
SUGGESTING LOOP UNROLLING USING A HEURISTIC-GUIDED APPROACH

Pedro Pinto

Dissertation done under the supervison of Prof. João Cardoso

at FEUP

1. Motivation

The development of embedded applications typi-
cally faces memory and/or execution time constraints
and as such, performance should be considered dur-
ing development. A way of improving performance
is to use code transformations, which is already done
today by advanced compilers and optimization tools.
However, there are cases where these code transforma-
tions can not be automatically applied and the devel-
oper must implemented them manually.

There is a need for a tool that can help developers
make confident decisions about when and how to make
these transformations. The developer needs to feel safe
when applying a code transformation, knowing that it
will lead to a performance improvement. Because, ul-
timately, it is the user that is going to transform the
code, this tool should be able to help while keeping the
developer in control. A possible solution is to make
suggestions about what transformations would be ben-
eficial, giving a clear indication of where to go.

2. Goals

The main goal of this dissertation is to propose
an approach to help developers decide about the ap-
plication of Loop Unrolling and about the unroll fac-
tor to use. This approach will use a set of heuristics
and source code information to make a prediction of
whether Loop Unrolling will achieve a performance
improvement.

Because this approach needs to be used by a devel-
oper it only makes sense to work on a high level and
use a source code transformation. Loop Unrolling is
a good fit as it is widely know and has been used for
decades. It is easily applicable and always legal to use.

This approach should be translated to a prototype
so that it could be validated and evaluated. The heuris-
tics found should be instantiated to target a specific ar-
chitecture that is meaningful in the context of embed-
ded systems and applications.

3. Description

We first present the proposed approach and then
the heuristics used in this approach. Later, we show
the prototype that was developed as an instance to a
specific processor and finally present the results of the
prototype evaluation and analyze those results.

3.1. Proposed Approach

The approach consists of a four step process. Ini-
tially, the loop being analyzed is converted to a model
that holds its relevant information. This model is used
throughout the other three steps. The loop model needs
information about the loop iteration bounds, step and
induction variable. It also needs to know how many
instructions the loop body has and if there are arrays
being accessed.

The second step uses the model to test the loop
against a set of acceptance rules. The main goal of
these rules is to guarantee that the loop iteration count
is known at compile-time. If this is not possible, this
test will fail and the loop is discarded as a bad candi-
date.

If the loop is in compliance with the acceptance
rules it can then be evaluated, which is the third step.
The loop has a score, that is initially 0. This score will
change as the loop is evaluated by the proposed heuris-
tics. If, at the end of the evaluation, the score is above
a threshold the loop is considered a good candidate and
will advance to the fourth and final step.

At this point the only thing left to do is chose a suit-
able unroll factor. Because the loop was already tested
twice, it is safe to assume that it will benefit from Loop
Unrolling. This allows for a very simple strategy to
chose the unroll factor. We can pick the biggest unroll
factor that will not cause instruction cache thrashing.

3.2. Heuristics

There are five different heuristics in our proposed
approach. The first four look for characteristics that,
when found, will likely lead to a performance improve-
ment.

Small Iteration Count This heuristic rewards loops
that execute smaller numbers of iterations. When a
loop has a small number of iterations it is less likely
to cause instruction cache thrashing. There is also little
danger when applying full Loop Unrolling.

Data Reuse This heuristic looks for opportunities to
reuse data. If the loop shares data across iterations,
Loop Unrolling might, by exposing those iterations to-
gether, allow the compiler to reuse that data. The dis-
tance between iterations that use the same data is called
reuse distance. This heuristic gives a higher score the
shorter this distance as smaller reuse distances allow to
reuse more values with the same unroll factor.



Same Scope Array If the loop iterates over an ar-
ray of constants and it is possible to see its declara-
tion, then Loop Unrolling might enable the replace-
ment of the array accesses with their values. If there
is such an array, after full Unrolling the loop and ap-
plying transformations like Constant Propagation and
Constant Folding, the compiler might remove the ar-
ray accesses and replace them with the constant array
values.

Loop Body Execution Time Relation One of the
main advantages of Loop Unrolling is that, indepen-
dently of everything else, it can reduce the control
structure overhead. Every iteration executes a control
structure, responsible for updating the induction vari-
able and correctly terminating the loop. This transfor-
mation reduces the number of iterations, which in turn
reduces the time spent executing this control code.

Number of Instructions Loop Unrolling increases
the number of instructions inside the loop body, which
can have a negative effect on the instruction cache per-
formance. The bigger the unroll factor, the more in-
structions inside the loop body. This situation can lead
to an increase in the number of cache misses, which
will result in a performance loss that can overshadow
whatever benefits Loop Unrolling brought.

3.3. Prototype

A prototype was developed to target the PowerPC
architecture and more specifically the PowerPC 604
processor. The heuristics and metrics used to suggest
Loop Unrolling and to choose a suitable unroll factor
were instantiated for this processor. Through empiri-
cal observation and experiments it was possible to find
values that suit the target processor.

The prototype makes use of an existing source-
to-source compiler infra-structure, Cetus. Cetus is
mainly used as front-end, whose main task is to trans-
late source code to an Abstract Syntax Tree (AST).
This AST is used to create, for each candidate loop, a
model that is fed to an evaluation engine. This engine
has full knowledge of the heuristics and their values
and can evaluate the loop.

Cetus is used once again to make the suggestion re-
sulting from the evaluation available to the developer.
By transforming the AST it is possible to create a com-
ment before each analyzed loop with the suggestion.
Cetus will output the contents of the AST back to a
source code file, where the user can see the result of
the evaluation.

3.4. Results

The results are, overall, positive. From the 8 evalu-
ated benchmarks, 6 were correctly suggested for Loop
Unrolling. Tab. 1 shows the evaluation of each bench-
mark. It is possible to see the evaluation score, the
suggestion (to unroll or to keep) and whether this sug-
gestion is correct.

Tab. 1 – The suggestion made for each benchmark.

Benchmark Score Suggestion Correct

Dot Product 2 Unroll Yes
Gouraud -8 Keep No
Grid Iterate -10 Keep Yes
Vector Sum 2 Unroll Yes
ISO1 6 Unroll Yes
ISO2 20 Unroll Yes
FSD1 10 Unroll Yes
FSD2 -6 Keep No

Tab. 2 presents the unroll factor suggestion. It is
possible to see, for each benchmark that was suggested
for Unrolling, the suggested unroll factor and the asso-
ciated performance improvement. For comparison it is
also possible to see the optimal unroll factor, i.e., the
unroll factor that leads to the largest performance im-
provement. On 4 of the 5 benchmarks, the unroll factor
is either equal or close to the optimal factor and on the
other benchmark, there is a performance difference of
just 3.88%.

Tab. 2 – Comparing the suggested unroll factor and
the optimal unroll factor (and their associated per-
formance improvements) for the benchmarks sug-
gested for Unrolling.

Unroll Factor Improvement

Benchmark Suggested Optimal Suggested Optimal

Dot Product 57 58 37.25% 37.27%
Vector Sum 57 253 31.49% 35.37%
ISO1 3 3 33.30% 33.30%
ISO2 3 3 78.62% 78.62%
FSD1 8 8 6.33% 6.33%

4. Conclusions

This dissertation presents a different approach to
the problem of performance optimization. It does so by
using heuristics, a source code transformation and sug-
gestions. The results show that it can help the devel-
oper by indicating which loops to unroll and providing
a suitable unroll factor. Even tough their values will al-
ways be adjusted and tuned for a specific architecture,
the heuristics presented can be used for any architec-
ture as they rely mostly on source-level characteristics.

This approach has some shortcomings. It consid-
ers only innermost FOR loops whose iteration count is
known at compile-time. Therefore, only addresses a
small part of all the possible loops that could be trans-
formed. Furthermore, the strategy used to chose an un-
roll factor could use a big improvement. In its current
state it only accounts for the number of instructions on
the loop body and their effect on the instruction cache.
The overhead reduction, one of the main advantages
of Loop Unrolling, is not properly accounted for, even
though there is an heuristic that targets it (Loop Body
Execution Time Relation).


