33 Eye diagram after 1m cable and 8cm of PCB traces 102
6.34 Jitter histogram and eye diagram after 2m cable and 8cm of PCB traces, PRBS7

signal with 20% of pre-emphasis . 103
6.35 Equalizer C effect on eye diagram (under-equalization) 103
6.36 Equalizer A effect on eye diagram (under-equalization) 104
6.37 Equalizer B effect on eye diagram (good-equalization) 104
6.38 Equalizer C effect on eye diagram (over-equalization) 104

A.1 Channel characteristics . 107

xiv LIST OF FIGURES

List of Tables

2.1 Sinusoidal jitter simulation . 13
2.2 T JRJ multiplication factor . 19

3.1 Total jitter expected for BER=1e-14 and BER=1e-12 41
3.2 Total jitter obtained for BER=1e-14 . 41
3.3 Total jitter obtained for BER=1e-12 . 41

4.1 Error of different frequency extrapolation methods 51
4.2 PCB FR-4 lumped elements value per unit length of equivalent model 60

xv

xvi LIST OF TABLES

Abbreviations and Symbols

BER Bit Error Ratio (Number of errors divided by the number of transmitted bits)
BERT Bit Error Ratio Tester
CAD Computer-Aided Design
CASE Computer-Aided Software Engineering
CDF Cumulative Density Function
CDR Clock and Data Recovery
CRU Clock Recovery Unit
CRU-TF Clock Recovery Unit Transfer Function
CSV Comma Separated Values
DDJ Data Dependent Jitter
DFT Discrete Fourier Transform
DJ Deterministic Jitter
EDF Empirical Distribution Function
FT Fourier Transform
LFSR Linear Feedback Shift Register
IC Integrated Circuits
IDFT Inverse Discrete Fourier Transform
ISI Inter-symbol interference
PCS Phase Changing Speed
PDF Probability Density Function
PLL Phased-looked Loop
PRBS Pseudo Random Binary Sequence
RMS Root Mean Square
RJ Random Jitter
SER/DES Serializer/Deserializer
TDR Time Domain Reflectometer
TIE Time Error Interval
TF Transfer Function
TJ Total Jitter

xvii

xviii Abbreviations and Symbols

Chapter 1

Introduction

Signal analysis is very important on today’s developments. The idea of copying a file from a PC

internal disk to an USB external memory should not take more than a blink of the eye. Current

societies live in a complex environment where productivity, multi-tasking, security and quality are

the cultural foundations.

Current consumer products face a tremendous challenge: how to survive on a very competitive

market where the today’s best product could be the tomorrow’s old fashion gadget.

Consumer electronics companies have two solutions to prevail: intensive marketing campaigns

or overall quality. Marketing campaigns push the differentiating factors to the limit, for example:

a memory vender can state that their product can deliver more Gbps than the competition. Alter-

natively the same example but now with a quality mindset: a memory vender can state that their

product delivers the same Gbps as the average competition, but with 100 times less errors.

Quality and marketing are not the only factors pushing the boundaries of consumer electronics

(indirectly are...). Current philosophy is to add value. Consumer electronics have to be pretty, with

a big display, high transfer data rates, fast... among a few other things.

Consumer electronics products are built from smaller components where each component

needs to interact with other components and can be provided from different suppliers. It’s then

important to ensure the interconnection. Different products can have different interfaces, making

even more difficult the interconnection.

A key aspect on current products is interoperability; no one wants to have a gadget which is

not able to communicate with other devices. Interconnection standards play an important role on

this new industry environment, ensuring the interoperability between them.

The increasing number of supported functions on current consumer electronics demands for

high speed interconnection standards. High speed data transfer allows the users to see internet

videos on portable devices, to communicate with video information instead of only audio, to sup-

port high resolution displays (with/out 3D), between others.

1

2 Introduction

1.1 Extent

The demand for new devices, filled with interactive applications, requires high speed data trans-

fers. New communication standards like HDMI1.4, USB3.0, PCI-E3.0, SATA3.0, 10G XAUI

were developed for different applications but with the same purpose: provide an interface capable

of supporting the current consumer electronics demands.

The data transferred across different devices needs to be effective. Once the number of bytes

shared across different devices increases, the number of errors allowed reduces, to have an effec-

tive data transfer rate.

The BER metric is defined as the number of bits transmitted with errors divided by the total

number of transmitted bits, the typical value for current standards is 10−12 (1 error per 1e12 trans-

mitted bits). BER metric is not shared with the consumer, but products with low BER will never

reach the market since they will not pass a compliance test.

The BER values are difficult to obtain in simulation since the designer needs to transmit bil-

lions of bytes to ensure that the design is in accordance with the specifications. To achieve the

targeted BER in simulation the designer will spend weeks or even months simulating the device,

which is not reasonable. It is necessary to use new methods to achieve this target.

The major goal for each platform/device is to transmit a certain number of bits in the shortest

time and with the shortest number of errors.

High speed interconnection standards have more signal characteristics defined than just BER,

like: Eye Diagram, Signal Amplitude, Rise/Fall times, High and Low voltage values, Jitter values,

Resistor Termination values.

Interconnection standards also include protocol layers, interface pin description and pin func-

tionalities. Such functionalities can be easily verified through fast digital simulations. The major

difficulties are on the signal requirements since those physical interface signals are dependent on

the protocol layer. This dependence moves the simulation to a mixed-signal environment (digital

and analog) so the idea of verifying the analog and digital parts of an IC (Integrated Circuit -

device) as separated blocks is no longer valid.

The IC development stage starts with a high level specification, performed by system engi-

neers, intended to provide the specifications to the internal sub-blocks. Different interconnection

standards will demand different architectures. During the specification stage, system engineers

have to select the most appropriate architecture to be implemented in the integrated circuit.

Consumer electronics devices are created from multiple IC’s which leads to constant pressure

over the IC development teams. The device’s perceptible quality can be defined by a small IC

component bringing new challenges to the IC providers.

1.2 Actual verification process and difficulties

Recent Integrated Circuits can be divided in tree major groups: Analog, Digital and Mixed-Signal.

Each group is associated with a group of specific simulation tools.

1.2 Actual verification process and difficulties 3

Digital circuits are oriented to events; the simulator creates a list of events leading to a variable

time step. The languages associated with Digital circuits are very powerful, a designer can create

a complete automatic verification environment, reducing the human interactions and speeding up

the verification tasks. Usually the simulation results are written to a logfile. At the end of the

simulation a PASS or FAIL indication is provided to the designer.

Digital simulation environments are constantly improved during a product development pro-

cess. Testbench coverage plays an important role during the product development since the de-

signer can check what parts of the digital circuit are not being stimulated by the testbench. There-

fore the designer can add new functionalities to the testbench, in order to increase the coverage.

The major advantage of the digital environment is the number of tests that can be performed

automatically; therefore the risk associated is reduced, leading to better first time right ratios than

the ones on the pure analog developments.

Analog circuits are oriented to time events. The simulator uses a minimum time step increment

which can be defined by the designer. Each step has associated a voltage and current calculation

for each circuit node. This nature leads to long simulations, for example: let’s consider a 1GHz

PLL design. Such PLL will require 100us to achieve lock (reference and feedback clocks aligned

in phase and frequency), if it was used a Verilog model for such block, the lock condition would

be achieved in less than one minute. When an analog simulation environment is used, the same

simulation can easily take 3/4 days on current machines. Therefore, the number of simulations

performed on analog environments is less than in digital environments, reducing the first time

right ratio.

Analog simulation environments are user dependent although some automatic tasks can be

created. In the majority of cases, such tasks are dependent of the verification tool and of the circuit

implementation specific behavior. The same circuit can have different behaviors, depending on

the technology node used.

Analog simulations are time/user consuming: BER measures and accurate eye diagrams gen-

erations are almost impractical to obtain in simulation. The only way to solve this lack of verifica-

tion is to verify the worst case conditions and, based on those values, create a regression curve that

allows the designer to check if the design is meeting the interconnection standard specifications.

Mixed-signal integrated devices are made of analog and digital circuits which will work to-

gether in order to perform a specific task. The majority of these circuits are on the interface stack,

like USB, HDMI, PCI-E. They are responsible for the connection between pure digital circuits

and the messy real analog world. In terms of simulation environment, such circuits share the same

pros and cons of the digital and analog circuits.

Over the last few years, tool vendors have produced mixed mode simulation environments,

allowing the designers to simulate the digital and analog parts of a Mixed-signal circuit with their

specific simulation tools. Therefore such circuits can achieve high simulation coverage within

a reasonable time frame. This new environment is usually called Co-sim (Co simulation - digi-

tal and analog circuits working together). BER and eye diagram results are still being obtained

4 Introduction

using the same technique as the analog circuits (definition of worst case conditions followed by

extrapolation).

One of the biggest problems relates with the definition of the worst case conditions which can

vary from product to product. The emerging of statistical eye diagram generation can be helpful

with this major task.

The dependence of the user on the pure analog verifications is constantly revised. Designers

try to create a couple of tasks for a specific product that will reduce the verification time, but

each new product demands new tasks. There are verification tasks implemented using specific

waveform analyzers routines. Such routines can change from tool version to tool version, therefore

it is necessary to spend extra time to update the verification environment.

Mixed-signal environments have an extra verification loop: digital and analog blocks can be

evaluated separately, but they should work correctly when connected. This loop requires top level

simulations that are normally performed using Co-sim simulation environments. Protocol routines

and interactions between digital and analog circuits need to be evaluated at this level.

Digital designers play a big role on Co-sim environment since in most of the cases the digital

testbench is the one used at this level. Digital and analog tools deal with the digital to analog and

analog to digital conversions, allowing the designer to be focused on the stimuli generation.

The use of the digital testbench allows the designer to create self-checking tasks, reducing the

human interface. The lack on this environment is that some analog parameters cannot be evaluated

(they were previously converted to digital ’1s’ and ’0s’). Such parameters, like rise and fall times,

need to be checked by hand. There are analog parameters that are not affected by the digital circuit;

those ones are verified on the analog simulation environment.

1.3 Motivation and objectives

Product Development teams have to deal with a restricted number of software licenses (software

licenses are very expensive), determining the maximum number of parallel simulations that can

be performed at the same time.

Each new product usually demands a new verification environment which, when combined

with a lack of licenses, has a big impact on the product development plan.

Certification of a new product is done using a set of tools including digital oscilloscopes. New

oscilloscopes come with very good software for signal processing but this software can only be

executed under the oscilloscope. It would be good if such software were available for use within

Linux/Windows PC environment, helping this way the verification tasks.

The scope of this work is to bring some of the signal processing tools to the verification envi-

ronment. There are products, like USB2.0/3.0, which have available for download software tools

capable of analyzing the simulation waveforms and evaluate if the circuit respects the standard

specifications for interface signals.

1.3 Motivation and objectives 5

The main idea of this thesis will be to create a similar software tool, without product limita-

tions, capable of processing simulation saved files and evaluate if the previously defined parame-

ters are met just like the signal processing software available inside the new digital oscilloscopes.

It is also necessary to introduce new techniques for signal evaluation in order to reduce the simula-

tion time. On this work, statistical eye diagram technique will be added to the software verification

tool.

The proposed software will add new features and will be based on open source tools, allowing

the users to improve the existent libraries and to add new ones. The main characteristics are:

• Proposed software will allow the end user to characterize and estimate the full SER/DES

architecture prior to the block implementation. This will reduce the number of simulation

steps and the number of silicon re-spins

• Silicon characterization without using third-party software will be allowed. User’s will

need to use an oscilloscope to capture data. The data processing steps will be done on the

proposed software. The need for third-party characterization software will decrease

• Proposed software will provide to the final user a set of functions/libraries to help on jitter

characterization/decomposition (Random Jitter, Periodic Jitter, Data Dependent Jitter)

• Based on short but accurate transistor level simulations, silicon behavior will be estimated

• The proposed software will allow system engineers to perform system level simulations

reducing in this way the complexity of the architecture definition task.

Proposed software will give to the end user the possibility to characterize all the major analog

characteristics with only one tool (free and open source). It will also allow the user to estimate

and predict the product characteristics before silicon.

The jitter/decomposition can be performed without using third-party software. The use of

python will allow the use of the same script across different operating systems (Windows, Linux,

MacOs).

Jitter budget definition is always a hard task; with this software it will be easier. The end user

will have the possibility to specify the jitter budget for each major block. Then it is possible to

evaluate if the overall target is achieved. It will be also possible to update the model with prelim-

inary results obtained from simulations, to check if all blocks are under the internal specification.

The addition of accurate cable models will allow the end user to better understand the overall

effect in TX and RX sides. The must important functions are:

• Clock recovery unit

• Eye diagram generator

• Statistical eye diagram generator

• Analog to digital and digital to analog conversion

6 Introduction

• Measurement units

Rise and Fall times measurement

Minimum and Maximum values of the analog signal for each digital representation

• Data generation

Internally generated

Extracted from .csv files

• Random noise and duty cycle distortion generation

• Cable emulator

• Equalization

• Channel characterization

1.4 Original contributions

This thesis addresses the signal characterization problems providing a free and easy to use tool,

allowing engineers to perform channel characterization tasks without deep knowledge of signal

analysis.

A linearization technique for Q-scale jitter decomposition method was proposed. Based on

jitter measurements it is possible to decompose jitter in deterministic and random events. This

technique allows the estimation of total jitter values for a given BER.

Maximum frequency information available in frequency response parameters, affects the ac-

curacy of the frequency domain to time domain transformation. In this work a new method for

frequency response extrapolation was presented.

Clock recovery algorithms affect the signal analysis results; the proposed algorithms allow

the user to verify the influence of different transfer functions in terms of eye diagram and jitter

analysis.

Eye diagram extrapolation method was presented; allowing the end user to have an idea of

what will be the eye diagram at the characterization phase. Based on statistical analysis it is

possible to estimate the eye diagram shape in terms of jitter from simulation results with a very

limited number of acquired bits (when compared to the number of bits acquired in characterization

phase).

Signal analysis tool brings to the PC environment functions available in oscilloscopes. The

major difference is related with cost since the presented tool is free. In terms of accuracy it

was proven that the differences are very small, making this tool a good start point for system

architecture definitions.

1.5 Thesis organization 7

1.5 Thesis organization

Chapter 2 presents a review of the jitter components and signal analysis tools. The boundary be-

tween deterministic jitter and random jitter is presented. The dual-Dirac decomposition method is

presented with the associated implications explained. A tail fitting algorithm is presented based on

Q-scale method. Signal analysis tools pros and cons are described for the different environments.

The use of python for the software tool development is also explained.

Chapter 3 presents the developed jitter algorithms. An improved Q-scale method is presented

with implications over total jitter values calculations for a given BER.

Details of the developed signal analysis tool are presented in chapter 4. This chapter describes

in detail the signal analysis python functions and their usage.

Chapter 5 contains the description of the implemented python classes.

In chapter 6, different simulation environment results are presented. CRU-TF analyses are per-

formed over clock shared and plesiochronous systems. TX automatic characterization is demon-

strated. An example of channel characterization environment for 10Gbit/s is demonstrated.

In chapter 7, the main conclusions drawn from this work are presented together with sugges-

tions regarding further work to enhance the application.

8 Introduction

Chapter 2

State of the Art

2.1 Jitter definition

The increasing demand of high speed interface standards raised considerable signal integrity is-

sues. Designers have to ensure the correct functionality and signal integrity of multi Gigabit per

second (Gbps) communication channels. At those frequencies, the low pass characteristic of the

medium changes the shape of the data signals, making their waveform very different then from

square shape. Digital signals at that speed will have voltage and timing variations, which can lead

to wrong signal recovery. Timing variations are called as jitter (wander for frequencies below

10Hz).

Jitter is defined as the deviation of the digital timing event from it is ideal position. Such

deviation can be represented as a probability density function (PDF) histogram, since jitter, by

definition, is a time measurement. Jitter histogram can be obtained by the quantization of the

measured deviations, allowing the user to identify specific types of jitter.

There are different jitter measurements, each with its own distinctive, numerical value. The

most common are:

• Cycle to cycle jitter - Applied to periodic signals; measures the difference between the

current period and the previous one. It can also be applied to non-periodic signals (or with a

long repetition sequence) with the necessary improvements. This measurement is not used

on current designs because a low value does not mean that the system is working properly.

• Period jitter - Applied to clock signals; it represents the maximum deviation of the real

clock transition point to the ideal one.

• Long term jitter - Applied to clock signals; it represents the difference between the ideal

clock transition and the real one. This measure is performed over a large number of clock

cycles and can be represented on a histogram form.

• Time interval error jitter - Can be applied to data and clock signals; it represents the

difference between the event of the signal being measured and the ideal recovered event

9

10 State of the Art

location. This measurement is performed over a large number of bits and can be represented

on a histogram form.

8 6 4 2 0 2 4 6 8
Time(ns)

0.00

0.02

0.04

0.06

0.08

0.10
Jitter Distribution

40 30 20 10 0 10 20 30
Time(ns)

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

0.040

0.045
Jitter Distribution

20 15 10 5 0 5 10 15 20
Time(ns)

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

20 15 10 5 0 5 10 15 20 25
Time(ns)

0.00

0.02

0.04

0.06

0.08

0.10

0.12

Figure 2.1: Jitter distribution examples

Figure 2.1 shows different types of jitter distributions, each one obtained from a different jitter

source. Through observation, it was possible to conclude that the total jitter is data dependent,

increases with the number of captured bits and is pattern dependent. Such observations allowed

engineers to conclude that jitter is not bounded. In fact, jitter contributions come from two major

groups: deterministic and random.

During many years, the effect of random jitter (RJ) on the overall total jitter (TJ) was negli-

gible, due to the low data rates involved. In those cases, deterministic factors like periodic jitter

dictate the total jitter value. For this reason, as of today, total jitter is defined either as RMS or

peak-to-peak, although such definition is not accurate, due to the total jitter not being bounded, as

it suggests. To correctly define the total jitter new methods must be applied.

New models combine the effects of deterministic and random jitter allowing the definition of

a total jitter value for a given bit error ratio. T J = DJ +N×RJ where N = number of standard

deviations corresponding to the required BER.

Total jitter can be divided into the following components [2](see Figure 2.2):

2.1 Jitter definition 11

Figure 2.2: Jitter subcomponents

• Deterministic jitter - Jitter with non-Gaussian probability density function. It is always

bounded in amplitude. Possible causes are imperfections of devices, EMI, grounding prob-

lems, etc;

– Periodic jitter - Refers to periodic variations of signal edge positions over time. Pos-

sible causes of PJ are electromagnetic interference sources such as power supplies;

– Data dependent jitter -Corresponds to a variable jitter that depends on the symbol

pattern transmitted on the link under test;

∗ Duty cycle distortion -Refers to the bit period variation of consecutive alternated

patterns (101010). Possible cause of DDJ is the difference between rise and fall

times on the driver buffer stage.

∗ Inter-symbol interference -Refers to the bit time relation with the previous trans-

mitted pattern. Possible cause of ISI is the low pass frequency response of the link

under test.

– Bounded uncorrelated jitter -Refers to the bit time influence from adjacent links, the

value is bounded but not correlated with the transmitted bits. Possible cause of BUJ is

crosstalk.

• Random jitter - The main source is Gaussian (white) noise within system components. It

interacts with the slew rate of signals and produces timing errors at the switching points.

Decomposition of total jitter into subgroups allows a more accurate jitter budget definition,

helping to control the different jitter sources. Today’s SER/DES (Serializer/Deserializer) inter-

faces can be represented as a PLL and Driver in SER devices; PLL, Receiver and CDR (clock

12 State of the Art

and data recovery) in DES devices. Each one of these blocks will be affected by different jitter

components. The specification of a jitter budget on sub-circuits allows the designers to accurately

design each SER/DES block.

2.2 Jitter components

2.2.1 Periodic jitter

A fundamental limitation in high-speed digital communication systems is the intrinsic jitter of

phase-locked loops (PLL) [3]. Typically, such jitter is on the form of periodic jitter. Periodic

jitter added by PLLs must be tolerated by the clock and data recovery circuit (current standards

define a sinusoidal jitter tolerance mask). A clock signal is a square wave with a fundamental

frequency of fs, which can be decomposed by a Fourier analysis into a sum of sine harmonics of

frequencies fs, 3 fs, 5 fs, etc. When this signal is passed through a band pass filter (driver, channel)

with a center frequency at fs , the components outside the fundamental (3 fs, 5 fs, 7 fs, etc.) can be

discarded. The square wave can be written as (fundamental sinusoidal component with amplitude

A and frequency fs):

Acos(j(t)) = Acos(

j(t)︷ ︸︸ ︷
2 ·π · fs︸ ︷︷ ︸

ωs

·t + /00 +∆ /0(t)) (2.1)

Golden clock

Jitter clock

ΔØ(t) ΔØ(t) ΔØ(t) ΔØ(t)

Figure 2.3: Sinusoidal timing jitter

The phase modulation component ∆ /0(t) (see figure 2.3), which is the timing jitter, can be

defined as: 4 /0(t) = ∆ω · sin(ω j · t). Assuming A j · T bit (s) as the maximum phase difference

between the golden clock and jitter clock,4 /0(t) can be written as:

4 /0(t) = A j ·2 ·π · sin(ω j · t) (rad) (2.2)

Please note that to ensure correct correlation between equations 2.1 and 2.2, the maximum phase

jitter was converted from seconds to radians, since Tbit corresponds to 2 ·π radians, A j ·T bit in

seconds will correspond to A j · 2 · π in radians. The jitter frequency (ω(t)) can be obtained by

2.2 Jitter components 13

differentiating j(t) [4] in relation to time as

ω(t) = ωs +A j ·2 ·π ·ω j · cos(ω j · t)︸ ︷︷ ︸
d
dt4 /0(t)

(rad) (2.3)

The maximum and minimum period can be defined (T = 2 ·π/ω) as:

T = 2π

ωs±A j·2·π·ω j
(s)

T = 2π

2·π· fs±A j·2·π·2·π· f j
(s)

T =
1

fs(1±A j ·2 ·π ·
f j
fs
)
(s) (2.4)

Maximum and minimum frequency can be defined as: f = fs(1±A j ·2 ·π ·
f j
fs
) (Hz).

Another important measure is the phase changing speed (PCS). This parameter defines the

minimum phase tracking on the CDR side. PCS can be obtained by differentiating ∆ /0(t)

PCS = A j ·2 ·π ·ω j · cos(ω j · t) (rad/s) (2.5)

Equation (2.5) can be converted to the form of UI/UI (maximum phase change in terms of bit time

per bit time). To convert seconds to UI (unit interval), it is necessary to multiply seconds by fs,

because 1 (UI) = 1/ fs (s). The conversion from rad to UI can be done by dividing the radian

value by 2 ·π . The maximum phase changing speed (MPCS), which must be tracked by the CDR,

can be defined as:

MPCS = A j ·2 ·π ·
f j

fs
(UI/UI) (2.6)

Figure 2.4 was obtained through simulation. Two clocks were created following the equa-

tions defined above. The golden clock was created using a pure cosine wave with a frequency of

fs = 207MHz, while the jitter clock was created assuming a sinusoidal jitter with fs = 207MHz,

f j = 10MHz, A j = 0.3T bit. The obtained experimental results are correlated with the previous

equations (see table 2.1).

Measurement Formula Expected Obtained
Max Frequency fs(1+A j ·2 ·π ·

f j
fs
) 225.850e6 226.030e6

Min Frequency fs(1−A j ·2 ·π ·
f j
fs
) 188.150e6 188.330e6

Max TIE 0.3 ·T bit 1.449e−9 1.456E−9
Min TIE −0.3 ·T bit −1.449e−9 −1.456E−9

Table 2.1: Sinusoidal jitter simulation

2.2.2 Data dependent jitter

Data dependent jitter is the deviation of each data edge from the ideal point due to the memory of

the system.

14 State of the Art

1.0 1.1 1.2 1.3 1.4 1.5 1.6
Time (s) 1e 7

1.0

0.5

0.0

0.5

1.0

co
s(

j(
t)

)

Sinusoidal Jitter Effect

Golden Clock
Jitter Clock

(a) Golden clock and jitter clock

1.5 1.0 0.5 0.0 0.5 1.0 1.5
Time(ns)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4
Jitter Distribution

(b) TIE histogram

0.00000160 0.00000165 0.00000170 0.00000175 0.00000180 0.00000185 0.00000190
Time (s)

1.90

1.95

2.00

2.05

2.10

2.15

2.20

2.25

Fr
e
q
u
e
n
cy

 (
H

z)

1e8 Periodic jitter - Frequency profile

(c) Frequency variation of jitter clock

0.00000160 0.00000165 0.00000170 0.00000175 0.00000180 0.00000185 0.00000190
Time(s)

1.5

1.0

0.5

0.0

0.5

1.0

1.5

T
IE

 (
s)

1e 9 Periodic jitter - Time Error Interval

(d) Difference between jitter clock and golden clock edge
locations

Figure 2.4: Sinusoidal clock jitter example (fs = 207e6, f j = 10e6, A j = 0.3 ·T bit)

2.2 Jitter components 15

Duty cycle distortion and Inter-symbol interference are good examples of system memory,

meaning that the current bit waveform will depend on the previous bits.

Duty cycle distortion refers to a deterministic and bounded value characterized by the period

difference of alternate consecutive bits.

Inter-symbol interference refers to the band limited characteristic of the system (cable, driver,

connectors). This effect is proportional to the number of equal bits transmitted consecutively.

Duty cycle distortion phenomenon is related with the unbalanced generation of the logical

ones and zeros. Today’s drivers are half rate, meaning that the high speed serial clock is, in terms

of frequency, half of the bit rate, being the selection between bits based on the clock level ("1" or

"0").

Duty cycle of the high speed clock will be directly translated into the overall duty cycle dis-

tortion.

At the driver side, there are two other factors responsible for duty cycle distortion: differ-

ent rise and fall times and mismatch between positive and negative networks. The last two

in conjunction with the clock duty cycle distortion can produce a clean signal (cancelation),

but in the majority of the cases, the three contribute to the duty cycle distortion, leading to

DCD = ck_dc+ rt_ f t + n_p (s), where ck_dc represents the clock duty cycle distortion, rt_ft

represents the difference between rise and fall times and n_p represents the difference between

positive and negative networks (all parameters are specified in seconds).

Inter-symbol interference phenomenon is related with the low pass characteristic of the link.

Different edge patterns have different frequency components. Fast-changing patterns behave as

high-frequency signals; slow-changing patterns behave as low-frequency signals. Because of the

conductors filtering effects, different patterns propagate at different speeds through the conductors.

This difference in propagation speeds causes bits to smear into adjacent bits, resulting in ISI [2].

The extraction of the data dependent jitter of each sub-circuit based on the entire system value

is unpractical. The solution is to measure each block independently, DDJt = ∑
N
i=0 DDJblock(i)

where DDJt represents the total data dependent jitter of the system (theorical), N represents the

total number of blocks and DDJblock(i) represents the data dependent jitter of each block. As stated

before, the observed Total DDJ can be lower than DDJt . To better understand this type of effects

let’s take a look at a real system:

• Two independent data sources LFSR7 and LFSR15. Linear feedback shift register mod-

ule 7 (LFSR7) ensures a maximum run length of 127 then the sequence is repeated. The

maximum number of consecutive equal bits is 7. LFSR15 has a bigger run length: 32767.

The maximum number of consecutive equal bits is 15. Each data source generates 3.4Gbps

(tbit ' 294ps).

• Two duty cycle distortion jitter sources per each data source, with 3.5ps and 6.5ps of deter-

ministic jitter respectively.

• Cable with a low pass characteristic per each data source. The frequency domain response

is described in figure 2.5.

16 State of the Art

The characterization of the system was done using a Spice simulator. The cable was modulated

as a series of inductors, resistors and capacitors and its frequency response obtained doing an AC

analysis. Spice simulator was used to simulate the entire system, reason why the data sources and

jitter source were described in spice like format. During the simulation, 34000 bits were sent and

the final results were post-processed to generate the jitter distributions.

Figure 2.6 contains both waveforms, of the LFSR7 and LFSR15 systems. The differences on

the waveforms are not clear, but it is possible to observe that LFSR15 signal seems to be "slower"

than the one on LFSR7 system, since it takes more time to reach the final value.

In figure 2.7 the effect of the data pattern can be identified through the respective probability

density function.

In LSFR7 system it is possible to separate the DCD from ISI. As expected, the DCD "diracs"

are placed on 0ps, 3.5ps, 6.5ps and 10ps (sum of the two DCD sources). ISI effect is seen on the

spread effect, resulting on DDJLFSR7 = 12ps.

ISI has a bigger effect on LFSR15 system, the only difference between LFSR7 and LFSR15

is the data pattern, meaning that ISI is directly related with the data pattern. In LFSR15 the four

DCD effects cannot be separated, this is due to the ISI bigger factor and as expected the total DDJ

is bigger, DDJLFSR15 = 16ps.

The previous example shows the importance of a correct data codification on today’s commu-

nication standards, because the increase of speed requires lower jitter values, to allow the trans-

mission during long time periods without a single error.

2.2.3 Bounded uncorrelated jitter

Crosstalk is the more common representation of BUJ. This phenomenon can be observed when

two pcb tracks (lineA and lineB), separated by a thin space transmit different patterns. LineB will

induce, through its intrinsic capacitors/inductors, a signal on lineA and vice-versa. The signal at

the end of the lines, in some cases will have a higher amplitude, while in other cases, a lower

amplitude, resulting on different crossing points (timing jitter).

Crosstalk effect can be reduced by separating the lines, increasing the shielding or using differ-

ential signals. No further analysis will be done over this topic, since the use of differential signals

reduces this effect.

2.2.4 Random jitter

Random Jitter is caused by a huge number of very small effects like: thermal oscillations, flicker,

and shot noise, variations in characteristic impedance of the pcb tracks, fluctuations of conductiv-

ity in a conductor caused by impurities, variations in resistance caused by random fluctuations in

the local voltage that individual electrons feel and, literally an infinite number of other tiny effects

combined in a way that result in levels of jitter that cannot be predicted. Thankfully, the funda-

mental theorem of Statistical Physics - The Central Limit Theorem [5] - makes the whole thing

very simple.

2.2 Jitter components 17

Figure 2.5: Cable frequency characteristic

1.10 1.15 1.20 1.25
Time(s) 1e 7

0.0

0.2

0.4

0.6

0.8

1.0

v
(t

)

LFSR7 Cable Response

cable_out

cable_in

(a) LFSR7 waveform

4.00 4.02 4.04 4.06 4.08 4.10 4.12 4.14 4.16
Time(s) 1e 7

0.0

0.2

0.4

0.6

0.8

1.0

v
(t

)

LFSR15 Cable Response

cable_out

cable_in

(b) LFSR15 waveform

Figure 2.6: Data patterns LFSR15 and LFSR15 waveforms at the input and output of the cable

18 State of the Art

2 0 2 4 6 8 10 12
Time (ps)

0.00

0.05

0.10

0.15

0.20

0.25

P
D

F

LFSR7 ISI+DDJ

(a) LFSR7 PDF

4 2 0 2 4 6 8 10 12 14
Time (ps)

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

P
D

F

LFSR15 ISI+DDJ

(b) LFSR15 PDF

Figure 2.7: DDJ probability density function for LFSR7 and LFSR15 systems

The central limit theorem says that if Sn is the sum of n mutually independent random vari-

ables, then the distribution function of Sn is well-approximated by a certain type of continuous

function known as a normal density function (Gaussian distribution for jitter).

Random jitter cannot be described by a simple peak to peak value. It will differ from acquisi-

tion to acquisition, even if the pattern sent was the same in all acquisitions. It is necessary to use a

different measure to describe such variations, such as a probability function (PDF). The waveform

can be described by equation 2.7 where σ represents the standard deviation and µ the mean value.

PDFRJ(x) =
1

σ
√

2π
exp[−(x−µ)2

2σ2] (2.7)

"Maximum" peak to peak jitter values are usually referred taking into consideration a certain

probability. Taking into consideration the target BER, the peak value for RJ can be known. Such

definition allows de designer to take into consideration, a realistic RJ value on the total jitter

definition.

Figure 2.8 describes the relation between BER(x) and PDFRJ(x). BER(x) is an even function,

so the left side (BERl(x)) is equal to right side (BERr(x)).This means that the contribution for total

jitter will be equal to the contribution of both sides. Mathematically, BERl(x) =
∮

∞

x PDFRJ(u)du,

resulting on a total jitter of 2 ·BER−1
l . Ideally, the designer would like to have an equation on the

form of:

T JRJ(BER) = 2 ·Nσ (s) (2.8)

BER equation is described using an exponential integral. The idea will be to find a linear approx-

imation to the function described below:

BERl(x) =
1

σ
√

2π

∮
∞

x
exp[− u2

2σ2 du] (2.9)

2.3 Total jitter 19

Using the following variable transformation a = (u√
2σ
),

BERl(x) =
1

σ
√

2π

∮
∞

x
exp(−a2)da (2.10)

Such function is closely related with the complementary error function described as er f c(x) =
2

σ
√

2π

∮
∞

x exp(−u2)du, resulting

BERl(x) =
1
2

er f c(a) (2.11)

Applying a second variable transformation u = Nσ to a, results in a = N√
2
. The multiplication

value (N) that returns the desired jitter for the specified BER can be found by replacing BERl(x)

by the desired bit error ratio and solving the equation in relation to N.

N =
√

2 · er f c−1(2 ·BER) (2.12)

From equation 2.12 and 2.8, the total jitter value for a given BER can be described as:

T JRJ(BER) = 2 ·
√

2 · er f c−1(2 ·BER) ·σ (s) (2.13)

The complementary error function is tabulated, allowing the designer to easily find the total jitter

value of the random jitter, for a specific bit error ratio. Table 2.2 contains the multiplication factor

for a few BER cases.

Random jitter represents a big issue on today’s systems. Even a system with an amount of

random jitter with a low standard deviation can result on a big total jitter, due to the multiplication

factor effect of the BER.

BER N
1e−6 4.75
1e−8 5.61
1e−10 6.36
1e−11 6.71
1e−12 7.03
1e−13 7.35
1e−14 7.65
1e−15 7.94

Table 2.2: T JRJ multiplication factor

2.3 Total jitter

Total Jitter plays an important role in the development and specification of serial data links but,

while it is well defined, it is not well understood. Total jitter cannot be described as a static and

stand-alone value, since one of the components is RJ that varies with BER.

20 State of the Art

8 6 4 2 0 2 4 6 8
Time (ps)

0.00

0.05

0.10

0.15

0.20

P
D

F

BER_r(x)BER_l(x)

Gaussian Distribution

Figure 2.8: Probability density function for random jitter (µ = 0,σ = 2ps)

Total jitter can be described by a probability density function (PDF), as the random jitter can.

Such function can be obtained through time interval error (TIE) measurements, translated to a

probability histogram, like on figure 2.9. Jitter elements defined previously will be combined in

different ways. Jitter coming from deterministic sources will be summed, while jitter coming from

random phenomenons will be combined on a single σTotal .

Total jitter will be estimated based on the following equations:

DJTotal = DCD(p− p)+ ISI(p− p)+BUJ(p− p) (2.14)

= ck_dc(p− p)+ rt_ f t(p− p)+n_p(p− p)+ ISI(p− p)+BUJ(p− p)

σTotal =
√

σ2
1 +σ2

2 + · · ·+σ2
n

Resulting on,

T J(BER) = 2 ·N(BER) ·σTotal +DJTotal (s) (2.15)

The N(BER) value can be found on table 2.2. In terms of jitter PDF it is necessary to perform a

convolution between all the different PDF, as described on eq. 2.16

PDFT J = PDFRJTotal ⊗PDFDJT otal (2.16)

2.4 Jitter measurement techniques

Jitter measurements can be done using different equipments. There are two major groups: BERT

Scan and Oscilloscopes.

2.4 Jitter measurement techniques 21

15 10 5 0 5 10 15
Time(ns)

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07
Jitter Distribution

Figure 2.9: Probability density function for total jitter

Bit Error Ratio Tester (BERT) equipments can automatically measure the total jitter value.

The measurement is based on the number of errors found, for a specific number of acquisitions.

These equipments can accurately measure the total jitter.

Oscilloscopes work in a different way: these equipments acquire samples, therefore additional

data processing is needed to estimate the total jitter value. Major limitation on these equipments

is related with the maximum number of samples that can be stored. BERT equipments, on the

opposite, only store the number of errors, allowing accurate total jitter measurements.

A BERT equipment is able to shift the sampling point across an entire bit time. To perform a

BERT scan, the equipment generates a known pattern of data and artificially, slides the sampling

point across an entire bit, counting the number of errors found in each sampling point. The num-

ber of errors acquired on each sampling point is then divided by the number of transmitted bits,

resulting on a graphic that has, on the x-axis, time and on y-axis, the bit error ratio value (bathtub

plot).

A BERT equipment is able to observe decoding errors, where it is assumed that such decoding

errors are caused due to timing or voltage errors. BERT scans can accurately specify the total jitter

boundaries, but no information related with voltage or timing margin is provided. The number of

errors will be higher near to the transition bit time, since a small variation on the received signal

will lead to an error. At the middle of the bit, the number of errors will be the lowest, since at

this point the allowed variation on the received signal is the maximum possible. This explains the

reason for sampling the bits at the middle of the bit time.

An oscilloscope equipment works on a different way. It captures the received signal, but

since it is stored on a memory, the number of acquired samples is small, when compared with a

BERT equipment. Oscilloscopes are very useful for determining the jitter components (voltage

and timing jitter). Since it is not possible to acquire enough samples to directly specify the total

jitter, post processing techniques must be used to determine that value.

Today’s communication standards define an eye diagram mask that must be met. Eye diagram

22 State of the Art

Eye Opening (1/(nº Aq.))

Figure 2.10: Eye diagram

measurements are easily performed on an oscilloscope, since the principle is to represent all cap-

tured bits on a single waveform, with a timing window equal to two bits (some cases one bit).

At the end of each two bit cycle, the waveform pointer is reset, allowing a continuous waveform

capture using a time scale of two bits (see figure 2.10).

Eye diagram is the name given to the waveform, obtained from the superposition of all cap-

tured bits in a timing window of two bits. It is then possible to measure the opening at the middle

of the eye and voltage margin too.

Eye diagrams should be obtained using a clock recovery unit (CRU), sometimes called golden

PLL, to correctly define the ideal bit period of each bit. This unit emulates the effect of the PLL

circuit present on the receiver side (figure 2.11).

The eye diagram specification also defines the characteristic of such units. The idea of using

it is to remove the low frequency noise, which is correctly tracked on the receiver side. If such

circuit was not used a complete closed eye diagram will be obtained.

The combination of an oscilloscope, CRU (clock recovery unit) and data processing software

Data

Golden PLL
(CRU)

Measurement
Instrument

Data in

Trigger

Figure 2.11: Eye diagram

2.4 Jitter measurement techniques 23

Golden
Clock

Data

TIE

(a) TIE histogram generation

t

PDF(TIE)

x1 x2

BERr(x1)

BERr(x2)

x3

BERl(x3)

(b) PDF of TIE

100

10-3

10-6

10-8

10-12

tbit

B
E
R

BERr(x) BERl(x)

tbit+x3x1

BERr(x1)

BERl(x3)
BERr(x2)

x2
Eye

Openning
10-12

(c) Bathtub plot

Figure 2.12: Translation from TIE to bathtub plot

ensures a correct jitter measurement. Total jitter measurement starts with the generation of a TIE

histogram. This task is done using the trigger produced by CRU as the ideal edge location, and

then it is necessary to determine the difference between the ideal edge and the real edge location.

Software uses an internal algorithm to accurately determine the transition points of the real signal

and then it is just necessary to store the differences into a histogram. With the TIE histogram

complete, bathtub plot diagrams can be directly determined by calculating the correspondent BER

for each histogram point.

Total jitter for the desired BER can be obtained through a linear approximation. Figure 2.12

exemplifies that process.

24 State of the Art

2.5 Jitter decomposition techniques

The decomposition of total jitter into two major components, random and deterministic, represents

a major task on today’s systems design/evaluation.

The total jitter histogram only provides a maximum jitter peak-to-peak value for a specific

number of acquisitions. No further extrapolations can be done for different number of acquisitions.

This is very important on today’s communication standards since the BER target is to have less

than 1 error in one terabit. Taking the example of USB3.0 (5Gbps), to achieve 1 terabit it is

necessary to acquire data during 3 minutes. For lower BER, the involved time will be even higher,

making this process impracticable (3 minutes of real world can represent as much as years of

simulation time).

The spread of total jitter into deterministic jitter and random jitter (following a Gaussian dis-

tribution), allows the designer to better predict the real system behavior, making the simulation

time more reasonable.

2.5.1 Dual-Dirac

The dual-Dirac model [6], is universally accepted for its utility in quickly estimating total jitter,

defined at a bit error ratio, TJ(BER), and for providing a mechanism for combining TJ(BER) from

different network elements.

The model can be applied only if the total jitter can be separated into RJ and DJ, where RJ

follows a Gaussian distribution and DJ follows a finite bounded distribution.

Dual-Dirac method represents the deterministic jitter as two Dirac functions (DJ(δδ)), and

random jitter as a Gaussian distribution with standard deviation equal to σ(δδ).

Dual-Dirac total jitter value (T J(δδ)) assumes DJ as two Dirac functions located at µl (A ·δ (x−
µl)) and µr (B ·δ (x−µr)), resulting on a total deterministic jitter defined as DJ(δδ) = µr−µl , RJ

will be treated as a Gaussian distribution (1
σ(δδ)

√
2π

exp[− x2

2σ2
(δδ)

]), total jitter is represented as the

convolution of two components, resulting on equation: 2.17 (see figure 2.13).

A
σ(δδ)

√
2π

exp[−(x−µl)
2

2σ2
(δδ)

]+
B

σ(δδ)

√
2π

exp[−(x−µr)
2

2σ2
(δδ)

] (2.17)

Deterministic jitter probability density function can be very different of a dual-Dirac waveform.

Once it will be bounded, it can actually be described as a dual-Dirac approach taking into consid-

eration only the maximum deterministic jitter, let’s call it as DJ(pp).

Figure 2.14 tries to illustrate the basic concept of the superposition of three Dirac functions

(representing the DJ), convolved with a Gaussian distribution. The general idea is that DJ can be

divided into multiple Dirac functions; each function will be convolved with Gaussian distribution,

originating a Total Jitter distribution created by the sum of the convolutions:

PDF [T J(x)] =
N−1

∑
i=0

Ai ·
1

σ
√

2π
exp[−

(x− (µr−µl
N−1 · i+µl))

2

2σ2] (2.18)

2.5 Jitter decomposition techniques 25

μl μr

x−l
2

x−r
2

1
 2

exp − x2

2 2

(a) PDF of each component

1/2
 2

exp −
x−l

2

22

1/2
 2

exp −
x−r

2

2 2

(b) T J(δδ) PDF

Figure 2.13: Convolution of dual-Dirac distribution with a single Gaussian

Applying the central limit theorem to eq. 2.18 and considering low probability points the

resultant function can be described by a new Gaussian distribution. Equation 2.19 is the basis for

dual-Dirac method, proving that it is possible to extract DJ as two Dirac functions and RJ as a

Gaussian distribution. It is important to note that µδδ is different of µpp.

lim
x→−∞

PDF [T J(x)] = A · 1
σlδδ

√
2π

exp[−
(x−µlδδ

)2

2σlδδ
2]

(2.19)

lim
x→+∞

PDF [T J(x)] = B · 1
σrδδ

√
2π

exp[−
(x−µrδδ

)2

2σrδδ
2]

Dual-Dirac approach tries to fit the tails of a specific Gaussian distribution described by µδδ and

σδδ , to the tails of the total jitter probability density function, resulting on two Gaussian distribu-

tions as exemplified on figure 2.15.

Total jitter can now be described as a function of a bounded DJ given by DJδδ = µrδδ
− µlδδ

and a RJ given by µ = 0 and σδδ =
√

σ2
rδδ

+σ2
lδδ

. It is important to notice that DJδδ < DJpp, but

T Jδδ > T Jpp for lower BER. This is achieved at the cost of overestimating σ .

In general dual-Dirac method underestimates deterministic jitter, but overestimates random

jitter and total jitter, resulting on an accurate methodology to characterize the jitter of an entire

x−l
3

x−r
3

1
 2

exp − x2

2 2
x−

r−l
2

3

l r−l
2

r

(a)

1/3
 2

exp −
x−l

2

22

1/3
 2

exp −
x−r

2

2 2

1/3
 2

exp −
x−

r−l
2

2

22

(b)

Figure 2.14: Convolution of three Dirac with a single Gaussian

26 State of the Art

6 4 2 0 2 4 6

0.00

0.05

0.10

0.15

µr(δδ)µl(δδ) µr(pp)µl(pp)

Figure 2.15: dual-Dirac tail fitting

system (see Eq. 2.20).

T Jδδ = DJδδ +N(BER)δδ ·σδδ (2.20)

2.5.2 Q-scale

Dual-Dirac model describes total jitter as two Gaussian jitter distributions, obtained by fitting the

tails of total jitter into a defined Gaussian distribution. The major difficulty resides on the tail

fitting algorithm, since it is difficult to extract the exponential waveform of the total jitter. If the

approximation was linear the complexity of such tasks will be minimal.

Q-scale method [6] provides a linear approximation to exponential waveform of total jitter,

but can only be applied to points far from DJ distribution so that the T J(x) can be described by a

Gaussian curve. Based on eq. 2.19, BERl(x) is given by

BERl(x) = Kl
1

σlδδ

√
2π

∮
∞

x
exp
[
−
(x′−µlδδ

)2

2σlδδ

]
dx′ (2.21)

Now let’s apply a scale transformation (if T J(x) follows a Gaussian curve)

Q =
x−µlδδ

σlδδ

(2.22)

2.5 Jitter decomposition techniques 27

-

Figure 2.16: Q-scale version of a bathtub plot

Resulting on

BERl(Q) = Kl
1

σlδδ

√
2π

∮
∞

Q
exp

[
−
(

Q′√
2

)2
]

dQ′ (2.23)

The complementary error function is given by

er f c(x) =
2

σ
√

2π

∮
∞

x
exp(−u2)du (2.24)

so that eq. 2.22 can be writen

BERl(Q) = Kler f c
(

Q√
2

)
(2.25)

= Kl

(
1− er f

(
Q√

2

))
The reason why this is being done can be found on figure 2.16, where BER(x) is mapped on a

bathtub plot resulting on a representation of the Gaussian distributions as straight lines. To obtain

28 State of the Art

Q(BER) it is necessary to invert eq. 2.25, resulting on

BERl

Kl
−1 = −er f

(
Q√

2

)
er f
(

Q√
2

)
= 1− BERl

Kl
(2.26)

Q(BERl) =
√

2er f−1 [1−BERl ·Al]

Where er f−1 indicates the inverse error function and Al =
1
Kl

. Until this point it is assumed

that jitter follows a Gaussian distribution, but now that Q(BERl) was described it is possible to

generalize it to any case. Taking into consideration the dependence of BERl on the time-delay

position of the sampling point, it is possible to express such value as a dependence of time, so

replacing BERl by BERl(x) on eq. 2.26, a general definition of Ql that does not rely on the form

of the jitter distribution can be described as:

Ql(x) =
√

2er f−1 [1−BERl ·Al] (2.27)

Since Ql(x) =
x−µl

δδ

σl
δδ

, the designer will have to tune A in order to achieve a good linear approxima-

tion of Q(x) to a straight line. From the linear approximation it will be possible to obtain µ as the

time where Q(x) = 0 and σ , as the inverse of the approximated line slope. This method follows

the same concept as the ones described in [7] and [8].

Q-scale allows the designer to decompose total jitter into deterministic jitter and random jitter.

Still it is also necessary to characterize total jitter in relation to a bit error ratio, from Q-scale and

replacing BER(x) by the desired BER:

QBER =
√

2er f−1 [1−BER ·A] = x−µlδδ

σlδδ

Resolving in relation to x, results on

xl = Ql BER ·σlδδ +µlδδ (2.28)

To obtain the T J(BER) it is necessary to consider both sides of the total jitter distribution, since

BERl(x) is equal to BERr(−x) in terms of equation, resulting on

T J(BER) = Ql BER ·σlδδ +µlδδ −Qr BER ·σrδδ −µrδδ (2.29)

Figure 2.17 shows an example of a Q-scale waveform obtained from a total jitter histogram with

DJpp = 5 and RJ = 1, as expected σrδδ < 0 since the slope is negative, resulting on

T J(BER) = Ql BER ·σlδδ +(Qr BER ·σrδδ)+ |µlδδ −µrδδ | (2.30)

Based on eq. 2.30, deterministic jitter can be defined as DJδδ = |µlδδ −µrδδ |. In terms of random

jitter and following [9] the contribution of each σ can represent a value different than 50% due

to that fact that σδδ includes the contribution of DJ not only RJ, considering wel and wer as the

2.6 Integrated circuits development process 29

-

Figure 2.17: Q-scale

multiplication factors where wl +wr = 2 equation 2.30 would be:

T J(BER) = Ql BER ·σlδδ ·wel +Qr BER ·σrδδ ·wer + |µlδδ −µrδδ | (2.31)

Figure 2.18 represents the total jitter Empirical density function (discrete PDF) and the obtained

dual-Dirac Gaussian distributions, showing the accuracy of Q-scale method.

2.6 Integrated circuits development process

Automatic characterization of differential high-speed digital interfaces can be divided in two big

groups: functional characterization and electrical characterization.

Functional characterization covers the signaling schemes, which must be addressed by the

testbench, to comply with a predefined operation mode. Different designs can be impaired and in

all cases the end user should obtain a similar result. As an example, for a TV standard like HDMI,

functional characterization would include: supported video modes, support for HDCP encoding,

correct color mapping, sound extraction, correct encoding/decoding, HPD operation, etc.

Electrical characterization is related with signal quality: rise and fall times, differential volt-

age, termination value, power down termination value, inter-pair skew, intra-pair skew, jitter, sin-

gle ended high voltage and low voltage, etc. Signal quality is typically dictated by transmitter

30 State of the Art

10 5 0 5 10
x

0.0000

0.0001

0.0002

0.0003

0.0004

0.0005

0.0006

E
D

F(
x
)

Figure 2.18: Total jitter with application of dual-Dirac method

devices, but receiver devices need to comply with the worst signal defined. On the transmitter

side, the signal quality is evaluated; on the receiver side, the signal tolerance is evaluated.

A great number of characterizations/verifications are done over a physical device on labo-

ratories, using expensive test equipment. Sometimes the necessary software to proceed with an

automatic characterization for a specific standard is not included by default in these equipments,

requiring an extra cost to have such software.

Development phase of new devices is divided in three major groups: architecture definition,

implementation and verification. Focusing our attention on front-end devices (OSI Layer 1 - PHY),

it is even possible to divide it into digital and analog circuits. Each one of these circuits has their

own implementation/verification languages.

Digital circuits are described in Verilog or VHDL language. Simulations are performed using

the same languages or high level languages like SystemVerilog, system C or even pure C. Digital

tools allow the designer to perform functional verifications over the entire circuit when analog

circuit behavioral model is present; or over only the digital part when such model is absent.

Analog circuits are described in Spice or Spectre language. Simulations are performed using

these languages together with Verilog-A.

2.7 Verification environment 31

2.7 Verification environment

Current products (devices) verification environments are no longer pure digital or analog. Today’s

verification environments are complex, supporting mixed-mode simulations performed on a late

development stage.

Simulations take about 80% of the development time. The demand for faster development

cycles implies faster verification environments, which explains the attraction for SystemVerilog

and Verilog-A on digital and analog side respectively.

Results extracted from simulations should allow the designers to make the necessary correc-

tions on the hardware description, increasing the need for complex verification tools like the ones

used on characterization phase.

Time involved on simulation is very different from the time involved in characterization. For

example, a full spice circuit simulation of a 3ms period can take more than one month to be

concluded. Today’s developments use a mixed mode environment, which speeds up the verifica-

tion phase, demanding for higher accuracy for electrical signal characterization at the simulation

environment.. Faster simulations are commonly obtained through a reduction of the simulation

accuracy.

The solution for a good match between real circuit and simulation model is the use of worst

case conditions, combined with parameters extracted from previous designs, at the verification

phase.

2.8 System architecture simulation environment

Architecture definition is the first task of a new development phase. It is important to understand

how the system requirements can be achieved, the implication in terms of area, power consumption

and development team members (number, expertise, effort).

During system architecture definition, system engineers perform successive trials in order to

find the pros and cons of the different possible architectures, allowing the engineers to start defin-

ing a high level specification (top-down approach).

System engineers tend to use high level simulation languages/tools instead of Verilog or Spice,

increasing the simulation speed. For example, a low pass filter can be defined as a transfer func-

tion block on MATLAB Simulink. If Spice was used instead, it would be necessary to design a

complete circuit with RLC elements.

Signal integrity analysis is also performed at this stage, requiring the availability of cable

models, PCB models, driver model, equalizer model and jitter budget. Different tools allow the

designer to perform such simulations.

32 State of the Art

2.9 System modeling tools

MATLAB and ADS (Advanced Design System) are the most used tools on system level architec-

ture definitions. "MATLAB is a high-level language and interactive environment that enables you

to perform computationally intensive tasks faster than with traditional programming languages

such as C, C++, and Fortran". This definition can be found at the MATLAB site. On ADS web

site it is possible to read: "Advanced Design System is the leading electronic design automation

software for RF, microwave, and high speed digital applications". Despite the differences both

tools can be used to perform architecture simulations.

Cables have a big impact on the overall system architecture definition, influencing the equal-

izer frequency response, the receiver gain, etc. Unfortunately the designer cannot find such mod-

els on books or on the internet; they must be obtained through cable characterization using s-

parameters provided by vector analyzers or TDR parameters provided by TDR equipment. ADS

has the ability to work with s-parameters, removing from the user the need to extrapolate the

frequency response to achieve a good accuracy.

EEsoft Agilent software library provides a set of tools, aimed to support system engineers

on the design of communication products. It is important to notice that the use of Agilent EDA

software tools allows the designers to understand what will happen at the characterization phase,

since similar software will be present on test equipment.

ADS and MATLAB have internal libraries for signal processing, but these are paid tools. A

single license can be affordable, but when multiple licenses are needed the overall cost can force

the development teams to use different tools, or to create their specific tools.

Jitter decomposition is important for system engineers, allowing them to easily understand

which parts of the system are introducing such components. It is also useful for designers during

the bit error ratio estimations, since random jitter increases with the number of transmitted bits.

Test equipment provided by LeCroy, Agilent and Tektronix, for example, provide separate

software that connected to the oscilloscope allows the user to extract jitter and perform jitter de-

composition. These tools usually have to be paid separately (not included in the oscilloscope

package). Furthermore, only Agilent software can be used outside the oscilloscope.

Free tools are also available: GNU Octave (MATLAB clone), Stateye [10] (designed for

channel characterization). However, it will require training to start using them, and for example

clock recovery algorithms will have to be implemented by the user.

2.10 Software selection for signal analysis

2.10.1 Existent solutions

The development of new Integrated Circuits (IC) starts with the creation of behavioral models for

such circuits. These allow the system engineers to identify the correct platforms/solutions that

must be implemented.

2.10 Software selection for signal analysis 33

During the platform specification, system engineers define the blocks to implement as well

as their parameters, such as: gain, frequency response, bandwidth, maximum response delay, etc.

The accuracy of the behavioral models will dictate the correctness of the block specification . At

this point system engineers do not use languages like Spice or even Verilog-A as they will require

unnecessary work which will reduce the ability to choose between different platform solutions.

System engineers tend to use MATLAB or even ADS (Advanced Design System) tools pro-

viding an abstraction layer to the real implementation. This allows the development of accurate

behavioral models. Such tools require depth knowledge of the proprietary programming languages

supported. This needs extensive training from the engineers before starting the behavioral model

creation. The use of proprietary languages reduces the number of engineers which have the skills

to work as system engineers. MATLAB and ADS licenses are expensive which reduces even

more the number of engineers that have access to them. The ideal solution will be to have the

ADS/MATLAB engine on a form of free programming language allowing a bigger number of

engineers to understand and work at system level.

2.10.2 Programming language requisites

There are different programming languages suitable to use on the tool development. Octave is one

of them. Octave is a MATLAB clone that supports the majority of MATLAB instructions. But

like MATLAB the number of users is restricted and it will also require previous extensive training.

Octave is not fast [11] and has limited support, reducing the ability to produce an interesting tool.

The programming language that will be used on the software tool development will have to

respect the following requisites:

• Free

• Relatively fast

• Built-in signal processing functions

• Built-in plot functions

• Built-in probability functions

• Built-in functions for "electronic engineers"

• Support for interactive debugging

• Support for multi-threading

• Support for graphical interface

• Easy to use

34 State of the Art

2.10.3 Python programming language

Scientific groups are trying to use open source software to address the new projects. The use

of Python for scientific purposes has been increasing. Due to this fact new libraries are being

constantly added to python making it a really scientific tool.

Python is very well spread with good support forums in the internet making it easier to find

documentation and tutorials. One of the major advantages is the portability. Python does not need

to be compiled and the same code will work in Windows, Linux and MacOS, reducing the inter-

operability problems. The user only needs to install the python interpreter on his machine to be

able to run python code.

Python packages extend the base python functions giving to the end user a powerful engine to

produce scientific tools. Numpy and scipy packages extend python to support: statistics, numer-

ical integration, linear algebra, Fourier transforms, signal processing, image processing, special

functions, powerful N-dimensional array object and random number capabilities among others.

Numpy and scipy were built in C language ensuring good performance. The matplotlib pack-

age is a python 2D/3D plotting library which produces publication quality figures in a variety of

hardcopy formats and interactive environments across platforms. Pyrex package is a language

specially designed for writing Python extension modules. This package is designed to bridge the

gap between the nice, high-level and easy-to-use world of Python and the messy and low-level

world of C.

Python also has an user friendly command line interpreter. Graphical user interface develop-

ment can be done using the PyQt package which has a substantial set of GUI widgets. Multi-

processing is a package that supports spawning processes using an API similar to the threading

module. The multiprocessing package offers both local and remote concurrency which effectively

side-steps the Global Interpreter Lock by using sub processes instead of threads. Thanks to this the

multiprocessing module allows the programmer to fully leverage multiple processors on a given

machine. There is also the possibility to perform calculations on graphics cards thanks to the pygtk

package .

Python is very easy to use with object oriented support. Variable manipulation does not require

a type definition (int, real, string, char) as such type will be dynamically allocated.

2.10.4 Python configuration

Python 2.6 version was used due to the code stability and bigger support on the internet. This ver-

sion was also selected due to the extensive support and packages availability. Pythonxy was used

to provide a complete and stable environment removing the need to install the different packages

one-by-one.

Pythonxy is a free scientific and engineering development software for numerical computa-

tions, data analysis and data visualization based on Python programming language, Qt graphical

user interfaces, Eclipse integrated development environment and Spyder interactive scientific de-

velopment environment. Pythonxy can also be defined as a scientific-oriented Python Distribution

2.11 Conclusion 35

based on Qt and Eclipse. Its purpose is to help scientific programmers to switch from interpreted

languages (such as MATLAB) or compiled languages (C/C++ or Fortran) to Python.

Pythonxy supports interactive debugging, allowing the user to place breakpoints across the

code under development, as the possibility to dynamically check the variables value. Pythonxy

interactive mode provides the necessary support during the development phase.

2.11 Conclusion

Jitter can assume different forms leading to different conclusions. Today’s developments pay a big

attention to random jitter, since the effect is proportional to the number of transmitted bits.

There are different types of decomposition algorithms, although the dual-Dirac method is

becoming the most popular, allowing the designers to estimate that effect over the data channel.

A correct jitter decomposition increases the circuit robustness, leading to a high quality device.

Signal analysis is indispensable for the development of the today’s interconnection devices,

since with giga bit interfaces, the signals can suffer from multiple effects leading to wrong behav-

iors. Signal characterization tools, allows the designer to have an idea of the signal characteristics

after physical implementation.

In this chapter, different approaches for automatic characterization software were presented.

The main focus was on the most used applications, a few more could be presented; this was not

done since they are very specific.

Signal analysis tool will be implemented under python language. The main reasons for that

choice are explained in this chapter.

36 State of the Art

Chapter 3

Jitter Extraction Tool

3.1 Introduction

One of the most important analyses used to predict a system behavior for long bit sequences is the

jitter decomposition. Usually this type of analysis is preformed over IC samples using expensive

laboratorial equipment. The intent of this work is to present a tool capable of doing it but free.

The extract_jitter tool uses the Q-scale method to extract the deterministic and random jitter

components. The user just needs to provide a jitter histogram file on a csv (comma separated

values) format to the gen_hist.exe executable file. The result will be a pdf file with the jitter

extracted components.

3.2 Q-scale on discrete events

As described on chapter 2.5.2 Q-scale can be expressed as:

Q(x) =
√

2er f−1 [1−BER(x) ·A] (3.1)

Total jitter is determined by integrating the probability density function (PDF) separately

from left and right to determine the symmetric cumulative density function (CDF). The width

of this curve at the specified BER (or confidence interval) gives the total jitter. Meaning that

BER(x) =CDF(x) =
∮ x′=∞

x′=−∞
PDF(x′)dx′. CDF(x) is purely theoretical obviously , however it can

be calculated using the EDF (Empirical Distribution Function), summing the jitter histogram from

the left extreme to the desired value of x.

EDF(x = hi) =

k=i−1
∑

k=0
Hk

k=N−1
∑

k=0
Hk

=
1

Ptotal

k=i−1

∑
k=0

Hk (3.2)

For the purpose of calculating Q(x), following the same idea of previous jitter discussions

where the designer is interested in both variations in timing jitter, before and after the mean timing

37

38 Jitter Extraction Tool

2 1 0 1 2
Time(s) 1e 11

2

1

0

1

2

3

4

Q
(x

)

µl =-9.71487638445e-12

σl =3.47208833069e-12

A_l= 3.0

µr =9.59607342993e-12

σr =4.29900545453e-12

A_r = 3.0

we_l= 0.547418176138 we_r = 0.452581823862

σ=3.84633599078e-12

µ=1.93109498144e-11

Q-scale

(a) Non-improved linear approximation

2 1 0 1 2
Time(s) 1e 11

2

1

0

1

2

3

4

Q
(x

)

µl =-1.16944141828e-11

σl =3.06924459247e-12

A_l= 6.6287230552

µr =1.09693877385e-11

σr =3.98475343601e-12

A_r = 4.5

we_l= 0.531433613388 we_r = 0.468566386612

σ=3.4982212632e-12

µ=2.26638019213e-11

Q-scale

(b) Improved linear approximation

Figure 3.1: Different values for A resulting on different jitter values

value, it is necessary to calculate the left and right sides of the Q-scale. The first thing to do is to

obtain the mean position value and then calculate the respective BER:

BERl(x) = EDFl(x = hi) =
k=imean−1

∑
k=0

Hk (3.3)

BERr(x) = EDFr(x = hi) =
k=imean

∑
k=N−1

Hk (3.4)

Practically these two functions are joined at the median of the histogram (the bin containing

the median, or the bin which 50% of the total population is in that bin or those with lower index).

Consequently, 50% of the total population also falls within that bin and those bins with higher

index.

3.3 Q-scale linearization

Jitter decomposition tool is based on Q-scale method using a linear approximation to extract ran-

dom and deterministic jitter values. Since Q(x) = x−µ

σ
, the relation between Q(x)and x is given

by a line, with slope = 1
σ

and y− intersept = −µ

σ
. The intent of extract_jitter tool is to find such

values.

During the linearization process, variable A will be changed to reduce the error between Q(x)

and the obtained linear approximation. The designer must be aware that a wrong value of A can

result on wrong random and deterministic jitter extraction values. On Figure 3.1 the difference on

the extracted jitter values can be clearly observed . These differences are caused by a bad lineariza-

tion because Q(x) is far from a straight line (the designer should only take into to consideration

values where Q(x)> 0).

The extract_jitter tool divides the jitter histogram in two parts (left and right) and then process

the data of each part independently. It is important to notice that each part has their own coefficient

3.4 The extract_jitter tool 39

,Ar or Al , allowing a correct linearization of each side. The use of two independent coefficients is

mathematically accurate because each side has their own deterministic jitter. Different coefficients

allow the consideration of distinct DJ profiles on each side.

In terms of linearization it is also interesting to notice that to correctly extract the jitter com-

ponents it is necessary to consider only low probability events. The reason for this is that the

Q-scale method assumes that RJ follows a Gaussian distribution and DJ can be defined by two

Dirac functions. If the designer uses high probability values the obtained results will be certainly

wrong since the idea behind this method is no longer valid.

A golden value can be obtained following this approach: Let’s consider 15 as the maximum

number of consecutive equal bits transmitted. Using a PRBS function to generate the random

bits results on an event probability of: 1
215 = 3.05e−5. Mapping it into the Q-scale results on

Q(3.05e−5) = 4.008. In conclusion, in order to obtain accurate jitter values the provided jitter

distribution function must generate Q(x) function with values bigger than 4.008.

3.4 The extract_jitter tool

3.4.1 Linearization

The linear approximation is the tool core since everything will depend of it. The idea was to

change the coefficient A limiting the minimum and maximum values, using the Newton’s method

to find the next A value that reduces the quadratic error between the obtained line and Q(x), the

error is only considered for Q(x)> 0.

The Newton’s method can have convergence issues which were addressed by defining a maxi-

mum number of iterations. After that number, the linear approximation stops and the A value that

returns the lower error is used . The algorithm also stops when the error is bellow than 0.001.

The number of interactions needed to find a coefficient that reduces the error of the linear

approximation was reduced by using the second order derivation function (when possible). Ai+1

can be defined as:

Ai+1 = Ai−
dQ(x)

dx
d2Q(x)

dx

(3.5)

Proper linearization was also guaranteed by ensuring that the linearization error differences are

only considered when Q(x) has values lower than zero. This ensures that Q(x) can be described as

the convolution of two dual-Dirac functions with a Gaussian distribution.

3.4.2 Multi-thread

One of the major advantages of using a programming language to create this software tool is the

possibility to use threads and queues. Since the jitter extraction can be divided in two parts, the

jitter extraction can be performed on each side independently. Based on this fact, the software also

divides the work in two threads: one calculates the jitter of the left side and the other calculates

the jitter of the right side.

40 Jitter Extraction Tool

Current processors have multi-threading capabilities. The introduction of multi-thread native

support on extract_jitter tool allows the designers to obtain jitter decomposition values faster mak-

ing use of the capabilities of current processors.

3.4.3 How to use

Jitter extraction software can be found under: http://paginas.fe.up.pt/~ee10005/soft/

extract_jitter.rar The user needs to have a software capable of opening RAR files, like

7-Zip, in order to be able to start working. Next it is necessary to provide the jitter histogram. The

extract_jitter.rar file also provides three examples that can be found under examples directory. The

user can create its own file. In order to do that it is just necessary to follow these steps:

• Create a file called <file_name>.csv

• Inside <file_name>.csv separate the histogram hits by new lines

• Each histogram hit (line) should have the time and hit value separated by comma: time, hit

• Once the histogram is completely described it is just necessary to save and close the file

• On the command line and inside extract_jitter directory perform the following command:

gen_hist.exe <file_name>.csv

• The jitter tool will create a file named <file_name>_Qscale.pdf containing the jitter extrac-

tion values

In order to make the software more generic there is no indication of the total jitter value for

the desired BER, but the user can obtain this value through:

T J(BER) = Qr BER ·σr ·wer + |Ql BER ·σl| ·wel + |µr−µl| (3.6)

Where:

Qr BER =
√

2er f−1 [1−BER ·Ar]

(3.7)

Ql BER =
√

2er f−1 [1−BER ·Al]

3.4.4 Results

Tables 3.1, 3.2 and 3.3 summarize the obtained results using different types of jitter with different

number of acquisitions. Jitter distribution functions were obtained through the application of

the math formulas with the application of the convolution when needed. The result is accurate

expected jitter values, allowing an accurate comparison between the expected and obtained results.

http://paginas.fe.up.pt/~ee10005/soft/extract_jitter.rar
http://paginas.fe.up.pt/~ee10005/soft/extract_jitter.rar

3.5 Conclusion 41

Jitter Type DJ real RJ Real TJ(1e-14)real Tj(1e-12)real
Gaussian only 0 4.000 61.2 56.24
Dual Gaussian 0 4.472 68.42 62.88
Dual Dirac Gaussian 10 3.000 55.9 52.18
Periodic Gaussian 16 2.000 46.6 44.12
Square Gaussian 17 2.500 55.25 52.15

Table 3.1: Total jitter expected for BER=1e-14 and BER=1e-12

Jitter Type DJ Obtained RJ Obtained TJ(1e-14)Obtained Error(%)
Gaussian only 0.514 4.174 65.88 17.14
Dual Gaussian 0.761 4.840 76.61 21.84
Dual Dirac Gaussian 9.379 3.098 58.3 11.73
Periodic Gaussian 10.963 2.344 48.13 9.09
Square Gaussian 10.926 2.876 56.53 8.4

Table 3.2: Total jitter obtained for BER=1e-14

Jitter Type DJ Obtained RJ Obtained TJ(1e-12)Obtained Error(%)
Gaussian only 0.514 4.174 61.29 8.97
Dual Gaussian 0.761 4.840 70.79 12.58
Dual Dirac Gaussian 9.379 3.098 54.61 4.66
Periodic Gaussian 10.963 2.344 45.34 2.77
Square Gaussian 10.926 2.876 53.11 1.83

Table 3.3: Total jitter obtained for BER=1e-12

The jitter histograms with lower probability values tend to provide more accurate values after

jitter decomposition. This fact is expected due to the intrinsic characteristics of the dual-Dirac

method.

Figures 3.2, 3.3, 3.4, 3.5 and 3.6 contain the waveforms used to obtain the results of tables 3.1,

3.2 and 3.3.

3.5 Conclusion

The extract_jitter tool is very easy to use and provides good results. It is always necessary to

understand that DJδδ is always lower than DJpp, but T Jδδ is higher than T Jpp for low BER. This

tool allows the designers to predict the IC behavior on an early stage or even to reduce the cost

with a tool to extract jitter.

The accuracy of the results grows along with the increase of the Q(x) maximum value. This is

mainly due to the fact that for low probability values the influence of deterministic jitter is negli-

gible but at higher probability values the Q-scale technique does not provide accurate results. This

42 Jitter Extraction Tool

20 15 10 5 0 5 10 15 20
0.00

0.02

0.04

0.06

0.08

0.10

0.12

µ1 =-3 σ1 =4

(a) Gaussian jitter distribution

20 15 10 5 0 5 10 15
Time(s)

2

1

0

1

2

3

4

Q
(x

)

µl =-2.33834399062

σl =4.3340231922

A_l= 2.0

µr =-2.85218306129

σr =4.05183409742

A_r = 2.01737967556

we_l= 0.433577671643 we_r = 0.566422328357

σ=4.1741849881

µ=0.513839070668

Q-scale

(b) Q-scale

Figure 3.2: Gaussian jitter decomposition using extract_jitter tool

20 15 10 5 0 5 10 15 20
0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

µ1 =-3 σ1 =3

µ2 =2 σ2 =4

(a) Dual Gaussian jitter distribution

30 20 10 0 10 20
Time(s)

2

0

2

4

6

Q
(x

)

µl =-4.42350150701
σl =4.39110597388
A_l= 2.0

µr =-3.66164998603
σr =5.33932542685
A_r = 2.27970736917

we_l= 0.524162814895 we_r = 0.475837185105

σ=4.84230404924

µ=0.761851520987

Q-scale

(b) Q-scale

Figure 3.3: Dual Gaussian jitter decomposition using extract_jitter tool

20 15 10 5 0 5 10 15
0.00

0.05

0.10

0.15

0.20

µ1 =0 σ1 =3

Dj−−>µ2 =-5 µ2 =5

(a) Dual-Dirac Gaussian jitter distribution

20 10 0 10 20
Time(s)

2

1

0

1

2

3

4

Q
(x

)

µl =-4.46374571408

σl =3.13106477045

A_l= 3.456

µr =4.91507971106

σr =3.05042890787

A_r = 3.52512

we_l= 0.580415071752 we_r = 0.419584928248

σ=3.09723117784

µ=9.37882542514

Q-scale

(b) Q-scale

Figure 3.4: Dual-Dirac Gaussian jitter decomposition using extract_jitter tool

3.5 Conclusion 43

10 5 0 5 10
0.00

0.05

0.10

0.15

0.20

0.25

µ1 =0 σ1 =2

Pj−−>µ2r=-8 µ2l=8

(a) Periodic and Gaussian jitter distribution

15 10 5 0 5 10 15
Time(s)

2

1

0

1

2

3

4

5

6

Q
(x

)

µl =-5.36053769233
σl =2.30651335619
A_l= 3.78700063253

µr =5.60198104719
σr =2.37918209211
A_r = 5.11615735156

we_l= 0.485270647466 we_r = 0.514729352534

σ=2.34391808758

µ=10.9625187395

Q-scale

(b) Q-scale

Figure 3.5: Periodic and Gaussian jitter decomposition using extract_jitter tool

15 10 5 0 5 10 15
0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

µ=0 σ=2.5

DJsq=17.0

(a) Square and Gaussian jitter distribution

20 10 0 10 20
Time(s)

2

1

0

1

2

3

4

5

6

Q
(x

)

µl =-5.5590583335
σl =2.8263371578
A_l= 4.61142742737

µr =5.36727625796
σr =2.92678098153
A_r = 4.27866372156

we_l= 0.506936763908 we_r = 0.493063236092

σ=2.87586231457

µ=10.9263345915

Q-scale

(b) Q-scale

Figure 3.6: Square and Gaussian jitter decomposition using extract_jitter tool

44 Jitter Extraction Tool

happens even when the linearization is correctly performed since deterministic jitter is mixed with

Gaussian jitter resulting on overestimated random jitter values (by nature Q-scale overestimates

random jitter).

The availability of this software on early stages of the design gives the designers an idea of

the system’s overall jitter allowing them to take preventive actions and therefore increasing the

robustness of the IC.

Chapter 4

Signal Analysis

4.1 Introduction

System level engineers are responsible for the top level blocks definition, following a typical top

down approach. New communication standards demand for accurate signal modeling, since jitter

budget is decreasing from standard to standard while, in opposition, the frequency of operation is

becoming incredibly high.

There are multiple sources of jitter that need to be accurately addressed, during the specifica-

tion phase by system level engineers, allowing the correct specification of the internal blocks.

Current standards demand high data rates with low BER, reducing the margin for errors. The

overall margin needs to take into consideration the technology’s internal variations since the same

product can be implemented in different technologies.

In terms of signal integrity, the major contributions come from the interconnection layer, be-

tween the transmitter and the receiver.

The interconnection layer can vary from a few centimeters of PCB trace to 1/5 meters cables,

resulting on a different characteristic of the signals involved.

Turning our attention to a 10G-XAUI interface, it is easier to notice that the cable character-

istics will influence the system performance. Since it is very hard to have a constant response of

the cable at all frequencies (higher frequencies imply higher attenuation), resulting on very closed

eye diagrams after the cable, leading to complex signal recovery algorithms.

Cables represent a significant part of the system signal degradation but, unfortunately, there are

many other sources of external degradation like: PCB traces, package, driver bandwidth, intercon-

nection capacitance, cable connectors, temperature, voltage supply variance, to name a few. Such

variations will be translated into jitter. There are also internal jitter sources, like the PLL’s VCO

jitter, reference clock jitter, power supply jitter. All these combined will constrain the maximum

data transfer rate between transmitter and receiver circuits.

45

46 Signal Analysis

4.2 Frequency domain to time domain

Frequency and time domains are related. For example, one of the most important properties that

relate both domains is the equivalence between convolution in one domain and multiplication in

the other.

Frequency domain representation describes the system’s response to the input signal’s fre-

quency; such representation is obtained by applying multiple sinusoids to the inputs of the system

and comparing the output and input signal’s in terms of amplitude and phase. Such representation

allows the designer to understand, at which frequency, the system will, theoretically, "break". The

frequency domain transfer function can be obtained through Fourier transform or by using sophis-

ticated capturing equipment. The Fourier transform decomposes a function into a sum of multiple

sinusoidal functions, each with an associated amplitude, phase and frequency, allowing the direct

representation on the frequency domain. Fourier transform on the continuous domain is defined

by eq. 4.1, while eq. 4.2 represents the Fourier transform for the discrete domain.

F(jω)≡
∮

∞

−∞

f (t)e− jωtdt (4.1)

Xk =
N−1

∑
i=0

xie− j2πik/N (4.2)

The Fourier transform can be applied to generate the sinusoidal coefficients, but it is also possible

to do the opposite and obtain f (t) from it is frequency response, using, the inverse Fourier trans-

form. Eq. 4.3 defines the inverse Fourier transform on the continuous domain, while eq. 4.4, on

the discrete domain.

f (t)≡ 1
2π

∮
∞

−∞

F(jω)e jωtdω (4.3)

x j =
1
N

N−1

∑
k=0

Xke j2πik/N (4.4)

Time domain impulse response can then be obtained through the use of inverse discrete Fourier

transform (IDFT). IDFT requires O(N2) operations to complete, thus making it a slow operation,

even with today’s computers. Fast computing algorithms like FFT and IFFT, are suitable for signal

analysis applications, requiring only O(NlogN) operations. Once the impulse response function

is obtained, the overall system response can then be obtained by convolving the input signal with

the impulse response.

4.2.1 Impulse response based on IFFT - considerations

Frequency domain functions are commonly described for f = [0 : fs], but the IFFT algorithm

receives as input, a function with domain f = [− fs : fs], resulting on the need to, first, obtain the

function with the desired domain (causality ease this task). Sampling time (ts) can be obtained

from the sampling frequency (fs) due to the Nyquist theorem, resulting in ts = 1/(2 · fs). Impulse

4.3 Frequency extrapolation 47

0 fsf1 -fs -f1

Figure 4.1: FFT amplitude signal vector representation

response’s accurate representation depends of fs. When frequency response is described by an

equation, it is easier to extrapolate the frequency response for high fs values. If it is obtained

from lab equipment, the same statement cannot be applied, leading to frequency extrapolation

algorithms, based on the causal behavior of the signals under study. The correct description of the

possible processes can be a theme for a new thesis, since it is very complex and difficult to obtain.

Signal analysis tool performs such extrapolation. A more detailed analysis can be found under

chapter 4.3.

Inverse Fast Fourier Transform algorithms, require an input vector with the frequency re-

sponse ordered on the following order:[0, f1, ..., fs,− fs, ...,− f1] requiring a previous shift on the

frequency response vector (see Figure 4.1).

4.2.2 Causality enforcement

All physical time domain responses are causal, meaning that the signal is non-zero only for times

greater than zero [12]. Physical system cannot predict the future. Instead, they react to the input,

resulting on an output different than zero only for times greater than the time at which the input

signal was applied (causal signal). Signals under analysis are real on the time domain but of

complex format on the frequency domain.

Causal signals represented on frequency domain are related by the Hilbert Transform [12]

and exhibit Hermitian symmetry, i.e: X(f) = X∗(− f), where "∗" denotes the complex conjugate,

and the time domain functions are, accordingly, real-valued. Such symmetry should be taken into

consideration on the frequency vector generation for IFFT operation.

4.3 Frequency extrapolation

Frequency domain to time domain transformation requires accurate frequency domain represen-

tations, maximum frequency will affect the accuracy of the time domain representation since it

48 Signal Analysis

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Frequency (Hz) 1e10

40

35

30

25

20

15

10

5

0
G

a
in

 (
d
B

)
Frequency Response

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Frequency (Hz) 1e10

90
80
70
60
50
40
30
20
10
0

P
h
a
se

 (
d
e
g
)

Figure 4.2: Frequency response of signal e−t∗500e6u(t)

affects time step. To better understand the relation between fs and time domain accuracy, let’s con-

sider a frequency domain representation of the time domain signal e−t∗500e6u(t). Using Laplace

transform (F(s) = F(jω)):

F(jω) =
500e6

j2π f +500e6 (4.5)

Figure 4.2 is in fact a form of a first order low pass filter (as expected), with a cutoff frequency of

500e6 Hz. At high frequencies, the amplitude value of the correspondent sinusoid is small, but not

zero, leading to accuracy errors when discarded. Figure 4.3 exemplifies the effect of discarding

high frequency coefficients. Low fs values will result in bigger time steps leading to imprecisions

on the frequency to time domain transformation.

The impulse response cannot be directly compared due to the difference on the time step but,

instead, the comparison should be done against exponential signal (e−t∗500e6u(t)). The impulse

response can be converted into the desired signal through convolution with u(−t) signal. Figure

4.4 compares an exponential signal with the convolution signals from impulse response with a

maximum frequency of 2GHz and 40GHz, respectively.

System characterization is not done only with equations, since there are systems with huge

complexity, which cannot be accurately defined by simple equations. There are other occasions

where the system equations are not available at all. For example cable characterization.

Imagine that a designer buys a cable or a set of cables whose frequency response might not

be available. The need exists to extract it. Designers typically use network analyzers to obtain

4.3 Frequency extrapolation 49

0 1 2 3 4 5
Time (s) 1e 9

0.0

0.1

0.2

0.3

0.4
A

m
p
lit

u
d
e

Impulse Response

(a) Impulse response (fs = 2GHz)

0 1 2 3 4
Time (s) 1e 9

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

A
m

p
lit

u
d
e

Impulse Response

(b) Impulse response (fs = 40GHz)

Figure 4.3: Impulse response of the time domain exponential signal

the system’s frequency response. As discussed above, the maximum frequency used on the char-

acterization will affect the time domain accuracy. Today’s equipments can capture signals up to

100GHz, but even that value can be low when compared with the maximum operation frequency

of the communication standard that will be addressed with the behavioral model. All these factors

result on the need to have models capable of producing accurate frequency extrapolations.

Frequency extrapolation allows the designer to increase the overall accuracy of the model but,

unfortunately, such process is not trivial, unless the designer has the knowledge of the system

transfer function. On all other cases, some type of frequency extrapolation should be used to

increase the accuracy.

Time step accuracy is dictated by fs. The zero padding method [13] uses this notion to

produce the frequency extrapolation. It consists on increasing the number of elements of the

frequency response vector, by adding zeros. The number of zeros added to the vector is equal to

the frequency step, divided by the difference between the new maximum frequency (fext) and the

vector maximum known frequency (fs). The basis of this method relates to the low pass behavior

of physical systems so, for high frequencies the sinusoidal components coefficients will tend to

zero. Signal "Imp_resp(40GHz) - f > 2e9 = 0" on Figure 4.5 was obtained by applying the zero

padding method to the frequency coefficients vector with fs = 2GHz fext = 40GHz.

Polynomial fitting can also be used to produce the frequency extrapolation but real systems

could not produce frequency responses described as perfect lines, leading to high polynomial

orders, and a big number of polynomial equations in the case of using multiple polynomial to

describe the frequency response. Curve fitting will have to take into consideration the real and

imaginary part of the signal, making the fitting process even harder. In [14] the basis for poly-

nomial fitting is presented, the idea is to find a low order polynomial, which fits the magnitude of

the frequency response curve, and then through Hilbert transform find the extrapolated real vector

value (rvector) that:

r2
vector +H(rvector)

2 = Amplitude2 (4.6)

50 Signal Analysis

0 1 2 3 4
Time (s) 1e 9

0.0

0.2

0.4

0.6

0.8

1.0

A
m

p
lit

u
d
e

Time Domain Signal

Imp_resp(2GHz)

Imp_resp(40Ghz)

Exponential

Figure 4.4: fs effect on time domain representation

Where H(rvector) represents the Hilbert transform of the real part of the extrapolated frequency

response signal. Such method can only be applied to causal signals, f(t) = 0 t < 0.

Real and imaginary components of the frequency response, in causal systems, are related to

each other, such relation is specified by the Hilbert transform. If the designer knows the real part

then the imaginary part can be calculated and vice versa using Hilbert transform. This relation is

also known as Kramers-Kronig relation.

Polynomial fitting can be hard to implement. On the tentative to bring something new to this

thesis, it was developed a new method taking in to consideration the relation between real and

imaginary parts of the frequency response through Hilbert transform. Let’s call it Hilbert method.

Similar methods can be found in [15], [16], [17] and [18].

Proposed Hilbert method is based on [19]. Real and imaginary parts are related by Hilbert

and inverse Hilbert transforms. The imaginary part can be obtained through Hilbert transform of

real part (H(r)), and real part can be obtained through inverse Hilbert transform of imaginary part

(H(i)−1). It was assumed that the measured frequency response is accurate on the band]0, fs].

Interactive method can be used to obtain a preliminary frequency response extrapolation. Each

iteration starts with a calculation of the imaginary part through H(rvector). The obtained result, on

the band of]0, fs], is replaced by the imaginary part of the measured values resulting on ivector.

Next action is to obtain the real part by applying inverse Hilbert transform to ivector (H(ivector)
−1).

To ensure a correct relation between extrapolated and measured signals, the obtained real part on

the band of]0, fs] is replaced by the real part of the measured values resulting on rvector. This

process is repeat about 100 times resulting on rhilbert and ihilbert . Initial vectors rhilbert and ihilbert

are equal to the measured ones on the band]0, fs], and zero on the band of] fs, fext]

The boundary between the measured values and the extrapolated ones should be smooth,

rhilbert and ihilbert on the band of [0.95 · fs,1.05 · fs] are replaced by a 4 order polynomial curve

fit to reduce the abrupt ups and downs. In order to reduce the high frequency noise in the cross-

ing boundary, between real and extrapolated data, the obtained signal was filtered with a 4 taps

4.4 Clock generation 51

Algorithm Error Error_Diff
Equation (fs = 40GHz) 4.778e−3 9.273e22
Zero padding (from 2GHz to 40GHz) 2.931e−2 2.081e25
Hilbert fit (from 2GHz to 40GHz) 8.705e−3 −2.216e24

Table 4.1: Error of different frequency extrapolation methods

low pass filter. The low pass filter with [0.35,0.25,0.20,0.15] as coefficients was applied to

[0.95 · fs,1.05 · fs] band. The obtained values inside [1.05 · fs, fext] band was replaced by a sec-

ond order polynomial fit, reducing the high speed variations that are not expected on physical

systems.

Figure 4.5 shows the differences between hilbert, zero padding and equation methods. On table

4.1 are described the errors for each method, where the error column was obtained by perform-

ing the quadratic error between the expected exponential signal (Error_Di f f = ∑(expected−
obtained)2) and the obtained for the different methods. Error_Diff represents the linear error di-

vided by the expected value (Error_Di f f = ∑(expected−obtained)/expected). It is interesting

to notice that the ideal signal and the obtained signal through hilbert method are closely related.

0 1 2 3 4 5 6 7
Time (s) 1e 10

0.0

0.2

0.4

0.6

0.8

1.0

A
m

p
lit

u
d
e

Time Domain Signal -> Frequency Extrapolation (Hilbert)

Imp_resp(40Ghz)

Imp_resp(40Ghz) - f > 2e9 = 0

Imp_resp(40Ghz) - Hilbert

Exponential

Figure 4.5: Frequency extrapolation (different methods) effect on time domain representation

4.4 Clock generation

Clock signals are the base of work on digital and mixed-signal circuits. Jitter characteristics of

clock signals will be present on data signals, which, in turn, are transferred from transmitter to

52 Signal Analysis

receiver blocks. The ability to correctly characterize clock signals is crucial, for a correct charac-

terization of the entire system.

Clock signals can be generated through a sine function, with phase modulation to better repre-

sent the real clock signals. The implemented clock generation algorithm has 4 inputs, which must

be defined by the user: frequency (Fs), maximum phase error (A j), jitter frequency (Fj) and the

stop time. Eq. 4.7 describes the implemented clock generation function.

Clock = sin(2πFs · t +A j ·2π · sin(2πFj · t)) (4.7)

4.5 Edges extraction

Analysis of digital signals relies in accurate edge extraction algorithms, since a great part of the

measurements are done over the signal transition points. The use of inaccurate edge detection

algorithms result in higher jitter values, incorrect data recovery, incorrect eye diagrams, incorrect

rise and fall time measurements, etc.

Analog signals can have more than one transition on the zero differential point, but all these

can be related with only one transition from 0 to 1 or 1 to 0 on digital form. Due to this fact the

edge detection algorithm needs to have hysteresis, meaning that the threshold on transitions from 1

to 0 is symmetrical to the 0 to 1 transitions. The implemented algorithm allows the user to specify

the threshold, resulting on a robust algorithm.

Signal edges extraction is data dependent; the implemented algorithm allows the user to define

the type of data: clock or other types. It is necessary to distinguish clock signals from other types of

data, since on clock signals the user is only interested on the rise transitions (period information).

In generic data signals, the designer is interested on rise and fall transitions since both are valid

data states.

4.6 Data generation

Data generation should replicate, as exactly as possible, the analog signal behavior. Usually the

analog conversion of digital signals behave as a line near the transition point. Due to this fact, part

of the analog behavior can be defined by straight lines. Figure 4.6 represents one possible signal

conversion from digital to analog.

Current implementation divides each signal transition in three parts: bottom, middle and top.

Since the middle part can be described by a line, it is just necessary to know the start point,

end point and time duration to correctly design the middle waveform. Since rise-fall times are

measured from 10% to 90%, the middle waveform was designed to map into it. The boundaries

of figure 4.6 TA<->TB and TB<->TC are defined as 10% and 90% of the signal swing respectively.

User will provide rise and fall times of the signal for the middle waveform equation to be described

by eq. 4.8, where VHIGH represents the High voltage (digital ’1’), VLOW represents the Low voltage

(digital ’0’), tA<−>B represents the boundary between TA and TB in time and trise represents the rise

4.6 Data generation 53

Tbit

TA
TB

TC

Figure 4.6: Signal generation waveform

time.

middle_wave f orm(t) =VLOW +(VHIGH −VLOW)

(
0.1+

0.8(t− tA<−>B)

trise

)
(4.8)

The non-linear parts (top and bottom) of the analog signal were described as exponential wave-

forms, with a constant decay, τtop = τbottom = tA<−>B/5. The transition map into the analog

waveform starts at the transition time resulting on a delayed analog waveform in comparison with

the digital one. TA<−>B boundary time was defined as 3/4 (tfi_tr_rel) of the rise time, ensuring

that the exponential waveform has reached the end point. Following the same approach, TB<−>C

boundary time was defined as TA<−>B + trise, the waveform transition modulation effect ends at

TB<−>C + t f i_tr_rel · trise. Eq.s 4.9 and 4.10 describe the waveform generation formula for bot-

tom and top parts. For t (time) higher than trise(1+2 · t f i_tr_rel) the waveform is equal to VHIGH

till the next transition, the time distance between bits (Bit time - tbit) is directly extracted from the

provide clock. The presented formulas are applied to digital transitions from ’0’ to ’1’. Transitions

from ’1’ to ’0’ follow the same approach with the necessary conversions.

bottom_wave f orm(t) =VLOW +0.1 · (VHIGH −VLOW)exp
(

t−TA<−>B

τbottom

)
(4.9)

top_wave f orm(t) =VHIGH −0.1 · (VHIGH −VLOW)exp
(

TB<−>C− t
τtop

)
(4.10)

The analog conversion needs digital data to produce analog waveforms. Current implementa-

tion uses the clock edges transitions to generate a digital vector with the same length, and then it is

just necessary to feed the digital to analog conversion block with the digital vector and clock edges

vector. In order to support as much as possible current communication standards, the implementa-

tion allows the user to produce the following data types: Clock and PRBS (Pseudo Random binary

sequence)- also known as LFSR (linear feedback shift register)- signals. Since there are different

54 Signal Analysis

Z-1 Z-1 Z-1 Z-1 Z-1 Z-1 Z-1

[6] [5] [4] [3] [2] [1] [0]

X
7
 + X

6
 + 1

Figure 4.7: PRBS mod7 block diagram

types of PRBS, the user can select one of the following types: mod 5, mod 7 (good approximation

for 8b/10b encoded data), mod 15, mod 23 (good approximation for TMDS encoded data), and

mod 31. Each type is characterized by a maximum run length (2N−1, where N is the PRBS mod),

a maximum number of consecutive ones (N) and a maximum number of consecutive zeros (N-1).

Figure 4.7 represents the block diagram of a PRBS7 sequence.

PRBS sequences are good options to use in channel characterization, since the implementation

results on a simple logic, reducing the timing constraints issues in typical IC design flow (a single

xor gate between flip-flops). The resulting ISI is similar to a signal generated from an encoder,

with the same number of consecutive equal bits. The PRBS generation requires an initial valid

state, typically, it is chosen the all ones state as initial point for the flip-flops, represented on figure

4.7 as simple unitary delays.

Channel attenuation is sometimes compensated on transmitter side using pre-emphasis, mean-

ing that during one bit period the signal amplitude is increased, but rise and fall times still the

same (slew-rate increases). The idea behind pre-emphasis is to increase the gain at high frequen-

cies. Due to that reason, the bits equal to the previous one will return to the typical analog value

(VHIGH or VLOW).

Sometimes, there is interference from adjacent channels or some jitter noise is coupled to the

output signal. The signal generation algorithm also allows the modulation of these factors. Such

jitter will affect the amplitude of the analog converted signal, in order to make the implementation

of such phenomenon; the user can define deterministic and random jitter values, which will be

directly applied to the waveform voltage generation.

4.7 Convolution

One of the key aspects of signal analysis, is the capacity to accurately reflect the frequency re-

sponse models into the discrete time waveforms. On chapter 4.2 it was described the technique

to obtain an impulse response from the system’s frequency response. The impulse response rep-

resents the system’s response to a "Dirac signal"1. The analog waveforms described on the time

1The use of Dirac sentence refers to the analogy, between a pure Dirac function and single event function with
unitary amplitude, and a width of a time step.

4.8 Clock recovery unit 55

domain can be described by multiple "Dirac functions". From this sentence, it is easy to under-

stand that the best way to represent the system effect is through convolution.

The analog signal and impulse response should have the same time step, since the discrete

convolution requires the same time base on both signals. Signals under study are causal, i.e., the

output y(t0) only depends on the input x(t) for values of t < t0,the system reacts to applied signals

not predicting future events. Both waveforms (impulse response and analog signal) have to be

equal to zero for t < 0. Due to this fact both waveforms are described only for times greater

than zero. Resultant convolution vector will have a number of elements equal to the sum of the

number of elements of the input signals (analog signal and impulse response), but should only be

considered the elements between the position zero and position equal to the length of the analog

signal.

4.8 Clock recovery unit

Clock recovery is very important for channel characterization since without this algorithm, the

jitter values obtained by the developed tool will be very different from the real ones present at the

CDR circuit.

All signals, inside digital circuits, are generated from a clock source on the transmitter side;

such clock can be shared between transmitter and receiver, allowing an easier clock extraction.

Some communication standards do not have a separate channel to transmit the clock signal (like

USB standard), resulting on a more complex receiver circuit, since it will be necessary to extract

the clock from the transmitted data signals. On this type of circuits, the clock frequency bandwidth

is very limited, because without such a tight constraint, it would end up with very complex circuits.

Systems that do not share the clock signal between transmitter and receiver have to use data

encoder algorithms that guarantee a sufficient number of transitions for clock recovery. For exam-

ple, USB3.0, operating at 5Gbps, uses a 8b/10b encoder algorithm to ensure a maximum number

of equal consecutive bits of 5.

Clock sharing interfaces typically support a wide range of frequencies, for example: HDMI

standard supports frequencies from 25MHz to 340MHz. Since the clock is shared between the

transmitter and receiver circuits, the frequency range is easily extracted on the receiver side. In

terms of data encoding algorithms, these type of standards can have a lower number of transitions,

higher number of equal bits transmitted, thus reducing the electromagnetic interference in adjacent

channels but, effectively, increasing the ISI jitter. Typically, these type of systems tend to have

higher deterministic jitter values.

The clock recovery unit - sometimes called "golden PLL" [20] - is used to accurately extract

the golden clock from the signals under analysis, modeling the effect of ideal PLL circuits; this

means that no jitter is added to the system due to the use of a "golden PLL". Instead, the use of

real PLL circuits can introduce random and deterministic jitter components to the overall system

jitter. CRUs are used on the characterization of channels, ensuring that the extracted jitter comes

from the channel and not from the equipments themselves.

56 Signal Analysis

Clk fedback

Phase
Difference

Measurement

CRU
Transfer
Function

Mean period

Z-1

Clock Out

Clock In
+

+

+
+

Figure 4.8: Clock recovery unit block diagram

The CRU receives as input a clock signal (Clock In), or a data signal with an embedded clock.

It outputs a clock recovered signal (Clock Out). At each rising edge of Clock In it is measured the

difference between the rising edge time location of Clock feedback (same as Clock Out), which

represents the signals’ phase difference. It is, then, used to increase or decrease the period of Clock

Out, following a typical negative feedback loop compensation system. Phase difference value is

not directly summed to the mean period (golden period), it is necessary to reflect the CRU transfer

function on this process. Phase compensation on a real circuit does not occur on the next cycle.

The CRU transfer function (CRU-TF) is represented on the frequency domain, since the CRU

works on the time domain, it is necessary to represent the CRU-TF as an impulse response with

points on the time domain separated by mean period. Phase difference value is then "convolved"

with the CRU-TF impulse response, the resultant value is them added to the mean period resulting

on a new clock period.

CRU has to provide an indication of the Clock Out edge position, it is necessary to add the

current period to the previous edge location of Clock Out generating on this way, a clock recovered

signal. Figure 4.8 represents the CRU block diagram.

4.8.1 Clock recovery unit transfer function considerations

A clock Recovery unit can be described as a low pass filter, since the transfer function can be

limited in frequency, due to the attenuation at high frequencies the resultant impulse response

can also be limited in terms of time. Taking this fact in consideration, one of the solutions is to

implement such transfer function as a FIR (Finite Impulse Response) filter. Coefficients for the

FIR filter can be obtained through undersampling of the impulse response obtained from the CRU-

TF (see figure 4.9). The undersampling can be done by adding the hits contained inside of each

time step equal to the mean period of Clock In.

4.8.2 Plesiochronous system

In a plesiochronously communication system transmitter and receiver operate at the same nominal

frequency but with small frequency variations [21]. USB3.0 is an example of plesiochronous

4.9 Cable model 57

undersample

0

K1

K2

K3

K4
...

0

mean
period

Z-1 Z-1 Z-1 Z-1

K1
x

x

K2
x

x

K3
x

x

Kn
x

x

Period
Increment

Phase
Difference

+

+
+

+

Figure 4.9: Clock recovery unit transfer function block diagram

systems, where the absence of a dedicated clock connection between transmitter and receiver,

reduces the interconnection costs.

Transmitter and receiver can have a frequency mismatch which, although small, might lead

to errors if not taken in to account. Systems intended to support such feature, must be devel-

oped to ensure the availability of a clock recovering scheme based on the transmitted data. Data

codification algorithms must be used to ensure the availability of "clock synchronization periods"

separated by a few number of bits. Support for plesiochronous clock recovery requires a different,

although similar, algorithm to the presented above. The phase error cannot be calculated for all

clock feedback pulses since the input is not a clock signal but a data signal. The mean period

cannot be obtained through the average of the input signal period, it must be provided to the CRU

algorithm.

The implemented algorithm supports two different approaches regarding phase error calcula-

tion. Phase error is calculated for input edges, resulting in a period increment after the application

of the CRU-TF. The period increment at the input signal transitions can then be added to the mean

period on the next iterations, till a new transition appears on the input signal (mode 0). Or it

can be added only at the input signal transition iteration and the subsequent iterations will suffer

from zero period increment, till the availability of a transition on input signal (mode 1). It is Im-

portant to notice that CRU-TF effect is only performed at the iterations with transitions on input

signal, modeling the real behavior of a clock recovery circuit designed to support plesiochronous

interfaces. Is up to the user the selection between algorithms.

4.9 Cable model

Current commercial interface products like USB3.0 require a very well characterized interconnec-

tion medium, typically cables, whose specification is also well defined, just like the communica-

tion standard itself.

Cables are becoming more and more important for the system performance, even using digital

signaling. Errors can always occur but, bad cables will result in lower transmission rates which,

58 Signal Analysis

R*dz L*dz

C*dzG*dz
Vin(t)

+

-

Vout(t)

+

-

Figure 4.10: Cable lumped devices model

for example, in USB and, HDMI interfaces can result in image flashing, loss of horizontal syn-

chronism, due to transmission errors.

Costumers tend not to pay attention to the cable, resulting on an even higher pressure to the

TV maker companies, because in case of bad image quality due to the cable characteristics, the

consumer will change the TV... not the cable. This fact leads the receiver systems to have to

support different types of cable, with different type of frequency responses. This requisite demands

for cable characterization tools.

Figure 4.10 represents an equivalent lumped element circuit [22, p. 56-57] for cable charac-

terization (rectangle in red), where dz represents the cable element length, R represents the series

resistance per unit length (Ω/m), L represents the series inductance per unit length (H/m), G repre-

sents the shunt conductance per unit length (S/m), and C represents the shunt capacitance per unit

length (F/m). Long cables can be described by multiple equivalent circuits connected in series.

The cable model described above needs to be converted to a form of impulse response, al-

lowing the use of the convolution, to replicate the cable influence on the signal being transmitted.

The idea is to convert the lumped elements to a frequency response waveform and then extract the

impulse response.

ABCD parameters can direct map the lumped elements into a frequency response. The ABCD

matrix is defined for a two-port network in terms of the total voltages and currents as shown in

Figure 4.11, can be described as:

V1 = A1V2 +B1I2,

I1 =C1V2 +D1I2

or in matrix form as [
V1

I2

]
=

[
A1 B1

C1 D1

][
V2

I2

]
(4.11)

4.9 Cable model 59

V1

+

-

11

11

DC

BA

I1

V2

+

-

22

22

DC

BA

I2

V3

+

-

I3

Figure 4.11: A cascade connection of two-port networks

In the cascade connection of two two-port networks as shown on Figure 4.11:[
V1

I2

]
=

[
A1 B1

C1 D1

][
V2

I2

]
(4.12a)

[
V2

I2

]
=

[
A2 B2

C2 D2

][
V3

I3

]
(4.12b)

Substituting (4.12b) in (4.12a) gives[
V1

I2

]
=

[
A1 B1

C1 D1

][
A2 B2

C2 D2

][
V3

I3

]
(4.13)

Equation 4.13 shows that the ABCD matrix for cascade connection of the two networks is equal

to the product of the ABCD matrices representing the individual two-ports. Note that the order

of multiplication of the matrix must follow the order in which the networks are arranged, once

commutativity is not a property of matrix multiplication.

The cable’s ABCD matrix is given by eq. 4.14. Such matrix was obtained from ABCD con-

version matrix table [22, p. 205-208]. It is just necessary to convert the matrix to a frequency

response transfer function. Frequency response transfer function assumes that V1 is the voltage

value at the terminals of a voltage source with source impedance equal to Z0, resulting on eq. 4.15

. [
1+(R+ jωLdz) · (Gdz+ jωCdz) (R+ jωLdz)

Gdz+ jωCdz 1

]
(4.14)

cableT F(ω) =
2

A+B/Z0+C ·Z0+D
(4.15)

4.9.1 PCB FR-4 model

Interface circuits are connected using PCB or cables, depending of the distances involved, but

even on connections with cables a few centimeters are done via PCB, it is necessary to connect

the integrated circuit to the cable connector.

FR-4 PCB Laminate is the most commonly used base material for printed circuit boards. The

"FR" means Flame Retardant (to UL94V-0), and Type "4" indicates woven glass reinforced epoxy

resin.

60 Signal Analysis

R1*dz L1*dz

G1*dz

Vin(t)

+

-

Vout(t)

+

-

R2*dz

C1*dz

G2*dz

C2*dz

L2*dz

C3*dz

Figure 4.12: PCB FR4 lumped model

FR-4 PCB’s are standard, making possible the creation of a model that is more or less indepen-

dent of the supplier. An equivalent circuit is presented in figure 4.12, such model was presented

on [1] using 1 inch as unit length. One key aspect on PCB designs is the characteristic impedance,

Z0 =
√

L/C, that will be tuned to match the load impedance. Such tuning is done by changing the

coper traces width (w). L and R are inversely proportional to w (L,R ∝ 1/w), in opposition C and

G are proportional to w (C,G ∝ w), resulting on Z0 ∝
1
w .

Element Z0 = 50 Z0 6= 50

R1 5.91 Ω/m 5.91 Z0
50 Ω/m

L1 18.5 nH/m 18.5 Z0
50 nH/m

R2 219 Ω/m 219 Z0
50 Ω/m

G1 19.7 mΩ−1/m 19.7 50
Z0

mΩ−1/m

C1 7.872 pF/m 7.872 50
Z0

pF/m

G2 0.394 Ω−1/m 0.394 50
Z0

Ω−1/m

C2 3.15 pF/m 3.15 50
Z0

pF/m

L2 3.04 nH/m 3.04 Z0
50 nH/m

C3 1.22 pF/m 1.22 50
Z0

pF/m

Table 4.2: PCB FR-4 lumped elements value per unit length of equivalent model

Table 4.2 specifies the model elements value per meter referring to figure 4.12 with Z0 = 50 and

Z0 6= 50 cases. To use this model with the cable model defined before, it is necessary to convert the

lumped model to an ABCD matrix making the cascading of PCB with cable effects done through

multiplication of the correspondent ABCD matrixes. Eq. 4.16 describes the equivalent ABCD

4.10 Zero pole gain frequency domain representation 61

Clock

DATA

TIE[j] TIE[j+1] TIE[j+2] TIE[j+3] TIE[j+4]

Figure 4.13: Time interval error

matrix for PCB FR-4 simulation model.

[
A B

C D

]
=

[
1 (R1+ jωL1)·R2

R1+ jωL1+R2

0 1

][
1 0
1

1/G1+1/ jωC1 1

][
1 0
1

1/G2+1/ jωC2 1

][
1 jωL2

0 1

][
1 0

jωC3 1

]
(4.16)

4.10 Zero pole gain frequency domain representation

Frequency domain characterization can also be done by zero-pole functions. There are cases where

the designer has a clear picture of the system frequency transfer function. For those cases it will

be helpful to provide a way of representing such system, allowing the extraction of the impulse

response.

Equation 4.17 describes the zero pole gain function implementation on the frequency domain,

where k represents the gain, zi transfer function zeros, p j transfer function poles with s = j ·2π f .

ZPKT F(f) = k
∏

N
i=1(s− zi)

∏
M
j=1(s− p j)

(4.17)

4.11 Time interval error measurement

Digital interfaces have to be compliant with jitter maximum values for current communication

standards. One of the common techniques used to extract such jitter values is based on Time

Interval Error measurements (TIE) - as represented on Figure 4.13. TIE represents the differ-

ence between the data edge position in relation to the ideal edge position, resulting on complex

algorithms for the ideal edge position extraction (CRU).

Ideal edge positions can be extracted from the clock channel or data pattern using a CRU

algorithm. It is important to notice that different CRU transfer functions will result in different

TIE probability density functions (PDF), leading to different jitter values.

The TIE measurement is performed for all transitions on data signal, resulting on a TIE vector.

This vector can then be converted into a PDF histogram. The requirement for a PDF histogram

come from the jitter tool presented in chapter 3, since it should be used to extract the jitter values

in terms of random jitter, deterministic jitter and total jitter for a given BER.

62 Signal Analysis

(a) Correct eye diagram generation (b) Incorrect eye diagram generation

Figure 4.14: Eye diagram examples

TIE measurement is not trivial, since between two consecutive data edges can occur multiple

ideal edges (clock). Due to this fact, TIE vectors cannot be generated by the difference of data

edges position vector and ideal edges position vector. To overcome this fact TIE error measure-

ment should first detect the data edge position and then, the ideal clock edge position within half

period of the ideal edge position period. TIE is then obtained subtracting the data edge position

by neighbor clock edge position, the resultant value is a measurement of time.

The described procedure should then be performed to all data edges, resulting on a TIE vector

with a length equal to the number of data edges.

4.12 Eye diagram generation

Eye diagram characterization is the most important measure in terms of signal integrity, that a

designer can have. It is possible to analyze from a single waveform a huge number of parameters

like: jitter, rise/fall times, voltage swing, intra-pair skew, etc. Making possible to represent a set

of analog signal considerations through a single waveform.

Eye diagram generation requires a good knowledge of the system under test, since it will be

very dependent of the ideal clock signal generation. Major task is the extraction of the ideal clock

edge locations, since all bits will be mapped into a "single bit" (or two in some cases). The designer

can notice in case of wrong clock extraction schemes the eye diagram obtained waveform can be

complectly closed (see figure 4.14).

The eye diagram generation algorithm should include a CRU to generate the ideal bit period,

depending on the system; ideal clock can be extracted from a clock channel or from the data

under analysis. Eye diagram plots are, typically, designed to plot two bit times, since on this way

the designer can have a clear picture of the signal integrity prior and after the transition points.

Some algorithms also start to plot from -0.5UI (UI- Unit interval, same as bit time) to 1.5UI. The

implemented algorithm follows these two guidelines.

Current implementation uses a matrix as base for the eye diagram generation, each two bits will

be mapped into a 360x180 matrix (see Figure 4.16). To fill the matrix the eye diagram algorithm

performs:

1. Extract the ideal clock edge positions using the CRU

4.12 Eye diagram generation 63

320 pts

1
8

0
 p

ts

Figure 4.15: Eye diagram matrix creation

2. Collect the start time, matrix x point 1, and end time, matrix x point 320, from the ideal

clock edge location period (clock_vec[]). Start time is equal to clock_vec[n], end time is

equal to clock_vec[n+2]

3. Find on the data vector the points on the time interval described by clock_vec[n] to clock_vec[n+2]

(data_ch[start_t] to data_ch[end_t])

4. Map the data channel analog points into the eye diagram matrix, with matrix x point 1 equal

to data_ch[start_t] and matrix x point 320 equal to data_ch[end_t]. Each x point (time) on

the eye diagram matrix will have a associated y point representation the channel analog value

for the correspondent time, since this algorithm was designed assuming differential signals,

y point 1 represents the maximum positive voltage, y point 180 represents the minimum

negative voltage (both values are defined by the user).

5. Increments n by 2 and repeats the described procedure until all analog values are mapped

6. Eye diagram matrix points represent the number of times where the signal crosses that point

(time and voltage)

Eye diagram also have an eye diagram mask, representing the minimum eye opening. Eye

mask varies from standard to standard; the user has to provide the eye mask vertices points to the

implemented algorithm.

The mask should be centered on the eye diagram opening (not equivalent to geometrical cen-

ter). The implemented algorithm searches for the opening on eye diagram where the eye diagram

mask can be placed, without touching the channel analog data boundaries.

Eye diagram opening can be detected by a sweep across the x axis and checking the start point

where the mask points does not touch the channel data signals representation as shown in Figure

4.16. The eye diagram mask is then positioned with the start point equal to the mean of the valid

positions.

64 Signal Analysis

XX XV V

Figure 4.16: Eye diagram mask positioning detection

4.13 Analog parameters extraction

Current communication standards define a set characteristics for the interconnection signals, these

are the most common: minimum rise time, minimum fall time, minimum voltage representing a

digital ’1’ (V IH), maximum voltage representing a digital ’0’(V IL).

In terms of digital to analog conversion signals, the eye diagram plot provides enough data to

obtain such values. The implemented algorithm perform a sweep across the voltage points (y axis)

for the middle of the eye (0.5UI - point 160) and them the maximum and minimum values can be

obtained through the following equations:

V IH = max(eye_matrix(160,1 : 90)> 0) (4.18)

V IHmean =
∑

90
n=1 eye_matrix(160,n) ·n
∑

90
n=1 eye_matrix(160,n)

V IL = min(eye_matrix(160,91 : 180)> 0) (4.19)

V ILmean =
∑

180
n=91 eye_matrix(160,n) ·n
∑

180
n=91 eye_matrix(160,n)

(4.20)

Current communication standards try to reduce the electromagnetic interference, some stan-

dards use spread spectrum clock signals reducing the power at the central frequency others also

include restrictions on slew-rate, leading to less interference in adjacent channels once the power

at the central frequency is reduced. Almost all current communication standards constraint the

minimum rise and fall times, resulting on a bounded frequency spectrum.

The implemented algorithm supports the measurement of rise and fall times, it is common

to define a maximum number of evaluate transitions; on current implementation such value was

defined as 50000 transitions. The idea is to look for each transition and calculate the time needed

to achieve 80% of the final value (differential), the measurement starts when the signal reaches

20% of the final value (differential). The detection of initial value and final value can be done by

checking the value at -0.5UI of the transition point as the initial voltage value, and the final value

as the analog value 0.5UI after the transition. The bit time is obtained from the ideal clock.

4.14 Eye diagram extrapolation 65

4.14 Eye diagram extrapolation

Eye diagram generation can be performed on simulation and lab data. Major difference between

them is the time needed to achieve the same data points. For instance 1 minute of data acquisition

on lab can represent months of simulation time. Due to the impracticable duration of such simula-

tions there is the need for a cross relation method, witch correlates simulation with lab results, or

in other words, an algorithm that based on lab parameters complement the information obtained

from simulation, resulting on a better match between simulation and lab results.

New products tend to use old sub-blocks mixed with new ones, reducing the risk. The combi-

nation allows the designers to built-in on new products data from past products, for example: It is

very difficult to estimate random jitter in simulation environment, due to the lack of information

inside the transistor models (technology nodes under development), but since a great part of the

sub-blocks are being reused, it can be assumed that in terms of random jitter the behavior will be

similar, allowing the designer to include that information on the simulation environment, leading

to more accurate simulation results.

Statistical eye or stateye [10] as it is also known, is a tool capable of representing statistical

eye diagrams. Eye diagram extrapolation algorithm implemented on the software tool follows

a similar approach, but instead of using the worst case response of the channel it uses the eye

diagram information. Signal analysis tool does not have the capability to generate data to the

system under test, it is just possible to process the acquired data.

Worst case response defined on Stateye [10] represents the ability of a system to tolerate ISI.

The maximum ISI can be obtained by applying the maximum allowed consecutive number of

ones, followed by a single zero and then a long sequence of ones. Since the worst ISI could be

on transition from a long sequence of zeros to a single one, then it is necessary to put the system

on a intermediate state, which can be done by applying a long sequence of ’1100’ pattern. The

process is then repeated for the maximum number of zeros allowed. With these values in hand it

is necessary to apply the random jitter effect to produce an accurate worst case condition of jit-

ter/eyediagram representation for a given BER. Figure 4.17 represents the major stateye generation

steps.

Eye diagram extrapolation algorithm takes advantage of the eye diagram design algorithm

(Eye diagram should be created prior); instead of using a predefined captured pattern, the base is

the eye diagram itself. Typically it would be needed to send a pattern that produces the worst ISI

condition.

The captured data is processed in terms of jitter and eye diagram, such values can then be used

to perform the eye diagram extrapolation to the desired BER.

Jitter analysis tool provides two important values: random jitter and deterministic jitter, the

last one does not change with BER, resulting on a static influence when enough data is captured.

Random jitter follows a Gaussian distribution, allowing a jitter representation on a form of prob-

ability density function (PDF), giving the ability to estimate a maximum jitter value for a given

BER.

66 Signal Analysis

... ...
System
Input
Data

System
Output

Data

(a) Stateye data acquisition

Stateye
Generation

RJ

(b) Stateye waveform plot

Figure 4.17: Stateye waveform generation flow

Figure 4.18 represents the concept described above, the observed jitter value (total jitter ob-

served) on the capture data is the sum of deterministic jitter with the observed random jitter. Eye

diagram extrapolation can then be performed by convolving the obtained eye diagram with the

random jitter PDF for the desired BER.

Eye diagram extrapolation is obtained through convolution of eye diagram with RJ distribu-

tion; due to this fact part of the total random jitter is actually represented on the eye diagram that

serves as input. In order to create a correct representation, the observed random jitter should be re-

moved from the random jitter PDF, which will be used on the convolution. Eq. 4.21 describes the

maximum jitter value that should be used on the generation of the RJ PDF, where NBits represents

the number of bits used to create the eye diagram waveform, where σext represents the extrapo-

lation random jitter and σmeas, represents the random jitter value extracted with the internal jitter

decomposition tool.

max(RJ) = 2 ·
√

2 · er f−1(1−2 ·BER) ·σext −2 ·
√

2 · er f−1(1−2 · 1
NBits

) ·σmeas (s) (4.21)

Eye diagram extrapolation waveform will follow the same plot algorithm that is used on eye

DJ

0

Total Observed Jitter

RJ Observed

Figure 4.18: Eye diagram dual dirac waveform

4.15 Conclusion 67

Figure 4.19: Eye diagram extrapolation

diagram generation. Due to this fact is then necessary to describe the RJ PDF on a form of a vector.

One of the possible approaches is to use a normalized Gaussian distribution function (maximum

jitter must follow eq. 4.21), implying a limit on the vector elements, RJ PDF elements are equal

to the integer of the maximum. RJ divided by the eye diagram time step (int(max(RJ)/t_step)).

Figure 4.19 exemplifies the process of obtaining the eye diagram extrapolation. Please note

that the convolution must be done for all eye diagram lines, meaning that on the current imple-

mentation the algorithm performs 180 convolutions (vertical eye diagram points), resulting on an

extrapolated eye diagram in terms of jitter (x-axis).

Eye diagram extrapolation can be hard to understand, but it is very easy to generate since it can

be obtained through the convolution of a vector and a matrix, resulting on multiple convolutions

of the vector (representing the RJ PDF) with the multiple lines of the matrix (representing the eye

diagram color points).

4.15 Conclusion

In this chapter, the signal analysis algorithms that will be implemented were described.

Eye diagram waveform generation was implemented through a matrix, leading to a resolution

of 1UI over 320. The eye diagram resolution seems to be good enough. Sometimes, depending of

acquiring sample time, there are lines of the eye diagram without information, this does not have

impact on the jitter analysis neither the eye mask placement.

The presented algorithms were developed to reduce the number of user defined parameters,

removing from the user the need for a deep knowledge of the algorithms.

68 Signal Analysis

Chapter 5

Signal Analysis - Software
Implementation

5.1 Introduction

Signal analysis functions were implemented in python using python classes. The usage of python

classes maximizes the interoperability between functions, since a class is an object storing the

internal variables until a delete operation. Objects are easy to use, allowing the creation of more

intuitive and human readable code.

On this chapter the major functions/classes, that make the signal analysis tool, will be de-

scribed. Pictures will be also presented to give visual information, about the task performed by

the correspondent function.

5.2 Signal generation

Signal generation functions are the basis of the implemented software, allowing the user to create

internal patterns, or to use patterns from external sources. This section describes the implemented

signal generation functions:

5.2.1 Clock generation

The clock_gen class provides the interface for clock generation. Clock signals can have low

frequency jitter effects, the modulation of such effect is achieve through phase variation.

Phase variation follows a sinusoidal function, described by a central frequency F j and a max-

imum amplitude A j.

Generated clock information is stored inside clock_gen class. The clock_gen.t variable refers

to time, clock_gen.clock variable refers to the signal amplitude.

Class input parameters, internal variables and available functions:

69

70 Signal Analysis - Software Implementation

clock_gen(Aj, Fs, Fj, tfinal)

Aj Maximum phase error

Fs Frequency of clock signal

Fj Jitter component frequency

tfinal Final time

clk = cos(2πFs · t +A j ·2πsin(2πF j · t))

clock_gen.t Time vector

clock_gen.clock Amplitude Vector

clock_gen.plot_clock_fft() Function to plot signal FFT

clock_gen.plot_phase_jitter_fft() Function to plot signal phase jitter FFT

5.2.2 Edges extraction

The clock_edges_extract class performs the edge extraction task. Digital signals represented in an

analog way, does not have information about bit time, or edge location.

Signal analysis algorithms require information about edges location and bit period. This class

provides such information. The clock_edges_extract.clk_per[:,0] variable contains the time infor-

mation about the edge location, clock_edges_extract.clk_per[:,1] variable contains the bit period.

Edges extraction algorithm performs a 2nd order polynomial fitting, which ensures a better

time extraction of the zero crossing point. Polynomial fitting is performed over analog vector,

when a transition is detected on analog vector (position n), two adjacent indices (positions n-1 and

n+1) are used to perform the poly fit.

Jitter addition can be performed at this level. The addition of random jitter or deterministic

jitter, will influence the edge time locations and bit period .

Class input parameters, internal variables and available functions:

clock_edges_extract(clock_gen_class, thrs=0.0, d_type="CLOCK")

clock_gen_class Analog signal data type

thrs Zero detection point Threshold

d_type Data Type ("CLOCK","PRBS5",...)

d_type Used to select between clock and generic data ex-

traction edges extraction

clock_edges_extract.clk_per[N,2] Edge location point vector, column 0 refers to time,

column 1 refers to period

5.2 Signal generation 71

clock_edges_extract.add_jitter(dj,rj) Jitter addition to clk_per vector, where rj represents

the gaussian jitter σ , dj represents the deterministic

jitter

5.2.3 Clock multiplication

Clock multiplication is commonly used in current circuits. The clock_edges_mult class allows the

user to generate, a high speed signal based on a clock edges vector.

Class input parameters, internal variables and available functions:

clock_edges_mult(clock_sig_class, mult=1)

clock_sig_class clock_edges_extract data

mult Multiplication factor, final number edges = "mult"

* edges number of clock_sig_class. Generated

signal period will be "mult" times lower than

clock_sig_class for each vector point

clock_edges_mult.clk_per[N,2] Edge location point vector, column 0 refers to time,

column 1 refers to period

clock_edges_mult.add_jitter(dj,rj) Jitter addition to clk_per vector, where rj represents

the gaussian jitter σ , dj represents the deterministic

jitter

5.2.4 Data generation

The data_generation class is responsible for the analog signals generation. Based on a clock edges

vector, different patterns can be generated.

Pattern sequence used for analog signal generation, needs to be define by the user. Analog

signal characteristics, follow the approach presented in chapter 4.6.

Figure 5.1 contains an example of a PRBS5 signal generation. Multiple waveforms were

generated to exemplify some of the capabilities, supported by class data_generation, like: Pre-

Emphasis, amplitude random jitter addition and amplitude deterministic jitter addition.

72 Signal Analysis - Software Implementation

8.2 8.3 8.4 8.5 8.6 8.7
Time (s) 1e 8

0.4

0.2

0.0

0.2

0.4

A
n
p
lit

u
d
e
 (

V
)

Signal Generation

PRBS5(pre=20%)
PRBS5
PRBS5(rj=10e-3)
PRBS5(dj=20e-3)

Figure 5.1: Signal generation

Class input parameters, internal variables and available functions:

data_generation(clk, data_type, VHI, VLOW, tr, tf, tfi_tr_rel=3/4., tfi_tf_rel=3/4., dj=0., rj=0., preemphasis=None)

clk clock_edges_extract data

data_type Analog signal data type ("CLOCK", "PRBS5",

"PRBS7", "PRBS15", "PRBS23", "PRBS31")

VHI High voltage value

VLOW Low Voltage value

tr rise time

tf fall time

tfi_tr_rel relation between rise time and the necessary time to

consider that the final value was achieved

tfi_tr_rel relation between fall time and the necessary time to

consider that the final value was achieved

dj Deterministic amplitude jitter (V)

rj Random amplitude jitter (V)

preemphasis Percentage of preemphasis in relation to the regular

value

5.2 Signal generation 73

data_generation.ana_data[N,2] Analog signal vector, column 0 refers to time and

column 1 refers to amplitude

data_generation.write_to_file(filename) Stores Analog signal vector on file:filename in csv

format.

5.2.5 External analog data

User can perform signal analysis over real data, provided from simulations for example. The

external_ana_data class allows the user, to insert that data into the python environment.

External signals should be stored in .csv (comma separated values) file format. The .csv file

should have the time information as the first element; second element should be the signal ampli-

tude value.

Implemented class supports the use of a single .csv file, with multiple analog signals. The user

needs to define the analog signal to be extracted. The first line of a .csv file contains the elements

name. For example:

time, analog_ch0, analog_ch1

In this case the user can select between signal "analog_ch0" or "analog_ch1".

Class input parameters, internal variables and available functions:

external_ana_data(filename, ind_ana_sig=1, lines_max=None, rem_start_t=True)

filename File name to read

ind_ana_sig Column zero represents time, the analog signal will

be extracted from column defined by ind_ana_sig

(default is 1 - "analog_ch0" in the example presented

above)

lines_max Maximum number of lines to read (default is to read

all)

rem_start_t Considers initial time as zero (default is true)

external_ana_data.write_to_file(filename) Stores Analog signal vector on file:filename in csv

format.

74 Signal Analysis - Software Implementation

5.3 Operation over generated signals

On this section the user can find the available functions to perform operation over the generated

signals, like: cable effects, frequency domain effects, clock recovery, signal convolution and fre-

quency response extrapolation:

5.3.1 Generic frequency domain to time domain conversion

Frequency domain to time domain conversion is the central core from the presented tool. The

s21_param class is the low level class, responsible for impulse response vector generation.

The s21_param is able to extract frequency response vector from .s2p files (only s21 parameter

is used), .csv files or python specified functions.

When using .csv files special care is needed, .csv file should have the following 3 elements:

frequency(Hz), gain (real part), gain (imaginary part)

Class input parameters, internal variables and available functions:

s21_param(func_filename, plt_figs=False)

func_filename Python function or filename

plt_figs Plot internal operations

s21_param.get_mag() Return s21 magnitude vector

s21_param.get_angle() Return s21 phase vector

s21_param.get_real() Return s21 real part vector

s21_param.get_imag() Return s21 imaginary part vector

s21_param.get_frequency() Return s21 frequency vector

s21_param.get_extrapol() Return s21 frequency response extrapolation vector

[frequency, s21 magnitude]

s21_param.extrapol_re_img() Frequency response extrapolation Fext = Fmax, Fmax

can be overridden by the user

s21_param.get_impulse_resp() Impulse response generation

calc_inp_coef.plot_freq_resp(

fmax=None, data_type=None)

Plot frequency response. Frequency plot will be lim-

ited by fmax value, data_type refers to the signal

name

calc_inp_coef.plot_imp_resp(

data_type=None)

Plot impulse response data_type refers to the signal

name

5.3 Operation over generated signals 75

5.3.2 CRU to impulse response generation

The cru_func_to_ir is a wrapper class. Internally s21_param class is used to provide the impulse

response vector.

HDMI communication standard specifies the frequency response function, to be used on a

clock recovery unit. The cru_func_to_ir allows the user to select between a generic transfer func-

tion, defined by cru_gen_func input parameter or the HDMI pre-defined frequency response (refer

to http://www.miko.com.hk/SDA_HDMI.htm or

www.dybkowski.comule.com/download/hdmi/hdmi_spec_1.3_gm1.pdf for more information).

Class input parameters, internal variables and available functions:

cru_func_to_ir(func_type, cru_gen_func=None)

func_type Function type: "HDMI", "Generic"

cru_gen_func Frequency response function, should be defined for

Generic func_type, .csv or .s2p files are not sup-

ported

cru_func_to_ir.plot_freq_resp(

fmax=None, data_type=None)

Plot frequency response. Frequency plot will be limited by

fmax value, data_type refers to the signal name

cru_func_to_ir.write_to_file(filename,

fmax)

Write frequency response to file (filename), frequency re-

sponse will be store for frequency values lower than fmax

5.3.3 HDMI reference equalizer

The hdmi_ref_eq class contains the frequency response of the equalizer defined in HDMI spec

(please refer to www.dybkowski.comule.com/download/hdmi/hdmi_spec_1.3_gm1.pdf for more

information).

HDMI equalizer frequency response function is internally defined, allowing the use of s21_param

class to extract the impulse response. Such action is performed automatically.

Class input parameters, internal variables and available functions:

hdmi_ref_eq()

hdmi_ref_eq.plot_freq_resp(

fmax=None, data_type=None)

Plot frequency response. Frequency plot will be limited by

fmax value, data_type refers to the signal name

hdmi_ref_eq.write_to_file(filename,

fmax)

Write frequency response to file (filename), frequency re-

sponse will be store for frequency values lower than fmax

http://www.miko.com.hk/SDA_HDMI.htm
file:www.dybkowski.comule.com/download/hdmi/hdmi_spec_1.3_gm1.pdf
file:www.dybkowski.comule.com/download/hdmi/hdmi_spec_1.3_gm1.pdf

76 Signal Analysis - Software Implementation

5.3.4 Impulse response generation

The calc_inp_coef class is used to obtain the impulse response of a frequency response, defined

by a python function.

Class input parameters, internal variables and available functions:

calc_inp_coef(gen_func=None)

gen_func Frequency response function, .csv or .s2p files are

not supported

calc_inp_coef.plot_freq_resp(

fmax=None, data_type=None)

Plot frequency response. Frequency plot will be limited by

fmax value, data_type refers to the signal name

calc_inp_coef.write_to_file(filename,

fmax)

Write frequency response to file (filename), frequency re-

sponse will be store for frequency values lower than fmax

calc_inp_coef.plot_imp_resp(

data_type=None)

Plot impulse response data_type refers to the signal name

5.3.5 Clock recovery

Clock recovery unit algorithm is implemented by clok_recovery class.

The clok_recovery class requires as input (cru), an object of type cru_func_to_ir class.

Clock extraction from data signals is supported by clok_recovery class. The user will have to

define the data_type to a signal name (different from ’CLOCK’), the mean period and the CRU

mode. For more information about mode, please take a look at chapter 4.8.2.

Figure 5.2 shows the effect of clock recovery circuit when applied to a clock signal with a

frequency of 10 GHz, random jitter of 0.5ps, and frequency jitter described by A j = 0.2 and

F j = 500KHz.

Class input parameters, internal variables and available functions:

clok_recovery(clock_sig, cru, data_type=’CLOCK’, mean_per=None, mode=None)

clock_sig Input signal edges

data_type Data signal type: "CLOCK", "PRBS5", ...

mean_per Mean Period, used in plesiochronous interfaces

5.3 Operation over generated signals 77

mode Clock recovery mode for clock recovery in ple-

siochronous interfaces, mode=0 - phase is incre-

mented on all iterations, mode=1 - phase is incre-

mented only on iterations with transitions in both

signals (input and feedback signals)

clok_recovery.clk_per[N,2] Edge location point vector of recovered clock , column 0

refers to time, column 1 refers to period

clok_recovery.ind_start Number of items to discard on clok_recovery.clk_per vec-

tor

5.3.6 Convolution

Convolution between impulse response and analog signal is performed in ana_convolve class.

The impulse response, defined as ir input parameter, is an object of type calc_inp_coef class.

The analog signal, defined as ana_sig input parameter, is an object of external_ana_data type or

data_generation type.

The ana_convolve class, stores the convolution result in an internal variable (ana_convolve.ana_data),

similar to the defined in data generation classes.

The resultant vector of a convolution has more elements than, each one of the vectors used as

input. The ana_convolve internally performs the vector casting.

Class input parameters, internal variables and available functions:

ana_convolve(ir, ana_sig)

ir Impulse response

ana_sig Analog signal obtained from data generation func-

tions

ana_convolve.ana_data[N,2] Analog data vector after convolution, column 0 refers to

time and column 1 to the analog signal value

5.3.7 Generic filter

The generic_filter class allows the user to specify a frequency response signal trough zero-pole-

gain vectors.

78 Signal Analysis - Software Implementation

0.0 0.5 1.0 1.5 2.0
Frequency (Hz) 1e7

14

12

10

8

6

4

2

0

G
a
in

 (
d
B

)

Frequency Response

0.0 0.5 1.0 1.5 2.0
Frequency (Hz) 1e7

90
80
70
60
50
40
30
20
10
0

P
h
a
se

 (
d
e
g
)

(a) CRU TF

0.00000125 0.00000130 0.00000135 0.00000140 0.00000145
Time (s)

0.990

0.995

1.000

1.005

1.010

P
e
ri

o
d
 (

s)

1e 10 CRU Clock Period (-rj=0.5ps)

In CLK (rj=0.5ps)
Extracted CLK

(b) Input clock Vs Recovered Clock

Figure 5.2: Input clock with rj=0.5ps Vs recovered clock

Conversion from zero-pole-gain function to impulse response can be done through calc_inp_coef

class.

Class input parameters, internal variables and available functions:

generic_filter(z, p, k)

z Zeros vector

p Poles vector

k Gain

5.3.8 Cable model

Cable and PCB FR-4 frequency response models are implemented in class cable_model.

The effect of a cable, can be introduced to the cable_model class through cable_model.add_element()

function. User will have to define the R, L, G, C constants per meter. Cable length is then reflect

in dz parameter.

PCB effects are introduced to the cable_model class through cable_model.add_pcb_element().

User will have to provide the PCB characteristic impedance through Z0 parameter. The PCB

length is defined by dz parameter.

PCBs and cables does not have smooth transfer functions, cable_model class allows the user

to add random jitter to the frequency response, making the model more realistic.

Class input parameters, internal variables and available functions:

cable_model(Z0=50)

Z0 Source impedance

cable_model.add_element(r, c, g, l, dz) Add a new cable element, with impedance r, capacitance c,

inductance l, admittance g and length dz(in meters)

cable_model.add_pcb_element(

dz=0.1, z0=50)

Add a new PCB FR-4 element, with characteristic

impedance equal to z0 and a length equal to dz (in meters)

cable_model.add_add_noise(sigma) Add random noise with σ = sigma to all frequency re-

sponse points

cable_model.plot_freq_resp(

fmax=None, data_type=None)

Plot frequency response. Frequency plot will be limited by

fmax value, data_type refers to the signal name

cable_model.plot_sparam(

fmax=None)

Plot s21 parameter from frequency 0 till fmax

5.4 Signal analysis 79

5.4 Signal analysis

Signal Analysis functions were implemented trough calc_analog_params() class. The imple-

mented class allows the user to extract jitter, plot eye diagram, measure rise and fall times and eye

diagram extrapolation.

5.4.1 Eye diagram mask

Eye diagram minimum opening is defined through an eye diagram mask. No signal should cross

the eye diagram mask. Bad signals sometimes cross that mask, resulting on a failing measure

indication.

An eye diagram mask is related with signal integrity, specifying jitter, voltage swing/amplitude

and rise/fall times.

Eye diagram mask points are described in more detail, in figure 5.3. The eye_mask class,

contains the information about an user defined eye diagram mask .

Class input parameters, internal variables and available functions:

eye_mask()

eye_mask.bot_top Maximum amplitude of the eye diagram waveform (Volts)

eye_mask.bot_top_mask Eye diagram mask amplitude (Volts)

eye_mask.zero_mask Eye diagram mask point for 0V amplitude mask edge (UI)

eye_mask.top_bot_mask Eye diagram mask point for bot_top_mask amplitude mask

edge (UI)

5.4.2 Analog parameters extraction

The calc_analog_params class implements: jitter analysis, eye diagram generation, eye diagram

extrapolation and analog parameters measurements. It requires as input parameters a clock edges

class (clock_edges_mult, clock_edges_extract or, clok_recovery), an analog signal class (data_generation

or external_ana_data), the indication of the position of the first valid element of clk_edges class

(usually clok_recovery.ind_start assuming that clk_edges is of type clok_recovery) and the data_type

information (’CLOCK’, ’PRBS7’, etc.)

Jitter analysis are performed through calc_analog_params.extract_jitter() function.

Eye diagram generation and analog parameters measurements (min rise/fall time, minimum

differential VIH/VIL and average VIH/VIL) are done through calc_analog_params .plot_eye_diagram()

function. This function requires as input parameter the eye diagram mask, defined in class eye_mask

Eye diagram extrapolation is performed through calc_analog_params.extrapol_eye_diagram()

function. This function requires as input parameters the eye diagram mask, defined in class

80 Signal Analysis - Software Implementation

eye_mask; the BER target and an indication related with jitter. The only_dj input parameter should

be set to 1, when the extrapolation is to be performed, considering all the jitter presented on eye

diagram as deterministic.

Eye diagram jitter measurement is available through calc_analog_params.plot_jitter_eye() func-

tion.

An example of the capabilities available through this class can be found in figure 5.4.

Class input parameters, internal variables and available functions:

calc_analog_params(clk_edges, ana_sig, valid_ind, data_type =’PRBS7’)

clk_edges Clock recovery edges position - from clock recovery

function

ana_sig Analog signal

valid_ind clock_edges elements to discard

data_type Analog signal data type: "CLOCK", "PRBS15", ...

calc_analog_params.extract_jitter(

ber=1e-12)

Jitter extraction, total jitter value will be calculated for the

input ber value

calc_analog_params.plot_eye_diagram(

class_eye_mask)

Plot eye diagram, necessary to provide the eye diagram

mask

calc_analog_params. ex-

trapol_eye_diagram(class_eye_mask,

ber_e=1e-9, sigma_e=None,

only_dj=None)

Plot eye diagram extrapolation for a desired ber assum-

ing the previous measured random jitter or a specified one

(sigma_e), only_dj=1 ensures that the extracted jitter will

be considered as dj only

calc_analog_params.plot_jitter_eye() Plot eye diagram jitter

calc_analog_params.vlow Analog signal - Average low voltage value

calc_analog_params.vhigh Analog signal - Average high voltage value

calc_analog_params.vlow_max Analog signal - Maximum voltage of "digital 0"

calc_analog_params.vhigh_min Analog signal - Minimum voltage of "digital 1"

calc_analog_params.min_rise_time Analog signal - Minimum rise time

calc_analog_params.min_fall_time Analog signal - Minimum fall time

5.5 Report file generation

Signal analysis tool creates a html file, reporting the results provided by the implemented python

classes presented before.

All simulation environments require the creation of the report class, this process is done

through c_html.create() call.

5.5 Report file generation 81

b
o
t_
to
p

zero_mask

top_bot_mask

b
o
t_
to
p
_m

as
k

Figure 5.3: Signal generation

(a) Eye diagram

(b) Jitter on eye diagram (c) Extracted jitter

Figure 5.4: Extrapolated eye diagram for BER = 1e−12 with σ = 5.4ps

82 Signal Analysis - Software Implementation

The c_html class is a global object created in the signal analysis python library, this object is

initialized when the signal analysis module is imported to the python environment.

The c_html.close() function show be performed at the end of the simulation, to ensure a correct

report file closing procedure.

5.5.1 HTML file generation

The create_html class provides the necessary functions to produce a html report file. This class is

self-created in the signal analysis python module, through the object handler c_html.

The internal functions allow the user to save images, tables and to separate the different wave-

forms with headers.

Class input parameters, internal variables and available functions:

create_html()

create_html.create() File creation. The html file header includes the creation

time

create_html.title_break(title) The text inside title variable is added as header 1

create_html.title(title) The text inside title input parameter is added as header 2

create_html.subtitle(title) The text inside title input parameter is added as header 3

create_html.table(title, table_data) Adds a table to the html report file. Title input parameter

refers to the cable caption. The table_data input parameter

represents the table raw data vector.

create_html.image(title, image_name,

file_name)

Adds an image to the html report file. The title input

parameter refers to the cable caption. The image_name

refers to name that will be presented in html report. The

file_name input variable refers to the file were the image to

include is stored

create_html.close() Close the html file.

5.6 Conclusion

In this chapter the python environment classes and functions, supported by signal analysis tool

were presented.

An usage example of the signal analysis tool is presented in annex A.

Chapter 6

Results

6.1 Introduction

The signal analysis tool provides a standard interface for a variety of analysis. Allowing the users

to perform different types of architecture modeling.

The accuracy of the tool was compared against commercial solutions, the results of that eval-

uation are presented in this chapter.

The CRU transfer function affects the jitter value, an incorrect definition can lead to wrong

characterization values. Plesiochronous systems are affected, not only by the CRU-TF, but also by

the data pattern, an incorrect encoding algorithm can lead to unexpected behaviors.

Channel characterization can make use of all available tool functions, the use of python result

on a easier interconnection, reducing the scripting complexity.

6.2 Proposed software tool accuracy

System engineers define the system architecture based on simulation results. EDA (Engineering

Design Automation) tools must predict the real circuit is behavior accurately.

Frequency domain to time domain operation is the basis of the proposed tool. It is important to

understand how accurate this operation is. In terms of frequency domain to time domain operations

the entire behavior can be described by two functions, cable_model and generic_filter. One of

the best solutions to proceed with the validation is to implement Spice models describing these

functions, and then simulate those using commercial tools. Cable model validation is easy to

implement in spice language, since it can be described by ideal lumped elements like resistors,

inductors and capacitors. However, the same cannot be applied to ZPK functions, which have to

be described using Verilog-A.

Commercial Spice simulators have deep support for spice language, but there are few simula-

tors that also support Verilog-A. The Spice simulator that was used during this work is one of the

few that support both languages (this is one of the reasons for being one of the most used).

83

84 Results

PRBS 15

Rs R1*dz1

L1*dz1

C1*dz1G1*dz1

R2*dz2

L2*dz2

C2*dz2
G2*dz2

R3*dz3

L3*dz3

C3*dz3
G3*dz3

R4*dz4

L4*dz4

C4*dz4
G4*dz4

R5*dz5

L5*dz5

C5*dz5
G5*dz5

Cable Model

ZPK

][

][

P

Z
K

2 31

Figure 6.1: Circuit used to validate python algorithms

Circuit used on both simulations is described on figure 6.1. Generic filter is a low pass and can

be described by a zero pole gain function as: Z = [−2π0.9e9], P = [−2π3.5e9,−2π4.5e9] and

K = −2π3.5e9·−2π4.5e9
−2π0.9e9 . Cable model is described by multiple cable elements with: R=[1e-9, 1e-9,

1e-9, 1e-9,1e-8], C=[2e-12, 5e-12, 3e-12, 0.1e-12, 3e-12], G=[1/3e7, 1/3e6, 1./3e5, 1/3e7, 1/3e7],

L=[0.1e-12, 0.01e-12, 2e-12, 0.1e-12, 0.5e-12], dz=[0.2, 0.2, 0.2, 0.2, 1.2].

To have a correct measurement the input data was generated on the python tool and then

applied to Spice simulations. Signal generation must be modulated as a voltage signal connected

to a source termination, in this case Z0 was defined to 50 Ω.

Python algorithms rely on Fmax definition to determine the maximum frequency considered

on the frequency domain analysis. Simulations were done with Fmax= 200e9, which corresponds

to ten times the maximum frequency of the clock used to generate the PRBS15 signal (20GHz).

Frequency response waveforms of the cable and generic filter are represented on figure 6.2.

Data used on this process was generated in python and used in spice as well, making possible

the direct comparison between environments. Figure 6.3 shows the difference between python

and spice at the cable output (point 2 in figure 6.1). Blue waveform is the input signal (point 1 on

figure 6.1), red waveform represents the signal from python and black signal represents the signal

obtained from spice simulation. Differences can be caused by the approximations done inside

the Spice tool, since very-low resistance values are usually discarded, to increase the simulation

speed. It is then possible to conclude that the cable model algorithm implemented on python is

very accurate when compared with spice even for signals at 20Gbit/s.

0.0 0.5 1.0 1.5 2.0 2.5
Frequency (Hz) 1e10

25

20

15

10

5

0

G
a
in

 (
d
B

)

Frequency Response

0.0 0.5 1.0 1.5 2.0 2.5
Frequency (Hz) 1e10

80

60

40

20

0

P
h
a
se

 (
d
e
g
)

(a) Cable transfer function

0.0 0.5 1.0 1.5 2.0 2.5
Frequency (Hz) 1e10

4

2

0

2

4

6

8

G
a
in

 (
d
B

)

Frequency Response

0.0 0.5 1.0 1.5 2.0 2.5
Frequency (Hz) 1e10

200

150

100

50

0

50

100

150

200

P
h
a
se

 (
d
e
g
)

(b) ZPK Transfer function

Figure 6.2: Cable and generic filter transfer functions

6.2 Proposed software tool accuracy 85

3.99 4.00 4.01 4.02 4.03 4.04
Time (s) 1e 7

0.6

0.4

0.2

0.0

0.2

0.4

0.6
A

m
p
lit

u
d
e
 (

V
)

Python Vs Spice Cable Model

Figure 6.3: Python Vs spice cable model effect on PRBS15 signal

Figure 6.4 represents the signal after generic filter (point 3 in figure 6.1). The signals are

represented with the same color mapping as the used above. In terms of accuracy it is impossible

to check if the differences are due to the cable model, or to the generic filter model. A second

simulation was performed using the signal after cable obtained in python as input to the generic

filter in Spice. Results of this simulation can be found on figure 6.5.

The ZPK implementation is as accurate as spice allowing to conclude that when an appropriate

Fmax value is used, the obtained results from python simulations are very accurate, giving the

necessary confidence to the end user to use frequency response functions on the system model.

PCB FR-4 validation model was done through superposition of frequency response profiles

presented on [1] and python implementation, via cascading 30 elements with dz=0.0254m (1in).

Images from python were re-scaled to match the scale of the images on the article, then it was

just necessary to align the references to create the final image presented on figure 6.6. The method

used is not perfect once it implies a manual action. Differences between python model and the one

proposed on the article are very small in terms of gain and similar in terms of phase. In terms of

gain the difference is on the order of 1dB. Python implementation represents better the influence

at high frequencies.

Based on this analysis it is possible to conclude that python model can be used with confidence

for frequencies lower than 10GHz. It is possible to use python model for frequencies till 20GHz

when short PCB traces are considered (up to 20cm).

Validation of clock recovery algorithm was done through a different method: instead of com-

pare python results with simulation, the comparison was done against lab results, obtained from

commercial and expensive equipment. A real circuit was used to provide the input signals to the

86 Results

3.99 4.00 4.01 4.02 4.03 4.04
Time (s) 1e 7

0.6

0.4

0.2

0.0

0.2

0.4

0.6

A
m

p
lit

u
d
e
 (

V
)

Python Vs Spice Cable Model + ZPK function

Figure 6.4: Python Vs spice cable model + generic filter effects on PRBS15 signal

3.99 4.00 4.01 4.02 4.03 4.04
Time (s) 1e 7

0.6

0.4

0.2

0.0

0.2

0.4

0.6

A
m

p
lit

u
d
e
 (

V
)

Python Vs Spice ZPK function

Figure 6.5: Python Vs generic filter effects on PRBS15 signal

6.3 Frequency response to time response analysis 87

(a) FR-4 model gain (b) FR-4 model phase

Figure 6.6: PCB FR-4 frequency response profiles, microstrip (black dashed lines), and scalable
model from [1] (black solid lines) and python implementation (blue solid lines) for a 30-in trace

oscilloscope, responsible for the eye diagram generation at the lab side. Raw data used by the

oscilloscope was stored and applied to the python tool.

The use of an eye diagram allows the comparison of multiple algorithms trough a single pic-

ture, like clock recovery algorithm, zero crossing point detection, rise and fall times and jitter.

Python tool processed the raw data and generated an eye diagram that was stored into a .png

file. The comparison between lab and python results was done through image superposition. Ob-

tained eye diagrams have a different number of pixels but, if one image is resized until the eye

diagram mask matches perfectly the mask on the other image, figures will be perfectly aligned.

Figure 6.7 represents the differences between python and oscilloscope images, python image

provides the background, the boundaries of the oscilloscope image are then plotted in blue color

over that background. This operation was repeated for three different channels and the results were

consistent, allowing to conclude that the clock recovery algorithm and signal analysis functions

implemented in python are as accurate as the ones used in commercial equipments.

6.3 Frequency response to time response analysis

The frequency domain to time domain conversion depends of the maximum frequency available

inside the frequency response representation. In order to demonstrate this effect, simulations were

performed using a switch from Avago (AMMC-2008), with a frequency response representation

till 50 GHz as reference.

The simulation environment was designed to check only the influence of the frequency re-

sponse on the jitter analysis. A PRBS15 sequence was used as data pattern; the clock used to

trigger the data has a frequency of 6.5 GHz without jitter components, leading to 6.5Gbps inter-

face.

88 Results

Figure 6.7: Eye diagram comparison between python and lab

Figure 6.8-a) represents the frequency response of the switch obtained from the .s2p file pro-

vided by Avago. The jitter analysis presented in figure 6.8-b) were performed using the generation

clock for ideal edge positions and Fmax = 50GHz. Since no jitter was added, the observed jitter

should be considered only deterministic, not varying with the number of acquired bits (assuming

at least 2(215−1) are acquired). The total jitter measured after 260.000 acquisitions was 0.5ps.

(a) Frequency response (b) Jitter histogram

Figure 6.8: Switch effect when using f s = 50Ghz

Figure 6.9-a) represents the frequency response for the Avago switch, but this time limited to

20GHz. The obtained jitter presented in figure 6.9-b) was obtained using Fmax = 20GHz, leading

to a bigger value (2.99ps) when compared with the previous approach.

Figure 6.10-a) represents the frequency response extrapolated from 20GHz to 50GHz for the

Avago Switch. Figure 6.10-b) represents the jitter observed in this approach (Fmax = 50GHz).

The total jitter measured was 0.4ps.

6.3 Frequency response to time response analysis 89

(a) Frequency response (b) Jitter histogram

Figure 6.9: Switch effect when using f s = 20Ghz

(a) Frequency response (b) Jitter histogram

Figure 6.10: Switch effect when using f s = 20Ghz and proceeding with a frequency response
extrapolation to 50Ghz

The frequency response extrapolation was done using the previously presented algorithm (use

of Hilbert transform), such approximation assumes a low-pass characteristic that can be noticed in

figure 6.10-a). The Avago switch has a flat frequency response at least till 50GHz, leading to an

inaccurate frequency extrapolation, although the jitter error is much smaller than doing nothing.

The extrapolation results in an error of 20%, but using only 20GHz results in 498% of error.

The frequency band of operation should be carefully chosen, to minimize the error. In this

case it was used a data rate of 6.5Gbps leading to a maximum frequency of 3.25GHz, far from the

20GHz used in the worst case.

90 Results

6.4 Clock recovery topologies analysis

Clock recovery circuits are used to extract the jitter value seen by the data recovery circuit. As

referred by Agilent [23], "Any test standards (IEEE 802.3 Ethernet, Fibre Channel etc.) require

the use of a Golden PLL (phase locked loop), jitter transfer characteristic or loop bandwidth to

control what spectrum of jitter is observed and what is removed from eye-mask and jitter tests.

If the loop bandwidth is too wide, too much high-frequency jitter is removed from the observed

signal. If the loop bandwidth is too narrow, measurements can be obscured with lower frequency

jitter. This jitter is usually less important since receivers easily tolerate it. Testing with an optimal

loop bandwidth ensures that good parts do not appear to be bad, and bad parts do not appear to be

good".

Clock recovery circuit topologies affect the overall system jitter, the first line of defense against

jitter is done by them.

When used, CRU represents an ideal PLL circuit without jitter addition. However, CRU-TF

influences the overall measured jitter. PLL can follow accurately low frequency components,

leaving the high frequency to be addressed by CDR. High frequency jitter components are seen

on the eye diagram, representing the jitter that must be tracked by the CDR. If such jitter profile is

bigger than what can be addressed by the CDR, data errors will appear.

6.4.1 CRU-TF influence on clock shared communication systems

Clock sharing communication systems have more immunity in relation to low frequency jitter

(when compared with the transfer function bandwidth). The following example was created to

demonstrate the influence of this factor on the overall jitter.

PRBS15 data sequence was used, generated via a 10GHz clock with A j = 0.2UI and Fj =

500kHz with 1ps of random jitter. Data signal was also generated with 5mV of random amplitude

noise.

To make the verification more realistic a cable model with 3dB of attenuation at 10GHz (see

figure 6.11) was introduced on the characterization system.

CRU-TF was obtained from eq. 6.1. Frequency responses were obtained using ωn = 1 and 13

MHz, with a damping factor of 0.707 (see figure 6.12).

CRU−T F(s) =
ωn2 +2sζ ωn

s2 +2sζ ωn+ωn2 (6.1)

Figure 6.14 shows the jitter histograms for each CRU-TF. Eye diagrams are presented on figure

6.13. Obtained random jitter is bigger than 1ps. This represents in fact the influence of cable

attenuation combined with PRBS15 data sequence. It is also necessary to take into consideration

the amplitude random noise of 5mV, which will be translated in a few more fs of random jitter.

6.4 Clock recovery topologies analysis 91

Figure 6.11: Cable transfer function

(a) ωn = 2π1e6, ζ = 0.707 (b) ωn = 2π13e6, ζ = 0.707

Figure 6.12: CRU transfer function

6.4.2 CRU-TF influence on plesiochronous communication systems (without fre-
quency offset)

On this section the influence of clock recovery transfer function over plesiochronous system will

be evaluated.

Starting with a simple model, PRBS5 data is generated via a 10GHz clock with A j = 0.2UI

and Fj = 500kHz, 1ps of random jitter (only time jitter, amplitude noise was not added).

Figure 6.12 contains the frequency response of two different CRU-TF, 1MHz and 13MHz.

Such transfer functions were obtained from eq. 6.1. Jitter histogram and eye diagram can be

found on figures 6.15 and 6.16 respectively.

Jitter histogram represented on figure 6.15 shows in fact that the random jitter (1.3ps) is bigger

than the present on clock signal used to generate PRBS5 data (1ps). Such fact is related with the

clock extraction mechanism, since it is recovered from a PRBS5 signal instead of a clock signal.

92 Results

(a) CRU-TF (ωn = 2π1e6, ζ = 0.707) (b) CRU-TF (ωn = 2π13e6, ζ = 0.707)

Figure 6.13: Jitter histogram, clock extracted from clock signal, PRBS15 as data with rj=1ps and
5mV as amplitude noise

(a) CRU-TF (ωn = 2π1e6, ζ = 0.707) (b) CRU-TF (ωn = 2π13e6, ζ = 0.707)

Figure 6.14: Eye diagram, clock extracted from clock signal, PRBS15 as data with rj=1ps and
5mV as amplitude noise

It is also important to notice that even this ideal system has more jitter than a clock sharing system

with cable attenuation, supply random noise of 5mv and PRBS15 for data generation.

6.4.3 CRU-TF influence on plesiochronous communication systems (with frequency
offset)

Leaving the ideal world, it would be good to have an evaluation of how a CRU-TF influences

the system jitter when PRBS15 data pattern is used and a frequency offset is present. For this

evaluation two data patterns were used: PRBS5 and PRBS15. Both were generated from a clock

signal with central frequency of 10GHz, A j = 0.2UI, Fj = 500kHz. The frequency offset added to

CRU circuit was -2000ppm. Data signals have also 1ps of random jitter, 5mV of amplitude noise

and the cable effect represent on figure 6.11.

CRU-TF used in this simulation was different from the previous ones. Instead of using a

second order equation a first order was used. Frequency response functions used are represented

6.4 Clock recovery topologies analysis 93

(a) CRU-TF (ωn = 2π1e6, ζ = 0.707) (b) CRU-TF (ωn = 2π13e6, ζ = 0.707)

Figure 6.15: Jitter histogram, clock extracted from PRBS5 data with rj=1ps

(a) CRU-TF (ωn = 2π1e6, ζ = 0.707) (b) CRU-TF (ωn = 2π13e6, ζ = 0.707)

Figure 6.16: Eye diagram, clock extracted from PRBS5 data with rj=1ps

on figure 6.17. The -3dB frequencies are 10MHz and 22MHz respectively.

(a) CRU-TF (f3dB = 10MHz) (b) CRU-TF (f3dB = 22MHz)

Figure 6.17: CRU transfer function (1st order)

94 Results

Figures 6.18 and 6.19 show the influence of CRU-TF on the overall system jitter. As expected

the jitter values are bigger than when no frequency offset is considered.

(a) CRU-TF (f3dB = 10MHz) (b) CRU-TF (f3dB = 22MHz)

Figure 6.18: Jitter histogram, clock extracted from PRBS5 data with rj=1ps, cable model, 5mV of
random amplitude noise and 2000ppm of frequency offset

(a) CRU-TF (f3dB = 10MHz) (b) CRU-TF (f3dB = 22MHz)

Figure 6.19: Eye diagram, clock extracted from PRBS5 data with rj=1ps, cable model, 5mV of
random amplitude noise and 2000ppm of frequency offset

Figures 6.20 and 6.21 represent CRU-TF influence when PRBS15 sequence is used in data

generation. Jitter values are bigger than on PRBS5, demonstrating the need for the use of encoders

to ensure a low number of equal bits.

6.4.4 CRU-TF influence on clock shared communication systems with high fre-
quency jitter components

An important concept to retain is that clock recovery units are intended to track low frequency

jitter components, leaving the high frequency components to the CDR block. It is interesting to

see what happens to the eye diagram and jitter histograms, when high frequency jitter components

are added to signal under recovery. For this example let use clock shared communication system,

due to a better tracking of jitter components present on clock signal.

6.4 Clock recovery topologies analysis 95

(a) CRU-TF (f3dB = 10MHz) (b) CRU-TF (f3dB = 22MHz)

Figure 6.20: Jitter histogram, clock extracted from PRBS15 data with rj=1ps, cable model, 5mV
of random amplitude noise and 2000ppm of frequency offset

(a) CRU-TF (f3dB = 10MHz) (b) CRU-TF (f3dB = 22MHz)

Figure 6.21: Eye diagram, clock extracted from PRBS15 data with rj=1ps, cable model, 5mV of
random amplitude noise and 2000ppm of frequency offset

On this example a PRBS15 sequence was used. Clock signal was generated with a central

frequency of 10GHz, A j = 0.2UI, Fj = 100MHz. In terms of jitter, 1ps of random jitter and 5mV

of amplitude jitter were added to the data and clock signals. Frequency response functions were

obtained via eq. 6.1.

Figure 6.22 represents the CRU-TF used on this example. Case a) describes the frequency

response of a high bandwidth PLL (10MHz). Case b) represents the combined effect of CDR and

PLL, this explaining the high bandwidth (100MHz).

Figures 6.23 and 6.24 a) represent the jitter and eye diagram seen by CDR. This is the jitter

that must be tracked by the CDR. The b) represents the jitter and eye diagram after the CDR. It is

important to notice that the CDR cannot follow random jitter, and as expected, it will appear on

the jitter histogram.

Periodic jitter is clearly seen on jitter histogram figure 6.23 a). This type of jitter is represented

in jitter histogram as an "U" shape.

96 Results

This example shows the importance of a correct definition of the CRU-TF, since a bad defi-

nition can be masking jitter components that would be seen in the CDR circuit, leading to wrong

characterizations.

(a) ωn = 2π10e6, ζ = 1.2 (b) ωn = 2π100e6, ζ = 1.2

Figure 6.22: CRU transfer function for high frequency jitter tracking

(a) CRU-TF (ωn = 2π10e6, ζ = 1.2) (b) CRU-TF (ωn = 2π100e6, ζ = 1.2)

Figure 6.23: Jitter histogram, when 100MHz of jitter frequency is added to the clock signal

6.5 Transmitter characterization

Transmitter characterization is performed using data provided from lab or simulation environment.

Such data will have to respect the csv format. The user needs to first read the csv data from the

different channels to the software tool. Then it is just necessary to recover the clock signal and

proceed with the signal analysis: jitter histogram, eye diagram, min rise and fall times, low and

high differential values and minimum and maximum VHIGH and VLOW differential values.

6.5 Transmitter characterization 97

(a) CRU-TF (ωn = 2π10e6, ζ = 1.2) (b) CRU-TF (ωn = 2π100e6, ζ = 1.2)

Figure 6.24: Eye diagram, when 100MHz of jitter frequency is added to the clock signal

Data signals can be extracted from simulations. It is possible to represent the interconnection

effects between device under test and test equipment. Typically the use of a 1st order low pass

filter provides a good approximation.

Based on a specific design, a python script was created to ease the characterization of clock

sharing transmitter devices. This script can be applied when the clock shared signal has a fre-

quency 10 times lower than the frequency used to generate the serial data.

A configuration file must be provided to the script. The user can define the maximum number

of lines that will be evaluated and the signal data column that is used when a single file contains

the data from all channels. An example of a configuration file is presented below:

lines_max,100e6

channel1,from_sim\waves_ck_d0_d1_d2.csv,3

channel2,from_sim\waves_ck_d0_d1_d2.csv,4

channel0,from_sim\waves_ck_d0_d1_d2.csv,2

clk,from_sim\waves_ck_d0_d1_d2.csv,1

extrapol_eye,2.9411e-7,3.4e-12,1

lpf,7e9

report_name,from_sim\TX_dj_only.html

The presented configuration file defines the report file name, the low pass filter characteristic and

allow the python script to perform an eye diagram extrapolation, with BER=2.9411e-7, rj=3.4e-12

and the jitter obtained from data channels should be considered as deterministic jitter only. In

terms of CRU-TF a 1st order low pass filter with f3dB = 4MHz is used.

6.5.1 3.4Gbps transmitter characterization based on lab results

The Following configuration file was used to perform the transmitter characterization based on lab

data. It is important to notice, that the extrapolated eye will be obtained, using the extracted jitter

components (RJ):

lines_max,100e6

98 Results

channel0,From_Lab\data0.csv

clk,From_Lab\clk.csv

extrapol_eye,1e-12

report_name,From_Lab\TX.html

Figures 6.25, 6.26 and 6.27 were extracted from the reported created with the previously de-

fined python script. The eye diagram jitter obtained with lab data was 57ps and the extrapolated

was 83ps, matching the expected result from the jitter extrapolation based on random and deter-

ministic jitter components.

(a) Jitter histogram (b) Analog parameters table

Figure 6.25: Transmitter characterization based on lab results (jitter histogram, analog parameters)

(a) Obtained eye diagram (b) Extrapolated eye diagram (BER=1e-12)

Figure 6.26: Transmitter characterization based on lab results (eye diagram, extrapolated eye dia-
gram)

6.5.2 3.4Gbps transmitter characterization based on simulation results

Simulations were performed over the transmitter circuit under test, instead of acquiring 3.4Mbits

as obtained in lab, only 31 kbits were acquired. The difference is related with time taken by

simulation to achieve such value.

Simulation environment does not provide the random jitter value, intrinsically defined by the

technology process, where the design will be implemented. Jitter observed is due to the PRBS

6.5 Transmitter characterization 99

(a) Obtained eye diagram jitter (b) Extrapolated eye diagram
jitter(BER=1e-12)

Figure 6.27: Transmitter characterization based on lab results (eye diagram jitter, extrapolated eye
diagram jitter)

(mod 15) sequence used on the data generation. PRBS sequences tend to produce jitter similar to

Gaussian distributions, which can lead to wrong extraction jitter values. The only way of over-

coming this fact, is trough long acquisitions that will ensure the presence of very low probability

events, allowing a correct used of dual-Dirac jitter extraction method.

Two configuration files were used:

lines_max,100e6 lines_max,100e6

channel0, from_sim\
sim_waves_ck_d0_d1_d2.csv,2

channel0, from_sim\
sim_waves_ck_d0_d1_d2.csv,2

clk,from_sim\
sim_waves_ck_d0_d1_d2.csv,1

clk,from_sim\
sim_waves_ck_d0_d1_d2.csv,1

extrapol_eye,2.9411e-7,3.4e-12,1 extrapol_eye,2.9411e-7, 5.7e-12

lpf,7e9 lpf,7e9

report_name,from_sim\TX_dj_only.html report_name,from_sim\TX.html

Two different approaches were used for the jitter extrapolation. In a) random jitter value extracted

from simulation is taken in consideration for eye extrapolation. In b) Simulation jitter is consid-

ered as only deterministic. For a better match between simulation and lab results a low pass filter

(f3dB = 7GHz) was used, to represent the package, connectors and cable used in lab characteriza-

tion environment.

Figures 6.28 and 6.29 contain the simulation results. In terms of jitter the maximum observed

jitter in simulation was 22ps. Analog parameters extracted from simulation are similar to the ones

extracted from lab characterization (the accuracy of the simulation can be increased).

The numbers of bits captured on test characterization were 100 times more than the captured

in simulation. This is clearly seen on the eye diagram jitter.

100 Results

(a) Simulation jitter histogram (b) Simulation eye diagram

Figure 6.28: Simulation results - jitter histogram and eye diagram

(a) Simulation eye diagram jitter (b) Simulation - analog parameters table

Figure 6.29: Simulation results - jitter on eye diagram and analog parameters table

In order to predict what will be the eye diagram obtained in characterization based only on

simulation results, two similar approaches were followed (a) and b)). The difference is related

with the eye extrapolation algorithm. In a) the jitter obtained in simulation is considered as deter-

ministic. This jitter will be then convolved with a Gaussian distribution with σ = 3.4ps. In b) the

jitter obtained in simulation is considered as a combination of random and deterministic jitter. The

Gaussian distribution that will be convolved with the simulation eye diagram reflects this effect, to

ensure that the convolution between the Gaussian distribution and eye diagram results in a random

jitter described by a Gaussian distribution with σ = 5.7ps.

Results for eye diagram extrapolation a) and b) approaches can be found in figure 6.30. The

eye diagram was extrapolated to BER = 2.94e− 7, to be in accordance with the number of bits

captured by test equipment. In terms of jitter a) has a total jitter of 53ps and b) of 59ps. The a)

approach seems to be more correlated with the eye diagram obtained in lab characterization. This

can lead to the conclusion that jitter decomposition obtained from lab results is not accurate. As

stated before a correct extraction of jitter based on dual-Dirac method requires the presence of

very low probability events, leading to the conclusion that for correct jitter decomposition more

bits should be captured in lab.

6.6 Channel characterization 101

(a) Simulation eye diagram jitter extrapolation (rj=3.4ps, eye
sim jitter considered as deterministic only)

(b) Simulation eye diagram jitter extrapolation (rj=5.7ps)

Figure 6.30: Eye diagram extrapolation based on simulation results

6.6 Channel characterization

Channel characterization plays an important role in system level architecture definition. From this

environment will emerge the specifications for the circuit is implementation, in terms of equalizer

transfer function, jitter tolerance, jitter budget, etc.

Cable transfer functions are not always smooth. Presented tool has the ability to add random

noise to the defined transfer function. An example of such behavior is presented on figure 6.31-a).

Pre-emphasis can play an important rule on eye opening. Sometimes a simple 20% of pre-

emphasis boost allows a transmitter to pass eye diagram restrictions. A representation of such

behavior can be found on figure 6.31-b).

(a) Cable transfer function with random noise (b) Eye diagram of a signal with pre-emphasis

Figure 6.31: Generic examples

Channel characterization starts with the definition of the link transfer function, since the fre-

quency of operation is dictated by the communication standard (nothing can be done in relation to

it). Link means cable plus connectors plus PCB traces plus "other" connection elements.

Figure 6.32 describes the transfer functions of two different links, a) 4cm of PCB FR-4 traces,

followed by a 1m cable, followed by more 4cm of PCB traces. Case b) 4cm of PCB FR-4 traces,

followed by a 2m cable, followed by more 4cm of PCB traces.

102 Results

(a) Transfer function of 8cm PCB traces with hypothetic 1m
cable

(b) Transfer function of 8cm PCB traces with hypothetic 2m
cable

Figure 6.32: PCB and cable transfer function

Figure 6.32 represents the link transfer function from 0 to 20GHz; the frequency of operation

will be on the 5GHz band.

In order to have a good simulation accuracy, Fmax was defined to 100GHz resulting on narrow

time steps on the impulse response.

A plesiochronous system was used without frequency offset. A PRBS7 data pattern was gen-

erated from a clock signal with 10GHz as central frequency, Fj = 100kHz, A j = 0.2UI, 4ps of

deterministic jitter and 0.5ps of random jitter.

Figure 6.33 presents the eye diagram after link a) with and without pre-emphasis boost. As

stated before, pre-emphasis can increase the eye opening leading to a pass condition. Today’s

transmitters have support for pre-emphasis boost on most cases.

(a) With 20% of pre-emphasis boost (b) Without pre-emphasis

Figure 6.33: Eye diagram after 1m cable and 8cm of PCB traces

Figure 6.34 represents the effect of link b). There is no eye opening, even with 20% of pre-

emphasis boost. The solution for this problem is the use of an equalizer prior to the receiver stage;

typically receiver devices support adaptive equalization.

6.7 Conclusion 103

(a) Jitter histogram (b) Eye diagram

Figure 6.34: Jitter histogram and eye diagram after 2m cable and 8cm of PCB traces, PRBS7
signal with 20% of pre-emphasis

An adaptive equalizer is an equalizer that automatically adapts the internal characteristics to

match the link. Figures 6.35, 6.36, 6.37 and 6.38 represent the eye diagram for different equalizer

transfer functions. Optimum equalizer transfer function will be link dependent. This fact leads

to adaptive equalizers, which have the ability to select the appropriate transfer function from the

available ones automatically. The end user will just plug and unplug different cables/equipment

and the overall functionality will be the same.

(a) Equalizer transfer function (b) Eye diagram

Figure 6.35: Equalizer C effect on eye diagram (under-equalization)

6.7 Conclusion

In this chapter, detailed results obtained with the developed tool were presented. It was demon-

strated the ability to proceed with a system characterization using the python signal analysis tool.

The use of python reduces the code complexity, allowing faster development stages. System

engineers would not need a deep understanding of python to be able to work with this tool.

The advantage of using python is the outstanding support for objects oriented programming,

as the availability of free scientific libraries.

104 Results

(a) Equalizer transfer function (b) Eye diagram

Figure 6.36: Equalizer A effect on eye diagram (under-equalization)

(a) Equalizer transfer function (b) Eye diagram

Figure 6.37: Equalizer B effect on eye diagram (good-equalization)

(a) Equalizer transfer function (b) Eye diagram

Figure 6.38: Equalizer C effect on eye diagram (over-equalization)

The results presented on this chapter were extracted from simulation reports. Such reports can

be found under: paginas.fe.up.pt/ ee10005/docs_page.php.

file:paginas.fe.up.pt/~ee10005/docs_page.php

Chapter 7

Conclusions and Further Work

7.1 Conclusions

In this report a new tool was presented, capable of performing signal analysis at the simulation

level. The accuracy is about the same that the user can have when using commercial tools like:

Spice or Oscilloscope software.

Traditional signal analysis tools are expensive, requiring extensive training. In opposition the

presented tool is based on high level classes, requiring from the user the knowledge of a few list

of commands.

Python was the chosen language making the tool independent of the operation system. Another

advantage of using such language relates to the scripting capability, providing the ability to run

the simulations without the user interference, leading to a productivity increment.

Costs reduction are always in demand, the presented tool can lead to improvements on the

development process, reducing the number of top level simulations performed, leading to a cheaper

development process.

Frequency domain to time domain, frequency response extrapolation, clock recovery unit,

interconnection modeling, jitter extraction and jitter decomposition define the most important ac-

tions provided by the presented tool.

Traditional simulation environments doesn’t have the ability to perform signal processing

tasks, like the ones performed by oscilloscopes at the characterization phase. The presented tool

brings to the simulation environment that ability.

The applications of the proposed tool can vary from channel characterization, to transmitter

characterization. This tool supports different environments, ensuring the compatibility with dif-

ferent interconnection standards.

7.2 Further work

The goals of the present work were met. Although the signal analysis tool could support more

features like: CDR model, real cable models, real PLL/DLL models and a few more signal analysis

105

106 Conclusions and Further Work

algorithms. The foundations for future works on this area are done, it is just necessary passion and

dedication to increase the functionality of this tool.

The presented tool doesn’t have a graphical interface, since the productivity is bigger with

scripts than buttons. A mixed-mode solution can be found, reducing the necessary time to start

working with this tool.

The frequency extrapolation algorithm that was developed is far from being finished. Extra

work should be done to make sure that the algorithm is robust enough. The boundary between real

values and extrapolated values should be analyzed with care, some changes could be done to the

algorithm in order to ensure a smooth transition (without ups and downs).

CUDA support can be another enhancement, giving to the python tool the ability to perform

convolutions on graphical processors will decrease the simulation time. The convolution was just

an example, there are other algorithms suitable to run on graphical processors.

During the development phase the idea of writing a scientific paper has emerged. The subject

could vary from jitter decomposition algorithm to frequency response extrapolation or about the

python tool.

The work is not finished, it just began.

Appendix A

Channel Characterization Example

PRBS7
16Gbps

0.5V <-> -0.5
(rj=3mv)

RJ = 0.5ps

S2P

Avago Switch

 AMMC-2008

5 cm
PCB – FR4

Conector
DJ = 5ps

Figure A.1: Channel characteristics

This example defines a channel to be characterized as having the characteristics defined in fig-

ure A.1, its a plesiochronous system without frequency offset. The clock signal used to generate

the PRBS7 data has a sinusoidal jitter component defined by A j = 0.1 and F j = 50KHz.

The python script starts with the packages import:

import os, sys

import sig_analysis as sig

import copy

import numpy as np

import matplotlib.pyplot as plt

The signal analysis package, in this example, is imported as "sig"; the package internal functions

are reference by "sig.<function>". The simulation will generate a report, which will be stored in

html format. The filename is defined through:

sig.Report_Filename = ’Channel_Example/Channe_l6Gbps.html’

Report file should be created at the beginning of the script:

sig.c_html.create()

The simulation environment needs to have defined the Fmax variable, in this example it is settled

to 100MHz:

sig.Fmax = 100e9

107

108 Channel Characterization Example

The previous commands have defined the parameters for the simulation. Moving forward,

the data generation needs a clock edges vector to produce the data sequence. The clock edges is

generated through:

clk_c = sig.clock_gen(0.1,16e9,50e3,2.0e-5)

clock_edges = sig.clock_edges_extract(clk_c)

The PRBS7 analog signal is then generated through:

data_s = sig.data_generation(clock_edges,’PRBS7’,0.5,-0.5,20e-12,20e-12,rj=3e-3)

Next step is to produce the signal after the switch. The frequency response of the switch is

defined as a .s2p file, leading to the use of s21_param class to obtain the impulse response:

avago_switch = sig.s21_param(filename)

#IR from avago switch

avago_switch.get_impulse_resp()

#signal after switch

data_switch = sig.ana_convolve(avago_switch,data_s)

The PCB element has "data_switch" signal as input. The signal after pcb can be generated through:

pcb = sig.cable_model()

pcb.add_pcb_element(0.05)

Get Impulse Response of PCB element

pcb_ir = sig.calc_inp_coef(pcb)

#signal after pcb

data_pcb = sig.ana_convolve(pcb_ir,data_switch)

The system is plesiochronous leading to a clock extraction from "data_pcb" signal. In this

example a low pass filter with f3dB = 2MHz is used as CRU-TF:

#Edges extraction from data_pcb signal

data_edges = sig.clock_edges_extract(data_pcb,0.0,’PRBS7_after_PCB’)

CRU-TF definition

cru_tf = sig.generic_filter([],[-2*np.pi*2e6],2*np.pi*2e6)

cru = sig.cru_func_to_ir(’generic’,cru_tf)

#Golden edges extraction

clok_data_cable = sig.clok_recovery(data_edges,cru, \

’PRBS7_after_PCB’,1.0/16e9)

The ideal edges position are stored in "clok_data_cable" variable. The jitter extraction via TIE

method is performed by the following commands:

A.1 Python script 109

tie_dt = sig.calc_analog_params(clok_data_cable,data_pcb,\

clok_data_cable.ind_start, \

data_type=’PRBS7_after_PCB’)

tie_dt.extract_jitter()

The "tie_dt" variable is used to initialize the calc_analog_params class. The extract jitter function

is internal to the class and can be called by "." method (tie_dt.extract_jitter).

To proceed with the eye diagram generation, is necessary to previously define the eye diagram

mask:

class_eye_mask = sig.eye_mask()

class_eye_mask.bot_top = 0.6 # Volt

class_eye_mask.bot_top_mask = 0.1 #Volt

class_eye_mask.zero_mask = 0.35 #UI

class_eye_mask.top_bot_mask = 0.4 # UI

The eye diagram generation function is then called by:

tie_dt.plot_eye_diagram(class_eye_mask)

In this example an extrapolated eye diagram is generated, assuming BER = 2−11 the command

is:

tie_dt.extrapol_eye_diagram(class_eye_mask_ext,2e-11)

The complete python script can be found in chapter A.1, the report file can be found in chapter

A.2.

A.1 Python script

import os, sys

import sig_analysis as sig

import copy

import numpy as np

import matplotlib.pyplot as plt

def main():

Report File Creation

data_name = ’Avago_Switch_50G_Extrapol’

sig.Report_Filename = ’Channel_Example/Channe_l6Gbps.html’

filename = ’Frequency_extrapol/Switch_Avago/ammc2008_2_on_a.s2p’

sig.c_html.create()

Maximum frequency definition

sig.Fmax = 100e9

110 Channel Characterization Example

Signal Generation

clk_c = sig.clock_gen(0.1,16e9,50e3,2.0e-5)

clock_edges = sig.clock_edges_extract(clk_c)

#Random jitter addition 0.5ps

clock_edges.add_jitter(0,0.5e-12)

#Deterministic jitter addition 5ps

clock_edges.add_jitter(5e-12,0)

#Signal generation with amplitude random jitter =3mV

data_s = sig.data_generation(clock_edges,’PRBS7’,\

0.5,-0.5,20e-12,20e-12,rj=3e-3)

Header in Report

sig.c_html.title_break(’Switch Characteristics’)

#s2p file import

avago_switch = sig.s21_param(filename)

#IR from avago switch

avago_switch.get_impulse_resp()

plt.close(’all’)

#Plot Frequency Response

avago_switch.plot_freq_resp(data_type=data_name)

plt.close(’all’)

#Plot Impulse Response

avago_switch.plot_imp_resp(data_type=data_name)

plt.close(’all’)

#signal after switch

data_switch = sig.ana_convolve(avago_switch,data_s)

sig.c_html.title_break(’PCB Characteristics’)

5cm PCB

pcb = sig.cable_model()

pcb.add_pcb_element(0.05)

pcb.plot_freq_resp(data_type=’5 cm of PCB’)

plt.close(’all’)

Get Impulse Response of PCB element

pcb_ir = sig.calc_inp_coef(pcb)

#signal after pcb

A.1 Python script 111

data_pcb = sig.ana_convolve(pcb_ir,data_switch)

sig.c_html.title_break(’Signal Analysis’)

data_edges = sig.clock_edges_extract(data_pcb,0.0,’PRBS7_after_PCB’)

cru_tf = sig.generic_filter([],[-2*np.pi*2e6],2*np.pi*2e6)

cru = sig.cru_func_to_ir(’generic’,cru_tf)

cru.plot_freq_resp(20e6,’CRU-TF’)

plt.close(’all’)

clok_data_cable = sig.clok_recovery(data_edges,cru, \

’PRBS7_after_PCB’,1.0/16e9)

#Eye diagram mask definition

class_eye_mask = sig.eye_mask()

class_eye_mask.bot_top = 0.6 # Volt

class_eye_mask.bot_top_mask = 0.1 #Volt

class_eye_mask.zero_mask = 0.35 #UI

class_eye_mask.top_bot_mask = 0.4 # UI

#Signal Analysis

tie_dt = sig.calc_analog_params(clok_data_cable,data_pcb,\

clok_data_cable.ind_start, \

data_type=’PRBS7_after_PCB’)

tie_dt.extract_jitter()

plt.close(’all’)

tie_dt.plot_eye_diagram(class_eye_mask)

plt.close(’all’)

tie_dt.plot_jitter_eye()

plt.close(’all’)

Eye diagram extrapolation for BER=2e-11

class_eye_mask_ext = sig.eye_mask()

class_eye_mask_ext.bot_top = 0.6 # Volt

class_eye_mask_ext.bot_top_mask = 0.05 #Volt

class_eye_mask_ext.zero_mask = 0.37 #UI

class_eye_mask_ext.top_bot_mask = 0.42 # UI

tie_dt.extrapol_eye_diagram(class_eye_mask_ext,2e-11)

112 Channel Characterization Example

sig.c_html.close()

if __name__ == "__main__":

sys.exit(main())

A.2 Simulation html report file

A.2 Simulation html report file 113

114 Channel Characterization Example

A.2 Simulation html report file 115

116 Channel Characterization Example

References

[1] S. Gondi and B. Razavi, “Equalization and clock and data recovery techniques for 10-gb/s
cmos serial-link receivers,” Solid-State Circuits, IEEE Journal of, vol. 42, no. 9, pp. 1999
–2011, sept. 2007.

[2] N. Ou, T. Farahmand, A. Kuo, S. Tabatabaei, and A. Ivanov, “Jitter models for the design
and test of gbps-speed serial interconnects,” Design Test of Computers, IEEE, vol. 21, no. 4,
pp. 302 – 313, july-aug. 2004.

[3] T. Yamaguchi, M. Soma, M. Ishida, T. Watanabe, and T. Ohmi, “Extraction of instantaneous
and rms sinusoidal jitter using an analytic signal method,” Circuits and Systems II: Analog
and Digital Signal Processing, IEEE Transactions on, vol. 50, no. 6, pp. 288 – 298, june
2003.

[4] N. Kiddinapillai and T. Kwasniewski, “Jitter tolerance estimation of a 3x oversampling cdr
using event-driven simulation,” in Microsystems and Nanoelectronics Research Conference,
2009. MNRC 2009. 2nd, oct. 2009, pp. 136 –139.

[5] R. Stephens, “Analyzing jitter at high data rates,” Communications Magazine, IEEE, vol. 42,
no. 2, pp. S6–10, feb 2004.

[6] R. Stephens, “Jitter Analysis: The dual-Dirac Model, RJ/DJ, and Q-Scale,” A. Technologies,
Ed. White Paper, Agilent Technologies, 2004.

[7] M. Miller, “Normalized Q-scale analysis: Theory and background,” EDN, 2007.

[8] D. Hong and K.-T. Cheng, “An accurate jitter estimation technique for efficient high speed
i/o testing,” in Asian Test Symposium, 2007. ATS ’07. 16th, oct. 2007, pp. 224 –229.

[9] M. S. Martin Miller, “A comparison of Methods for Estimating Total Jitter Concerning Pre-
cision, Accuracy and Robustness,” DesignCon, 2007.

[10] Stateye, “Statistical eye,” 2007, http://www.stateye.org/.

[11] B. G. J. G. S. A. A. K. J. U. A. C. A. W. Juan Carlos Chaves, John Nehrbass and O. Siddharth
Samsi Ohio Supercomputer Center, Columbus, “A High-Level Scripting Languages Produc-
tivity and Performance Evaluation,” HPCMP Users Group Conference (HPCMP-UGC’06),
2006, http://www.osc.edu/research/cse/projects/octave_python.pdf.

[12] S. Narayana, G. Rao, R. Adve, T. Sarkar, M. Wicks, and S. Scott, “Interpolation/extrapolation
of frequency domain responses using the hilbert transform,” in Signals, Systems, and Elec-
tronics, 1995. ISSSE ’95, Proceedings., 1995 URSI International Symposium on, oct 1995,
pp. 335 –338.

117

http://www.stateye.org/
http://www.osc.edu/research/cse/projects/octave_python.pdf

118 REFERENCES

[13] R. A. M. W. Sharath Narayana, Tapan K. Sarkar and V. Vannicola, “A Comparison of Two
Techniques for the Interpolation/Extrapolation of Frequency Domain Responses,” Digital
Signal Processing, 1996.

[14] F. R. Colin Warwick, “S-parameters Without Tears,” EETimes Design, 2010.

[15] T. Brazil, “Causal-convolution-a new method for the transient analysis of linear systems at
microwave frequencies,” Microwave Theory and Techniques, IEEE Transactions on, vol. 43,
no. 2, pp. 315 –323, feb 1995.

[16] G. C. R. M. E. E. M. S. S. N. Lalgudi, K. Srinivasan and Y. Kretchmer, “Causal Transient
Simulation of Systems Characterized by Frequency-Domain Data in a Modified Nodal Anal-
ysis Framework,” IEEE Electrical Performance of Electronic Packaging, 2006.

[17] S. N. Lalgudi, K. Srinivasan, G. Casinovi, R. Mandrekar, E. Engin, M. Swaminathan, and
Y. Kretchmer, “Causal transient simulation of systems characterized by frequency-domain
data in a modified nodal analysis framework,” in Electrical Performance of Electronic Pack-
aging, 2006 IEEE, oct. 2006, pp. 123 –126.

[18] M. Kavehrad, J. Doherty, J.-H. Jeong, A. Roy, and G. Malhotra, “10 gbps transmission
over standard category-5 copper cable,” in Global Telecommunications Conference, 2003.
GLOBECOM ’03. IEEE, vol. 7, dec. 2003, pp. 4106 – 4110 vol.7.

[19] T. Iwata, H. Shibata, and T. Araki, “Extrapolation of band-limited frequency data using an
iterative hilbert-transform method and its application for fourier-transform phase-modulation
fluorometry,” Measurement Science and Technology, vol. 18, no. 1, pp. 288–294, 2007.
[Online]. Available: http://stacks.iop.org/0957-0233/18/i=1/a=035

[20] M. Schnecker, “Clock Recovery Methods for Jiter Analysis,” Technical Brief, Lecroy, 2005.

[21] Wikipedia, “Plesiochronous,” April 2011, http://en.wikipedia.org/wiki/Plesiochronous.

[22] D. M. Pozar, Microwave Engineering, Second ed. Wiley, 1998.

[23] Agilent, “Agilent 83496B Clock Recovery Module With PLL Analysis,” www.agilent.com/
find/83496B, Agilent.

http://stacks.iop.org/0957-0233/18/i=1/a=035
http://en.wikipedia.org/wiki/Plesiochronous
www.agilent.com/find/83496B
www.agilent.com/find/83496B

	Front Page
	Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Extent
	1.2 Actual verification process and difficulties
	1.3 Motivation and objectives
	1.4 Original contributions
	1.5 Thesis organization

	2 State of the Art
	2.1 Jitter definition
	2.2 Jitter components
	2.2.1 Periodic jitter
	2.2.2 Data dependent jitter
	2.2.3 Bounded uncorrelated jitter
	2.2.4 Random jitter

	2.3 Total jitter
	2.4 Jitter measurement techniques
	2.5 Jitter decomposition techniques
	2.5.1 Dual-Dirac
	2.5.2 Q-scale

	2.6 Integrated circuits development process
	2.7 Verification environment
	2.8 System architecture simulation environment
	2.9 System modeling tools
	2.10 Software selection for signal analysis
	2.10.1 Existent solutions
	2.10.2 Programming language requisites
	2.10.3 Python programming language
	2.10.4 Python configuration

	2.11 Conclusion

	3 Jitter Extraction Tool
	3.1 Introduction
	3.2 Q-scale on discrete events
	3.3 Q-scale linearization
	3.4 The extract_jitter tool
	3.4.1 Linearization
	3.4.2 Multi-thread
	3.4.3 How to use
	3.4.4 Results

	3.5 Conclusion

	4 Signal Analysis
	4.1 Introduction
	4.2 Frequency domain to time domain
	4.2.1 Impulse response based on IFFT - considerations
	4.2.2 Causality enforcement

	4.3 Frequency extrapolation
	4.4 Clock generation
	4.5 Edges extraction
	4.6 Data generation
	4.7 Convolution
	4.8 Clock recovery unit
	4.8.1 Clock recovery unit transfer function considerations
	4.8.2 Plesiochronous system

	4.9 Cable model
	4.9.1 PCB FR-4 model

	4.10 Zero pole gain frequency domain representation
	4.11 Time interval error measurement
	4.12 Eye diagram generation
	4.13 Analog parameters extraction
	4.14 Eye diagram extrapolation
	4.15 Conclusion

	5 Signal Analysis - Software Implementation
	5.1 Introduction
	5.2 Signal generation
	5.2.1 Clock generation
	5.2.2 Edges extraction
	5.2.3 Clock multiplication
	5.2.4 Data generation
	5.2.5 External analog data

	5.3 Operation over generated signals
	5.3.1 Generic frequency domain to time domain conversion
	5.3.2 CRU to impulse response generation
	5.3.3 HDMI reference equalizer
	5.3.4 Impulse response generation
	5.3.5 Clock recovery
	5.3.6 Convolution
	5.3.7 Generic filter
	5.3.8 Cable model

	5.4 Signal analysis
	5.4.1 Eye diagram mask
	5.4.2 Analog parameters extraction

	5.5 Report file generation
	5.5.1 HTML file generation

	5.6 Conclusion

	6 Results
	6.1 Introduction
	6.2 Proposed software tool accuracy
	6.3 Frequency response to time response analysis
	6.4 Clock recovery topologies analysis
	6.4.1 CRU-TF influence on clock shared communication systems
	6.4.2 CRU-TF influence on plesiochronous communication systems (without frequency offset)
	6.4.3 CRU-TF influence on plesiochronous communication systems (with frequency offset)
	6.4.4 CRU-TF influence on clock shared communication systems with high frequency jitter components

	6.5 Transmitter characterization
	6.5.1 3.4Gbps transmitter characterization based on lab results
	6.5.2 3.4Gbps transmitter characterization based on simulation results

	6.6 Channel characterization
	6.7 Conclusion

	7 Conclusions and Further Work
	7.1 Conclusions
	7.2 Further work

	A Channel Characterization Example
	A.1 Python script
	A.2 Simulation html report file

	References

