X.500 and LDAP Security
A Comparative Overview

Vesna Hassler
Technical University of Vienna

Abstract

In this article we give a comparative overview of the X.500 and LDAPv3 Directory
security features. X.500 is a commonly used name for o series of joint ISO/IEC
and [TU-T standards specifying a distributed directory service. It assumes the exis
tence of an underlying OSI profocal stack. LDAP is an Internet alternative to the
X.500 Directory Access Protocol (X.511 DAP). Since its first version LDAP has

undergone significant chan?es, and many of them concern security. It was original-

ly planned to use LDAP on

In the meantime, LDAP functionality was extended, whic

y to access the X.500 direcforg via an LDAP gateway.

enables LDAPV3 to be

used for both the server model and the client read and update access protocol.

.500 is a commonly used name for a series of joint
International Organization for Standardization/
. International Electrotechnical Commission (ISO/
A W3 TEC) and International Telecommunication Union
— Telecommunication Standardization Sector (ITU-T) stan-
dards specifying a distributed directory scrvice. The work on
X.500 was initiated in 1984 mainly by two communities of
users: the International Consultative Committee for Tele-
phone and Telegraph (now the ITU-T), which wanted to pro-
vide a white pages service for phone numbers or X.400 O/R
addresscs; and the ISO and ECMA, which wanted to provide
a name scrver service for O8I applications [1].

A user wishing to obtain some information from the direc-
tory uses an application called a directory client. The directory
client accesses a directory server by using a standardized proto-
col. This protocol is referred to in X.500 as the Dircctory
Access Protocol (DAP). The X.500 directory scrvice, however,
assumes the existence of an underlying OST protocol stack.
Unfortunately, this is the main rcason X.500 never became
widely used, in addition to its high design complcxity.

There arc a number of X.500 praduets supporting DAP |2].
One of the most popular free products is QUIPU, centaining
an X.500 directory client from the public ISODE! releases, The
ISODE OSI package can be layered on tep of TCP/AP; it actu-
ally adds an additional transport sublayer that “hides” TCP and
“pretends” to be an [SO transport protocol. The upper open
system interconnection (OSI) laycrs (presentation, scssion, and
application layer) can be layered on top of the transport sub-
layer. A similar concept was developed for X.25 (packet) net-

1 ISODI has recently merged with Execmail into MessagingDirect.

works. 1t was, however, insufficient to increase the widespread
popularity of X.500, mainly duc to the extremely complex
server administration, which was especially true for the 1993
edition of the X,500 standard. The main application areas
were Intranet-bascd and company-wide dircetory services.

Lightweight Dircctory Access Protocol (LDAPY) is an Inter-
net alternative to the standard X.500 Directory Access Proto-
col (DAP) [3]. Since its first version LIDAP has undergone
significant changes, and many of them concern security, Origi-
nally it was planned to use LDAT only to access the X.500
directory via an LDAP gateway. In the meantime, LDAP
functionality was extended, which enabled LDAPvY3 to be used
for both the scrver model and the client read and update
access protocol, More information about X.500 and LDAPv3
can be found in [4).

LDAPv3 has adopted some of the X.500 security concepts
and somc of the widely accepted Internct security solutions,
such as Transport Layer Sccurity (TLS) [5]. However, it is
very difficult to obtain a clear picture of which security scr-
vices arc available in X,500 and LDAPv3 and how they are
related without having to study a scrics of X.500 standards
and Internct Engineering Task Force (IETI) documents. In
this article we give a comparative overview of X.500 and
LDAPv3 security features. We analyze the sccurity of the
directory aperations provided by X.500 [3] and LDAPv3 [6].
Our analysis is based on the 1995 cditions of the ISO directo-
ry standards [3, 7, 8] and the latest (as of July 1999) IETF
documents [6, 9-16],

The article is organized as follows. In the following section
we give a brief tutorial on directory scrvices. An overview of
the authentication scrvices for X.500 and LDAPv3 is given
next. We then explain how to protect the directory operations.

54 (1890-8044/99/$10.00 © 1999 IECE

IEEE Network » November/December 1999

Distributed directory service

Access ¢
protocol -

System
protocol

W Figure 1. A distributed direcfo.'y service,

The article gives an overview of the access control mecha-
nisms, We list the divectory attributes relevant to security ser-
vices, and then conclude the articie.

Directory Services

Many applications, such as browsing the Web, sending/receiv-
ing c-mail, or organizing enterprise information on the
Intranct, necd directory support. A directory-enabled applica-
tion uses directory services to become more cfficient, faster,
morc convenicent, and casier to use [17]. Such applications
arc actually elients to dircctory servers that provide directory
services. X.500 cxtended that concept to a distributed or global
directory scrvice, as illustrated by Fig. 1. A distributed dircc-
tory service consists of a set of interconnected dircctory
scrvers communicating by a system protocol. A client uses an
access protocol to contact the nearest server and send a
request (¢.g., asking for a person’s c-mail address). If the
server cannol satisfy the request it may forward it to other
scrvers in the group, process their responses, and build the
final responsce to be sent to the client. In this way the servers
provide a distributed directory scrvice that is location-trans-
parent to the clicnt,

W Figure 2. The directory information tree.

The Directory Data Model

According to the X.500 data model adopted by LDAP, the
directory information is organized in a tree-like hierarchy
(Fig. 2). The hierarchy, referred to as the directory information
tree (DIT), is only a logical one, since it can span the informa-
tion physically stored in the repositories of several directory
servers, A picee of information, or a group of rclated picces,
is assigned its own entry, Entrics are represented by circles in
Fig. 2. The data structure of an cntry is specified by the
entry’s object class. For example, the object class of the {CN
= Vesna Hassler} cntry may be “person”; this object class
must contain a person’s common name and surname, and may
contain some other data, such as the phone number or pass-
word [10]. The actual data are stored as attribute type and
valie pairs (e.g., surname = Hassler).

Each cntry has a tag referred to as the
relative distinguished name (RDN), for
examplc {CN = Vesna Hassler}. The set
of RDNs trom the Root cntry down to a
specific entry form a distinguished name

(DN) of the entry. The Root cntry, howev-
cr, is not listed in the DN. For cxample,

the DN of Vesna Hassler's entry is {C =
AT, 0 = TUV, CN = Vesna Hassler},

meaning that a person whose common

name is Vesna Hassler works at the Tech-
nical University of Vienna in Austria. The

DN defines the path to the entry, that is, it
heips us find the entry in the DIT.

Security Issues
In order to determine what kind of protec-

tion, or security services, are necessary for
directory clients and scrvers communicat-

ing over an insceure network, we must

examine the following:
* Which types of operations are allowed

by the directory access protocol

* For each protocol operation, which sceuri-
ty attacks it should be protected against

In general, a protocof operation can be
either a request (sent from the clicnt to the

scrver) or a response (sent from the server
to the client). The directory operations

W Table 1. Dircctory operations.

provided by X.500 and LDAP are shown

1EEE Network * November/December 1999

55

Server

Client o -
‘ Establishing a secure session

Authentication parameters

Bind request -
. ey

Security parameters

Operation request

W Figure 3. Accessing a directory server securely.

in Table 1. The operations reae and fist are missing in LDAP
since the equivalent functionality can be achieved with the
segrch operation. Tn X.500 the abandon operation may be
used to abandon an operation that interregates the directory
(read, compare, list, and search). LDAP is not specific about
which operation may be abandoned.

The directory client is actually an gpplication that communi-
cates with the dircctory server on behalf of a specific user. We
usc the terms client and user interchangeably, but always with
the same mearing: the client application with the identity of
the uscr on whose behalf it communicates with the directory.

Bind and Unbind — The clicnt can bind anonymously to the

dircctory. In this case he has the default privileges of an

anonymous user. In some cases only specific clients arc

allowced to establish a connection. They must prove their iden-

Lity through an aushentication procedure. This can, for cxam-

ple, be necessary if there is a risk that anonymous uscrs have

a good starting point to break into the systcm. In this case an

entity authentication service is nccessary. In the client-scrver

world this type of authentication is referred to as elient-server

authentication {discussed later). We can distinguish the follow-

ing three cases:

* The client must be authenticated by the server.

* The server must be authenticated by the client.

* Both the client and server must be authenticated to each
other (i.c., mutually).

When disconnecting (or unbinding) from the directory, no

security service is necessary sinee no harm can be done.

Directory Read — The read opcration requires the client to
have read privileges for a specific entry. Moreover, the clicnt
may have access to only specific data within the ontry, Tor
example, the client may be allowed to read the attribute types
only, without being able to sec their values. Or the client may
be allowed to scc an entry, but not to rcad the data stored in
it. This can be further specified for the individual attribute
types and values. What the client is allowed to see is decided
by the directory gecess control mechanism (discussed later).
The access control mechanism requires the client’s ideatity to
be checked in the authentication process. In addition, it s
somctimes necessary that the strength of the authentication
procedure be known as well (authentication level). For exam-
ple, for sensitive information it may be required that the user
be authenticated based on his public key certificate, In this
case it is insufficient that the user’s identity was checked with
his password only, cven if the password was correct. The ratio-
nale behind it is that it is much easier for an intruder to guess
a password than to break a public key algorithm,

The compare operation is slightly different from the security
perspective. First, the client must be granted the read permis-
sion for the entry in which the information to be compared is
stored. Sccond, the client must be granted the compare permis-
sion for the attribute storing the information being compared.
Note that the compare permission is weaker than the read per-
missien. If the clicnt has the comparc permission for an

- Bind response

Ll . ’
- - : - — Operation response
: {Access control)

attribute only, he can only try to guess the attribute
value and comparc the guesses with the actual
attribute value. If the client has the read permission,
he can simply road the attribute he is interested in.

The abandon operation docs not involve any
serious security issues.

Directory Search — The iist operation may, similar to
the read aperation, require the client to be authenti-
cated first. Tt may, however, be roquired that the
permissions to browse the DIT and to return the
DN of an entry be explicitly granted. This may be necessary if
the structure of the directory would reveal some sensitive infor-
mation about, for example, an enterprise directory.

The search operation may also require client authentica-
tion. In addition to the read permission, it may require that
the clicnt be explicitly granted the permission to perform
matching against a scarch criterion (filter) for specific attribute
types or values. The search operation can also be used in a
similar way to the read or list opcration. In such cases it
requires similar protection to the corresponding operations, as
described above.

Directory Modify — Virtually every directory requires the
clicnt to be authenticated in a proper way to perform the
modify, add, remove, or modify DN operation becausc these
operations change the directory infermation. The modify
operation deals with attributes, the other three with entries.

Protecting Requesis and Responses — The server may need to
be surc that a particular request is coming from a specific
clicnt. This situation is possible, for example, in LDAP, since
the bind operation necd not necessarily be used (and there-
fore the cntity authentication procedure).

The client retrieves information from the directory. Natu-
rally, he wants to be sure that the information is coming from
the server he has chosen (date authentication), and that the
scrver responscs have not been modified in transit (data
integrily). Sometimes it is also necessary to protect the privacy
{or confidentiality) of the response contents.

Generally, there are two ways to protect client requests and
SCIVCE TCSPONSCS:

* To establish a sccurc session protecting a series of request-

[osponse pairs
* To protect cach request or response individually

When cstablishing a securc scssion, an entity authentication
procedure is performed, as described earlicr. The secure ses-
sion adds an underlying security layer to protect data authenti-
cation, data integrity, and, if nceessary, data confidentiality.

. This protection is transparent to all messages exchanged dur-

ing the lifetime of the session. In other words, the directory
operations are unaware of the protection,

If no secure scssion is established, the operations needing
protection must transfer sccurity information within the corre-
sponding messages, For example, if the integrity of a request
must be protected, the client can append the integrity check
information (e.g., MAC, discussed later).

In addition, it may be nccessary that the scrver guarantee to
have sent specific data. In other words, it may be necessary to
prove the origin of a specific server response to a third party
or in court at a later time, The security service that enables
this is called nonrepudiation of origin and may only be applied
to individual messages. The service is implemented with digital
signatures and public key certificates. With public key cryptog-
raphy there are two keys, onc public and one private, whercby
the public key can {(and should) be made public. The public
key is used to enerypt messages intended for the owner of the

56

TIEEL Network * November/December 1999

key pair, beeause only he knows the corresponding private key
necessary to decrypt the message. Some public key algorithms,
such as RSA, can be used to compute digital signatures. Digital
signatures arc generated by ¢nerypting a digital document
with the signatory’s private key, Since the private key is known
to the signatory only, the signaturc is unique. An additional
property of digital signatures compared to hand-writicn signa-
tures is that they also depend on the document: if the docu-
ment is changed, the signature changes as well,

Disclosure on Frror — Thete is one more issuc important (o all
operations. It may be that the client is not allowed fo read, for
cxample, an attribute, but is allowed to lcarn about the exis-
fence of the attribute. There may be, however, a different
casc, where the client is not allowed to learn about the exis-
tence of a data item, In such a case the dircctory must be
careful with the error messages that may be returned when
the uscr is trying to, for example, perform a compare opera-
tion on a data item. If, for example, the insufficientAccess-
Rights error message is returned, the user will know about the
existence of the data item, cven if he has no permissions for it
at all. For example, in X.500 in such cases cither the noSuch-
Object or nolnformation error message must be returned,
which says nothing about the data item.

Client-Server Authentication

Figure 3 provides an overview of the three main possibilities
for secure clicnt-server communication, Each of them pro-
vides a diffcrent combination of sccurity services. Tn this sce-
tion we will deseribe client-server authentication taking place
before invoking a dircctory operation, This type of authentica-
tion is referred to as entity authentication. In general, there are
two possible scenarios:

* To use an external security layer to establish a sccure session
before binding to the directory, represented by the Estab-
lishing a sccure scssion arrow in Fig. 3

* To use the protocol structures to authenticate when binding
to the dircctory, represented by the Authentication parame-
ters arrows in Fig. 3
An additional scenario is to protect individual directory

opcrations, that is, to scnd security parameters within opera-

tions (represented by the Sccurity parameters arrows in Fig.

3). This type of authentication is referred to as data or message

authentication, and will be described later. After the authenti-

cation procedure, the server-side access control determines
whether the client is authorized to perform a particular opera-
tion on the directory data. Access control s explained later.

X. 500 Authentication Parameiers

Figure 4 illustrates a distributed directory service from Fig. 1
using the X.500 terminology. DAP is a protocol for read or
update access to the X.500 directory. The client (directory
uscr agent, DUAY uses DAP to access a dircciory server
{directory system agent, DSA), The servers are interconnected
and camn interoperate to provide a global dircctory sctvice to
the user transparently. The servers communicate using the
Dircctory System Protocol (DSP), The sceurity services dis-
cussed in this article can in gencral be applied to both DAP
and DSP, but we will in general refer to DAP. There are two
more scrver operational protocols for communication between
DSAs: Directory Operational Binding Management Protocol
(DOPY and Dircctory Information Shadowing Protocol
(DTSP), but they are outside the scope of this article,

Bind request is a mandatory operation. Its arguments are
protocol version, required authentication level, and the corre-
sponding credentials. Depending on the type of access and the

Directory.: .’

W Figure 4. X.500 distributed directory service.

server requirements, the user may be authenticated using one
of the following mechanisms:

* No aunthentication

* Simple authentication

* Strong authentication

* External authentication

The desired type of authentication is indicated through the
choice of credentials in the corresponding optional argument
of the bind operation:

Credentials ::= CHOICE {

simple (0] BimpleCredentials,
strong [1] StrengCredentials,
axternalbrocedure [2] FXTERMAL }

Simple authentication is bascd on user passwords. In the
simplest case user A’s password is sent in the clear, which is of
course not recommended. User A’s password can be protect-
ed using a onc-way function fi in the following way:

Client — Server: 1y, n, A, Protected| = fi(fq, r(, A, password,)

t{ is a timestamp, and ry a random number. They help
detect replay attacks (i.e., cnsure the freshness of messages).
Timestamps should generally be used only if the client and
the server clock are (at least logically) synchronized. A higher
level of protection (i.c., lower chance of a successful birthday
attack), can be achieved when using two one-way functions, J|
and f,, in the following way:

Client — Server: 4y, fa, 71, #5, A, Protected, = f(12, 12, Protected:)

To perform this type of authentication, there is a corre-
sponding data structure in the protocol, called SimpleCre-
dentials, which is an optional part of the bind request or
bind response message (the name lield carries the user’s iden-
tity, L.e., in our example it would contain A):

SimpleCredentials 1= SEQUENCE {
name {0] DistinguishedName ,
walidity [119ET (
timel [0] UTCTime OPTIONAL,
time2 (1] UTCTime OPTICNAL,
randoml [2] BIT STRING OPTIOMNAL,
random? [3] BIT STRING OPTIONAL} OPTIONAL,
password [2]CHOICE {
unprotected OCTEL STRING,
pratected SIGNATURE {OCTET STRING)}} OPTIONAL)}

For strong authentication, X.509 rccommends three proto-
cols based on public key cryptography: onc-, two-, and three-
way authentication. Tn the one-way authentication protocol,
only one party is authenticated and the freshness is achicved
using timestamps and random numbers. 12,(.) denotes encryp-
tion with x’s private key (i.e., x’s digital signaturc). § and C
denote the server’s and client’s identificrs, respectively.

All necessary public keys for signaturc verification are
obtained from X509 certificates. [S—C] denotes a cersification
path from § to C, The certification path contains a chain of
certificates. The first certificate in the chain, CA(S)<8>, cer-

[EEL Network » November/December 1999

57

tifies S's public key and is issued by a certification authority
(CA) trusted by S. The last certificate in the chain,
CA(C)<C>, certifies C’s public key and is issucd by a CA
trusted by C. We can write as tollows:

CA{S)<8>-»CA(CA(R))<CA(8)>
—» CA{CA{CA(S))<CA (CA(8))>— .. CA{{)<C>

Such a chain is often referred to as the chain of trust:
§3CA(S)>CA(CA(S))— .. (CA(CA(.(S)))—CAC)

We can read it as follows: S trusts CA(S), CA(S) trusts
CA(CA(S)), ..., and some CA later in the chain finally trusts
CA(C) which issued C’s public key certificate.

Let Dy(message) denote message m with the digital signa-
ture by signatory x appended to it. The client sends to the
server the certification path [S—C], and the signed message
containing a timestamp £, a random number r,, and the serv-
er’s identity St
Client — Server: [S—C), Dtz i)

The server uses the certification path Lo find the client’s
pubiic key and verify its certificate. If the certificate is valid,
and the public key can verify the signaturc, the clicnt is suc-
cessfully authenticated. If the server has to be authenticated as
well, an additional message is sent {two-way authentication):

Server — Client: Dyfty 1y, C, 1)

Finally, if no timestamps are used, they are set to zero in
the first two authentication messages, and onc more message
is sent (three-way authentication):

Client — Server: De(r, S)

StrongCredentials is the protocel data structure that
can be used to perform strong authentication, that is, o con-
vey the authentication parameters. It is an optional part of the
bind request or hind response message:

StrongCredentials i= SET {
certification-path {0] CertificationPalh OPTIONAT,
bind-token [1} Token,
name [2] DigtinguishedName OPTIONAL}

Token 1= SIGNEDR { SEQUENCE {
algorithm (01 AlgorithmIdentifier,
name [1] DistinguighedName,
time [2] UrCTime,
random [3] BIT STRING})

The CertificationpPath ficld carries the client’s certificate.

name is the distinguished name of the client. The ficlds of

Token are used to carry the parameters from the authentication
protocols described above. AlgorithmTIdentifier denotes the
public key algorithm used to digitally sign the message.

X.500 Establishing a Secure Session

The authentication messages can be used for exchanging the
session key information (key transport or key agrecment).
The key information has to be cnerypted with the receiving
party’s public key. In the data structure for strong credentials
there is, however, no parameter that can be used to convey
the key information, Entity authentication which docs not
result in a session key for the protection of the subsequent
messages decs not make much sense, This is not the case
with either simple authentication, because it is not its pur-
pose, or strong authentication, because the suggested proce-
dures for exchanging the key information cannot be
implemented in DAP in its present form, There is one more
possibility for authentication called externalProcedure,

that is, to usc an external procedure to establish a sccure ses-
sion prior to bind request, as indicated by Establishing a
secure session in Fig. 3. The choice of the external procedure
is not imposed by the standard.

LDAPY3 Authentication Parameters

If you look at Fig. 4 you will got a gencral idea of LDADPv3
security, The bind request in LIDAPY3 is not mandatory. The
seeurity parameters that can be sent along with the opcrations
arc not yet standardized (scc later). The mandatory-to-imple-
ment authentication Internct drafts [12, 13, 18] had gone
through last call and been sent to the Arca Directors to be
progressed as Proposed Standard RFCs as of July 1999,
The bind request is defined as follows:

BindRequest ::= [APPLICATION 0] SEQUENCE {
wersion INTRGER (1 ., 127),
name LDAPDN,
authentication AuthenticationChoice }

AuthenticationChoice ::= CHOICE {

simple [0] OCTET STRING,
— 1 and 2 reserved
sasl [3] SaslCredentials }
SasglCredentials ;:= SEQUENCE {
mechanism LDAPString,
credentials OCTET STRING OPTICNAL }

The LDAPv3 bind request is similar to the DAP bind
request. There are, however, some differences. LDATPv3 sim-
ple authentication is equivalent to DAP simple unprotected
authcntication. However, in the last version of the LDAPv3
authentication document [12] simple authentication is
allowed to be usced either in combination with the SASL
DIGEST-MD5 mechanism or over a secure layer provided by
TLS [5]. We describe how to use TLS with LDAPv3 later in
the article.

Frotected Password — Simple protected authentication can be
used as the SASL. DIGEST-MDS5 mechanism [18]. SASL [19]
is an authentication framework for connection-based proto-
cols, DIGEST-MDS provides password protection as well as
integrity and limited confidentiality protection after an
authentication exchange. Here we give a simplified descrip-
tion of the authentication exchange:

Server sends digest~challengae to client:
randomg, quality of protection, supported_ ciphersg

Clicnt sends dlgest-responsa to server:
usernane, host, service, random, count_randoewC, response_value

Scuver sends response-auth to client:
rasponse_value

quality_of_ pretection indicates which authentication
type is supported by the server. It can have the {ollowing val-
ues: “auth” for authentication, “auth-int” for authentication
with integrity protection, and “auth-conf” for authenticaticn
with integrity protection and encryption. The value supoort -
ed_ciphers represents a list of symmetric encryption algo-
rithms the server supports (3-DES and DES are mandatory).
randomg and randome are random strings. A random string is
usually referred to as a ronce, but we will use the same nota-
tion for casicr readability. Note that the random values used
here are not necessarily random numbers in the mathematical
scnse as were the random numbers used in an earlicr scction.
Their freshness is crucial, however, for protectidn against
replay attacks. service is in our case equal to LDAP.

58

TEEE Network * November/December 1999

regponse_value is computed by applying a cryptographic
hash function h{.) (i.e.,, MDS5) to the response value in the fol-
lowing way (simplificd):

response_value = h{username, host, randoms, ran-

domC, password)

whereby the hash function parameters arc represented as
strings and concatenated to produce a common hash function
input. A cryptographic hash function has the property that it is
easy to compute h{input), but that it is nearly impossiblc 1o
determine the input given h(input). After the second step the
scrver can validate the client’s responsc. If it is correct — and it
can be correct only if the client knows the correct password
the server sends response-auth to the client. Subsequent
authentication, which is optional, is also supported: if the client
wants to be authenticated again with the same scrver, it may
scnd digest-response again, with the value count_randome
one greater than vsed in the last digest-response,

In this way the clicnt is authenticated if it knows the sectet
password. The mechanism prevents chosen-plaintext attacks
and is therefore stronger than CRAM-MDS3, originally pro-
posed for use with LDAP.

X.5091ike Strong Authentication — The proposal for strong
LDAPv3 X.509-like authentication will most probably be
rejected since the members of the LDAPEXT IETF Working
Group arc reluctant to adopt too much of the X.500 function-
ality. It defines an SASL authentication mechanism [11] based
on X.509 strong authentication [7]. The credentials arc defined
based on the X.511 security parameters (discussed later) with
some optional ficlds. Some of its advantages over the strong
authentication mechanism within TLS (next section) arc:

+ No sceure session: In many situations a sccure session is not
nceded. In such situations the use of TLS provides unncees-
sary overhead and complexity. In this way the cxport prob-
lems due to the confidentiality functionality are avoided too.

¢« Proxy support: The proposal uses credentials based on
which a proxy can authenticate the client and then pass
them on to the server.

LDAPV3 Establishing A Secure Session

In this section we deseribe two mechanisms, TLS and DIGEST-
MD3, for cstablishing a sccure session. In this way a secure
layer can be established so that the LIDAPv3 protocol messages
are exchanged over it, and are thus unaware of the protection.

TLS — A strong authentication mechanism mandatory for
LDAPv3 is TLS [5]. TLS 1.0 is based on $SLv3 and provides
strong entity authentication, data integrity, and data privacy.
In the TLS protocol server authentication is mandatory, and
client authentication is optional. If in LDAP clicnt authentica-
tion is required, we actually have a mutual (bidirectional)
entity authentication service. To use TLS, the name of the
SASL mechanism in the LDAP BindRequest has to be
EXTERNAL, and the credentials ficld has to be empty. The
protocol scenario is the same as for external mechanisms in
DAP, as shown in Fig. 3.

A TLS scssion must be established prior to sending a bind
request. The client is authenticated by a strong mechanism if
it supplies a certificate. The name under which the client
binds to the server is the name from the client’s certificate, so
the name in the bind request, if present, must be identical to
the name in the certificate. The TLS negotiation starts with an
Extendedrequest called Start TLS. The ExtendedRequest/
Responsc mechanism is the inherent LDAPv3 extension
mechanism which allows adding new operations to the proto-
col. It is also possible that the client does not provide a certifi-

cate during the TLS sctup; in this casc it is up to the scrver to
decide whether the client may bind anonymously over TLS.

An LDAP extended operation allows clients to define addi-
tiona! operations with predefined syntaxes and semantics not
available clsewhere in the protocol. In a later scetion we show
the structure of an LDAP protocol message (LDAPMesszage). In
LDAPMessage the protecolOp ficld specifics the type of oper-
ation. If you want to extend the LDAP protocol with a now
requcst or response type, you should set the value of this field
to either extendedReq or extendedResp, respectively.

DIGEST-MDS — Tf the clicnt is authenticated with SASL
DIGEST-MD5 (discussed above) it is possible to protect integrity
and confidentiality of all messages exchanged during that session.
For session integrity protection, the subsequent messages
between the client and the server are protected by a MAC
appended to the message. The MAC is sometimes referred to
as the message digest. To compate the MAC, the client and
server must sharc a common secret, usually represented by the
clicnt’s password, The MAC is computed by applying a cryp-
tographic hash function h(.} in the following way (simplified):

MAC(message) = h(C, S, password, random, sequence number, message)

whercby the hash function parameters arc represented as
strings and concatenated to produce a common hash fune-
tion input. A cryptographic hash function has the property
that it is casy to compute the MAC, but nearly impossible to
determine the hash function input given the MAC value, In
other words, if an eavesdropper ebtains the message and the
MAC valuc, he cannot determing the password. Algso, he
cannot compute the valid MAC for a different message since
he does not know the password. The MAC values change
cach time a message is sent due to the variable parameters
(random and sequence number); in this way replay attacks
are disabled.

For scssion integrity protection, the MAC is computed by
applying the HMAC-MDS5 {20] to the values of randomsg,
random, and other parameters from digest-response, For
session confidentiality protection, the cneryption key is com-
puted as a function of similar paramecters.

Summary

In Table 2 we give an overview of the sceurity services that

may be initiated through the bind operation in X.500 and

LDAPv3. As you can sec, they are mainly authentication ser-

vices, but two additional security services may be initiated as

well: session integrity and session confidentiality. They illus-
trate the main difference between the two entity authentica-
tion concepts:

* X.500 “limits” the effect of the cntity authentication proce-
dure to the bind operation (request and response). The rea-
son is that X.500 provides protection which can be applicd
to cach dircetory operation individually, as described later.

« LDAPv3 wants to protect not only the bird operation, but
also the operations that may follow it within a scssion,
There is a draft on protecting individual operations too
(later scetion), but at the moment it is only considered an
cxperimental concept and will not be standardized soon.

Protecting Directory Operations

In this section we describe the security services that can be
applied to individual directory operations: data (or message)
integrity, data authentication, and nonrepudiation of origin.
The discussion about which directory services need which kind
of protection can be found earlicr.

TEEE Network * Noyember/Txecember 1994

59

X.500 Security Parameters

Another useful sccurity feature in DAP is that the server can
be required to sign the result of an operaticn (see Operation
request in Fig. 3). The signing request can be sent as an optional
part of the common arguments called SecurityParameters:

SecurityParameters = SET {
certification-path [0) CertificationPath OPTTONAL,
name [1] DistinguishedName OPTICNAL,
time [2] UTCTime OPTIONAL,
rarndam {3] BIT STRING QPTIONAL,
target [4] ProtectionRequest OPTIONAL}
ProtectionRequest 1= INTEGER { none{l), signed(1l) }

The CertificationPath field contains the signer’s certifi-
cate, name is the distinguished name of the intended recipient.
If the value of ProtecticnRequest is set to signed, the serv-
er has to sign the response. An operation argumcent (part of a
request) or operation result (part of a responsc) can be
OPTIONAL. time is the timestamp specifying the intended
expiry time for the validity of signed requests. randonm is a
random number and can be used in both a signed request or
signed response. The timestamp and random number enable
the detection of reply attacks, similar to simple and strong
authentication.

LDAPY3 Security Parameters

The status of the last signed LDAPv3 operations draft [19]
will most probably be declared experimental. The draft
describes a mechanism based on LDAP controls. They can be
used to extend the existing LDAP operations, For example,
an LDAP protocol message consists of the following ficlds:

LDAPMessage ::= SEQUENCE {

messagelD MessagelD,
protocolOp bindReqguest,
cantrols (0] Centrols OPTIONAL }

The messageID field must carry a unique value for the cor-
responding LDAP session. The protocolOp field specifies
the type of operaticn (in our example it is bindRequest, but
can be something else, e.g., searchRequest, search-
Response, etc.). The controls field may carry any type of
extension information not specified in the LDAT protocol.

The signed operations draft defines three LDAPv3 controls
named SignedOperation, DemandSignedResult, and
SignedResult:

SignedOperation ::= CHOICE {
sigmbyServer NULL,
signatureIncluded OCTET STRING }

DemandiignedResult ::= LDAPSigType

LDAPSigType r 1= BOOLEAN

SignedResult 1= CHOICE {
signature OCTET STRING }

The first mechanism supported is directory qudit trail. The
submitter of an LDAP operation that changes the dircctory
information can include the $ignedoperation control inchud-
ing either a signature of the operation (signatureInciuded,
an S/MIME multipart/signed message) or a request that the
LDAP server sign the operation on behalf of the LDAP client.
The server can accept the signed operation without vetifying the
signature since the client has no way of knowing what policies
were followed in order to verify the signature. The audit trail is
stored in the newly defined Changes attribute:

Changes 1:= CHOTCE {
INTEGER {0..maxInt},
OCTET STRING }

sequenceNunber [0
signedOperation {1]

signedOperation is a multipart/signed S/MIME message
containing the directory operation and the signature. Subse-
quent sequence numbers indicate the sequence of changes

&
3 SRR B §a flatasropora g

ik passwiord irprotected

i S
sseiiiiiia Sihiiiietysaspareare

oo LA L e R i e
Sithpleiclient AUthentgation | Password:::: R
| LeCredait

:

iy
i
Sis
it

T

: § PRbie

Sweird protecte

£er R ad e had 5

A

Ao o o

2

A

Z3iitbura

)

SASLEXTERNAL (LS E#éﬁ@ndgdaegue_s;?ﬂ

AL LS Extor:

S
TAngaes EE

T
3E8
Pt e

3
1

Leeoe

pEage

TraE
Thepaises
2

fedd
R

3Eeiidaasing
Godieasaranie

s diney
$ost St vty
atiiteax

g agsals
thik 1

&

e i

: o
£ t

iy §

K rets

£

2%

NS

SERE
phey s

G%aooe
i pa

40 IEEE Network » November/December 1999

that have been made to the directory object.

The second mechanism allows the LDAP client to require
that the server sign the result it returns. The client sends the
DemandSignedResult control with LDAPSigType set to
TRUE. If the server can and wishes to sign to operation, it
returns a Signedresult control in addition to the normal
resuli. The signature is formatted as an S/MIME pkes-7/signa-
ture object specified in RFC2311.

Summary

Both X.500 and LDAPv3 provide a mechanism to protect
individual directory operations, The LDAPv3 proposal is still
considered experimental only. We hope it will soon be made a
part of the standard.

Access Control

This section gives an overview of the access control model and

mechanisms. The access control models in both X.500 and

LDAPv3 are based on the access control matrix. In practice, the

access control matrix is implemented in one of the following ways:

* The row-wise implementation is referred to as a capability list,
where for cach subject (user) there is a list of objects and
the subject’s access rights (or permissions) to cach object.

+ The column-wise implementation is referred to as an access
control list (ACL) where for each object (1tem) there is a
list of subjects that have access to it and the access rights
granted to each individual subject.

X.500 Basic Access Control

If we take the example from Fig. 2, a client may be given spe-

cific permissions (or rights) for specified items (ACL) in the

following ways:

* The catry CN = Vesna Hassler as a whole

* The attribute types stored in the entry (commonName, sur-
name}

+ The attribute types of specific attributes (e.g., commonName)

« The attribute type and value of specific attributes (c.g.,
commonName = Vesna Hassler)

* The attribute values storcd in the entry (Vesna Hassler,

Hassler)
 The attribute values of specific attributes (e.g., Vesna Hassler)

There are some othcr cases, including so-called operational
attributes, but they arc outside the scope of this tutorial, For
more information sec [8].

The client permissions refer to specific operations, as outlined
carlier. A permission can be granted or denfed. If a permission is
granted, the client is allowed to perform a specificd operation on
a specified item (e.g., grantAdd, grantRead). If a permission is
denied, the client is not allowed to do so (denyAdd, denyRead).

On the other hand, by using a capability list an item may be
made accessible to:

* All users

* Only the users with the same DN {e.g., CN = Vesna Has-
sler only to Vesna Hassler)

* Only to specificd users

* Only to a specified user group

* Only to a set of users whose DNs fall within the definition
of a directory subtree

The mechanism specified in X.501 [8] called basic access
control enables defining many different access control policies.
The information about accessing directory information is
specified as a data structure called ACItem:

ACITtem := SEQUENCE {
identificationTag DirectoryString {ub-tag},

precedence Precedence,

authenticationLevel
itemOrUserFirst CHOICE {
itemFirst (0] SEQUENCE {
protectedItems Protectedltems,
itemPermissions SET OF ItemPernission),
[1] SEQUENCE (
UserClasses,
userPermisgions SET OF UserPermission}}}

AuthenticationLevel,

userFirst

userClasses

identificationTag is used to identify a particular ACT-
Item for the purposes of protection and management. The
value of precedence, an integer between 0 and 255, helps
resolve conflicts if more than one ACITtem refer to the same
picce of information. In such a case the highest precedence
value will prevail over all other values,

All users allowed to gain specific access rights to protecte-
ditems (e.g., cntry, attribuie type, attribute valuc) are listed in
itemPermissions, This is an implementation of the ACL. All
items that may be accessed in a specified way by the users listed
in ugerClasses are listed in userPermissions. This is an
implementation of the capability list. The permissions (or rights)
for the basic access contro! mechanism are listed in Table 2.

The directory access protocol is not concerned with the
enforcement of the access control rules. The information the
access contrel decision relies on comes, however, from the
authentication proeess. The value of AuthenticationLevel
specifies the required level of authentication:

authenticationLevel 1=

bhasicLevels SEQUENCE {
ENUMERATED {none(C) simple(l), strong(2}),
INTEGER OPTICNAL},

CHOICE {

level
localQualifier

other EXTERNAL}

The value of level corresponds to the authentication pro-
cedures described carlier in the article. localQualifier may
be assigned to the client by the server according to the local
policy. other is used for determining the anthentication level
if an external authentication mechanism is used.

IDAPY3 Access Control

Access control is still not a mandatory part of an LDAPv3
server. There are some proprietary solutions, such as for
Netscape Directory Server. In [9] X.501 ACYTItem is men-
tioned as one of the syntaxes defined for LDAP so far, but
not a mandatory one. The LDAPv3 requirements for an ACL-
based access control are specified in [14]. Tt seems that the
X.501 access control model could satisfy those requirements,
but a scrious evaluation has not been done so far. The last
proposal (as of July 1999) for an LDAPv3 access control
scheme can be found in [15]. It describes the access control
model and mechanisms for LDAP with the corresponding
LDAP controls and one extended operation. An ACL con-
tains the access control policy information controlling access
to an item or collection of items. For each naming context
(i.e., subtree) with a specific ACL mechanism, the subschema
entry must contain the aclMechanism attribute defining the
aclMechanism for the scope of that subschema entry.

LDAP controls provide a way to specify extension informa-
tion [6]. It can be sent as part of a request, and apply only to
that request without being saved. The LDAP ACT controls are:
* getFEfectiveAcecess (used with the search operation):

The server looks up the rights for the returned directory

operation for a subject based on the subject DN and returns

that rights information,

» specifyCredentials (used with the bird operation): The
client sends the credential he wants to be associated with
the bind DN to determine his access permissions in subse-

TIEEE Network * November/December 1999

61

quent LDAP operations.

Analogous to the first ACL control listed above, an ACL
extended operation is delined for transmission of access con-
trol information to help with the management of access con-
trol information independent of other directory operations
(1dapGetEffectiveRights).

There are iwo ACL mechanisms, or rights families —
LDAPv3 and X500 — but X500 has not been defined yet.
Other vendor-specitic mechanisms can additionally be defined.
Acecess rights can apply to an entire objecet, or to the attributes
of the object. Four operations are defined for granting and
denying the rights of a subject, and for replacing and deleting
the ACL of an cniry or attributc.

As you can see in Table 3, LDAPv3 introduces a new group of
aceess rights to protect objects referred to by directory cntries:

* Manage is uscd to restrict access to operations that read or
writc very sensitive data.

« Execnte is used to control access to the exccutable objects
referred to by dircctory entries.

* (et retrieves the attribute values [rom such objects.

* Set wriles the attribute values from such objects.

The rationale to introduce the new rights is, however, still
unexplained in [15], as well as their practical value,

In the draft the subject identity is in the form of a DN.

Sccurity protocols being specified in the TETF Common
Authentication Technology (CAT) Working Groups and other
working groups use a morc generic format (i.c., mechanism +
mechanism-specific identity object). The approach from the
LDAP ACL proposal is 1o have the clients ask the server to
map its authentication mechanism-specific identity onto a DN;
the client can then use this DN in the access control operations.

A common representation of access control information is
necded for replication, Replication means that a server is
keeping a copy of its data on one or more other servers. ACI
representation can be defined in either the replication proto-
col being developed in LDAP Directory Update Protocol
(LDUP) or LDAT Data Interchange Format (LDIF) files,
which do not cxchange operations but the entries themsclves.
The LDAP ACL draft specifies the LDIF syntax for ACL The
draft docs not define how a scrver should interpret the ACI
syntax. For example, deny on one server may be different
from deny on another server. The ACI s stored in the newly
defined directory attributes (discussed later).

Summary

Table 3 shows the LDAPv3 and X.500 access rights.

X.500 defines which access rights must be checked and
granted for which operation (operational semantics |8]). Here
are some cxamples:

*To replace a value of an attribute the
modify operation can be used (Table
1). For this to succeed the clicnt must
be granted the rights to remove the
old value and add a ncw one, For this
purposc LDAPv3 can usc the right to

write a value.
* To search the directory, in X.500 the

client must have the right to browse

the entrics and masch them against a
specified filter. These rights are cov-

cred in LDAPY3 by the search right.
*+ Ta change a DN, in X.500 the client

must have the right to rerame the

entry, Additionally, if the entry’s supe-
rior node changes, the client must be

granted the right to expors the entry

and jmport it under the new superior
cntry. Obviously, in LDAPV3 there is

only onc corresponding right for this
operation, the right to edit the DN.

LDAPv3 servers are free to imple-
ment any access control rule syntax and

semantics they choose, as long as the

opcrational scmantics is compatible
with the LDAP access control opera-

tions. The operational semantics is,
however, work in progress.

Here we point out some additional

differences between the LDAPY3 and
X.500 access control models [21]:

* Precedence — In contrast to X.500,
there arc no precedencces.

* Authentication — LDAPv3 dogs not

¢t pointed to by

indicate the typc of authentication
users must undergo before access can

{__di'récfér'y'obj_ec'f_' S

be granted to them,

+ ACL protection — In LDAPvV3 no
mechanism is defined to control access

W Table 3. Access rtéhtsrm X.500 basic access contral and

LDAPY3.

to access control information. In X.500
access control information is held as
operational attributes and thercfore

62

[ELEE Network * November/December 1999

can be used to protect themselves.

* ACL intcraction — The LDAP
access control administration mecha-

nisms arc neutral regardin policy
inheritance mechanisms, explicit vs.

implicit denial, and group nesting. In
X.500 the ACLs that actually apply

to an entry arc derived from the

ACLs that arce stored within the
EntryACI and Prescriptive ACI
attributes from all the cuclosing
access control domains.

* Representation of ACl — LDAPv3
scrvers may store access control
information in any way they choose.
In X.500 ACLs are held in prede-
fined operational attributes.

Directory Atiributes

In this final section we give a list of all security-relevant directo-
ry attributes. They can be stored in the dircctory just like any
other data. For cxample, if somebody receives a digitally signed
document he will need the signatory’s public key certificate.
The certificate can be storced in the directory server as a special
attribute type for which the client can look. The attributes stor-
ing certificates or the attributes needed for interoperability,
such as supportedalgorithms that specifies the cryptograph-
ic algorithms supported by the server, are made readable to
anybody, Some attributes are confidential, such as usexrPass-
word that must not be stored in plaintext. Finally, some
attributes (called operational) scrve administrative purposcs,
such as administering the access control information.

X.500 Direciory Aliributes

The paramecters requircd for strong authentication are storced
in an X.500 scrver as uscr attributes of the following types [7]:
* userPassword

* userCertificate — User (client or scrver) public key
certificate

cACertificate — CA public-key certificate
certificateRevocationlist — Cerltificate revocation
list of user certificates; it contains the certificates declarcd
invalid although not expired, so the public keys they certify
must not be used to verify digital signatures any longer
authorityRevocationList — Certificate revocation list
of CA certificates

deltaRevocationList — Changes in the last CRL pub-
lished; this attribute is convenient if the CRI becomes large
crossCertificatePair — a pair of certificates with
which two parties mutually certify cach other
attributeCertificateAttribute — user attribute cer-
tificate; similarly to public-keys, other data (e.g., procura-
tion) may be certified as well
attributeCertificateRevocationList — CRL of
attribute certificates

supportedalgorithms — Dcfined to support the sclec-
tion of an algorithm for use when commuunicating with a
remote cnd entity using certificates (an overview of algo-
rithms and their object identificrs can be found in [22])
Access control information is stored in operational attributes
entryACI, prescriptiveaCI, and subentryACT which are
normally not visible to the client. They control access to a
directory entry, a set of cntrics in a dircctory subtree, and a sct
of subentrics (holding the administrative information) in an
administrative arca, respectively. There is an additional
attribute, accessControlScheme; its value indicates the type

W Table 4. Secér'ty services with X.500 and LDAPY3,

of the access control scheme (e.g., basic access control [8]),

LDAPv3 Directory Affributes

If an LDAPv2 scrver stores the X.500 sccurity attributes, they
have to be stored as binary values becausce of the changes in the
ASN.1 definition in various X.509 cditions. An additional securi-
ly attribute from the LDAP3 user schema [10] is supported-
SASLmechanisme and is stored in the DIT root (i.e., in the
so-called DSA-specific entry, DSE), The signedDirectoryOp-
erationSupport and changes attributes are required for
signed operations (sce earlier section). The supportedaxten-
sion attribute is important for the TLS authentication since it is
defined as an extended operation (discussed earlier).

The LDAP ACL draft [15] defines a new attribute contain-
ing a list of access control mechanisms supported by the scrv-
er (supportedACIMechanisms) to be stored in the DIT root.
It also defines the aCIMcchanism attribute that must be
stored in cach subschema entry containing the identifier of
the access control mechanism in cffcet for the scope of that
subschema entry. Finally, it defines three new attributes that
can be added to any object class (i.e., typc of entry, sce
above). Their purpose is to store the access control informa-
tion (ACI) in the following ways:

* aci defines what is protected and who is granted/denicd
what kind of permissions

* vendoraci is used for vendors-specific information with a
syntax diffcrent from aci

* policyOwner determines who controls administrative sub-
domains {c.g., subtree), and who can set or change ACI for
implementations that have no ACI controlling access to it

Summary

Most of the security-related attributes in LDAPv3 arc adopt-
ed from X.509. The LDAPY3 offers, however, only the storage
for these attributes, and is not concerned with their semantics,
whereas X.509 is a functional part of the X.500 global directo-
Iy service.

Summary and Conclusions

In Table 4 we give a summary and roadmap of the sécurity ser-.
vices and mechanisms described in the article. The LDATPY3
sccurity functionality has not yet been completely specified.
Entity authentication, including sceure session, is completed,
with pending Proposed Standard status. Other sceurity scrvices
necessary for the operation of a directory service are work in
progress. The basic data structures are the same as in X.509,
such as the certificate format. However, the attempts to adopt
some of the X.500 access protocol’s security solutions for
LDAPv3 have all failed. One reason is that in the Internet

IEEE Network * November/December 1999

63

some solutions have alrcady become standards, such as TLS,
recently been adopted as a Proposced Standard, and LDAPv3
wants to “outsource” security whenever possible. Another
reason is that the X.500 standards do not provide sufficicnt
information to ensure interoperability in some cases — see,
for cxample, the authentication procedurcs discussed in this
article — and thereforc cannot be adopted without additions,
and sometimes even modifications, LDAPVY3 is missing an
explicit message anthentication and integrity mechanism (e.g.,
other than within TLS) that would allow the complex TLS
setup to be avoided when necessary. This functionality could
be provided by the signed operations concept described in
[16] which is unfortunatcly not likely to be adopted as a stan-
dard soon. The access control model and operational seman-
tics in LDAPv3 are work in progress.

References

The Internet drafts listcd below represent work in progress.
They expire in six months unless replaced with a new version.
Their status can be checked online at http:/fwww.ietl.org. The
RFC documents can also be downloaded from this Web site.

[11D. Chadwick, Understanding X.500 — The Directory, Chapman & Hall,
1994; available at hit:/ /www.eema.org/understanding_|dap.himl
| C. Appfe and K. Rossen, “X.500 Implementations Cataleg-96," RFC 2116.
1150, “Information Technology — Open Systems Inferconnection - The Directo-
ry; Abstract Service Definition,” 1SO/IEC 9594-3 {also [TU-T X.511), 1995,
[4] Critical Angle’s LDAP Worlel, htip: / fwww.crilical-angla.com/Idapwerld /
[5] T. Dierks and C. Allen, “The TLS Protocol Versian 1.0,” RFC 2244,
[6] M. Wahl, T. Howes, and §. Kille, “Lightweight Directory Access Protocol
[v3),” RFC 2251.
[71150, “Information Technology — Open Systems Intercannection — The Direc-
tory: Authenticatian Framework,” ISO/IEC 9594-8 {also ITU-T X.509), 1995,
[8] 1SC, "Information Technology — Open Systems Interconnection — The Direc-
tory: Madels,” ISO/IEC 9594-2 {also ITU-T X501}, 1995,
[9] M. Wahl ef al., “Lightweight Directory Access Protecol (v3}: Attribute Syntax

[2
3

Definitions,” RFC 2252,

[10] M. Wahl, “A Summary of the X,500{94) User Schema for Use with
LDAPY3,” RFC 2256.

[11] 5. E. Kille, “X.509 Authentication SASL. Mechanism,” interne draft drafi-ietf-
Idapext-x509-sasl-01 ixt

[12] M. Wah! and H. Alvesirand, “Authentication Methads for LDAPR.” Infernet
draft draft-ietf-ldapext-authmeth-04.1xt

[13] J. Hodges, R, L. Morgan, and M. Wahl, “Lightweight Directory Access Pro-
tacol {v3): Extension E)r Transpart Layer Security,” Internet draft draft-ietf-
asid-ldapv3-tls-05.1xt

[14] E. Stokes et al., “Access Control Requirements for LDAP,” internet draft
draft-ietf-ldapext-acl-reghs-01 .4t

[15] B. Blakley, D. Byrne, and E. Stokes, “Access Control Model for LDAP,” infer-
net draft draft-istf-ldapext-acl- model-03.1xt.

[16] B. Greenblat and P. Richard, “Signed Directory Operations Using
S/MIME,” Internet draft drafi-ietf-ldapext-sigops-03.4xt.

[17] T. A. Howes and M.C. Smith, IDAP. Pragramming Directory-Enabled Appli-
cations with Lightweight Directory Access Protocol, Maemillan, 1997

{18] P. J, Leach and C. Newman, “Using Digest Authentication as a SASL Mech-
anism,” Internet draft drafi-leach-digest-sasl-03.1x.

[19]). Myers, “Simple Authenticafion and Security Layer [SASL),” RFC 2222,

[20] H. Krawczyk, M. Bellare, and R. Canetti, “HMAC: Keyed-Hashing for Mes-
sage Authenfication,” RFC 2104,

[21] B. Blakley, D. Byrne, and E. Stokes, “X.500 vs. LDAP ACL Mode! Proposl
comparison,” [ETF-LDAPEX mailing list archive ftp://fip.innosoft.com/anon/
files/iet-Idapext/, June 15, 1998,

[22] German National Research Center for Information Technology GmbH,
“SECUDE-5.1 Hyper Link Documentation: Cryptegraphic Algerithms,”
htip:/ /www.darmstadt.gmd. de/secude/Dac/him/algs.htm

Biography

VESNA HASSIER (hassler@infosys.tuwien,ac.of) received B.Sc. and M.Sc. degrees
in electrical engineering anJcompuﬁn from Zagreb University, Croatia, in
1988 and 1991, respectively, in 1995 S?IG received a Ph.D. in computer engi-
neering and communications from Graz University of Technelogy, Ausiria. She is
currently an assistant professor in the Information Systems Institute, Technical
University of Vienna, Austria. Her current interests include network security,
directory services, e-commerce, and smart cards,

64

HZEE Network » November/December 1999

