
Efficient Clustering of Web-Derived Data Sets

Luı́s Sarmento
Fac. Engenharia Univ. Porto
Rua Dr. Roberto Frias, s/n
4200-465 Porto Portugal

las@fe.up.pt

Alexander P. Kehlenbeck
Google Inc. NYC

79, 9th Ave., 10019 NYC
New York, NY USA

apk@google.com

Eugénio Oliveira
Fac. Engenharia Univ. Porto
Rua Dr. Roberto Frias, s/n
4200-465 Porto Portugal

eco@fe.up.pt

Lyle Ungar
Computer and Inf. Science

Univ. of Pennsylvania
504 Levine, 200 S. 33rdSt

Philadelphia, PA USA

ungar@cis.upenn.edu

ABSTRACT
Many data sets derived from the web are large, high-dimensional,
sparse and have a Zipfian distribution of both classes and
features. On such data sets, current scalable clustering
methods such as streaming clustering suffer from fragmen-
tation, where large classes are incorrectly divided into many
smaller clusters, and computational efficiency drops signif-
icantly. We present a new clustering algorithm based on
connected components that addresses these issues and so
works well on web-type data.

1. INTRODUCTION
Clustering techniques are used to address a wide variety

of problems using data extracted from the Web. Document
clustering has long been used to improve Web IR results [21]
or to detect similar documents on the Web [5]. More recently
web-navigation log data has been clustered to provide news
recommendation to users [8]. Several clustering-based ap-
proaches have been proposed for named-entity disambigua-
tion some of them specifically dealing with web extracted
from the Web [20], [18].

Clustering data sets derived from the web - either docu-
ments or information extracted from them - provides several
challenges. Web-derived data sets are usually very large,
easily reaching several million of items to cluster and ter-
abyte sizes. Also, there is often a significant amount of noise
due to difficulties in document pre-processing such as html
boiler-plate removal and feature extraction.

More fundamentally, web-derived data sets have specific
data distributions, which are not usually found in other
datasets, that impose special requirements on clustering ap-
proaches. First, web-derived datasets usually involve sparse,
high-dimensional features spaces (e.g., words). In such spaces,
comparing items is particularly challenging, not only be-
cause of problems arising from high-dimensionality [1], but
also because most vectors in sparse spaces will have similar-
ities close to zero. For example, some clustering-based ap-
proaches to named-entity disambiguation use co-occurring

Copyright is held by the author/owner(s).
WWW2009, April 20-24, 2009, Madrid, Spain.
.

names as features for describing mentions (i.e. the occur-
rence of a name ni in a document dk) for disambiguation.
On a small Web sample of 2.6 million name-annotated doc-
uments, we found 5.1 million mentions corresponding to
52,000 names. (I.e., the feature space is has dimension
52,000.) About 63% of the mentions we are trying to cluster
have fewer than 100 features, and another 20% have between
100 and 199. As can be seen from Table 1, the vast major-
ity of items have fewer than 1% of the possible features. On
the open Web, the set of possible names - and hence the
feature space dimensionality - is on the order of millions, so
sparsity becomes specially problematic for clustering-based
named-entity disambiguation approaches.

features # mentions % mentions
1-99 3235958 63.47

100-199 1022151 20.05
200-299 386880 7.59
300-399 165384 3.24
400-499 84528 1.66
500-599 55905 1.1
600-699 32941 0.65
700-799 28938 0.57
800-899 16997 0.33
900-999 10088 0.2

Table 1: Distribution of the number features in men-
tion vectors extracted from a 5.2 million documents
web sample

The class distributions of the web-derived data are usually
highly unbalanced (often Zipfian), with one or two dominant
classes and a long tail of smaller classes. Let us consider
again the problem of named-entity disambiguation. A name
such as “Paris”, can refer to many possible entities. In fact,
the Wikipedia disambiguation page for “Paris” (http://
en.wikipedia.org/wiki/Paris_(disambiguation)) shows
more than 80 possible entities. (And doesn’t include hun-
dreds of less well known people.) However, most of the men-
tions of “Paris” found on the web refer either to the capital
of France or to the famous socialite Paris Hilton. Table 2
shows hit counts for five queries sent to Google containing

Figure 1: The highly unbalanced distribution of the
number features in mention vectors.

the word “Paris” and additional (potentially) disambiguat-
ing keywords. These values are merely indicative of the or-
ders of magnitude at stake, since hit counts are known to
change significantly over time.

query # hit count (x106) %
paris 583 100

paris france 457 78.4
paris hilton 58.2 9.99

paris greek troy 4.130 0.71
paris mo 1.430 0.25
paris tx 0.995 0.17

paris sempron 0.299 0.04

Table 2: Number of hits obtained for several entities
named “Paris”

For other entities named “Paris” (for example, the French
battleship), Google results are clearly contaminated by the
dominant entity (the French capital) and thus it becomes
almost impossible to estimate their relative number of hits.
This also causes a problem for clustering algorithms, which
need to be able to deal with such an unbalanced distribution
in web-derived data, and still correctly cluster items of non-
dominant classes.

Additionally, methods to cluster such large data sets have
to deal with the fact that “all-against-all” comparison of
items is impossible. In practice, items can only be com-
pared to cluster summaries (e.g., centroids) or to only a few
other items. The most widely used methods for clustering
extremely large data sets are streaming clustering methods
[10] that compare items against centroids. Streaming clus-
tering has linear computational complexity and (under ideal
conditions) modest RAM requirements. However, as we will
show later, standard streaming clustering methods are less
than ideal for web-derived data because of the difficulty
in comparing items in high-dimensional, sparse and noisy
spaces. As a result, they tend to produce sub-optimal solu-
tions where classes are fragmented in many smaller clusters.
Additionally, their computational performance is degraded
by this excessive class fragmentation.

We propose a clustering algorithm that has performance
comparable to that of streaming clustering for well-balanced
data sets, but that is much more efficient for the sparse, un-
evenly sized data sets derived from the web. Our method
relies on an efficient strategy for comparing items in high

dimensional spaces that ensures that only the minimal suf-
ficient number of comparisons is performed. A partial link-
graph of connected components of items is built which takes
advantage of the fact that each item in a large cluster only
needs be compared with a relatively small number of other
items. Our method is robust to variation in the distribution
of items across classes; in particular, it efficiently handles
Zipfian distributed data sets, reducing fragmentation of the
dominant classes and producing clusters whose distributions
are similar to the distribution of true classes.

2. STREAMING CLUSTERING OF WEB DATA
For the purpose of explaining the limitations of streaming

clustering for web-derived data sets, we will consider a sin-
gle pass of a simplified streaming clustering algorithm. This
simplification only emphasizes the problems that stream-
ing clustering algorithms face, while not changing the basic
philosophy of the algorithm. In Section 2.3 we will show
that this analysis can be extended to realistic streaming-
clustering approaches. The simplified version of the stream-
ing clustering algorithm we will be using is as follows:

1. shuffle all items to be clustered and prepare them for
sequential access;

2. while there are unclustered items, do:

(a) take the next unclustered item;

(b) compare with all existing cluster centroids;

(c) if the distance to the closest centroid is less that
mindist, add the item to the closest cluster and
update the corresponding centroid;

(d) otherwise, create a new cluster containing this
item only.

The time and space complexity analysis of this algorithm
is straight-forward. For n items to be clustered and if Cf

clusters are found, this algorithm will perform in O(n Cf)
time, since each item is only compared with the centroids of
the Cf existing clusters, and in O(Cf) space: we only need
to store the description of the centroid for each clusters.

2.1 Problems arising from False Negatives
The high dimensionality and sparseness of web-derived

the data hurts streaming clustering because when compar-
ing two items with sparse features there is a non negligi-
ble probability of those items not sharing any common at-
tribute. This is so even when the items being compared
belong to the same class.

Such false negatives have a very damaging effect on stream-
ing clustering. If a false negative is found while performing
comparisons between an item to be clustered and existing
cluster centroids, the streaming clustering algorithm will as-
sume that the item belongs to an as yet unseen class. In such
cases a new cluster will be created to accommodate it. This
will lead to an artificial increase in the number of clusters
that will be generated for each class, with two direct conse-
quences:

1. during streaming, clustered items will have to be com-
pared with additional clusters, which will degrade com-
putational performance in time and space; and

2. the final clustering result will be composed of multiple
clusters for each class, thus providing a fragmented
solution

Whether this degradation is significant or not depends ba-
sically on how probable it is to find a false negative when
comparing items with existing clusters. Our claim is that
on web generated data the probability is in fact quite large
since the dimensionality of the spaces is very high and vec-
tor representations are very sparse. To make matters worse,
fragmentation starts right at the beginning of the clustering
process because most items will have nothing in common
with the early clusters.

2.2 The Impact of False Negatives
To make a more rigorous assessment of the impact of false

negatives on the performance of streaming clustering, let us
consider only the items belonging to one specific arbitrary
class, class A. In the beginning no clusters exist for items of
class A, so the first item of that class generates a new cluster,
Cluster 1. The following elements of class A to be clustered
will have a non-zero probability of being a false negatives.
i.e, of not being correctly matched with the already existing
cluster for class A. (We assume for now that there are no
false positives, i.e. that they will not be incorrectly clustered
with elements of other classes.) In this case a new cluster,
Cluster 2, will be generated.

The same rationale applies when the following items of
class A are compared with existing clusters for that class.
We assume that in any comparison, there is a probability pfn

of incorrectly mismatching the item with a cluster. There-
fore, one expects new clusters for class A to be generated
as more items are processed by streaming clustering. This
behavior can be modeled by an infinite Markov Chain as
depicted in Figure 2.

Figure 2: Markov model for fragmentation in
streaming clustering

The probability of having created l clusters after perform-
ing streaming clustering for n + 1 items is the probability of
being in a given state s (1, 2, 3, ...) of the chain. Assuming
independence, as more clusters are generated the probabil-
ity of creating a new (false) cluster decreases exponentially
because that would require more consecutive false negative
comparisons.

Despite the regularities of this Markov Chain, deriving
general expressions for the probability of a given state af-
ter n iterations is relatively hard except for trivial cases
(see [19]). However, for the purpose of our analysis, we can
perform some simplifications and obtain numeric values for
comparison. By truncating the size of a chain to a maximum
length (smax) and changing the last state of the chain to
become an “absorbing state” that represents all subsequent
states, numeric computation of state probabilities becomes
straight-forward for any value of p. Table 3 shows the most
probable state, smp and its corresponding probability, pmp

after clustering 10,000 and 100,000 items (with smax = 16)
for various values of pfn:

pfn smp(10k) pmp(10k) smp(100k) pmp(100k)
0.2 6 0.626 8 0.562
0.3 8 0.588 10 0.580
0.4 10 0.510 13 0.469
0.5 13 0.454 16 0.844
0.6 16 0.941 16 1.000

Table 3: Most probable state of the Markov chain,
for 10k and 100k items clustered and different prob-
abilities of false negatives, pfn

As can be easily seen, even for very low probabilities for
false negatives (pfn ≤ 0.3), the chances of replicating the
number of clusters several times is considerable. In a realis-
tic scenario, values of pfn > 0.5 can easily occur for domi-
nant classes because item diversity in those clusters can be
very significant. Therefore, when performing streaming clus-
tering in such conditions, cluster fragmentation of at least
one order of magnitude should be expected.

2.3 Impact on Realistic Streaming Clustering
Actual streaming clustering implementations attempt to

solve the fragmentation problems in two ways. The first
option is to perform a second pass for clustering the frag-
mented clusters based on their centroids. The problem with
this is that the information that could be used for safely
connecting two clusters (i.e., the points in between them)
has been lost to centroid descriptions, and these might be
too far apart to allow a safe merge since centroids of other
clusters may be closer. (See the illustration in Figure 3).
This situation can more easily occur for large clusters in
high-dimensional and sparse spaces, where sub-clusters of
items might be described by almost disjoint sets of features,
and thus be actually distant in the hyperspace. Thus, for
web derived data, re-clustering will not necessarily solve the
fragmentation problem, although such an approach is often
successful in lower-dimensional and homogeneous datasets.

Figure 3: Centroids of belonging to fragments of
the same clusters might be more distant than those
belonging to different clusters.

A second variation of streaming clustering algorithms keeps
a larger number of clusters than the final target, and alter-
nates between adding more new items to clusters and con-
sidering current clusters for merging. However, if each of
the items included in the cluster has a sparse representa-
tion, and if such “intermediate” clusters have a high level
of intra-cluster similarity (as they are supposed to be in or-
der to avoid adding noisy items), then the centroids will
probably also have a sparse feature representation. As more
items are clustered, each of these many intermediate clusters
will tend have only projections in small set of features, i.e.

those of the relatively few and very similar items it contains.
Therefore, feature overlap between clusters will tend to be
low, approximately in the same way item feature overlap
is low. Such centroids will thus suffer from the same false
negative problems as individual items do, and the number
of potential clusters to hold in memory may grow large. In
practice, unless one reduces the minimum inter-cluster sim-
ilarity for performing merge operations (which could lead to
noisy clusters), this strategy will not lead to as many clus-
ter merging operations as expected, and many fragmented
clusters will persist in the final solution. Again, the frag-
mentation effect should be more visible for larger clusters,
in high-dimensional and sparse space.

3. CLUSTERING BY FINDING CONNECTED
COMPONENTS

In this section we present a scalable clustering method
that is robust to the previously described problems. It is
easy to understand that overcoming the problems generated
by false negatives involves changing the way comparisons are
made; Somehow we need to obtain more information about
similarity between items to compensate the effect of false
negatives, but that needs to be done without compromising
time and space restrictions.

Complete information about item similarity is given by
the Link Graph, G, of the items. Two items are linked in
G if their level of pair-wise similarity is larger than a given
threshold. The information contained in the Link Graph
should allow us to identify the clusters corresponding to the
classes. Ideally, items belonging to the same class should
exhibit very high levels of similarity and should thus be-
long to the same connected component of G. On the other
hand, items from different classes should almost never have
any edges connecting them, implying the they would not be
part of the same connected components. In other words,
each connected component should be a cluster of items of
the same class, and there should be a 1-1 mapping between
connected components (i.e. clusters) and classes.

Clustering by finding connected-components is robust to
the problem of false negatives, because each node in G is ex-
pected to be linked to several other nodes (i.e. for each item
we expect to find similarities with several other nodes). The
effect of false negatives could be modeled by randomly re-
moving edges from G. For a reasonably connected G, random
edge removal should not affect significantly the connectivity
within the same connected component, since it is highly un-
likely that all critical edges get removed simultaneously. The
larger the component, the more unlikely it is that random
edge removal will fragment that component because more
connectivity options should exist. Thus, for web-derived
data sets, where the probability of false negatives is non-
negligible, clustering by finding the connected-components
of the link graph seems to be an especially appropriate op-
tion.

Naive approaches to building G would attempt an all-
against-all comparison strategy. For large data sets that
would certainly be infeasible due to time and RAM limita-
tion. However, an all-against-all strategy is not required. If
our goal is simply to build the Link Graph for finding the
true connected components then we only need to ensure that
we make enough comparisons between items to obtain a suf-
ficiently connected graph, Gmin, which has the same set of

connected components as the complete Link Graph G. This
means that Gmin only needs to contain the sufficient number
of edges to allow retrieving the same connected components
as if a complete all-against-all comparison strategy had been
followed. In the most favorable case, Gmin can contain only
a single edge per node and still allow retrieving the same
connected components as in G (built using an all-against-all
comparisons strategy).

Since efficient and scalable algorithms exist for finding the
connected components of a graph ([7], [12]), the only addi-
tional requirement needed for obtaining a scalable clustering
algorithm that is robust to the problem of false negatives is
a scalable and efficient algorithm for building the link graph.
We propose one such solution in the next section.

3.1 Efficiently Building the Link Graph G
Our goal at this step is to obtain a sufficiently connected

Link Graph so we can then obtain clusters that correspond
to the original classes without excessive fragmentation. We
will start by making the following observation regarding web
derived data sets: because the distribution of items among
class is usually highly skewed, then for any item that we
randomly pick belonging to a dominant class (possibly only
one or two) we should be able to rather quickly pick another
item that is “similar” enough to allow the creation of an edge
in the link graph. This is so even with the finite probability
of finding false negatives, although such negatives will force
us to test a few more elements. In any case, for items in
the dominant classes one can establish connections to other
items with vastly fewer comparisons than used in an all-
against-all comparison scheme. We only need enough con-
nections (e.g., one) to ensure enough connectivity in order to
later retrieve the original complete connected components.

For the less frequent items many more comparisons will
be needed to find another “similar enough” item, since such
items are, by definition, rare. But since rare items are rare,
the total number of comparisons is still much lower than
what is required under a complete all-against-all-strategy.

We use a simple procedure: for each item keep comparing
it with the other items until kpos similar items are found, so
as to ensure enough connectivity in the Link Graph. More
formally:

1. Shuffle items in set S(n) to obtain Srand(n).

2. Give sequential number i to each item in Srand(n)

3. Repeat for all the items starting with i = 0:

(a) take item at position i, ii

(b) Set j = 1

(c) Repeat until we find kpos positive comparisons
(edges)

i. Compare item ii with item ii+j

ii. Increment j

One can show (Appendix A) that the average computation
cost under this “amortized comparison strategy” is:

Õ

„
n · |C| · kpos

1− pfn

«
(1)

with n the number of items in the set, |C| the number of
different true classes, pfn is the probability of false negatives

and kpos as the number of positive comparisons, correspond-
ing to the number of edges we wish to obtain for each item.
This cost is vastly lower than what would be required for
a blind all-against-all comparison strategy, without signifi-
cantly reducing the chances of retrieving the same connected
components. Notice that computation cost is rather stable
to variation of pfn when pfn < 0.5. For pfn = 0.5 the
cost is just the double of the ideal case (pfn = 0), which is
comparatively better than values presented in Table 3.

One can also show that the expected value for the maxi-
mum number of items that have to be kept in memory during
the comparison strategy, nRAM is equal to:

E(nRAM) =
kpos

pmin · (1− pfn)
(2)

where pmin is the percentage of items of the smallest class.
This value depend solely on the item distribution for the
smallest class and on the probability of false negatives, pfn.
If only 0.1% of the elements to be clustered belong to the
the smallest class kpos = 1, and pfn = 0.5 then E(nRAM) =
2000. It is perfectly possible to hold information in RAM
that many vectors with standard computers. Imposing a
hard-limit on this value (for e.g. 500 instead of 2000) will
mostly affect the connectivity for less represented classes.

Another important property of this strategy is that link
graphs produced this way do not depend too much on the
order by which items are picked up to be compared. One
can easily see that, ideally (i.e., given no false negatives),
no matter which item is picked up first, if we were able to
correctly identify any pair of items of the same class as sim-
ilar items, then the link graph produced would contain ap-
proximately the same connected components although with
different links. In practice, this will not always be the case
because false negatives may break certain critical edges of
the graph, and thus make the comparison procedure order-
dependent. A possible solution for this issue is to increase
the number of target positive comparison to create more
alternatives to false negative and thus reduce the order de-
pendency.

3.2 Finding Connected Components
Given an undirected graph G with vertices {Vi}i=1..N and

edges {Ei}i=1..K , we wish to identify all its connected com-
ponents; that is, we wish to partition G into disjoint sets
of vertices Cj such that there is a path between any two
vertices in each Cj , and such that there is no path between
any two vertices from different components Cj and Ck.

There is a well-known [7] data structure called a disjoint-
set forest which naturally solves this problem by maintaining
an array A of length N of representatives, which is used
to identify the connected component to which each vertex
belongs. To find the representative of a vertex Vi, we apply
the function

Find(x) {

if(A[x] == x) return x;

else return Find(A[x]);

}

starting at i. Initially A[i] = i for all i, reflecting the fact
that each vertex belongs to its own component. When an
edge connecting Vi and Vj is processed, we update A[Find(i)]←
Find(j).

This naive implementation offers poor performance, but
it can be improved by applying both a rank heuristic, which

determines whether to update via A[Find(i)]← Find(j) or
A[Find(j)]← Find(i) when processing a new edge and path
compression, under which Find(i) sets each A[x] it ever vis-
its to be the final representative of x. With these improve-
ments, the runtime complexity of a single Find() or update
operation can be reduced to O(α(N)), where α is the inverse
of the (extremely fast-growing) Ackermann function A(n, n)

[7]. Since A(4, 4) has on the order of 2(1019729) digits, α(N)
is effectively a small constant for all conceivably reasonable
values of N .

4. EXPERIMENTAL SETUP
We compared the (simplified) streaming clustering (SC)

algorithm with our connected component clustering (CCC)
approach on artificially generated data-sets. Data-sets were
generated with properties comparable to web-derived data,
namely:

• Zipfian distribution of class sizes, with one or two dom-
inant classes;

• The number of features associated with each class in-
creases sub-linearly with class size.

• The number of non-negative features in each item is
Zipfian distributed, and larger for larger classes. (Items
have at least three non-negative features).

• The feature distribution inside each class is lightly Zip-
fian (exponent 0.5), meaning that there is a subset of
features that occurs more frequently but often enough
to make them absolutely discriminant of the class.

Each class has its own set of exclusive features. Therefore,
in the absence of noise, items of different classes will never
share any feature and thus will always have 0 similarity.
Overlap between items of different classes can be achieved
by adding noisy features, shared by all classes. A given
proportion of noise features can be randomly added to each
item.

To ensure a realistic scenario, we generated a test set
with 10,000 items with Zipfian-like item distribution over 10
classes. Noise features were added so that clustering would
have to deal with medium level noise. Each item had an ad-
ditional 30% noise features added, taken from a noise class
with 690 dimensions. Noise features have a moderately de-
caying Zipfian distribution (exponent 1.0). Table 4 shows
some statistics regarding this test set, S30. We show the
average number of features per item, avg(#ft), and the av-
erage number of noise features per item, avg(#ftnoise). Pno

is the probability of not having any overlap if we randomly
pick two items from a given class (this should be a lower
bound for Pfn).

4.1 Measures of Clustering Performance
The evaluation of the results of clustering algorithms is a

complex problem. When no gold standard clusters are avail-
able the quality of clustering can only be assessed based
on internal criteria, such as intra-cluster similarity which
should be as high, and inter-cluster similarity, which should
be as low. However, these criteria do not necessarily im-
ply that the clusters obtained are appropriate for a given
practical application [15].

Class Items dim avg(#ft) avg(#ftnoise) Pno

1 6432 657 54.14 15.95 0.53
2 1662 556 48.25 14.14 0.56
3 721 493 44.13 12.88 0.56
4 397 448 39.83 11.60 0.58
5 249 413 34.04 9.84 0.57
6 187 392 34.70 10.06 0.59
7 133 366 35.03 10.18 0.58
8 87 334 29.64 8.56 0.58
9 77 325 26.71 7.61 0.61
10 55 300 24.6 7.05 0.61

Table 4: Properties of the test set S30

When gold standard clusters are available one can perform
evaluation based on external criteria by comparing cluster-
ing results with the existing gold standard. Several metrics
have been proposed for measuring how “close” test clusters
are to reference (gold standard) clusters. Simpler metrics
are based frequency counts regarding how individual items
[22] or pairs of items [11, 17] are distributed among test
clusters and gold standard clusters. These measures, how-
ever, are not invariant under scaling, i.e., they are sensitive
to the number of items being evaluated so we opted for two
information-theoretic metrics, which depend solely on item
distribution.

Given a set of |T | test clusters T to be evaluated, and
a gold standard, C, containing the true mapping from the
items to the |C| classes, we wish to evaluate how well clusters
in T , t1, t2,...t|T | represent the classes in C, c1, c2,... c|c|.

Ideally, all the items from any given test cluster, tx, should
belong to only one class. Such a tx cluster would then be
considered “pure” because it only contains items of a unique
class as defined by the Gold Standard. On the other hand,
if items from tx are found to belong to several gold standard
classes, then the clustering algorithm was unable to correctly
separate classes. To quantify how elements in test cluster tx

are spread over the true classes, we will measure the entropy
of the distribution of the elements in tx over all the true
classes, cy. High quality “pure” clusters should have very
low entropy values.

Let ixy be the number of items from test cluster tx that
belong to class cy and let |tx| be the total number of elements
of cluster tx (that can belong to any of the |C| true classes).
The cluster entropy of the test cluster tx over all |C| true
classes is:

et(tx) =

|C|X
y=0

− ixy

|tx| · ln(
ixy

|tx|) (3)

For all test clusters under evaluation we can compute Et,
the weighted average of the entropy of each individual test
cluster, e(tx):

Et =

P|T |
x=0 |tx| · et(tx)P|T |

x=0 |tx|
(4)

In the most extreme case, all test clusters would have a
single element and be “pure”. This, however, would mean
that no clustering had been done, so we need to simultane-
ously measure how elements from the true classes are spread
throughout the test clusters. Again, we would like to have
all items from a given true class in the fewest test clusters
possible, ideally only one. Let |cy| the the number of items

in class cy. Then, for each true class, cy, we can compute the
class entropy, i.e. the entropy of the distribution of items of
such class over the all test clusters by:

ec(cy) =

|T |X
x=0

− ixy

|cy| · ln(
ixy

|cy|) (5)

A global clustering performance figure can be computed
as a weighted average over all classes of each individual class
entropy

Ec =

P|C|
y=0 |cy| · ec(cy)
P|C|

y=0 |cy|
(6)

We would like to simultaneously have Et and Ec as close
to zero as possible, meaning that test clusters are “pure” and
that they completely represent the true classes. In the case
of a perfect clustering (a 1-to-1 mapping between clusters
and classes), both Et and Ec will be 0.

5. RESULTS
We compared the performance of our connected compo-

nents clustering (CCC) algorithm with two other algorithms:
simplified 1-pass stream clustering (1p-SC) and 2-pass stream-
ing clustering (2p-SC). The simplified 1-pass streaming clus-
tering was described in Section 3 and was included in the
comparison for reference purposes only. The 2-pass stream-
ing clustering consists in performing a re-clustering of the
clusters obtained in the 1-pass, using information about the
centroids of the clusters obtained. The re-clustering is made
using the exact same stream-clustering procedure, merging
clusters using their centroid information. The 2-pass SC
algorithm is thus a closer implementation of the standard
streaming clustering algorithm.

Each of the algorithms has parameters to be set. For the
CCC algorithm we have three parameters that control how
the “amortized comparison strategy” is made: (i) minimum
item similarity, smincc ; (ii) target positive comparisons for
each item, kpos; and (iii) maximum sequence of comparisons
that can be performed for any item, kmax (which is equiv-
alent to the maximum number of items we keep simulta-
neously in RAM). The kpos and kmax parameters was kept
constant in all experiments: kpos = 1, kmax = 2000 (see
Section 3.1).

The 1-pass SC algorithm has only one parameter, sminp1 ,
which is the minimum distance between an item and a clus-
ter centroid to merge it to that cluster. The 2-pass SC algo-
rithm has one additional parameter in relation to the 1-pass
SC. sminp2 controls the minimum distance between the cen-
troids for the corresponding clusters to be merged together
in the second pass. The vector similarity metric used in all
algorithms was the Dice metric.

Since all algorithms depend on the order of the items be-
ing processed, items were shuffled before being clustered.
This process (shuffling and clustering) was repeated 5 times
for each configuration. All Results shown next report the
average over 5 experiments.

Figure 4 shows the Et (“cluster impurity”), Ec (“class
dispersion”) curves obtained for the three algorithms, using
the test set S30. Results were obtained by changing smincc ,
sminp1 and sminp2 , from relatively high values that ensured
almost pure yet fragmented clusters (Et ≈ 0 but Ec >> 0)
to lower values that lead to the generation of less but much

noisier clusters (Ec < 1 but Et >> 0). We compared the re-
sults of the CCC algorithm with results obtained from the 1-
pass SC (1p-SC) and two different configuration for the two
pass stream-clustering algorithm: 2p-SC(A) and 2p-SC(B).
Configuration 2p-SC(A) was obtained by changing sminp2

while keeping the value sminp1 constant at a level that en-
sured that the partial results from the first pass would have
high purity (yet very high fragmentation). For the configu-
ration 2p-SC(B), we followed for a different strategy for set-
ting parameters: we kept sminp2 constant at a medium level,
and slowly decreased sminp1 to reduce the fragmentation of
partial clusters. Configuration 2p-SC(B) was found to the
best performing combination among all (several dozens) of
configuration tried for the two pass clustering algorithm.

Since we manually verified that, for this test set, values
of Et larger than 0.3 indicate that the clusters produced
are mixing items from different classes, Figure 4 only shows
results for Et < 0.4.

Figure 4: Ec (y-axis) vs. Et (x-axis) for four cluster-
ing methods (see text). CCC gives much better re-
sults than most streaming clustering configurations,
and is comparable to a carefully tuned streaming
method.

We made further comparisons between our CCC algo-
rithm and the best performing configuration of the 2p-SC al-
gorithm. Table 5 shows the results of this comparison when
aiming at a target value of Et = 0.15. Relevant criteria for
comparing clustering quality are the Et and Ec values, the
number of clusters generated (# clusters) and the number
of singleton clusters (# singleton) produced. For compar-
ing computational performance we present the number of
comparisons made (# comparisons) and the overall execu-
tion time of each algorithm. For 2p-SC we show statistics
regarding both the intermediate results (i.e., after pass 1)
and the final results (after pass 2), so as to emphasize their
relative contributions.

Table 6 shows a typical example of the cluster / true class
distribution of the top 10 clusters for the results obtained.
(Compare with Table 4). The existence of two or more clus-
ters for Class 1 (and sometimes also for Class 2) was a com-
mon result for the 2p-SC algorithm.

2p-SC (pass 1) 2p-SC (final) CCC
Et 0.08 0.15 0.15
Ec 7.64 1.1 1.53
clusters 755.4 184 647.6
singletons 66.4 66.4 478.2
comparisons 4.2M 74k 2.2M
t (secs.) 142 4 42

Table 5: Comparison between 2p-SC and CCC for
target cluster purity Et = 0.15.

CCC 2p-SC
Cluster True Class [#Items] True Class [#Items]

1 1 [6113] 1 [3302]
2 2 [1405] 1 [3087]
3 3 [582] 2 [1573]
4 4 [321] 3 [636]
5 5 [170] 4 [323]
6 6 [134] 5 [192]
7 7 [96] 6 [150]
8 9 [40] 7 [100]
9 4 [38] 8 [68]
10 8 [37] 9 [58]
11 1 [32] 10 [36]
12 10 [30] 2 [18]

Table 6: Typical cluster / true class distribution for
target cluster purity Et = 0.15. Note that streaming
clustering (2p-SC) splits class 1 across two clusters.

6. ANALYSIS OF RESULTS
The results plotted in Figure 4 show that the connected

components clustering (CCC) algorithm we propose gives
clustering qualities very close to those of the best perform-
ing 2p-streaming clustering approach (2p-SC). Additionally,
the CCC algorithm consistently required approximately only
half the number of comparisons to produce results compa-
rable to the 2p-SC, as the first pass of streaming clustering
tends to generate heavy fragmentation (and hence Ec > 6).
This is especially the case for the relevant part of the Et /
Ec curve (Et ≤ 0.3); Thus, we can obtain a significant im-
provement in computational performance in the regime we
most care about.

The results in Table 5 suggest that in practice, CCC may
have better results than 2p-SC. The Ec (fragmentation) val-
ues that the CCC algorithm obtains are worsened by the
extremely large tail of singleton or very small clusters that
are produced. (These are outliers and items in the end of the
buffer that ended up not having the chance to be compared
to many others). So, if one were to ignore these smaller
clusters in both cases (since filtering is often required in
practice), the new corresponding Ec values would become
closer.

The question of filtering is, in fact, very important and
helps to show another advantage of the CCC for clustering
data when processing Zipfian distributed classes on sparse
vector spaces. As can be seen from Table 6, 2p-SC failed to
generate the single very large cluster for items in Class 1.
Instead it generated two medium-size clusters. This type of
behavior, which occurred frequently in our experiments for
large classes (e.g., 1, 2 and 3), is an expected consequence

of the greedy nature of the streaming clustering algorithm.
During streaming clustering, if two clusters of the same class
happen to have been started by two distant items (imagine,
for example, the case of a class defined by “bone-like” hull),
greedy aggregation of new items might not help the two cor-
responding centroids to become closer, and can even make
them become more distant (i.e. closer to the two ends of the
bone). In high dimensional and sparse spaces, where classes
are very large and can have very irregular shapes, such local
minima can easily occur. Thus, if we were to keep only a
few of the top clusters produced by 2p-SC (e.g., the top 5),
there would be a high probability of ending up only with
fragmented clusters corresponding only to the one or two
(dominant) classes, and thus loose the other medium-sized,
but still important, clusters.

The CCC algorithm we propose, in contrast, is much more
robust to this type of problem. CCC tends to transfer the
distribution of true classes to the clusters, at least for the
larger classes, where the chances of finding a link between
connected components of the same class is higher. Only
smaller classes will be affected by fragmentation. Thus, fil-
tering will mostly exclude only clusters from these smaller
classes, keeping the top clusters that should directly match
the corresponding top classes. Excluded items might be pro-
cessed separately later, and since they will be only a small
fraction of the initial set of items, more expensive clustering
methods can be applied.

7. RELATED WORK
Several techniques have been developed to cluster very

large data sets; For a more complete survey of clustering
and large scale clustering see [3] and [14].

Streaming clustering [10, 6] is one of the most famous
classes of algorithms capable of processing very large data
sets. Given a stream of items S, classic streaming clustering
alternates between linearly scanning the data and adding
each observation to the nearest center, and, when the num-
ber of clusters formed becomes too large, clustering the re-
sulting clusters. Alternatively, data can be partitioned, each
partition clustered in a single pass, and then the resulting
clusters can themselves be clustered.

BIRCH is another classic method for clustering large data
sets. BIRCH performs a linear scan of the data and builds
a balanced tree where each node keeps summaries of clus-
ters that best describe the points seen so far. New items
to be clustered are moved down the tree until they reach a
leaf, taking into account the distance between its features
and node summaries. Leafs can be branched when they
are over-crowded (have too many items), leading to sharper
summaries. BIRCH then applies hierarchical agglomerative
clustering over the leaf summaries, treating them as indi-
vidual data points. The overall complexity is dominated by
the tree insertion performed in first stage.

A different approach to reducing computational complex-
ity is presented in [16]. In a first stage data is divided into
overlapping sets called canopies using a very inexpensive
distance metric. This can be done, for examples using and
inverted index of features. Items under the same inverted
index entry (i.e. that share the same feature) fall into the
same canopy. In a second stage, an exact - and more expen-
sive - distance metric is used only to compare elements that
have been placed in the same canopy.

These three last methods process data in two passes, un-

like our method which uses only a single pass. None of the
other methods deal explicitly with the problem of false neg-
atives, which is crucial in web-derived data. The first two
methods also suffer a non-negligible risk of reaching sub-
optimal solutions due to their greedy nature.

Another line of work aims at finding efficient solutions
to the problems arising from high-dimensionality and spar-
sity, specially those concerned with measuring similarities
between items in such spaces [1]. CLIQUE [2] is a density-
based subspace clustering algorithm that circumvents prob-
lems related to high-dimensionality by first clustering on a
1-dimension axis only and then iteratively adding more di-
mensions. CLIQUE starts by dividing each dimension of the
input space in equal bins and retaining only those where
the density of items is larger than a given threshold. It
then combines each pair of dimensions, producing 2D bins
for the bins retained in the previous iteration. Again, only
those 2D bins with high density will be retained for the next
iteration. This process is repeated iteratively: for obtaining
k-dimension bins, all (k-1)-dimension bins that intersect in
k-2 dimensions are combined. During this process some di-
mensions are likely to be dropped for many of the bins.

In [8], the authors use an approximation to a nearest-
neighbor function for very high dimension feature space to
recommend news articles, based on user similarity. Instead
of directly comparing users, a Locality Sensitive Hashing [13]
scheme named Min-Hashing (Min-wise Independent Permu-
tation Hashing) is used. For each item ij (i.e. user) in the
input set S, the hash function H(ij) returns the index of the
first non-null feature from the corresponding the feature vec-
tor (corresponding to a click from the user on a given news
item). If random permutations of feature positions are per-
formed to S, then it is easy to show ([4], [13]) that the proba-
bility of two items hashing to the same value, H(ij) = H(ik)
is equal to their Jaccard coefficient J(ij , ik). Min-hashing
can thus be seen as a probabilistic clustering algorithm that
clusters together two items with a probability equal to their
Jaccard Coefficient. The hash keys for p different permuta-
tions can be concatenated so that two item will converge on
the same keys with probability J(ij , ik)p, leading to high-
precision, yet small, clusters. Repeating this process for
a new set of p permutations will generate different high-
precision clusters, giving increased recall. For any item ij
it is possible to obtain the list of its approximate nearest-
neighbors by consulting the set of clusters to which ij was
hashed. Since clusters produced by min-hashing are very
small, it will produce extremely fragmented results when di-
rectly used for clustering large data sets. It could, however,
potentially be used as an alternative technique for building
the link graph because it provides a set of nearest neighbors
for each item. However, there is no assurance that the link
graph thus created would contain the complete connected
components. Clusters extracted from that graph could thus
be very fragmented.

8. CONCLUSION AND FUTURE WORK
We have seen that the Zipfian distribution of features and

of feature classes for problems such as web-document clus-
tering can lead to cluster fragmentation when using methods
such as streaming clustering, as individual items often fail
to share any features with the cluster centroid. (Streaming
clustering using medoids, as is often done in the theory lit-
erature, would be much worse, as most items would fail to

intersect with the medoid.)
Connected component clustering does a better job of ad-

dressing this problem, as it keeps searching for items close
to each target item being clustered until they are found.
This is not as expensive as it sounds, since it will be easy
to find connected items for the many items that are in large
classes. We showed that a reasonably connected link graph
can be obtained u sing an item comparison procedure with
cost amortized to O(n·C). We showed that the performance
of our algorithm is comparable to best performing configura-
tions of a streaming clustering approach, while consistently
reducing the number of comparisons to half.

Another important characteristic of our algorithm is that
it is very robust to fragmentation and can thus transfer the
distribution of true classes in the resulting clusters. Basi-
cally, this means that the top largest clusters will represent
the top largest classes, which is fundamental when filtering
is required.

The above work has described the clustering as if it were
done on a single processor. In practice, web scale cluster-
ing requires parallel approaches. Both stages of our algo-
rithm (the amortized comparison procedure and procedure
for finding the connected components on the graph) are
specially suited for being implemented in the Map-Reduce
paradigm [9]. Future work will focus on parallel implemen-
tation of our algorithm using the Map-Reduce platform and
studying its scalability and performance.

9. REFERENCES
[1] C. Aggarwal, A. Hinneburg, and D. Keim. On the

Surprising Behavior of Distance Metrics in High
Dimensional Spaces. Proceedings of the 8th
International Conference on Database Theory, pages
420–434, 2001.

[2] R. Agrawal, J. Gehrke, D. Gunopulos, and
P. Raghavan. Automatic subspace clustering of high
dimensional data for data mining applications.
SIGMOD Rec., 27(2):94–105, 1998.

[3] P. Berkhin. Survey of clustering data mining
techniques. Accrue Software, 10:92–1460, 2002.

[4] A. Z. Broder. On the resemblance and containment of
documents. In SEQS: Sequences ’91, 1998.

[5] A. Z. Broder, S. C. Glassman, M. S. Manasse, and
G. Zweig. Syntactic clustering of the web. Comput.
Netw. ISDN Syst., 29(8-13):1157–1166, 1997.

[6] M. Charikar, L. O’Callaghan, and R. Panigrahy.
Better streaming algorithms for clustering problems.
In STOC ’03: Proceedings of the thirty-fifth annual
ACM symposium on Theory of computing, pages
30–39, New York, NY, USA, 2003. ACM.

[7] T. H. Cormen, C. E. Leiserson, and R. L. Rivest.
Introduction to Algorithms. The MIT Press and
McGraw-Hill Book Company, 1990.

[8] A. S. Das, M. Datar, A. Garg, and S. Rajaram.
Google news personalization: scalable online
collaborative filtering. In WWW ’07: Proceedings of
the 16th international conference on World Wide Web,
pages 271–280, New York, NY, USA, 2007. ACM.

[9] J. Dean and S. Ghemawat. Mapreduce: Simplified
data processing on large clusters. In OSDI’04: Sixth
Symposium on Operating System Design and
Implementation, 2004.

[10] S. Guha, A. Meyerson, N. Mishra, R. Motwani, and
L. O’Callaghan. Clustering Data Streams: Theory and
Practice. IEEE Transactions on Knowledge and Data
Engineering, 15(3):515–528, 2003.

[11] M. Halkidi, Y. Batistakis, and M. Vazirgiannis. On
clustering validation techniques. Journal of Intelligent
Information Systems, 17:107–145, 2001.

[12] J. Hopcroft and R. Tarjan. Algorithm 447: efficient
algorithms for graph manipulation. Commun. ACM,
16(6):372–378, 1973.

[13] P. Indyk and R. Motwani. Approximate nearest
neighbors: towards removing the curse of
dimensionality. In Proc. of 30th STOC, pages 604–613,
1998.

[14] A. K. Jain, M. N. Murty, and P. J. Flynn. Data
clustering: a review. ACM Comput. Surv.,
31(3):264–323, 1999.

[15] C. D. Manning, P. Raghavan, and H. Schütze.
Introduction to Information Retrieval. Cambridge
University Press, July 2008.

[16] A. McCallum, K. Nigam, and L. H. Ungar. Efficient
clustering of high-dimensional data sets with
application to reference matching. In KDD ’00:
Proceedings of the sixth ACM SIGKDD international
conference on Knowledge discovery and data mining,
pages 169–178, New York, NY, USA, 2000. ACM.

[17] M. Meilă. Comparing clusterings—an information
based distance. J. Multivar. Anal., 98(5):873–895,
2007.

[18] T. Pedersen and A. Kulkarni. Unsupervised
discrimination of person names in web contexts. pages
299–310. 2007.

[19] E. Samuel-Cahn and S. Zamir. Algebraic
characterization of infinite markov chains where
movement to the right is limited to one step. Journal
of Applied Probability, 14-14:740–747, December 1977.

[20] A. Yates and O. Etzioni. Unsupervised resolution of
objects and relations on the web. In Proceedings of
NAACL Human Language Technologies 2007, 2007.

[21] O. Zamir and O. Etzioni. Web document clustering: a
feasibility demonstration. In SIGIR ’98: Proceedings
of the 21st annual international ACM SIGIR
conference on Research and development in
information retrieval, pages 46–54, New York, NY,
USA, 1998. ACM.

[22] Y. Zhao and G. Karypis. Criterion Functions for
Document Clustering: Experiments and Analysis.
Technical report, University of Minnesota,
Minneapolis, 2001.

APPENDIX
A. DEMONSTRATIONS

Consider the set of I containing |I| items that belong to
C classes c1, c2, c3,... cC . Let pji be the probability of an
item (or element) ej randomly picked from I belonging to
class ci: P (ej ∈ ci) = pji with 1 < i < C.

Now consider the problem of sequentially comparing items
in I (previously shuffled) in order to find items similar to
the initial (target) item. If we randomly pick one item ej

from I, we wish to estimate the number of additional items
that we need to pick (without repetition) from I before we

find another item that belongs to the same class. For a
sufficiently large set of items the probabilities P (ej ∈ ci)
do not change significantly when we pick elements out of I
without replacement, and we can consider two subsequent
draws to be independent. We can thus make P (ej ∈ ci) =
pi and approximate this procedure by a Bernoulli Process.
Therefore, for a given element of class ci, the number of
comparisons ki needed for finding a similar item follows a
Geometric Distribution with parameter, pi. The expected
value for k is:

E(ki) =
1

pi
(7)

For C classes, the average number of comparisons is:

E(k) =

|C|X
c=1

pc · E(kc) =

|C|X
c=1

pc · 1

pc
= |C| (8)

For sufficiently large |I|, the number of classes will remain
constant during almost the entire sampling process. Thus,
the total number of comparisons for the |I| items is: Ncomp =
|I| · |C|.

If we extend the previous item comparison procedure to
find kpos similar items to the target item,n we can model
the process by a Negative Binomial Distribution (or Pascal
Distribution) with parameters pi and kpos:

Bneg(ki, kpos) =

ki − 1

kpos − 1

!
· pkpos

i · (1− pi)
ki−kpos (9)

In this case, the average number of comparisons made, given
by the corresponding Expected Value is:

EBneg (ki, kpos) =
kpos

pi
(10)

The longest series of comparison wills be made for the class
with the lowest pi, i.e. the small class. However, it lead
us to a average number of comparisons when considering all
the |C| of classes of:

Ecomp(k) =

|C|X
c=1

pc · EBneg (kc, kpos) = kpos · |C| (11)

For all |I| items we should thus have:

Ncomp = |I| · |C| · kpos (12)

If we now consider that there a probability of pfn of having
a false negative when comparing two items, and that pfn

is constant and independent of classes, the pi should be re-
placed by pi · (1 − pfn), i.e. the probability of a random
pick finding another item in class ci has to be multiplied by
the probability of not having a false negative. Then all the
above equations will change by a constant factor, giving:

N ′
comp =

|I| · |C| · kpos

1− pfn
(13)

Likewise, the expected value for longest series of compar-
isons will be given by performing the same substitution in
Equation 10, and making pi = pmin:

Els =
kpos

pmin · (1− pfn)
(14)

