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Abstract. Holonic and agent-based paradigms are very suitable in the
development of distributed manufacturing control systems, taking advan-
tage of their modularity, decentralization, and ability to support dynamic
and complex system design features. However, the integration of manu-
facturing resources within the holonic manufacturing control applications
remains a problem, because no efficient standard allows an easy, trans-
parent and essentially independent integration. This paper proposes an
integration process that allows the integration of automation resources
independently from the holonic control application, using some concepts
derived from the Manufacturing Message Specification (MMS) applica-
tion protocol and implemented over a distributed object platform.

1 Introduction

Nowadays, in order to face stochastic and volatile environments, manufacturing
systems must exhibit increasing agility. This implies the corresponding control
application must also adapt to the occurrence of unexpected disturbances, very
likely through dynamic and distributed structures.

The Holonic Manufacturing System (HMS) paradigm seems a promising ap-
proach to support these actual and emergent requirements. HMS translates to
the manufacturing world systemic concepts developed by A. Koestler concern-
ing living organisms and social organizations, mainly that complex systems are
hierarchical systems formed by intermediate stable forms, being simultaneously
a part and a whole [1]. In industry, the word holon, which illustrates this hybrid
nature, represents the manufacturing components and activities, such as ma-
chines, products and parts. Their behavior is determined by their cooperation
with other holons, as opposed to being determined by a centralized mechanism.

Due to the heterogeneous manufacturing environment, it is hard and cum-
bersome to develop holonic manufacturing applications that integrate manu-
facturing resources, because the holonic application is highly dependent of the
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resource interfaces, normally developed one-of-a-kind. The solution requires a
standardized integration process that makes transparent the interface between
the holonic manufacturing applications and the manufacturing resources. Some
relevant approaches, such as the MMS protocol and the OPC (OLE for Process
Control), do not cover integrally the manufacturing resource characteristics and
complexity, and do not support the independency between the control and the
integration domains.

Our approach to the problem is the re-use of the basic MMS concepts over a
distributed object based platform, thus forming a set of objects that are invoked
remotely by the holonic control application. These objects are always the same
on the client side (i.e. the controlling application), but are customized in the
server side (i.e. the controlled programmable manufacturing device), according
with the resource details.

In this paper, initially a holonic manufacturing control architecture is briefly
described, which demands for a transparent resource integration in order to sup-
port heterogeneity and interoperability. In section 3 an overview of available
technologies to support the resource integration is presented, while section 4
describes the proposed resource integration mechanism based in the virtual re-
source concept and in a client/server distributed object platform. In the last
part, the implementation of two virtual resources, one for a programmable logic
controller (PLC) and other for an industrial robot, that validates the proposed
approach, is described.

2 Holonic Manufacturing Control System

The ADACOR (Adaptive Holonic Control Architecture for Distributed Manu-
facturing Systems) architecture, proposes a new holonic approach for flexible
manufacturing systems control, focused on distributed manufacturing shop floor
control, and facing the dynamic and agile adaptation to disturbances. The ar-
chitecture is based on a set of autonomous, intelligent and co-operative entities,
designated by holons, to represent the automation factory components, aim-
ing to support the distribution of skills and knowledge. These manufacturing
components can be both physical resources (numerical control machines, robots,
programmable controllers, etc) and logic entities (products, orders, etc), grouped
in the following main types of holons: product, task, operational and supervisor
[2]. The operational holon type represents the physical resources and comprise
the physical manufacturing resource, capable of performing manufacturing op-
erations and the Logical Control Device (LCD), which acts as an agent, and
contains: inter-holon interaction mechanisms to support negotiation and coor-
dination with other holons, manufacturing control functions that regulate the
behavior of the holon aiming to pursuit its goals, and intra-holon interaction
mechanisms to support the interaction between the physical manufacturing re-
sources and the LCD.
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The internal architecture for a generic LCD belonging to an ADACOR holon,
Fig. 1, comprises a local knowledge base and three main components: decision
(DeC), communication (ComC) and physical interface (PIC) components [3].
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Fig. 1. Internal Architecture for an ADACOR Agent

The physical interface component provides the mechanisms to integrate the
manufacturing resources. Since the manufacturing factory is a heterogeneous en-
vironment, with the distributed holons and the automation devices placed on a
wide variety of interoperable control platforms, a crucial point when holonifying
manufacturing components, such as robots and machine-tools, is the connec-
tion between the software part of the holon and the physical manufacturing
resource. As the local resource controllers have mostly closed architectures it
is necessary to develop wrappers to hide the details of each resource controller
and supplies primitives that represent the functionality of the physical manu-
facturing resource [4]. Thus, the PIC component comprises the mechanisms for
the interaction with the physical devices that makes transparent the access to
manufacturing resources from the holonic control application, and independent
the control application from the integration domain.

3 Manufacturing Resource Integration Technologies

As referred, the integration of manufacturing resources into holonic and agent-
based applications assumes a crucial aspect, requiring mechanisms that make
transparent and independent the control application from the details of local re-
source controllers. Moreover, FIPA (Foundation for Intelligent Physical Agents)
[5], which aims to produce standards for the interoperation of heterogeneous
software agents, does not present, at the moment, specifications to support the
integration of physical resources, in spite of the effort to introduce new speci-
fications that support manufacturing requirements, through the FIPA Product
Design and Manufacturing working group.
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MMS, which defines the application layer of the ancient MAP (Manufactur-
ing Automation Protocol) protocol, provides a platform capable to interconnect
various industrial devices supplied by different suppliers. MMS brought together
many IT and manufacturing specialists to define a common framework for de-
veloping communication support between industrial computerized equipment,
under the ISO 9506 international standard [6]. The basic concepts of the MMS
protocol are a client-server mechanism and the VMD (Virtual Manufacturing
Device) model. The VMD, associated with every real manufacturing device, is
an abstract model of the server application, which maps the functionalities of the
real device, and offers all services concerning itself and its related abstractions,
mainly: domains, variables, program invocations and events. This set of objects
and generic services can be applied to a large set of manufacturing devices, such
as robots and numerical control machines [7]. However, the technology vendors
do not closely follow the MMS standard, since certain functionalities have dif-
ferent implementations depending of the machine vendor and the underlying
network. This missed adhesion by the vendors to the standardization associ-
ated to the high price of this technology retracted the expansion of the MMS
technology in the market.

Some research teams introduced the idea to use the MMS concepts com-
bined with a distributed object platform technology to integrate the manufac-
turing resources. The approaches presented in [8,9] use the MMS concept over
the CORBA (Common Object Request Broker Architecture) distributed object
technology, with successful results. The real-time constraints in the industrial
manufacturing world requires real-time response, being the CORBA technol-
ogy and the classical TCP/IP not adequate. The ReTINA model has been used
within the Jonathan distributed environment [10], in order to support applica-
tions subject to real-time functioning [11].

Another available technology is the OPC, which is based on Microsoft’s
OLE/COM technology. It allows software in the form of software components to
interoperate regardless of where they are located [4]. The OPC servers, OLE/
DCOM compliant, offer an automation interface, which allows to design PC-
based clients that import real time automation data using standard Windows
applications. The Windows proprietary scope remains an important limitation of
this approach for the heterogeneous environments; however, some available tools,
such as J-Integra [12] and Bridge2Java [13], allow to overcome this problem.

IEC 61499 standard [14,15] is an approach for the easy and quickly inte-
gration of large re-configurable systems, defining a way to model the control
and execution of algorithms in distributed control systems, being encapsulated,
reusable software modules. Within this model, the ancient function block con-
cept is re-introduced in order to make a clear distinction between the event and
the triggered algorithms, making easier the verification of time properties [16].
A function block, which is the fundamental unit of software encapsulation and
reuse in IEC 61499, encapsulates the control algorithm with physical interfaces,
communications, human interfaces, monitoring and diagnostics, and information
technology-based services.
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At the moment some low level programmable controllers, such as PICs and
PLCs already support the IEC 61499 standard, which makes adequate this ap-
proach for the resource integration by the direct communication between the
entities. However, for the low level programmable controllers that do not sup-
port yet IEC61499, and essentially for the communication between high level
programmable controllers such as robots, numerical control machines and PLCs,
which is the main focus of the paper, IEC 61499 is not yet a solution for the
resource integration.

From the preceding, it is clear there is a need for a low cost approach that
could support transparent interfaces for physical manufacturing resources, and
allows easy integration of these resources into holonic control applications. The
use of light MMS concepts combined with distributed object paradigms seems a
suitable approach to make transparent the resource integration from the agent-
based or holonic control system.

4 Resource Integration Approach
Our ADACOR approach to transparent resource integration within holons is

taking advantage of the OO-MMS mechanism for communication between any
client and a Virtual Machine Device server [8]. The scheme is displayed in Fig.2.
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Fig. 2. Invocation of Remote Services using the Virtual Resource concept

Next, the main concepts of the schema, mainly the virtual resource and the
client-server model, will be deeply analyzed.

4.1 Virtual Resource

The server part in the proposed mechanism is the virtual resource, inspired by
the VMD concept from the MMS protocol [6]. It acts as an abstract machine
that represent the functionality of the real manufacturing device and its local
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controller, supplying primitives to be invoked remotely by the client part. The
virtual resource components can be re-used for additional and new applications,
since the manufacturing resources are independent from the control application.

The virtual resource is developed for each physical device according the spec-
ifications of the machine vendors and comprises a set of objects that maps the
services of manufacturing resources. The use of MMS specifications in the defini-
tion of services is important in order to standardize the approach, but due to the
complexity of these specifications, a sub-group of services were defined, closest
as possible to the MMS specifications, in order to make things easier and lighter.
These services are grouped in re-use libraries, such as the VR Support, Variable
Handling, Program Handling and Fvents, as represented in Fig. 3, which shows
some services that provide the interaction with the physical manufacturing de-
vices.

VR Support

Program Handling

-int connect()
- String identify ()
- String status()

-int download (program, location)
-int start (program)
-int stop()

Variable Handling

Events

-int read (variable, type)

-int subscribeEvent(event)

-int write (variable, type, value)

- EventHandler notifyEvent ()
- List getNamedVariables () -

Fig. 3. Re-use Libraries of Services Provided by the Virtual Resource

The objective, input parameters and return values of available services are
always the same, making transparent the development of the holonic or agent-
based manufacturing applications from the particular details of each resource,
improving the ability to support the heterogeneity.

The interaction between the physical manufacturing resource and the virtual
resource is also dependent of the communication platform, such as serial link,
fieldbus networks and TCP/IP protocol or different connectivity’s applications
developed under OPC technology, ActiveX components, etc.

4.2 Client-Server Model

The second main concept in the proposed mechanism is the client-server model.
The LCD device acts as a client part accessing to the real manufacturing resource
by invoking remotely the primitives that represent services in physical resource.

The industrial manufacturing environments are characterized by its hetero-
geneity, with the distributed processing resources, i.e. computers, industrial con-
trollers and automation devices, running in distinct platforms, such as Windows,
Linux and AS400. This heterogeneity requires the use of distributed object plat-
forms to support the interoperability between the clients (operational agents)
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and virtual resource components. The available technologies to support the dis-
tributed object platform are mainly the CORBA, DCOM (Distributed Common
Object Model) and RMI (Remote Method Invocation) [4].

CORBA is based essentially in the Object Request Broker (ORB) concept
(also designated as software bus or middleware), which allows a local client
to invoke methods on a remote platform as if it were local. In order to mask
remoteness and networking details, the middleware platform installs end points
(stub and skeleton) on the client side and on the server side. The behavior is
very close to the Remote Procedure Calls (RPC) mechanism; however, a RPC
is offered by a dedicated server, while ORB methods are attached to a client
and a server can handle many client. This mechanism requires an independent
Interface Definition Language (IDL) for describing interfaces and generating
stubs for various target languages, and an object registering mechanism and
object locating schemes for unambiguous referencing and easy object access. Java
IDL, which is part of Java 2 platform, allows IDL specifications to be compiled
into Java interfaces so that java programs can work with a CORBA compliant
ORB. Java IDL enables distributed Java applications to transparently invoke
operations on remote network services using the industry standard OMG IDL
(Object Management Group Interface Definition Language) and IIOP (Internet
Inter-ORB Protocol) defined by the OMG consortium. The main advantage of
CORBA is to allow object interaction independently of the source language and
the execution platform.

Like CORBA, the Java Remote Method Invocation (RMI) is conceptually
similar to the RPC, providing a means of communicating between Java applica-
tions using normal method calls, and offering the capability for applications to
run on different computers. The RMI uses also skeletons to connect the server to
the RMI framework, stubs that act as a proxy server in the client’s environment,
and a registring mechanism to store the location and name of the server object.
The major advantages of RMI are its better performance and instead of using
an idl file as the interface, it uses a normal java class as interface allowing to
pass any java object as arguments.

IBM and Sun, with the cooperation of the OMG, jointly developed RMI over
ITOP, so called RMI-IIOP, which joined together the interoperability of CORBA
and the easy development of RMI. The implementation of the interface platform
using RMI-ITOP was the easiest, being necessary to execute two main actions:
compile the RMI code with the -i7iop option, which generates the stub and tie
components, and to start the naming service, using the same procedure as for
the CORBA implementation.

The choice of the distributed object platform should take in consideration the
easy mapping of MMS-based services, the easy integration with programming
environment, the ability to support heterogeneity and the real-time constraints.
In the experimental implementation section several platforms will be tested and
a comparative analysis will be made.
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5 Experimental Implementation

Our approach is validated through the integration of two different automation
resources within a generic operational holon: a CPM1 PLC from Omron, which
is accessed by a RS232 asynchronous line, and an industrial robot IRB1400 from
ABB, accessed through TCP/IP using an ActiveX component.

In order to make easier the access to physical manufacturing resources, our
goal is to have a common client, which is the operational holon, independent from
the resource controller details and using the same generic methods to access to
the automation resource services, such as the start, stop and read methods.
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Fig. 4. Conceptual Architecture for the Prototype

The prototype, as illustrated in Fig. 4, uses a heterogeneous system environ-
ment, and comprises two virtual resources running in Windows XP platforms
and customized for each physical resource, one client running in the Windows
2000 platform and another client running in a Linux platform. In order to test
the interface between the client and virtual resource components were tested
different approaches, namely using the CORBA, RMI and RMI-ITOP platforms.

5.1 Development of Virtual Resources

The development of virtual resources, a task for integration specialists, encom-
passes, for each manufacturing resource, the implementation of the methods
available on the client side and described in section 4.1. The client ignores the
details of this implementation and each developed virtual resource can be re-used
by other similar resources or other holonic control applications.

Since it is intended to integrate two different automation resources, two vir-
tual resources were developed, one for the PLC and another one for the industrial
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robot. These two servers implement the same services in a different way according
the specificities of each resource. In order to illustrate the proposed approach, the
implementation of the start service in both virtual resources will be described.
In the client side, whatever the resource to be accessed, the invocation always
conforms the same template and looks like this:

int ret=resource.start(programName) ;

where resource is the identifier of the virtual resource that represents the real
automation device that is intend to access.

The virtual resource for the programmable logic controller CPM1 is devel-
oped according the communication protocol defined by the device [17] and using
the serial link for the physical communication with the PLC. The implementa-
tion uses the javaz.comm package, available at http://java.sun.com, to sup-
port the communication between a java application and an automation device.
The code related to the implementation of the start service is illustrated bellow.

public int start(String progName){
int returnCode=-1;

returnCode=Write2PLC("@00SC0O3") ;
return(returnCode) ;

}

The primitive essentially writes to the PLC a string containing the run com-
mand using the Write2PLC method, which comprises the message sending to
the resource and the wait for the return code. The primitive returns the result of
the command execution, returning null in case of success, or a positive number
in case of an error.

The development of the virtual resource for the industrial robot was harder
than in the previous case, mainly because of the manipulation of the ActiveX
component [18]. Since the ActiveX components are adequate for Windows envi-
ronments, it was necessary to convert the ActiveX component to a java package,
using for this purpose the Bridge2Java tool [13]. The start service for the indus-
trial robot is summarised bellow.

public int start(String progName){
try {
returnCode=h.s4Run ();
returnCode=h.s4ProgramLoad (prgID,progName) ;
returnCode=h.s4Start (prgID,procedure,n0fCycle,runMode) ;
}

catch(IOException ioe){returnCode=determineErrorType();}
return (returnCode);

}

After the declaration of variables, three commands are executed: s4Run that
turns on the robot motors, the s4ProgramLoad that loads a specified program
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to the robot controller and the s4Start that starts the execution of the loaded
program. The primitive returns null in case of success or a positive integer in
case of an error.

5.2 Analysis of Experimental Implementation

Based in the experimental implementation it is possible to extract some conclu-
sions about the proposed approach for the resource integration. First of all, the
resource integration problem become easier since the same holon can access to
different manufacturing resources without the need of re-design and re-program,
increasing the independency between the control and integration domains. The
change or modification in a specific manufacturing resource environment does
not affect the control application domain, which continues to invoke the services
in the same way.

The second advantage is concerned to the easy development of the virtual
resource by integrators and factory automation specialists, which only concen-
trates in the resource controller details and communication platform, without
the need to know details about the control domain.

The third advantage is related to the ability to support heterogeneous en-
vironments due to the client-server model. During the experimental implemen-
tation, different distributed object platforms where tested. The results for the
execution of the read service are summarized in Table 1. In Table 1 the VR
parameter is concerned to the time spent by the virtual resource to execute the
specified service, and the C-S parameter is related to the time spent in the in-
teraction between the client and the server. From the experimental results it is

Table 1. Experimental Results

CORBA(ms) RMI(ms) RMI-IIOP(ms)

VR 41.18 41.03 41.86
OpH-PLC ¢ 3.43 2.13 3.31
VR 12.11 11.75 12.5
OpH-Rob - ¢ 3.41 2.24 3.30

possible to extract some conclusions related to the behavior of the interface plat-
forms. First, it is possible to verify the independency between the automation
devices and the interface platforms: the execution of the service at the virtual re-
source is independent from the interface platform, and the interaction between
the client and the server for each interface platform is independent from the
type of automation device. Next, it is possible to compare the different interface
platforms. CORBA presents better interoperability between ORB vendors than
the RMI interface, since the latter is a Java-to-Java mechanism that limits the
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scope of its application. On the other hand, RMI presents the easiest interface
development and better communication performance, illustrated by the C-S pa-
rameter in Table 1. RMI-IIOP presents an intermediate value of communication
performance, but overcome the RMI interoperability problems.

6 Conclusions

The heterogeneity of industrial manufacturing environments is one of the most
important challenge for the distributed manufacturing control systems. The in-
tegration of manufacturing resources with the holonic manufacturing control
applications remains a problem, because no efficient standard allows an easy,
transparent and essentially independent integration.

This paper has proposed an integration approach relying on a unified object-
oriented model of the various manufacturing resources, in order to give indepen-
dence to the holonic or agent-based control applications. The virtual resource
concept and the client-server model, inspired by the MMS standard, have been
used. In this way, the resource integration problem is reduced to the customiza-
tion of the server side, where it is necessary to develop virtual resources accord-
ing to each manufacturing resource specifications and details, which will supply
primitives to be invoked remotely by the operational holons.

The proposed approach has been validated: connections between a holonic
application and two industrial devices with very different specifications and com-
munication protocols (a programmable logic controller and a robot) were realized
and the performances evaluated.

In future work, guidelines for systematic development of virtual resources
will be developed, particularly in cases with non standardized protocol.
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