
CDL Search Engine Comparison Page 1

Cross-instance Search System
Search Engine Comparison

Martin Haye

Email: martin@snyder-haye.com
January 2004

1. INTRODUCTION
The cross-instance search system requires an underlying full-text indexing and search engine.
Since CDL envisions a sophisticated query system, writing such an engine from scratch
would be prohibitively time-consuming. Thus, a search has been undertaken to locate a
suitable existing engine.

First we undertook an initial survey of a large number of full-text engines. From these the
field was limited to three candidates for further testing, on the basis of the following essential
requirements:

q Open-source
q Free (as in beer)
q Relevance ranking
q Boolean operators
q Proximity searching

Four engines met all these requirements: Lucene, OpenFTS, Xapian, and Zebra. Initial index
runs and query tests were performed on all four. All except OpenFTS performed well enough
to make the finals, but OpenFTS showed long index times and very poor query speed
(roughly an order of magnitude worse than the other engines). Given this disappointing
performance, further rigorous tests seemed pointless, and I eliminated OpenFTS.

The remainder of this paper details the rigorous comparison and testing of the remaining
engines: Lucene, Xapian, and Zebra.
For reference, the next six runners-up are given below with a comprehensive feature matrix.

 Amberfish Guilda XQEngine Swish-E ASPseek OpenFTS
Owner Etymon

Systems
CDL FatDog /

SourceForge
swish-e

.org
aspseek

.org
XWare /

SourceForge

Language C Perl Java C C++ Perl/C

API cmdline Perl Java C CGI Perl

Proximity
search

No No No No No Yes

Relevance
ranking

Yes Yes No Yes Yes Yes

Range No No Yes No No No

CDL Search Engine Comparison Page 2

operators

UNICODE No Maybe Yes No Yes Partial

Wildcards No Yes No Yes Yes No

Fuzzy
search

No No No Yes No No

Arbitrary
fields

No Yes Yes No Partial Yes

2. FEATURE COMPARISON

2.1 Community Support, Documentation
 Lucene Xapian Zebra

Owner Apache Jakarta xapian.org IndexData Corp.

Developer
community

Formal open group

Informal closed group Formal closed group

Current
developers

Doug Cutting, and
14 others

Former employees of
BrightStation PLC

Employees and partners of
IndexData Corp.

Documentation Extensive,
high quality.

Sparse,
adequate.

Huge, dense,
 high quality

Outside articles Many No Many

All three engines appear to be in active development (with several releases in 2003), so it
seems unlikely CDL would become stuck with an un-maintained tool.

It’s harder to put a finger on the level of activity, but it seems that Lucene has the highest
level of outside interest in improving the engine itself, while Lucene and Zebra both have lots
of people asking deployment questions. By contrast, Xapian has garnered relatively little
interest, at least judged by its paucity of Google hits.

Win: Lucene and Zebra

2.2 Platform
 Lucene Xapian Zebra

Platforms All All All

Native language Java C++ C

Java API Yes No No

Lucene has the advantage here, in that interfacing it to the Java servlet/query system will be
quite simple. Java code also has the advantage of being relatively “safe”, in the sense that

CDL Search Engine Comparison Page 3

memory leaks are uncommon, and crashes are less likely. (By contrast, during the indexing
process, Xapian leaked memory at a significant rate.)

All of the engines claim to run on all major UNIX-variants in addition to Windows.
However, the C/C++ engines will inevitably be somewhat difficult to get running on any
specific combination of GCC/make/autoconf, etc.

Win: Lucene

2.3 Query Features
 Lucene Xapian Zebra

Wildcards (e.g. fishe*, m?re) Yes No Yes

Range operators (e.g. 12 ≤ x ≤ 18) Yes No Yes

Fuzzy searching (based on edit dist.) Yes No Yes

Term boosting (boost relevance of a term) Yes No No

Arbitrary fields (date, author, ARK, etc.) Yes No Yes

Stemming (search for help retrieves
helper, helping, helps, etc.)

English + 11
other lang.

English + 12
other lang.

No

Thesaurus expansion (search for cook
retrieves cook, chef, prepare, etc.)

No No No

All of the engines support:

Ø Boolean operators (i.e. “and”, “or”, “not”, “+”, “-“)

Ø Phrase queries (e.g. “tom thumb” – all words must appear together, in order)

Ø Proximity searching with adjustable range

Ø Relevance ranking

Ø Partial result sets (e.g. returning results 10 through 20, instead of all results)

Win: Lucene, with Zebra close behind

2.4 Unique Features
Proximity ranking (Lucene only): When performing a proximity search, Lucene increases the
ranking of hits where the words are closer together.

Query expansion (Xapian only): This interesting feature kicks in after a query has been
performed. The user selects a few of the documents that are most relevant to their query.
Then Xapian can suggest additional terms to supplement the query, to get more results “like
these”. Alternately Xapian can simply fetch a new set of documents “like these”.

Standards-based approach (Zebra only): Zebra implements a large subset of the ANSI/NSIO
Z39.50 Protocol. Going with this approach would provide three benefits: (1) we could
theoretically replace the underlying search engine with any of several other Z39.50
implementations; (2) since the standard is a client/server protocol, indexes could be easily

CDL Search Engine Comparison Page 4

distributed over several machines, or even conceivably across a network; and (3) we might
be able to interface very easily with other libraries which run Z39.50 servers.

Win: All

3. PERFORMANCE COMPARISON

3.1 Test Methodology
For each engine, we want to know:

Ø How fast is the indexer?
Ø How efficient (both in disk access time and space) are the resultant indexes?
Ø How fast is the query engine?

The eventual system we build will need to provide results at two levels:
(1) the top N (e.g. 10) documents matching the query, and
(2) for each document, the top M (e.g. 3) hits within that document (where a hit would be all
the words in the query, near one another).

One strategy would be to keep a single index, where an index unit would be a “chunk” of,
say, 50 words. Then one could query for all the in-document hits, and then synthesize the
overall document scores. However, it seems unlikely that this would yield a quality score for
each document, since it would essentially ignore most of that document’s chunks. To avoid
this, the system would have to spend time fetching essentially all the hits, instead of just the
top M or N.

A better strategy is to maintain two types of indexes. The first index would contain each
document as a single indexable unit, and this would provide the M document hits. The
second index would contain chunked versions of the documents to provide the N hits within
each of the M documents. These tests attempt to simulate this latter strategy.

The set of input documents was derived from a full drop of the 2,809 texts served by
dynaXML as of January 5. To eliminate differences in stop-word lists and vagaries of parsing
XML, I extracted just the text nodes from each document, converted them to lower case,
removed all punctuation except periods, and replaced all stop words with “-”. As a final step,
each file was broken into 50-word chunks separated by newlines.

Then I configured each engine to produce the two indexes mentioned above: (1) a per-
document index, and (2) a per-chunk index.

To test query speed, I developed a set of “typical” queries involving one to several words,
using combinations of Boolean operators, proximity, and phrase searches. Additionally I
added a few “pathological” cases to test the inner loops of the engines.

I tested queries with a “cold” cache, simulating a query on a term that hasn’t been seen in a
while, and with a “warm” cache, simulating repeated or similar queries. The cold cache
essentially tests how quickly the index data can be located and read from disk, whereas the
warm cache tests the speed of in-memory calculations.

CDL Search Engine Comparison Page 5

3.2 Indexing Speed
As outlined above, each engine was configured to index whole document units (2,809
documents) and 50-word units (2,863,095 “chunks”.) The start and end times were recorded,
and the elapsed times in hours and minutes are given in the table below.

*Note: The Xapian chunked index ran all night (581 minutes) and only completed 300 of the
2809 documents. Several experiments have failed to speed up the process, so the time given
here was extrapolated from the partial run.

 Lucene Xapian Zebra
Whole-doc index 00:52 (52 min) 04:28 (268 min) 01:00 (60 min)
Chunked index 09:14 (554 min) *90:40 (5440 min) 01:11 (71 min)

It is interesting to note that Lucene is a little faster at adding entire documents, while Zebra is
much faster at adding chunked documents. This implies Lucene spends quite a bit of time
updating the structures for a single chunk, while its process for adding a term is quite
efficient.

Win: Zebra overall, Lucene for whole-doc, Zebra for chunked

3.3 Index Size
I calculated the size of each index and divided it by the size of the input documents; the
resulting ratios are given in the table below. The chunk indexes are all significantly larger
than whole-doc indexes for two reasons: (1) they contain many more index units; and (2) the
actual document text is recorded verbatim to simulate being able to show hits in context,
whereas the whole-doc indexes do not need to store the document data.

*Note: Again, the Xapian chunked index number has been extrapolated from the run which
completed 300 documents (the truncated output size was 1182M.)

 Lucene Xapian Zebra
Whole-doc index 26% (293M) 94% (1044M) 38% (418.1M)
Chunked index 133% (1479M) *995% (11060M) 51% (562.7M)

One interesting note is that size ratio (whole-doc index size vs. chunked index size) for a
given engine is roughly in proportion to the time ratio for that same engine. It makes sense.

Also of note is that Zebra is very efficient at storing raw document text (for the chunked
index) on disk, probably using some sort of compression.

Win: Zebra overall, Lucene for whole-doc, Zebra for chunked

3.4 Basic query speed

For each engine I performed an identical set of roughly “typical” queries, drawn in part from
old dynaXML log files, and representing a mix of single-term, phrase, Boolean, and
proximity searches. Here are the 20 queries:

§ literature

CDL Search Engine Comparison Page 6

§ "fertility rate”
§ "susan v gallagher coetzee”
§ montagne
§ critical or essays or j or m or coetzee
§ indigenous
§ copy
§ adler
§ teen and center
§ “functional genomics”~5
§ ahmad and shah
§ salt
§ lyric and poet and era and high and capitali
§ china and population
§ ernest and hemingway
§ “man apartheid”~20
§ wynder
§ sullum
§ photo
§ rich and man and poor
§ habsburg

Proximity searches are shown above using the notation “word1 word2”~5. In this case,
word1 and word2 must appear (in any order) within a window of 5 words.

First, each test was performed with a “cold” disk cache (nothing in the operating system
cache.)

*Note: Once again, the Xapian chunked index numbers have been extrapolated.

“Cold” cache results:

 Lucene Xapian Zebra
Whole-doc index 3.245 51.766 14.519
Chunked index 6.619 *74.261 10.610

These results indicate that Lucene’s on-disk structures are the most efficient to access.

Next, the tests were immediately performed again. I call this the “warm” cache test, since all
the disk blocks needed by the queries were now in the operating system cache (and any cache
maintained by the index system). Because the times measured are small, each test was
actually performed 10 times and the results averaged.

“Warm” cache results:

 Lucene Xapian Zebra
Whole-doc index 0.056 0.892 0.999
Chunked index 0.251 *1.289 0.744

Interestingly, Lucene is significantly faster on these basic queries, despite being written in
Java. One could speculate that Zebra’s client/server architecture and fancy transaction

CDL Search Engine Comparison Page 7

processing and rollback mechanisms could be slowing it down. It’s hard to explain why
Xapian would be so slow.

Win: Lucene

3.4 Pathological query speed
Also of interest is how the engines perform in the case of “pathological” queries, designed to
be time-consuming to process. I determined the most commonly used words in the document
set (not including the default set of stop-words) so that the engines would have to iterate
through many entries to compute the query results. These test the outer limits rather than
“typical” cases.

Here are the five queries used:

§ from or i or were
§ “he an his”~6
§ “had have which”~20
§ she or one or those
§ from or i or were or he or an or his or had or have or which or one
§ from and i and were and he and an and his and had and have and which and one

*Note: Once again, the Xapian chunked index numbers have been extrapolated.

“Cold” cache results:

 Lucene Xapian Zebra
Whole-doc index 3.245 2.302 19.086
Chunked index 10.155 *144.701 12.976

“Warm” cache results:

 Lucene Xapian Zebra
Whole-doc index 1.316 0.393 17.125
Chunked index 4.334 *23.315 10.557

Xapian performs so well on the whole-document queries that one wonders if the extrapolated
chunked index times are completely off. Perhaps Xapian would have excellent overall query
performance, if only it could index the chunked documents in a reasonable amount of time.
We may never know.

Also, we see again that Lucene is much faster than Zebra, probably indicating some
inefficiency in Zebra’s algorithms or architecture.

Win: Lucene

CDL Search Engine Comparison Page 8

4. CONCLUSIONS
Unfortunately, Xapian does not appear ready for prime-time yet. Its query speed shows
promise, and the query expansion feature is interesting, but clearly the engine needs more
work before it could be used here.

Based on the results above, it’s clear that either Lucene or Zebra would be a reasonable
foundation upon which to build the Cross-Instance Search System. A quick summary
follows.

Factors in favor of Lucene:

Ø Java
Ø Proximity ranking
Ø Query speed

Factors in favor of Zebra:

Ø Standards-based
Ø Index speed
Ø Index size

The final choice, of course, rests with CDL staff.

