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Abstract—The Green Computing area is a global trend that
concerns the impact of the computational resources in the
environment. These field is becoming more relevant today since
the exponential growth of the Information Technology sector,
demanding increasingly more energy and thus polluting in the
same proportion. In previous studies, scientists concluded that
nearly 90% of the energy consumption in a computer system
is due to software execution [1].

This paper refers to the work developed under the project
GREENSSCM: Green Software for Space Control Mission1,
which aims to reduce the energy consumption in software exe-
cution by predicting the best transformations and optimizations
to apply in the source code. Using a developed static analyzer
and a set of code repositories we extract software metrics
from each atomic piece of code (for instance a function or
a method) and use the clustering technique to automatically
group them all by their degree of similarity. Later, we monitor
the energy consumption of the execution for the same code
with a set of different optimizations. Then we relate these with
the metrics extracted previously and discover what are the best
optimizations for the atomic piece of code of each cluster.

This paper also presents and describes the implementation
of an incremental DBSCAN algorithm which allows us to add
new code repositories to a previous clustered database and its
integration into the ELKI (Environment for Developing KDD-
Applications Supported by Index-Structures)2 Framework.

Keywords-Green Computing; Artificial Intelligence; Cluster-
ing; Incremental DBSCAN

I. INTRODUCTION

The concern with the energetic consumption of computing
resources is growing. Much has already been done in order
to reduce the consumption in hardware devices, for example,
using virtualisation and replace old hard drives to Solid State
Drives in physical computers.

This effort has been so successful that it was estimated that
90% of energy consumption with respect to an ICT system
is due to the software. So we face a different challenge now:
optimize the energy consumption of a software system.

In the context of GreenSSCM project we have designed and
implemented a statical and dynamic source code analyser that
together can discover the most suitable compiler optimisations

This work is partly funded by the Innovation Agency, SA, Northern
Regional Operational Programme, Financial Incentive Grant Agreement
under the Incentive Research and Development System, Project No. 38973.

1More information at: http://green.visionspace.com
2More information at: http://elki.dbs.ifi.lmu.de/

a piece of software (For the purpose of this paper we consider
a piece of software as a function/method). Our statical
analyser is designed to extract metrics from C++ source
code, convert them into characteristics for the DBSCAN
algorithm, with the distance function and store the results
from the classification. The dynamic analyser uses the RAPL
(Running Average Power Limit) Intel framework3 to extract
the measurements of energy consumption of a particular
piece of software and compare the execution of the software
with and without compiler optimizations.

We use the results from the statical analyser to cluster
pieces of software according to their similarity and the
dynamic analysis to correlate the compiler optimizations
to the clusters. From the beginning we decided to use an Off-
the-shelf framework that implements clustering algorithms.
We have experimented several frameworks, but the one that
was more suitable was ELKI because of their degree of
configuration (both using the ELKI user interface and the
API). We have experimented several clustering algorithms,
such as: K-Means, OPTICS and SUBCLU, but DBSCAN
seemed to us to be the most interesting since:

• It does not require one to specify the number of clusters
in the data a priori;

• Can find arbitrarily shaped clusters;
• Has a notion of noise;
• Requires just two parameters and is mostly insensitive

to the ordering of the points in the database;
• Is designed for use with databases that can accelerate

region queries.

Since we are interested in classify several software
packages (each one with several thousands of functions) we
need an incremental DBSCAN implementation in the ELKI
framework. We found out that no incremental DBSCAN
implementation was available much less in ELKI.

In this paper we explain in more detail our requirements
regarding the GreenSSCM project, how we implemented the
Incremental DBSCAN algorithm and the integration with
ELKI framework.

3More information at: http://tinyurl.com/o674ro2
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II. SOFTWARE METRICS

The first part of the work was focused on search and define
a set of software metrics that was relevant to characterize
and identify source code, in this case, for functions/methods.
These metrics should be as stable as possible in a way
that similar functions have similar metric values. With this
principle in mind, we have gathered a substantial set of
metrics, analyzing its connection with energy consumption.
So, we started by considering the number of parameters
and returns, but as these characteristics may not be directly
associated with energy consumption and we can have similar
functions with a different number of parameters and returns,
we discarded these. The interface complexity, the sum of
the number of parameters and returns, was also logically
ignored. In terms of number of lines of code we can extract
LOC (total lines of code), ELOC (effective lines of code)
and LLOC (logical lines of code). As LOC and ELOC
are directly dependent of the programmer’s writing, we
cannot relate it with energy consumption. The ELOC metric,
as it represents only the number of executable statements
independently of the code format, are considered then. One
metric we can directly associate with time execution and
energy consumption is the Cyclomatic complexity (McCabe’s
Complexity) because it indicates the number of linearly
independent paths within a piece of code. Slightly related
with the cyclomatic complexity, we extracted the number
of each different type of statements: conditional if/else,
inlined if-else, for and while loops, logical and and or,
and switch case). Another complexity measurement is the
functional complexity, the sum of the cyclomatic and interface
complexity. As we have discarded interface complexity, we
also did not consider functional complexity.

Finally, we have extracted the shape of the source code.
The shape is a kind of structure, representing the main
statements and its hierarchy in a piece of code. For instance,
looking at Figure 1, we can see how the source code 1a is
transformed into the shape at 1b.

So, despite the existence of many software metrics, only
some have been chosen. Just the following were considered:
• Number of Logical Lines of code - LLOC (number of

executable ”statements” (that end in semicolon));
• Cyclomatic complexity (McCabe’s complexity);
• Number of conditional if/else statements;
• Number of inlined if − else statements;
• Number of for statements;
• Number of while statements;
• Number of logical and statements;
• Number of logical or statements;
• Number of switch case statements;
• Shape (structure) of the code.

III. CLUSTERING APPLICATION

Following the main idea behind this project, the final goal
is to have an application that receives one or more source

int i = left, j = right;
int tmp;
int pivot = arr[(left + right) / 2];

while (i <= j) {
while (arr[i] < pivot)

i++;
while (arr[j] > pivot)

j--;
if (i <= j) {

tmp = arr[i];
arr[i] = arr[j];
arr[j] = tmp;
i++;
j--;

}
};

if (left < j)
qs(arr, left, j);

if (i < right)
qs(arr, i, right);

(a) Source code
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Figure 1: Example of a shape representing a piece of code.

code repositories, extracts the metrics described above for
each function, and then groups the functions by their degree
of similarity.

Although we use large C++ repositories in order to improve
the clusters detection and the knowledge base, our main
objective is to improve the energy efficiency of the SCOS-
2000 (Satellite Control and Operation System)4. SCOS-2000
is a satellite mission control system developed and maintained
by the European Space Agency (ESA/ESOC) and provides
the means for operators to monitor and control satellites.
SCOS is written in C++ language, has more than a million
lines of source code and over 31 thousand functions/methods.

Having a database populated with several functions and
software metrics from a repository, we group these functions
by their similarity. Looking for a way of identify these groups
in the most ”intelligent” and automatic way (analysing the
existing artificial intelligence branches), Clustering technique
seems to be the most appropriate one.

There are multiple machine learning software tools avail-
able. Weka is one of them, but the use of its DBSCAN
implementation is discouraged by the development team.
Java-ML is another Java-based option, but it uses Weka
algorithms for clustering. Apache Mahout is another powerful
tool, but it only offers K-Means for clustering. The most
versatile and complete tool we found was ELKI Data Mining
Framework [2], developed in Ludwig-Maximilians Munich
University and therefore the one used in that project. It is
very configurable and has visualisation tools included.

As is well known, clustering has several implementations.

4More information at: http://www.esa.int/Our Activities/Operations/gse/
SCOS-2000
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Although there are different models, these algorithms are
basically differentiated by their input.

We have tried the K-Means algorithm, but although it is
very efficient, it must receive a number of desired clusters.
The same happens with the EM algorithm. As we have no idea
in our data model of the number of clusters needed to group
the functions, and knowing that it tends to vary according
to the functions we are using. We also tried SUBCLU,
a subspace clustering algorithm for high-dimensional data.
Based on DBSCAN algorithm, SUBCLU can find clusters
in subspaces, using a bottom-up strategy. However, we
cannot parametrize the number of sub desired dimensions
and it leads to a nonsensical amount of clusters because
it combines all the permutations of the dimensions (our
software characteristics). Testing the algorithm with 40.000
functions, we found it non computable after running for 48
hours in a 10GB RAM machine.

A. DBSCAN

After some experiments, we found in DBSCAN (Density-
Based Spatial Clustering of Applications with Noise) algo-
rithm the best solution for our problem. This algorithm, first
introduced by Ester, et al. [3], identifies clusters of elements
in a given data set by looking at the density of points, with the
advantage of also identify noise, i.e. elements not associated
with any cluster.

This algorithm receives two values as parameters: ε
(epsilon, the radius that delimitates the neighbourhood area
of a point) and minPts (minimum number of points required
to form a dense region). The global idea of the algorithm is
that the neighborhood, for a given radius (ε), of each point
in a cluster has to contain at least a minimum number of
points (minPts). The points in the database are then classified
as core points, border points and noise points, related with
the density relations between points to form clusters. A core
point p is a point that belongs to the global data set D and
has at least minPts points in its ε-neighborhood, formally
defined as: p∈̇D. Then, if p is a core point, it forms a cluster
with the points that are reachable from it.
Nε(p) is the subset of D contained in the ε-neighborhood

of p. The points contained in Nε(p) are said to be directly
density reachable from the core point p, formally defined as:

p
D
� q

def
= p ∈ Nε(q) ∧ Card(Nε(q)) ≥MinPts

So, an object p is directly density reachable from an object
q if p is in the ε-neighborhood of q and q is a core point
(the number of points in its ε-neighborhood is greater than
MinPts).

Border points are non-core points but density-reachable
from another core point, while noise points are also non-core
points and not density-reachable from other points, do not
belonging to any cluster. A point q is density reachable from
a point p if there is a path between p and q, where all the
points on the path (with possible exception of q) are core

points, i.e. in a path p1, ..., pn with p1 representing p and
pn representing q, each pi+1 is directly reachable from pi.
The formal definition is presented below:

p >D q
def
= {p1, . . . , pn|p1 = q∧pn = p∧pi ∈ D∧pi+1

D
� pi}

As default, DBSCAN uses the euclidean distance function,
commonly used to calculate the distance between points in
a N -dimensional space. However, as this function is only
appropriated for numerical values, we need a solution that
includes a calculation of the distance between the shapes,
represented by a string value.

Taking advantage of the tree structure of the shape, we
used the tree edit distance, similar to Levenshtein distance
for strings, to measure the difference between two trees.
Informally, this distance is defined as the minimum-cost
sequence of node edit operations (i.e. insertions, deletions
and substitutions) that transform one tree into another. So,
the Robust Tree Edit Distance [4] implementation is used
to calculate the distance between the functions’ shapes and
the euclidean distance used to calculate the global distance
between two points, taking into account all the metrics
assumed. An example of a distance result between two shape
trees, following this approach, can be seen in figure 2. For
that example case, we have a value 2 of distance due to
a substitution (for → cal) and a deletion (call from first
shape).

{{ $$

Distance 2 //

{{ $$
for while

{{ $$

call while

{{
if call if

Figure 2: Example of a distance between two shapes using
RTED

Looking at the euclidean distance function and the metrics
used, we found that all the metrics have the same weight in
the distance calculation. But, reflecting about it, we think
that we can assume that some metrics may influence more
or less the distance between functions in terms of energy
consumption. So, we found useful to consider that each metric
can have an independent weight in the distance formula.
Thus, we adapt the euclidean equation 1 to consider, for each
dimension, a weight value greater than zero. The new distance
function used in the DBSCAN algorithm is represented in
the equation 2. With this change, we can keep some less
relevant software metrics without compromise the clusters
detection.



d(p, q) =
√

(q1 − p1)2 + (q2 − p2)2 + ...+ (qn − pn)2 (1)

wd(p, q) =
√

(q1 − p1)2 ∗ w2
1 + (q2 − p2)2 ∗ w2

2 + . . .

. . .+ (qn − pn)2 ∗ w2
n (2)

IV. INCREMENTAL DBSCAN

DBSCAN, as talked before, is applied to a static database.
Although it meets the objectives, for our project is highly
desirable to perform the clustering update incrementally.
When we want to add some new repository or just classify a
new piece of code, we had to rerun the algorithm for all the
accumulated database. Due to the density-based nature of
DBSCAN, the insertion of a new object affects the current
clustering only in the neighborhood of this object. Then,
the implementation of an efficient incremental DBSCAN
algorithm for insertion of new functions to the existing
clustering database is described in this sections of this paper.

The implementation of Incremental DBSCAN was based
in the definitions provided in [5] which proves that the
incremental algorithm yields the same result as the non-
incremental DBSCAN algorithm, based on the formal notion
of clusters. So, we can determine which part of an existing
clustering process is affected by an insertion of a new point.
And for that we focus on two main definitions: affected
objects and update seeds.

A. Affected Objects

On an insertion of a new object p in the database D, if there
exists new density connections, non-core objects in Nε(p)
may become core objects. So, the set of affected objects
represents the objects which may potentially change cluster
membership after the insertion, while the cluster membership
of other objects not in this set will not change. Thus, we
only have to consider these objects in order to process the
update. On the new insertion, the set of affected objects is
the set of objects in Nε(p) plus the objects density reachable
from one of these objects, formally defined as:

AffectedD(p)
def
= Nε(p) ∪ {q|∃o ∈ Nε(p) ∧ q >D∪{p} o}

B. Update Seeds

However, it is not necessary to reapply DBSCAN for all
the affected objects set. We can process only over certain
seed objects, ε-neighbors of the point to be inserted that
are core objects after the insertion. As it is not necessary
to rediscover density connections known from the previous
clustering, we finally only have to look at core objects in the
ε-neighborhood of the objects in Nε(p) that change their core
object property. To get these objects more efficiently, when
we run an initial DBSCAN we also store in the database the
number of ε-neighbors of each point. Thus, we only need to
call a region query for the new inserted object to determine all

the objects q′ with a changed core object property. These are
the objects with number of neighbors equals to MinPts−1.
Lastly, for these objects q′ we have to retrieve Nε(q′) to get
all objects in the UpdSeedD(p).

The set UpdSeed is formally defined as:

UpdSeedD(p)
def
= {q|q∈̇D ∪ {p},∃q′ : q′∈̇D ∪ {p}∧
∧q′ ˙6∈D ∧ q ∈ Nε(q′)}

C. Insertion Results

When we insert a new point p into the clustering database
D, and after determine the set UpdSeedD(p), we can deal
with one of the following cases:

1) Noise
The calculated UpdSeedD(p) is empty, so there are
no new core points. As a result, just p is assigned as
a noise point.

2) Creation
In this case, UpdSeedD(p) contains only core objects
not belonging to any cluster in the previous clustering,
i.e. classified as noise. As a result, a new cluster is
created containing p and these seed objects.

3) Absorption
UpdSeedD(p) contains core objects belonging to
exactly one cluster C, in the previous clustering state.
The new point p and possibly noise points in the
UpdSeedD(p), if exists, are absorbed into cluster C.

4) Merge
If UpdSeedD(p) contains core objects belonging to
more than one cluster before the update. In this case,
all the clusters are merged into one new cluster as well
as the new point p.

So, for each function inserted we follow the previous steps
until have an insertion result. At this point, upon the result
case, the clustering database is updated the most efficient
way. Thus, only the cluster assignment of the new point p
and the changed objects were updated in the database. To
maintain the number of ε-neighbors of each element up to
date in the database, we also increment by one the number
of neighbors of the elements in the set Nε(p).

D. Performance Evaluation

Considering the objective of insert and classify a single
function when we already have a clustered database, the
Incremental DBSCAN brings us a great advantage. Having a
database with 20500 functions already clustered, if we want to
add and classify a new function, it takes more than 66 minutes
to rerun DBSCAN. However, using the Incremental DBSCAN
algorithm, even considering that the previous functions are
already clustered, it takes only 43 seconds, in average, to
insert a new point in a database of that size. In this analysis
we realize that the execution time for an insertion tends
to increase with the increase of the database because there
was more affected objects to process. But the density of



the region where the point will be located determines how
many operations are necessary and consequently the run
time needed. Even when we add a new repository to our
database and we want to cluster those new functions, if its size
represents a low percentage of the already clustered database,
it may be faster to perform an Incremental DBSCAN for
those points.

In the figure 3 we have a chart that represents, for an
already clustered database of 20.500 functions, the execution
time cost to add a new portion of functions (could be only
one). As the DBSCAN algorithm does not allow increments,
we have to rerun the entire clustering process with all the
desired functions: the old ones already clustered and the
new ones. So, it implies an execution time superior to
the previous clustering. However, running the developed
incremental DBSCAN algorithm, we have a much faster
process when adding a reduced amount of new functions. So,
the green line in the chart represents the accumulated time
to add several functions, one by one. Even though, for this
specific tested dimension, we can figure out that up to an
insertion of 80-100 new functions, the Incremental DBSCAN
algorithm is more efficient to rerun DBSCAN.
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Figure 3: DBSCAN vs IncrementalDBSCAN chart

The tests and the execution times shown were obtained
using a machine with the specifications described in the table
I.

Component Detail

Operating System Ubuntu 14.04 LTS
Processor Intel R© Xeon(R) CPU E5645 @ 2.40GHz x 8

RAM 9.8 GB

Table I: Computing platform configurations

V. ELKI INTEGRATION

The Incremental DBSCAN algorithm described above was
implemented according to the ELKI’s available API and
integrated in the platform. We make use of all the facilities
and explore the modular structure of this framework. To deal
with stores and updates we develop a database connection
that allows a direct treatment of the data. In respect to the
algorithm, we make use of the ELKI’s internal static database
and use the R?-tree queries to obtain the objects in the ε-
neighborhood of a given point. The results are processed
according to one of the four explained possible results,
directly updating our external database.

VI. FUTURE WORK AND CONCLUSIONS

We will contribute with this implementation for the
ELKI framework, so it can be used by anyone. ELKI has
been shown to be an extremely well organized tool, very
modular and extensible as it permits the integration of custom
components, adapted to our needs. Following the ELKI
structure, and using its API, it’s only necessary to create
a module with the core of the algorithm and put in the
existence structure. The parameterization is also simple,
as the parameters are passed using the existing command
line interface and automatically handled and checked by
the platform. To deal with the results we have developed
several result handlers too, one for each case, and fit
them into the respective ELKI component. As clustering
in ELKI was developed for a complete and independent
process, in incremental DBSCAN each new insertion has
to be an independent process and consequently the ELKI
internal database has to be initialized for every run. When
incrementally clustering more than just one new function, it
would be very useful, as an improvement, to do a incremental
clustering in just one ELKI call, avoiding the repetitive
initialization of the database and expectedly a performance
boost.

In terms of the GreenSSCM project, as mentioned at
the beginning of this paper, the goal is to correlate the
energy optimizations at the dynamic analysis with the clusters
obtained in the static analysis. Later, when inserting a
new point to the clustering database with the incremental
DBSCAN we get a cluster with some compiler optimizations
associated. Like so, we are able to categorize future functions
just by doing a table lookup on the database of the already
clustered data set.
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