
A Language for Specifying Complete Timetabling
Problems

Luís Paulo Reis1,2, Eugénio Oliveira1,3

lpreis@ufp.pt, eco@fe.up.pt
1LIACC – Artificial Intelligence and Computer Science Lab. – University of Porto, Portugal

Http://www.ncc.up.pt/liacc/, Tel: 351-22-5081315, Fax: 351-22-5081315
2UFP - CEREM – Multimedia Resource Center, Praça 9 de Abril, 349, 4200 Porto, Portugal

3FEUP – DEEC, Rua Dr. Roberto Frias, s/n, 4200-465 Porto, Portugal

Abstract. The timetabling problem consists in fixing a sequence of meetings
between teachers and students in a given period of time, satisfying a set of
different constraints. There are a number of different versions of the timetabling
problem. These include school timetabling (where students are grouped in
classes with similar degree plans), university timetabling (where students are
considered individually) and examination timetabling (i.e. scheduling of
university exams, avoiding student double booking). Several other problems are
also associated with the more general timetabling problem, including room
allocation, meeting scheduling, staff allocation and invigilator assignment.
Many data formats have been developed for representing different timetabling
problems. The variety of data formats currently in use, and the diversity of
existing timetabling problems makes the comparison of research results and
exchange of data concerning real problems extremely difficult.
In this paper we identify eight timetabling sub-problems and, based on that
identification, we present a new language (UniLang) for representing
timetabling problems. UniLang intends to be a standard suitable as input
language for any timetabling system. It enables a clear and natural
representation of data, constraints, quality measures and solutions for different
timetabling (as well as related) problems, such as school timetabling, university
timetabling and examination scheduling.

1 Introduction

Wren [46] defines timetabling as a special case of scheduling: “Timetabling is the
allocation, subject to constraints, of given resources to objects being placed in space-
time, in such a way as to satisfy as nearly as possible a set of desirable objectives”. In
a more common definition, timetabling problem consists in fixing in time and space, a
sequence of meetings between teachers and students, in a prefixed period of time,
satisfying a set of constraints of several different kinds. These constraints may include
both hard constraints that must be respected and soft constraints used to evaluate the
solution quality.

The scientific community has given a considerable amount of attention to
automated timetabling during the last four decades. Starting with the works of
Appleby [2] and Gotlieb [25], many papers have been published in conferences and
journals, including several surveys [3,7,9,11,12,19,30] and annotated bibliographies

mailto:lpreis@ufp.pt

on the same subject [33,41]. In addition, several practical timetabling systems have
been developed and applied with partial success. The first automated timetabling
approaches were based on operational research methodologies like network flow
techniques [20], reduction to graph colouring [45], integer programming [35], direct
heuristics [4], simulated annealing [1], tabu search [29] and neural networks [34].
Despite timetabling automation may be desirable, there are also a number of clear
advantages of manual timetabling over automated timetabling. This lead several
authors [44] to advocate the use of interactive methods for timetabling based on
decision support systems and human-computer interfaces techniques. In more recent
years, research in automated timetabling includes techniques like logic programming
[23,31], expert systems [26], constraint logic programming [27,37,39,42] and
genetic/evolutionary algorithms [6,17].

A large number of variants of the timetabling problem have been proposed in the
literature. Schaerf [40] classifies the timetabling problem in three main classes based
on the type of institution involved and the type of constraints:

• School Timetabling - Weekly scheduling for all the classes of a high school avoiding
teachers and groups of student double booking;

• University Timetabling - Scheduling of all the lectures of a set of university degree
modules, minimising the overlaps of lectures having common students and avoiding
teachers double booking;

• Examination Timetabling - Scheduling the exams of a set of university courses avoiding
overlapping exams for the same students and spreading the exams for the students as much
as possible.

As it was noticed by Schaerf [40], this classification is not strict in the sense that
some specific problems may fall in between two classes and cannot be easily placed
in this classification. Carter, in his study about recent developments in practical
course timetabling [11] identified five different sub-problems for the course
scheduling problem: course timetabling, class teacher timetabling, student scheduling,
teacher assignment and classroom assignment.

The recent emergence of the PATAT – Practice and Theory of Automated
Timetabling series of international conferences [5,8] and the establishment of the
EURO (Association of European Operational Research Societies) Working Group on
Automated Timetabling (WATT), indicates that the research interest in this area is
increasing dramatically. Still, the variety of data formats currently in use and the
diversity of existing timetabling problems makes the comparison of research results
and exchange of research ideas and data concerning real problems extremely difficult.
Several attempts towards finding a standard to represent timetabling problems were
made in the past but at the present there is no universally accepted language for
describing timetabling problems.

This paper introduces UniLang, a new language for representing timetabling
problems that can be easily read by computer specialists and school administrators. In
Section 2, some timetabling data standards proposed in the past years are briefly
reviewed. Eight sub-problems identified in the complete timetabling problem are
introduced in Section 3 along with the architecture for a generic timetabling system.
Section 4 presents the requirements for a language to represent timetabling problems.
Based on these requirements as well as on the timetabling related sub-problems, we
present in Section 5 our proposal of a language for representing timetabling problems.
Section 6 briefly shows how a problem represented through this language can be

translated to a constraint logic program and solved using a constraint logic
programming language. Finally, we give some conclusions together with an outlook
to future research.

2 Timetabling Data Standards

At the present there is no universally accepted language for describing timetabling
problems. Several attempts were made towards finding a standard information format
for timetabling problems and although some data formats have been developed for
representing different timetabling problems, they are usually incomplete in some
aspect.

Cooper and Kingston [14,15,16] propose a formal specification of the problem
based on TTL, a timetabling specification language. A TTL instance consists of a
time group, a set of resource groups, and a set of meetings. A time group defines the
identification of the time slots available for meetings, followed by a specification of
the way in which time slots are distributed over the days of the week. For specifying
this distribution, a format is proposed, based on the utilisation of brackets (to enclose
days), colons (meaning breaks), dots (for preferable time slots) and commas (for
undesirable days). Resource groups can contain subgroups, which are subsets of the
resource set defining functions that they may perform. A resource may be in any
number of subgroups. In this specification language, meetings are collections of slots
that are to be assigned elements of the various resource groups, under certain
constraints. Only a basic set of constraints is defined in the language specification.

Cumming and Paechter propose a standard data format in a discussion paper
presented at PATAT’95 conference [18], but not submitted formally to the conference
or printed in the proceedings. Their proposal was highly criticised at the conference
for lack of generality but generated a big discussion about the subject in which the
difficulty of creating such a standard became evident. In their discussion paper [18],
Cumming and Paechter propose principles and requirements to guide the creation of
the standard. Their standard claims to represent complete and incomplete timetables
and preferences. The components used are time slots (using a day.hh:mm
representation format), events, staff and students, and rooms. They make no
distinction between staff and students arguing that in some cases students can lecture
classes. A list of keywords with different parameters is proposed as the standard. For
example, offer.room with parameters event and room, represents that a given event
must be assigned a room and that the specified room is an option. They also propose a
cross convention (but not as part of the standard) that may be attached to any keyword
and enables a Cartesian product between the arguments of that keyword (lists in this
case). They also attempt to represent the soft constraints using cost functions.
Moreover they conclude that timetable evaluation is likely to be the most difficult part
to standardise. Some important omissions of this work are concerned with the
availability of resources, split events, groups of resources, weeks and other type of
periods, room types, definition of what is the problem to solve and how to represent
the solution.

An interesting work related to standard data format for timetabling problems is
included in the GATT timetabling system [13] by Hart (former Collingwood), Ross

and Corne. GATT (“Genetic Algorithm Time Tabler”) uses a file format for
describing timetabling problems. The format claims to be able to describe any GELTP
(“General Exam/Lecture Timetabling Problem”) and also non-educational timetabling
problems. The file format is verbose and uses as main components: events, time slots,
rooms, students and teachers. The format was essentially devised for exam
timetabling problems. This way, some important omissions include weeks and other
periods (useful for staff allocation and university course timetabling problems), room
types, event sections (and section duration), continuity and load constraints (useful to
achieve good quality schedules for teachers and students), student groups (essential in
school timetabling) and teacher groups.

A more recent paper by Burke, Kingston and Pepper [10], proposes a different kind
of standard for timetabling instances. They include a simple but incomplete
description of the data types, keywords and syntax of the language and outline some
further facilities to develop. Some concepts and constructs they use are similar to
those found in the Z specification language [36]. The format includes as data types:
classes, functions, sets, sequences, integers, floats, booleans, chars and strings.
Classes include some attributes and functions and an inheritance mechanism is
provided. A useful data type of this work are sets since many of the components of
timetabling instances involve groups of resources (groups of students, groups of
classes, etc.). In addition to the common set operators (member, union, intersection,
subset, etc.), they also include operators like forall, exists, sum and prod. All these
data types make the specification language close to a kind of programming language
and enable the definition of constraints in logic programming language style.

A good extension of Burke, Kingston and Pepper’s work could be the use of a
constraint logic programming language as the specification language. Logic,
associated with constraints performs very well in describing and solving timetabling
problems. However, logic is not appropriate as an interchange format between
computer specialist and school administrators. Therefore, we here propose a simpler
and verbose language as our language for describing timetabling problems.

3 Sub-Problems of the Timetabling Problem

Timetabling can be viewed as a multi-dimensional assignment problem [11] in which
students and teachers (or invigilators) are assigned to courses, exams, course sections
or classes and events (individual meeting between teachers and students) are assigned
to rooms and time slots. This multi-dimensionality indicates that we do not have a
single problem designated by timetabling. We can have student assignment, teacher
(or invigilator) assignment, room allocation and time allocation problems, all included
in a given global timetabling problem. Figure 1 shows a generic timetabling system.
The description of a given problem must be pre-processed in order to perform validity
checks and decompose the original problem in its associated sub-problems. The sub-
problems after being solved, using appropriate algorithms, enable the construction of
the timetabling problem final solution.

Problem
Representation

Solution
Representation

S3

S2

S4

S5

S1
Sn

Pre-Processor

Algorithm 1 Algorithm nAlgorithm 2

Partial
Solution

Representation

User

User Interface

Fig. 1. A generic timetabling system.

Extending Carter’s definition of the timetabling sub-problems [11], the problem
analysis led us to the identification and definition of the following eight classes of
inter-related timetabling sub-problems:

• CTT - Class-Teacher Timetabling: This is a common problem in most high schools and
consists in allocating a time (or set of times) to each lesson of each module in the school (or
university). The scheduling unit is a group of students (or class) that has a common
program. It is considered that the assignment of teacher and classes to the events has
already been made. Usually, either rooms are used as constraints in this problem or room
allocation is performed simultaneously with class-teacher timetabling.

• CT - Course Timetabling: Scheduling of all the lectures of a set of university degree
modules, minimising the overlaps of lectures having common students and avoiding
teachers double booking. In this case, students are considered individually and are not
assumed to belong to some group as in school timetabling. Teachers are usually already
assigned (although some flexibility may be included in this assignment). Sometimes,
students are not assigned to the event sections before the course timetabling scheduling.
Although they are usually already assigned to the events, in some universities this can also
be untrue.

• ET - Examination Timetabling: Scheduling (in time) of the exams of a set of university
courses avoiding overlapping exams having common students and spreading the exams for
the students as much as possible. Room assignment and invigilator assignment can be done
prior or after the exam timetabling phase.

• SD – Section Definition: This problem occurs within every timetabling problem. It
consists in, for each event, to define the number of sections offered. Each section is simply
a different occurrence of the same event (for example, the same lecture given to a different
group of students). A similar problem occurs in examination timetabling if we consider
split examinations (in time).

• SS - Student Scheduling: This problem occurs when modules are taught in multiple
sections. Once students have selected their modules, they must be assigned to module
sections, trying to provide schedules (for students) without conflicts and balancing section
sizes.

• SA - Staff Allocation (Teacher Assignment): Assigning teachers to different modules,
trying to respect their preferences, including preferred subjects, balance between lecture
hours in different periods of the year (semesters or trimesters) and other side constraints.
Sometimes this is achieved in two or three consecutive separated steps. The first step

consists in selecting teachers responsible for each one of the modules (although in
traditional public universities this problem is solved doing only small variations from year
to year). In the second step, the teachers that will lecture each one of the modules are
selected (along with their own workloads). A third step consists in assigning individual
sections to teachers. Sometimes this last phase remains opened (or at least very flexible)
until the timetabling generation phase.

• IA - Invigilator Assignment: This is an usual problem which is associated to examination
scheduling. Each exam needs one or more invigilators. The number of invigilators is related
to the number of students having the examination and to the number of rooms needed.

• RA - Room Assignment: Usually all real timetabling problems have a room assignment
phase. Events must be assigned to specific rooms (or sets of rooms) satisfying the size and
type required for the event. Problems with split events, shared rooms and distances between
rooms for events may arise.

Other sub-problems could be included in this classification. However we consider
those other problems as unusual or unimportant compared with the described ones.
For example, prior to examination timetabling, some institutions may aggregate small
exams into sets that will be scheduled at the same time using the same room and
supervisors. Other institutions use modules with different workloads throughout the
year. This way, the timetables are different every week and the problem becomes a
kind of mix between timetabling and job-shop scheduling in which module workloads
are defined for each week and its lessons are scheduled in each week. However, we
believe that the sub-problems we took into consideration include the timetabling
problems faced by most of the existing schools and universities around the world.

To describe a specific timetabling problem, it is necessary to know in detail, which
ones of the sub-problems will be solved and in which order shall they be solved.
Some flexibility is allowed in this ordering by some universities or schools, while
others obey strict and rigid rules.

4 Requirements for the Proposed Language

Many formalisms for timetabling application descriptions have been designed
including concerns for minimising data storage space or to facilitate fast data
processing. Our proposed formalism tries to compromise between generality and
simplicity. It is sufficiently general to allow representation of the most common
variations of timetabling problems, including school, university and examination-
timetabling keeping also a very simple syntax. After a series of interviews with
timetabling experts, we arrive to the following main requirements associated with the
needed language:

• It should be independent of implementation details and timetabling strategies;
• It should be easy to extend, including new concepts and constraints;
• Existing benchmark problems should be easily translated to the new formalism;
• The new formalism should be compatible with most timetabling systems and easily

readable by the human user;
• Information not directly concerned with the scheduling problem should not be included in

the formalism. Therefore, common information regarding school administration, like
student names and addresses, is omitted;

• The formalism should be general enough to enable the representation of school timetabling,
university timetabling and exam timetabling problems

• It should be suitable for representing complete problems and simple related sub-problems
(like staff or invigilator assignment, section definition and room assignment);

• It should include a clear definition of all the constraints (both hard and soft) associated with
the problems;

• There should be possible to represent both incomplete and complete solutions;
• A timetabling quality evaluation function should be easy to include, enabling to evaluate

directly any proposed solution;
• It should be as concise as possible;
• It should be robust, enabling simple data validation and override of common errors.

5 Language for Representing Timetabling Problems

Based on the identification of the eight timetabling sub-problems presented in Section
3 and on the requirements presented in the previous section, we propose a new
language called UniLang for representing timetabling problems. UniLang intends to
be a standard suitable as specification language for any timetabling system. It enables
a clear and natural representation of data, constraints, quality measures and solutions
for different timetabling (as well as related) problems, such as school timetabling,
university timetabling and examination scheduling.

5.1 Components

The model behind our proposal includes the definition of different time periods
composed of a set of weeks (or other time period) with equal (or similar) schedules.
Each week is composed of a set of time slots located at a given time of a given day.

We prefer to separate resources definition into three main classes: students,
teachers and rooms. Although some similarities exist between the three (for example,
all the resources have availability constraints), the differences are evident in any
timetabling problem. For example, rooms can hold (in some timetabling problem)
several events at the same time, have capacity constraints, types and distances
between them. Students and teachers can be put together in groups (although with
different meanings) and have workload constraints. Teachers can have maximum and
minimum event assignment constraints and ability constraints (stating if they are
capable or willing to lecture/supervise a given subject/exam). Students (and student
groups) have also associated spreading and continuity constraints. As a consequence,
we have considered the following components: Periods, Time Slots, Resources
(Rooms, Teachers and Students) and Events.

An event is a meeting between a teacher (or a set of teachers), a set of students (or
student groups) that takes place in a room (or in a set of rooms) in a given time slot
(or set of time slots). We do not consider (explicitly) other resources like equipment,
because these situations are very rare in timetabling problems.

Our model also includes the specification of both data and constraints in a common
format. Since sometimes the distinction between data and constraints is not
completely clear, this seems an adequate approach. Some of the types of constraints
included have two different versions: A strong version in which the constraint must be
respected (hard constraint) and a weak version that should be respected only if
possible (soft constraint). The considered set of soft constraints enables the definition
of a timetabling quality function. Each one of the soft constraints included has

associated a numerical preference that really is the cost of not satisfying that
constraint.

A solution (partial or global) to a timetabling problem consists in, for each one of
the events considered, a set of slots, a set of rooms, a set of teachers and eventually, a
set of students (or student groups). Although in most of the timetabling problems
found in the literature, students and teachers are already assigned to the events (or
event sections), our model intends to be general enough to solve also those
assignment sub-problems, (i.e. teacher assignment, invigilator assignment and student
scheduling).

To make the formalism still more robust, and following Hart’s idea in the Gatt
system [13], a list of synonyms (Table 1) may be included for each one of the
concepts (keywords) used.

Table 1: Example of a brief list of synonyms for the keywords used in the language.
[Default | All | Every | Any], [Year | Problem | File], [Schedule | Timetable],
[Event | Module | Lecture | Lesson | Exam | Examination | Tutorial],
[Teacher | Teachers | Invigilator | Supervisor | Lecturer], [Student | Students],
[Day | Days], [Time, | Times | Hour | Hours | Minute | Minutes], [Slot | Slots | Time Slot],
[Place | Places | Room | Rooms], [Preference | Weight | Priority | Penalty],
[Consecutive | Continuos], [Simultaneously | Concurrently | Together | At the same time],
[Teaches | Invigilates | Supervises], [Hold | Holds | Have capacity | Has capacity | Capacity],
[Specify | Specifies | Require | Requires | Need | Needs], [Last | Lasts], [Duration | Length],
[Contains | Comprises | Has | Have], [Is | Are],
[At least | No less than | No fewer than], [At most | No more than], [Exactly | Precisely],
[Group_teachers | Area | Department], [Group_students | Class | Student_type],
[Room_type | Room_Group | Buildings], [Double_bookings | Clashes | Conflicts]

The use of these synonyms makes the description of input data files more easily
readable by human users. Also, users can build their own list of synonyms in a
separate file and, with the help of a simple pre-processor, that file can be directly
converted into our proposed specification language.

5.2 Time Representation

Each file contains a problem description concerning a specific period of time: A
school year. Therefore, the file needs the identification of that specific year:

this is year <NAME>

Each year can be divided into smaller time periods (semesters, trimesters, exam
periods, etc). UniLang enables defining the number of periods used (for the problem)
and the names of those periods. Each period may have a starting date, starting and
ending weekdays and it is composed of a set of weeks. The concept of week is not that
of a typical week. Here we are interested in a concept of week as a period of time to
which the same schedule has been assigned. So, for example, in an examination
timetabling problem, a ‘week’ may last 15 or 20 days, while in a typical university or
school timetabling problem, a week lasts 5 or 6 days.

periods are {<PE>}
period {<PE>} contains weeks {<N>}
period <PE> begins on date <DATE>
period <PE> begins|ends on day <D>

We then assume that each week is composed of a set of consecutive days and that
each day is composed of a set of disjoint and consecutive time slots. Each slot is
located in a given day and begins at a given time.

slots are {<S>}
days are {<D>}
times are {<T>}
slot <S> is on day <D> at time <T>

If the slots, days and times are explicitly defined, then the previous sentence can be
simplified. For example, if <S> is a slot, <D> is a day and <T> is a time then “slot
<S> is on day <D> at time <T>” can be described in one of the following ways:

<S> is on <D> at <T>
<S> <D> <T>

This simplification applies to all keywords that come before any other component
in a sentence (like teacher, student, room, teacher_group, event, etc.).

Some slots cannot be used for timetabling events. Examples are slots on Sundays
or Saturdays and slots at night. Unilang enables two ways of stating this impossibility.
The first one is simply not defining the impossible slots. The second is based in
defining the slots and stating explicitly the impossibility of the allocation. This
enables coherent time difference measurement between slots that may be needed for
some timetabling applications.

slots {<S>} are unusable

We can define time periods (like mornings, afternoons, lunch times, etc.) using the
concept of time_period. Each time period is composed of a set of slots in a week.
Unilang includes the keyword ‘default’ that enables assigning values to all elements
of a class.

time_periods are {<TP>}
time_period {<TP>}|default contains slots {<S>}

Using the keyword ‘default’ the constraints are applied to all the elements
belonging to the given class. This can also be applied to any constraint that deals with
time slots, rooms, teachers, students and groups (of teachers or students).

To each slot, a capacity in terms of both events and seats can be assigned. These
capacities are important to enable the definition of timetabling problems that do not
have associated room allocation problems. Otherwise, if room allocation is a part of
the complete problem to solve, slot capacities are not needed to be stated explicitly.

slots {<S>}|default have capacity <N> seats|events

To state that the problem of time allocation for the described events has to be
solved, the following syntax is provided.

solve class-teacher timetabling
solve course timetabling
solve examination timetabling

The three last lines express how to ask for solutions of the three broad classes of
timetabling problems. Knowing the timetabling problems to solve, a given
timetabling system may then select the appropriate constraints and quality measures
for those problems.

5.3 Space Representation

Our space representation is based on the idea that each event usually needs one room
but may, in some cases, be hosted by more than one room or even do not need a room.
Our formalism enables the definition of the rooms available in the following way:

rooms are {<R>}

Each room can hold a given number of students at a time. In a similar way, each
room can hold only a given maximum of events (usually one) at a time. If preference
is omitted, this becomes a hard constraint. If preference is included then the constraint
can be violated with a cost P.

room {<R>}|default holds <N> students|events [preference <P>]

The number of students and events that a room can host simultaneously can be
different throughout the week slots.

room {<R>}|default holds <N> students|events in slots{<S>}
[preference<P>]

Usually, rooms are not allowed to have double booking and may be unavailable or
preferably usable during some time slots.

room {<R>}|default cannot have double_bookings [preference <P>]
room <R>|default specify|excludes in slots {<S>} [preference <P>]

Our formalism provides also room types. Each room has a given room_type or set
of room_types:

Room_types are {<RT>}
room_type {<RT>}|default has rooms {<R>}|default [preference <P>]

We include also the concept of distance between rooms. A room can be connected
(if the preference is omitted) to another room or can be close to another room, with a
given proximity measure:

room {<R>} close to room {<R>} [preference <P>]

To state that the problem includes the assignment of rooms to events, the language
proposes the following syntax:

solve room assignment

5.4 Event Description

The concept of event is crucial in our specification. An event can be a lecture, exam,
tutorial, lunch, etc. It has a given duration (in terms of time slots), may or may not
need space (rooms) and resources like teachers (or invigilators) and students (or
student groups).

The first step is to define the events (event identifiers) and, eventually, some
groups of events (like degrees, degree years, etc.).

events are {<E>}[in period <PE>]
groups_events are {<GE>}

Events may have default duration but may also be given a different individual
duration. The students that may/will attend the event have also to be defined

event {<E>}|default lasts <N> slots
event {<E>} has students {<ST>} [preference <P>]

Besides the number of students expected, an event can have some (anonymous)
external extra students. The total number of students of the event can also be defined
directly. This can be useful in cases where students are not going to be considered
individually. Some events may also require a given number of (anonymous) teachers
or rooms. This can be useful if we are not concerned with the teacher or room
allocation problems.

event {<E>} has <N> students|extra_students
events {<E>}|default requires <N> teachers [preference <P>]
events {<E>}|default requires <N> rooms [preference <P>]

An event usually needs a given type of room and events may belong to groups:
events {<E>}|default requires room_type {<RT>} [preference <P>]
group_events {<GE>} has events {<E>} [preference <P>]

Events can be split into a number of different parts of different duration that will
occur in different days of the week. A typical constraint concerning event parts is that
they should not be assigned on the same day. Events can also be divided into multiple
sections, meaning that different teachers can repeat them during the week to different

students. For example, an exam can have two parts (a theoretical and a practical part)
and three sections (one for class A, one for class B and another for class C). A module
is usually divided into lectures (event parts) that are taught in different days of the
week and may have multiple sections (taught to different students).

event {<E>}|default has <N> event_parts of duration {<N>}
event {<E>}|default has <N> event_sections
event {<E>}|default minimum/maximum <N> students

If event sections are not defined and the section definition problem must be solved,
then, we have:

solve section definition

5.5 Classes and Students

The number and names (identifiers) of students and student groups can be declared
just in the same way as the names of slots, rooms and events:

students are {<ST>}
group_students are {<GST>}

The students can be grouped into student groups (with common, or similar,
schedule preferences or degree plans):

group_students {<GST>} have students {<ST>}|default [preference <P>]
group_students {<GST>} has <N> students

A student can also be a teacher. This is the case of postgraduate students that also
are lecturers to their undergraduate colleagues.

student <ST> is teacher <TE>

Students or student groups can be unavailable in some time slots throughout the
week. This can be a hard or a soft constraint:

student|group_students {<ST>|<GST>}|default specify|excludes slots
{<S>}|default [preference<P>]

Students and student groups may attend events:
event {<E>}|default has students|group_students {<ST>|<GST>}|default
[preference <P>]

A student or student group, besides being registered in an event can also be
registered in one of its sections. Preferences can also be used for allocating students
and student groups to events:

event_section {<ES>} has students {<ST>} [preference <P>]
event_section {<ES>} has group_students {<GST>} [preference <P>]

To prevent that students (or student groups) have double booking, we can declare:
student|group_student {<ST>|<GST>}|default cannot have
double_bookings [preference <P>]

Those declarations can be seen either as soft constraints (with a given violating
cost <P>) or hard constraints (if the keyword preference is not used). If the problem
of allocating students to event sections is considered, then this must be stated using
the following:

solve student scheduling

5.6 Teachers and Invigilators

In the proposed model, teachers can be seen both as lecturers and invigilators (and the
keyword teaches, can also signify invigilates). Teachers can be grouped in areas or
groups of teachers. This leads to the definition of departments and scientific areas.

teachers are {<TE>}

group_teachers are {<GTE>}
group_teachers {<GTE>}|default has teachers {<TE>}|default

Each teacher can be previously assigned to teach a given number of events (pre-
allocations). The information of each teacher is also concerned with his capability of
teaching a given event.

teacher {<TE>} teaches|cannot_teach events {<E>} [preference <P>]

In order to be able to describe staff allocation problems and invigilator assignment
problems, maximum and minimum number of events (or times) for teachers are
needed.

teacher {<TE>}|default maximum|minimum<N> events|times[in period<PE>]

Teachers or groups of teachers may also have timetable preferences. So a teacher
(or group) can exclude (or avoid with some preference) specific time slots:

teacher|group_teachers {<TE>|<GTE>}|default specify|excludes slots
{<S>}|default [preference <P>]

Usually teachers cannot have double booking and sometimes, depending on the
meaning of teacher groups, these groups cannot have double booking too.

teacher|group_teacher {<TE>|<GTE>}|default cannot have
double_bookings [preference <P>]

If the problem includes assigning teachers to events (i.e. staff allocation, or
invigilator assignment) then, the following line should be included:

solve teachers assignment
solve invigilator assignment

The order in which different sub-problems will be solved does not concern this
language. Unilang defines the complete problem and states the timetabling sub-
problems to be solved. It is up to the solver, by analysing the complete problem
description, to choose the order by which different sub-problems will be solved.

5.7 Time and Space Preferences

We have two different kinds of time preferences: regarding time slots and regarding
time periods (mornings, afternoons, etc.). These preferences include pre-allocations
(specify) and exclusion or avoidance (excludes), with preferences.

event {<E>}|default specify|excludes slots {<S>} [preference <P>]
event {<E>}|default specify|excludes time_period{<TP>}[preference<P>]

Preferences associated with space are just like time slot preferences. There are two
types of those: room preferences and room_type preferences.

event {<E>}|default specify|excludes rooms {<R>} [preference <P>]
event {<E>}|default specify|excludes room_types{<RT>} [preference<P>]

5.8 Workload, Spreading and Ordering Constraints

The workload and spreading constraints are concerned primarily with the utilisation
of teachers and students throughout the scheduling period. Students and student
groups may have workload constraints stating that they cannot have more than a
given number of events or a given number of time slots of work in a row (consecutive)
or in a given day. Usually, these are at most constraints but the exactly and at least
constraints can also be used in some, less frequent, problems. These constraints can
be also applied to teachers:

students|student_group {<ST>|<GST>}|default have
exactly|atleast|atmost <N> [consecutive] events|times in a day
[preference <P>]

teacher {<TE>}|default have exactly|atleast|atmost <N> [consecutive]
events|times in a day [preference <P>]

Spreading constraints are typical in examination scheduling problems. Through
them it is achieved that students (or student groups) have sufficient time intervals
between events. Usually these are at least constraints.

students|student_group {ST|GST}|default have exactly|atleast|atmost
<N> times|days between events [preference <P>]

Sometimes, spreading constraints state that students have at most a given number
of events (or occupied times) in each number of days (or times):

students|student_group {ST|GST}|default have exactly|atleast|atmost
<N> events|times in each <N> times|days [preference <P>]

The ordering constraints are concerned with the sequential order of some events in
the scheduling period. An event can be scheduled exactly, at least or at most, a given
number of times (or days) before another event. Another usual type of constraint sates
that there are exactly, at least or at most a given number of times or days of interval
between two events (without any concern of which event comes first).

events {<E>} exactly|atleast|atmost <N> times|days before|interval
events {<E>} [preference <P>]

Another typical constraint states that a given number of events occurs or cannot
occur simultaneously or on the same day.

events {<E>} are [not] simultaneously|on_the_same_day [preference<P>]

5.9 Override and Missing Mechanisms

Two useful mechanisms in our language are the override and the missing
mechanisms. The override mechanism enables the redefinition of some concept in a
stronger way, overriding the previous definition. The missing mechanism enables that
some concepts that are not formally defined in our problem description may be
deduced from the problem description. These mechanisms are fully employed in our
translator from this specification language to a constraint logic program.

5.10 Evaluation Function

The evaluation function for a given timetabling problem is implicitly defined through
the definition of the problem data and constraints. The hard constraints must be
respected. The soft constraints (in which the keyword preference appears) should be
respected to achieve a good quality solution. For each of the soft constraints violated,
the preference value (<P>) is added to the total penalty associated with that specific
solution. The smaller this value is, the better the final solution is.

5.11 Representation of the Final Solution

The final solution of any timetabling problem always include for each event part, a set
of time slots (when the event parts happen), a set of rooms (where the events take
place), a set of teachers (or teacher groups) that will lecture (supervise or participate)
the event and a set of students (or student groups) that will attend the event. In
Unilang this is specified using the following notation:

event_part <EP>|event_section <ES>|event <E> is in slots {<S>}
event_part <EP>|event_section <ES>|event <E> is in rooms {<R>}
event <E>|event_section <ES> is taught by {<TE|GTE>}

event <E>|event_section <ES> has students {<ST|GST>}

For each of the events, event sections (if they exist) or event parts (if they are
specified), a set of time slots and a set of rooms may be specified. The solution is
completed with a set of teachers (or teacher groups) and a set of students (or student
groups) for each of the events (or event sections if they are specified). It is assumed
that each event section has the same teachers and students for each of its parts. We
have also developed a simple evaluator that takes as inputs a simple problem
(specified using our language) and a solution for the problem and calculates (using
this data) a numeric value denoting the solution quality.

6 Translating and Solving Timetabling Problems

To enable the resolution of any kind of timetabling problem, which is represented
using the proposed language, we have implemented a simple translator that converts
this representation to a Constraint Logic Program [28,43] in ECLiPse language [22].
To solve the problem, the user shall then specify the labelling strategy. The solution is
then automatically obtained. Our constraint logic programming approach uses,
internally, finite domain variables for the starting times of events, finite domain
variable for single room or single teacher assignment problems and set variables [24]
for rooms, invigilators/teachers or students in multi assignment problems.

After the translation of the problem definition, the user may specify the ordering in
which the different types of variables are labelled [38]. For example, in a complete
examination timetabling problem, we may have finite domain variables for exams
starting times, set variables for rooms and set variables for invigilators. The user may
specify that the rooms would be labelled first, then times and lastly invigilators.
Another possibility is, for each event, to assign first, simultaneously, time and rooms
and then, at the end, perform the easier invigilator assignment. All combinations of
the different types of variables are available to the user. For more details about our
methods for solving timetabling problems which are described using this language
and using different constraint logic programming approaches, see [37,38,39].

7 Conclusions and Future Work

This is, to our knowledge, the first attempt to use the identification of the subclasses
of the timetabling problem to guide a possible standardisation of the data and
constraints that define any complete timetabling problem. We do not ignore that there
are lots of open issues in this “standard-like” definition and some characteristics are
still missing in our language to enable the complete representation of specific
problems. Representation of soft constraints is not complete, in the sense that any user
can have a specific individual quality measure. However if it is specific and
individual, then it should not be included in the standard. Some people may argue that
the definition of the constraints should also appear explicitly (and not implied by its
meaning). The problem is that doing so, we lose the simplicity of this verbose format
to enter in a more complicated logic or functional format. We once more emphasize
that, since the beginning, one of our requirements is that administration staff may use
the proposed format to describe, by their own, their timetabling problems.

To enable the easy use of our specification language, we already have implemented
a simple translator (including the override and missing mechanisms) from this
definition language to a constraint logic programming language. The translator was
tested against complete examination together with some class-teacher timetabling
problems (with different sub-problems to solve). Several real problems were
represented in the language, successfully translated and, after selecting appropriate
labelling strategies, they were successfully solved.

We foresee the future work as related with developing a library for complete
educational timetabling problem descriptions. Based on Unilang we are building such
a library of timetabling problems, including the eight timetabling sub-problems
presented. Moreover, complete timetabling problems, including several frequent
combinations of the eight previous ones are also being addressed. We are analysing
both real timetabling problems and randomly generated ones. For each problem,
quality measures and the already known best solution are included. We believe that
all this future work will make it possible easy and fast comparison between the
solutions of typical timetabling problems, achieved by different researchers, using
different algorithms.

Acknowledgement

This work was partially supported by a research grant PRAXIS XXI, BD/5663/95 of the
Portuguese Foundation for Science and Technology.

References

1. Abramson, D. and Dang, H., School Timetables: A Case Study Using Simulated Annealing, Applied
SA, Lecture Notes in Economics and Mathematical Systems, Springer-Verlag, pp.104-124, 1993

2. Appleby J.; Blake D. and Newman E.., Techniques for Producing School Timetables on a Computer
and Their Application to other Scheduling Problems, The Computer Journal, Vol. 3, pp.237-245,1960

3. Bardadym, V. Computer-Aided Lessons Timetables Construction. A Survey, USIM – Management
Systems and Computers, Vol. 8, pp. 119-126, 1991

4. Barham, A. and Westwood, J. A Simple Heuristic to Facilitate Course Timetabling, Journal of the
Operational Research, Vol. 29(11), pp. 1055-1060, 1978

5. Burke and Ross (Eds.), The Practice and Theory of Automated Timetabling, LNCS, Vol. 1153, 1996
6. Burke E. K.; Elliman D. G and Weare R. F, A Genetic Algorithm for University Timetabling, in

proceedings of the AISB workshop on Evolutionary Computing, University of Leeds, UK, April 1994
7. Burke E.; Elliman D., Ford P., Weare R., Examination Timetabling in British Universities - A Survey,

1st Int.Conf. Practice and Theory of Automated Timetabling PATAT'95, Edinburgh, pp.423-434, 1995
8. Burke, E.; Carter M. (Eds.), Practice and Theory of Automated Timetabling II, LNCS, Vol. 1408, 1998
9. Burke, E., Jackson, K., Kingston, J. and Weare, R., Automated Timetabling: The State of the Art,
10. Burke, E., Kingston, J, Pepper,P. A Standard Data Format for Timetabling Instances, in [8], pp.213-

222, 1998
11. Carter, M. and Laporte, G., Recent Developments in Practical Examination Timetabling, in [8], pp. 3-

21, 1996
12. Carter, M., A Survey of Practical Applications of Examination Timetabling Algorithms, Operations

Research, Vol. 34(2), pp. 193-202, 1986
13. Collingwood, E., Ross, P. and Corne, D. A Guide to GATT, University of Edinburgh, 1996
14. Cooper, T. and Kingston, J., A Program for Constructing High School Timetables, Proc. 1st Int. Conf.

on the Practice and Theory of Automated Timetabling, Napier University, Edinburgh, 1995
15. Cooper, T. and Kingston, J., The Complexity of Timetable Construction Problems, 1996

16. Cooper,T.; Kingston,J., The Solution of Real Instances of the Timetabling Problems, The Computer
Journal, Vol. 36, pp. 645-653, 1993

17. Corne, D. and Ross, P. and Fang, H., Fast Practical Evolutionary Timetabling, Proceedings of the
AISB Workshop on Evolutionary Computing, Springer-Verlag, 1994

18. Cumming, A. and Paechter, B., Seminar: Standard Timetabling Data Format, International Conference
on the Practice and Theory of Automated Timetabling PATAT'95, Edinburgh, UK, 1995

19. de Werra, D., An Introduction to Timetabling, Eur. Journal of Oper. Res., Vol. 19, pp.151-162, 1985
20. de Werra, D., Construction of School Timetables by Flow Methods, INFOR – Canadian Journal of

Operations Research and Information Processing, Vol. 9, pp. 12-22, 1971
21. Dempster M., Two Algorithms for the Time-Table Problem, Welsh D.J.A. (ed.) Combinatorial

Mathematics and Its Applications, Academic Press, pp. 63-85, 1971
22. Eclipse User Manual, Aggoun et al., ECRC GmbH, 1992, Int.l Computers Limited and IC-Parc, 1998
23. Fahrion, R. and Dollanski G. Construction of University Faculty Timetables Using Logic

Programming Techniques, Discrete Applied Mathematics, Vol. 35, pp. 221-236, 1992
24. Gervet, Carmen, Interval Propagation to Reason about Sets: Definition and Implementation of a

Practical Language, Constraints, An International Journal, Vol. 1, pp. 191-246, 1997
25. Gotlieb,C. The Construction of Class-Teacher Time-Tables, Proc.IFIP Cong, Munchen, pp.73-77,1963
26. Gudes E.; Kuflik T. and Meisels A. On Resource Allocation by an Expert System, Engineering

Applications of Artificial Intelligence, Vol. 3, pp. 101-109, 1990
27. Gueret, Christelle et al, Building University Timetables Using Constraint Logic Programming, Proc. of

1st Int. Conf. on the Practice and Theory of Automated Timetabling (PATAT '95), pp.393-408, 1995
28. Hentenryck,P. Constraint Satisfaction in Logic Programming, LP Series, MIT Press, Cambridge,1989
29. Hertz, A., Finding a Feasible Course Schedule using Tabu Search, Discrete Applied Maths, Vol.35,

pp.225-270, 1992
30. Junginger, W., Timetabling in Germany – a Survey, Interfaces, Vol. 16, pp. 66-74, 1986
31. Kang, L. and White, G. A Logic Approach to the Resolution of Constraints in Timetabling, European

Journal of Operational Research, Vol.61, pp.306, 317, 1992
32. Kingston, J, A Bibliography of Timetabling Papers, URL ftp://ftp.cs.su.oz.au/jeff/timetabling/
33. Kingston,J.; Bardadym,V. ; Carter, M., Bibliography on the Practice and Theory of Automated

Timetabling, in ftp://ftp.cs.usyd.edu.au/jeff/timetabling/timetabling.bib.gz,, Univ. Sidney, 1995
34. Kovacic, M. Timetable Construction with a Markovian Neural Network, European Journal of

Operational Research, Vol. 69, 1993
35. Lawrie, N., An Integer Programming Model of a School Timetabling Problem, The Computer Journal,

Vol. 12, pp. 307-316, 1969
36. Potter, B. et al, An Introduction to the Formal Specification Language Z, Prentice Hall, 1991
37. Reis, L. P. and Oliveira, E., A Constraint Logic Programming Approach to Examination Scheduling,

AICS’99, Artificial Intelligence and Cognitive Science Conference, Cork, Ireland, September 1999
38. Reis,L.P. and Oliveira,E., Constraint Logic Programming using Set Variables for Solving Timetabling

Problems, INAP’99, 12th Intern. Conf. on the Applications of Prolog, Tokyo, Japan, September 1999
39. Reis, L. P., Teixeira, P. and Oliveira, E., Examination Timetabling using Constraint Logic

Programming, ECP’99, 5th European Conference on Planning, Durham, U.K., September 1999
40. Schaerf, A., A Survey of Automated Timetabling, TR CS-R9567, CWI–Cent. Wiskunde en

Informatica, 1995
41. Schmidt, G.; Strohlein, T., Timetable Construction – An Annotated Bibliography, The Computer

Journal, Vol.23 (4), pp. 307-316, 1979
42. Stamatopoulos, P. et al, Nearly Optimum Timetable Construction Through CLP and Intelligent Search,

International Journal on Artificial Intelligence Tools, Vol. 7, No. 4, pp. 415-442, 1998
43. Tsang, E., Foundations of Constraint Satisfaction, Academic Press, Inc, 1993
44. Verbraeck, A. A Decision Support System for Timetable Construction, International Conference on

Expert Planning Systems, Brighton, England, pp. 207-211, 1990
45. Welsh, D. and Powell M., An Upper Bound for the Chromatic Number of a Graph and its Applications

to Timetabling Problems, Computer Journal, Vol. 10, pp. 85-86, 196
46. Wren, A. Scheduling, Timetabling and Rostering – A Special Relationship, in Burke and Ross (eds.),

The Practice and Theory of Automated Timetabling, Springer LNCS, Vol.1153, pp.46-76, 1996

ftp://ftp.cs.su.oz.au/jeff/timetabling/
ftp://ftp.cs.usyd.edu.au/jeff/timetabling/timetabling.bib.gz

