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Abstract

In the first paper of this series (Pinho and Oliveira, e-rheo.pt 1 (2001) 1) a brief history on
the use of finite-volumes in the context of computational rheology was presented. In the same
work, the relevant conservation equations and the constitutive equations, of stress-explicit and
stress-implicit types, for purely viscousand viscoelastic fluids respectively, were presented.

This paper isthesecond inthe seriesand in it, the basics of the finite-volume methodology is
outlined. We quickly review the method starting with diffusion and convection of a genera
quantity ¢ , such asthethermal energy, then the specificities of solving the momentum equation
and of coupling pressure and velocity fields are dealt with in the context of staggered meshes.
The problems encountered in the discretization of the convective termsare aso discussed and the
specific issues related to the calculation of variable viscosity, and especialy of yield stress,
typica of some non-Newtonian fluids, are also addressed. To address the problem of
unbounded viscosity in yield stress fluids, modifications of the yield stress law by the bi-
viscosity, modified bi-viscosity and Papanastasiou models are suggested and the methods are
compared.

1. Introduction

We need to start from the very beginning for the benefit of the newcomer but, since the
fundamentals of thefinite-volume method arewell established and extensively explained in such
reference books as Patankar [1], Versteeg and Malalasekera [2] and Ferziger and Peric [3] we
do so quickly and give a more detailed presentation on issues which are less well explained or
absent in those references and on topi cs specific to non-Newtonian fluids.

Asour mainconcernisto present aseries of papers that are pedagogically sound we present
here the finite-volume method following the classical approach of using staggered grids and
orthogonal coordinates. In one of the next papers the generalisation of the method to non-
orthogonal coordinates and colocated grids will be presented.

This paper is organised as follows: the set of equations to be solved for a non-Newtonian
stress-explicit fluid is written down, then the finite-volume methodology is explained in the
classical way in order to obtain the solution of the conservation equation for a general quantity
¢ : first, the equation for pure diffusion with source terms, then the eguation for convection-
diffusion. Variousdiscretization schemeswill be discussed for convection. This will be followed
by the solution of the momentum equation and the explanation of the strategy to ensure coupling
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between the pressure and the velocity fieldsvia staggered meshes. From Section 4 to the end the
paper discusses issue s involving the solution of purely viscous non-Newtonian fluids and their
specific difficulties, with emphasis on handling yield stress fluids. Some results of pipe flow
calculations are presented.

2. Fundamental equations

The equationsto be solved and the coordinate system were presentedin the first paper (Pinho
and Oliveira [4]), but here we briefly remember them for the sake of completeness when the
model is the stress-explicit Generalised Newtonian Fluid (GNF). The coordinate system is the
Cartesian system x; and the equationsare:

- conservation of mass for incompressible fluids (non-Newtonian fluids areliquids)
% =0 (1)
(')Xi

where u; representsthevelocity field;

- conservation of linear momentum

! . ol pU; U: 0T
(pul ) + (p Jol ) = _ﬂ +pg| ¥ ﬂ (2)
ot 0| 0% x|

where t is the time, p is the fluid density, p is the pressure field and g; is the aceleration of
gravity;

- and thedifferential constitutive equation, here an explicit expression for theij component of the
stress tensor, Iij

N auj | 2 . Uy
Tj ='r/(v)[a—;+a—x:]——'rl(v)—';0" €)
j

The second term on the right-hand-side vani shes according to continuity. However, especialy
when dealing with viscoelastic fluids, thereare numerical advantages in keeping this term. In this
paper, and henceforth, it will be dropped.

The viscosity function 7(y) can be given by any of the models presented in the previous
paper. Alternatively, we can also use aviscoelastic model as a constitutive equation but, since we
areonly interested on explicit modelson the stress 3j;, the choice is limited. One such example

isthe Criminale- Eriksen-Filbey constitutive equation
DD

1
zij = 2n(y )Dj +4[2 Wi(y)+ Po(y )]Qka; M) 5o (4-a)
where D /Dt isthe Jaumann derivative
Dt ot Kax LkOK T (4-b)

£2;; thevorticity tensor is
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1 gu OU;
Ql] = i—_J (4'C)
20 0% 0%

and ¥; and W, represent the first and second normal stress difference coefficients,

respectively. Other stress-explicit constitutive equations are of integral type but a discussion on

these in postponed to the future. In the following we concentrate on dealing with GNF fluids

(Eq. 3).

When trying to solve equations(1) and (2) for GNF fluids, in the context of a finite-volume
method, therearetwo possibilities:

i) The explicit congtitutive equation is substituted into the momentum equation (2), thus
eliminating variable jj . This results in an equation which is similar to that for Newtonian
fluids with variable viscosity, as appears in turbulent Newtonian flows or in laminar
Newtonian flowswith temperature-dependent viscosity. Equation (2) becomes

d(pu) O\PYUY 0 0 | oy U
(m')+ (a )=——p+pg r— [y} = +— ®)
X; 0% (')Xj (')Xj 0%
and, as with Newtonian fluids, it is advantageous to rearrange the viscous stress terms as
0 [ oy auj 0 -\ OUj 0 . an
— = , — | =] —L 6
x| rJ(V)[an +axi] axj[”(y)axj i ’I(Y)axi (6)
so that wehave finally
d(pu) O PUU) 9 N 0 0 ., 0U;
(m')+ (a ) n(y) = =——p+pgi+—[n(v)—1 7
X; 3Xj r')Xj 0% r')Xj 0X;

The momentum equation (7) is written here in the so-called strong formulation which is
advantageous to finite-volumes because it automatically ensures globa momentum
conservation in the cal culation methods and al so with all the normal diffusion terms appearing
on theleft-hand-side and the cross diffusion terms on the right-hand-side (rhs). As usual in
the specialised literature, those terms on the left-hand-side of a conservation equation will be
dealt with implicitly whereas those appearing on the right-hand-side are handled explicitly.
The actual meaning of thiswill become clear at alater stage.

ii) Alternatively, the constitutive equation (3) is kept separately, i.e there will be an equation on
the stress j; to be solved in each case. In this case, and for reasons of stability that will
become clear in afuture paper on stress-implicit viscoelastic fluids of the differential type, it is
advantageous to add and subtract adiffusion term and to rewrite the momentum equation (2)
as
a(pui)+8(pujq)_ J [ ')M]=_3p otij 9 [ )ﬂ} (8)

iy PG = |7
ot an 8Xj 3Xj r')Xi HXJ' 8Xj 3Xj
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Again, those termson theleft-hand-side will be handled implicitly whereas those on the right-
hand-sidewill be solved explicitly.

The advantage of using eguation (8) is its generdlity, i.e the momentum equation is now
independent of the constitutive model adopted. However, there are added diffusion terms in
the momentum equation for the sake of convergence stability and these need to be adequately
handled, especialy whendoing transient calculations, to avoid spurious effects.

On the other hand, if our am s to solve purely viscousfluids it is worth to stay with the
first strategy which leads to the same code used for solving turbulent Newtonian flows or
non-isothermal laminar flowswith temperature-dependent properties, where the turbulent and
laminar viscosities vary throughout the calculation domain. So, the adaptation of such codes
to deal with Generalised Newtonian fluidsis straighforward.

Often, we also need to solve theinterna energy equation (¢ would be the temperature) or an
equation of conservation for a chemica species (less frequent in non-Newtonian calculations)
so we adopt the general form of the diffusion-convection equation which is written, in the strong

formulation, as (see Section 2.3 of Pinho and Oliveira[4])

“%f)+a—;(pui¢)—a—;[r%] -s (©)
Henceforth, wewill be dealing with steady flows so we drop the first term on the left-hand-side.
Due account of unsteady flowswill be addressed in afuture paper.

Equation (9) isvery genera and is not exclusively for scalar quantities: Equations (7) and (8)
have the sameform provided ¢ = u; and Saccounts for everything standing on the right-hand-
side. So, conservation of mass, momentum, energy, and also the constitutive equation for
viscoelastic fluids (as will be seen in a future paper), can al be written in the form of Equation

(9) and it is with this equation that we describe the finite-volume method in the next section.

3. The Finite-Volume M ethodology
In thismethod, thefirst step is the integration of a generic transport equation for quantity ¢

over athree-dimensional control volume V and thereis here no approximation whatsoever

0 3 i)

—(puip)dV - (—| r—=—|dv = v 1
o (puig )d frm[ amjd IER (10)
Y Y, Y
Next, weapply Gauss' divergence theorem to theleft-hand-side of Equation (10), thatis

0P

—dV = [¢;ndA 11
[ & = [om (1)

where n; is the unit vector normal to the surface element dA. This theorem transforms volume

integrals of divergence terms into surface integrals of fluxes all around the control volume,
Gauss theorem leadsto thefollowing integrated conservation equation
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0
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Figure 1- Two-dimensional control volumesin an orthogonal grid. a) General grid; b) A control
volume and its neighbours.

In general, this equation cannot be solved analytically and a numerical solution will require
that we need transform it into an algebraic equation. This transformation is caled the
discretization; it requires approximations to evauete integrals and to do interpolations. For
simplicity, weshall illustrate the procedure using the Cartesian two-dimensional grid represented
in Figure 1 instead of the actual three-dimensional grid. For the method explained here the mesh
must be orthogonal, not necessarily Cartesian, and the treatment of the generalised coordinates is
left to afuture paper.

Figure 1-a) shows the grid mapping of a specific calculation domain in the x-y plane
representing, for instance, flow in and out of a box. Figure 1-b) isolates a computational
molecule made of a control volume surrounded by its nearest neighbours, and presents the
corresponding notation. The central control volume is represented by its node P, where the fluid
and flow quantities are stored and its neighbour nodes are denoted by W, E, S N for west, east,
south and north cells, respectively. In the z-direction, not shown here, there are the B (bottom)
and T (top) cells. Nodes are aways represented by capital letters and the faces of the control
volume P adjacent to a given neighbour cell F= W, E, S N is identified by the corresponding
small letter f=w, g s, n.

In discretizing Equation (12) the following approximations are applied:

i) Theintegral of g is approximated in terms of the values of g at several locations on the cell
face. The simplest approximation adopted hereis the midpoint rule, which is of second order,

whereby g isthevaue at the center of the cell face (represented by crosses in Figure 1-b), i.e.
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[9dA =T A (13
At
In this integra §f may represent a convection flux (nipq q))f or a diffuson flux

(niF a%xi) . It is noted that other higher-order approximations could be applied but they
f

lead to an integration rule requiring more points on the cell face.
ii) the cell facevalues of thefunction g¢ areapproximated in termsof thenodal values gg . Also

here, a second order accurate scheme will be used to calculate the cell face values of any
functiong from their values at central nodes.

3.1- Seady-state diffusion
We start the discretization of Equation (12) by looking at one-dimensional diffusion (along
direction x) for which the equation to be solved si mplifi&sto

_fdx( dX)dV fgpdv — fnx( )dA f8¢dv (149
With the above two approximations, theleft- and rlght-handd-s determsbecome
aejon - (), (),
dA = T'A 15-
I nx( dx/e dx (153
fs¢dv - SAV (15-b)
Y

with the overbar denoting here the average value over the control volume P.

Equation (15-a) indicates that the gradientsof ¢ are to be evaluated at the center of faces e
and w and this requires further assumptions, this time for the variation of fluid and flow
properties between nodal points. For the flow properties the simplest assumption is a linear
variation which is called centra differencing, but thisis not always an adequate approximation
for fluid properties as will be shown in Section 3.3. For an uniform grid the central difference
approximation leadsto

(FAd—¢) = FeAe(¢E ¢P] (16)

dx/e OXgp
and similarly for diffusion fluxes along the other directions. In Equation (16) oXgp represents
the distance between nodes E and P along x. The source term S may be a function of ¢ and in
this caseit should be linearised as (Patankar, 1980):

SAV =S, +Spop (17)

Grouping all terms, we arrive at the following discretized equation for one-dimensional
steady-state diffusion
reAe[¢?‘¢P] WAN[¢P q’W” - Sy + Sip (18)

OXgp
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which can be rearranged into

r r r r
o ‘WA”—Sp]qm =[W—AW]¢W [ eAe]qu S (19
XPE OX\A/p OX\A/p 0 XPE
Equation (19) is often written in the canonical form
appp =awpw +agPE + (20-3)
with coefficients
CwAw CeAe
= ; ag = ; ap=ag +ay - 20-b
oXp E = g 2P TAETAW > (20-b)
We can generalise Equation (20-a) to athree-dimensional problem
6
appp = Y apdF +§ (21-3)
F=1
with coefficients
Tt A
A = xp P T EaF S (21-b)

where F runs over the 6 near-neighbour nodes W, E, S, N, B and T and the small letters
represent the corresponding cell-faces (adjacent to cells F and P). ¢p and ¢ represent the
unknown values of ¢ that need to be numerically determined.

Aswecan see, the diffusion term on theleft-hand-side of the conservation Equation (14) gave
riseto thetermswith unknowns ¢p and ¢, i.e, termsthat are dealt with implicitly. On the other
hand, if §, dependson ¢p and ¢ in any way, for the solution of Equation (20) or (21) §, is
assumed known, either becausethefield ¢ wasinitialised to alow the determination of S, or, in
an iterative process, thefield ¢ used to calculate §, is the solution from the previous iteration.

3.2- Boundary-conditions
Solution of Equation (21) requires boundary conditions, as in the origina differential
equations, which are usually set as values of ¢, or its flux at the boundaries. If a particular

boundary condition providesthevaue of ¢ ,thenweknow ¢ at specific cell faces located at the
boundary ¢ ¢ . Then, the flux of Equation (16) for the cell P closest to the border (which is the

west boundary in the example in Figure 2) uses the cell facevalue ¢ andis given by
d¢) Pe— Pp
rA—| =T —_— 22
( dx/ e eAe( OXep (22)
I.e., ¢ isno longer an unknown for this flux.
If the boundary condition provides Q instead, Equation (16) is substituted by Equation (22)
with ¢ given by

- +Q°X9P 23
be= PP+ p (23)
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So, inany case, avalue of ¢ east of cell P, either ¢ or ¢p, is no longer an unknown. The
two typical boundary conditions are illustrated in Figure 2 for a cell P with a boundary in its
west face.

The boundary conditions have an immediate consequence on writing Equation (21) at a
boundary. The discretised conservation equation at the boundary control volume P still obeys the
same general form but, since ¢ is now known at the boundary, the corresponding coefficient
ap = app (subscript FB stands for neighbour cell at the boundary domain) is set to zero with

the corresponding algebraic modification carried over to the sourceterm, i.e., the source term at a
boundary cell isnow calculated as §, g = §, + arpPFB-

9 ) — 2 3
7 dout:N PA—e—F——=o

1 2 3
*——=—1 o
_>6x/2|. OX >I< 0X >I _>6x/4‘ 0X >I< OX >I

Figure 2- Examples of boundary conditions: a) Value of ¢ at boundary; b) Flux q of ¢ at

boundary.

In Figure 2-a) ¢ isknown at thewest faceof the one-dimensional domain of constant cross-
sectionareaA. Theequation for the control volume centered innode P=1is

A A A A
— =|——- — 24
(6x+6x/2)¢P (6x/2)¢A+(6x)¢E (24)
which iswritten in canonical form with coefficients
A 2TA 2TA
ap=—: :1ay =0; =——and §, = ——— 25
E= 5 W S ™ Q ™ 7N (25)

Handling the flux boundary condition of Figure 2-b) issimilar.

3.3- Fluid properties at interfaces

Whereas the variation of flow propertiesacross cell facesis adequately calculated using linear
interpolation and providing secon-order accuracy, the calculation of fluid properties may have to
follow adifferent strategy whenever therearelargevariations in propertiesacross the cell face. A
linear variation is physically incorrect and failsmiserably asis well illustrated by the problem of
heat conduction across an interface of materials of very different thermal conductivities. The
sudden changein this property has similarities, in the context of non-Newtonian fluids, to large
changes in viscosity for strongly shear-thinning fluids and especially yield stress fluids: in the
latter case, theissue of determining the correct viscosity at the interface between the yielded and
the plug regions of yield stress fluid flows becomesespecially important and it is fundamental to
use the strategy explained below for accurate predictions.
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The solution to this problemis also described in the classical literature on finite-volumes and

is easy to understand by analogy with the one-dimensiona heat conduction across interfaces of

solid materials. Theobjective is to obtain the correct flux of ¢, say the heat flux, so the rule to
calculate the fluid property I's at interface f is the same as that for obtaining the equivalent

thermal conductivity of two consecutive slabs of different thermal conductivities, i.e.

1-Lf L¢)7E
¢ = +— (26)
I'p Tg
where L isan interpolation factor defined by
OX
L =—0" 27)
OXpF

3.4- Seady-state convection and diffusion
Now, weextend the previous analysis of Equation (12) by including the convection term but
continue to use a one-dimensional equation for simplicity. The 1-D conservation equation for ¢

becomes
9 AU A N
aX (pu¢) dX (F ax) S (28)

Theunknownisstill ¢, and theflow field u satisfiesthe continuity and momentum equations.
On Equation (28) thefinite-volume method is applied: the equation is volume-integrated, Gauss
theorem is applied and a discretization is performed leading to

(puAgp ), - (puAg),, - (T A%) o (FA:_;’:)W

The diffusion and source terms are handled as in Section 3.1. It is useful at this stage to
introduce the concept of diffusion conductance D = I'/ 0x. Regarding the convection terms, the
convective flux isdefinedas F = pu and now werewrite Equation (29) as

FeAebe — FuAwdw —| DeA 9 — 9p) - DwAn(dp - dw)] = Su + Sdp (30)

Aswe can see, whereas diffusion directly gaverisetovaluesof ¢ at the nodes (¢p and ¢g),
convection gave values of ¢ at faces(¢ ). Theseare unknowns that need to be determined as a

- SAV (29)

function of nodal values via an interpolation function, which os adequate for convection. The
obvious choice is the linear interpolation of the neighbour nodal values, already used for
diffusion, which is caled the central differencing scheme (CDS). It is a second order scheme
and is able to provide accurate solutions, but has the disadvantage of being unstable when
convective fluxes are supercritical, i.e, when F¢ /D¢ = 2. It brings us to the issues of stability,
accuracy and other propertiesof discretization schemes. Although thisis avery important matter,
wedo not spend much time on it as thereare no specific problemsrelated to GNF or viscoelastic
stress-explicit congtitutive equations. Therefore, the reader interested in details should consult the
works of Patankar [1], Versteeg and Malalasekera [2] and Ferziger and Peric [3].
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3.4.1. Properties of discretisation shemes

Five properties are discussed here: consistency, stability, convergence, boundedness and
transportiveness.

Consistency requires the truncation error of the discretization method to become zero as the
mesh is refined. Consistency also requiresthat, in the balance of any quantity over aCV, the flux
calculated at a cell face to be the same as the flux at the same face viewed from the adjacent
control volume. All schemes used here and in the future papers in this series, and those we
recommend, are formulated to obey consistency.

Stahility requiresthe method not to amplify any disturbance that appears in the course of the
calculation. If stablethe method does not diverge and, for time-dependent problems, the solution
of thealgebraic set of equationsis bounded whenthe differential equation is bounded.

The numerical method is convergent when the solution of the set of algebraic equations tends
to the solution of the original differential equationswith mesh refinement. As this is a difficult
property to demonstrate, the user is usually requested to validate the numerical method against
various known and relevant experimental, numerical or analytical solutions. With consistent,
stableand convergent schemes, mesh refinement provides grid-independent results in the course
of thevalidation procedure.

As mentioned in Section 2, one of the advantages of finite-volumes is that by writing the
conservation equations in a strong formulation, as they have been throughout the paper,
conservation of the quantities is guaranteed for each individual cell and the overal calculation
domain. This advantage can not be overstated and its strength has fostered the appearance of
hybrid finite-volume/ finite-element methods, as in Wapperom and Webster [5].

The numerical solution of the algebraic equations should be bounded within some limits
which usually have a physical origin. For instance, in the absence of sources or sinks of thermal
energy then its value should be bounded by the values imposed by the boundary conditions.
Boundedness is guaranteed by some first-order discretisation and interpolation methods and by
appropriately formulating and bounding higher-order methods. Lack of boundedness is also
usually associated with stability and convergence problems and consequently, unbounded
methods should be avoided. A sufficient condition for aconvergent iterative methodis to have

%la}zlj <1 at al nodes

|ap| |<1at onenode at least

(31)

Eqg. (31) results in matrices which are diagonally dominant and we must ensure that all
coefficients ap, agp of thediscretised equationshave the same sign, usually positive. The reader
should note that the definition embodied in Equation (21) guarantees positive coefficientsfor ag
and for ap provided S < 0, which isthecase.
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The discretization of the differential equations should be accurate using methods that are at
least of second order accuracy, ie, the progression of the error decrease with mesh refinement
should at least be quadratic to reduce the need for highly refined meshes which become
excessively expensive in computational resources.

Due to the presence of convection, agiven quantity ¢ that is locally produced will not spread
equally in al directions, a situation that would occur in pure diffusion. The measure of the

relative strengths of diffusion and convection is the Peclet number

=
Pe=— 32
) @

In pure diffusion the Peclet number is equal to zero and ¢ will spread equaly in all
directions, whereas for a Peclet number of infinity ¢ will be transported exclusively in the
direction of convection, away from its source. It is important for any interpolation scheme for
convection to be ableto reproduce, as faithfully as possible, theratio of thesetwo strengths.

3.4.2. Discretization schemes for convection

For simplicity uniform meshes will be considered in the following description of
discretization schemes. In Equation (30) the cell face values ¢ ¢+ must be calculated from nodal

values so that the resulting equation is written in the canonical form of Equation (21).

3.4.2.1- Central Differencing Scheme (CDS)
Using linear interpolation, also called CDS, to determine the cell face values ¢ from the

adjacent nodal values ¢p and ¢, Equation (30) is written in the canonical form of Equation
(21) with coefficients a assuming the form
F F
aW=DW+7W;ae=De+?e;ap=aW+aE+(Fe—FW) (33)
In one-dimensional flow continuity ensures the last term of ap to be zero, so ap isjust the
sum of the neighbour coefficients. These neighbour coefficients can only be positive if Pe < 2,

otherwise CDS becomes unstable. When convection is too strong in comparison to diffusion

(Pe>2), CDS violates boundedness. It can aso be seen that CDS does not possess
transportiveness as it brings into ¢ a diffusive behaviour, i.e. CDS does not obey the

transportiveness property but it has the advantage of being second order accurate.

3.4.2.2- Upwind Differencing Scheme (UDS)

An dternative method, which is unconditionally stable and obeys transportiveness, is the
upwind scheme (UDS). It basically states that if the flow is from West to East, then ¢,, = ¢\
and ¢ = ¢p,i.e thecell facevalue ¢ ¢+ takesthevaue of ¢ at the node immediately upstream.
With UDS adopted for convection, the coefficients a of the canonical equation (21-a) take the
form
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a, = Dy, + max(F,0); ag = Dy + max(0,-F¢); ap = ay +ag +(Fo —Fy ) (34)

The coefficients ap and ag are now aways positive and this feature makes the method
unconditionally stable. However, the corresponding Taylor series expansion and truncation
shows us that themethod is only first-order accurate. UDS aso suffers fromwhat is called false
(or numerical) diffusion which is the smearing of transported properties, as happens in diffusion
dominated processes, when the direction of theflow is obliqueto the mesh used.

3.4.2.3- The Hybrid Differencing Scheme (HDS)

Thehybrid differencing scheme (HDS) is a combination of UDS and CDS and was derived
by Spalding [6]. The idea was to combine the advantages of UDS and CDS, but since its
accuracy remains of first order, the scheme lost popularity in the late eighties when issues of
accuracy became very important. With HDS the a coefficients become

F F
ay = max(FW, Dy +7W,0); ag = max(—Fe, De —7‘3,0); ap =ay +ag +(Fe —F )(35)

Equation (35) shows that HDS switches from CDS to UDS whenever the absolute value of
the Peclet number exceeds 2. If convection is strong, HDS becomesthe upwind scheme and this
explainsthe accuracy of the method which tends to that of the poorest scheme used unless the
mesh is refined to reducethe Peclet number.

Anaternative to HDS is the power law scheme. It is based on the exact solution of the one-
dimensional convection-diffusion problem (Patankar [1]), but again the method is first-order
accurate and is very seldom used.

3.4.2.4- Linear Upwind Differencing Scheme (LUDYS)
This scheme has the advantage of second order accuracy, obeys transportiveness by bringing

some upwinding, but is not unconditionally stable. In one-dimensional flow the cell face value
¢ ¢+ is evaluated by linear extrapolation from the two closest upstream nodal values along the

same coordinate (see Figure 3). So, for ¢, wehave

_ | op +(9pp —ow)1-Ly) if Fe>0
® lpe+ (e —dee)l-Led) if Fo<O

To build the coefficients afor LUDS the notation must be further extended according to
Figure 1. When referringto agiven cell P, and for any given direction, say direction x or 1, cell
facesf and f* refer to the faces on the negative (west, south, bottom) and positive (east, north,
top) sides of P, respectively. Then, for a given cell face (f or f*) there are two different
interpolation factors L7 and L which aredefinedas

+ [Al]fP
Al (Al

¢ (36)

and L5 =1-L% (37)
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Pe
flow direction >

Ww wWe W W p
Figure 3- Representation of thelinear upwind scheme.
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The novelty of LUDS is that it brings the need to account not only for the near-neighbours
but also for thefar neighbours. EE represents the node to the east of node E and ee refers to the
cell face adjacent to E and EE (see Figure 3). Consequently, for the one-dimensional problem
therearenow four ag coefficients plus the central coefficient ap:

ay =Dy +max(FW,O)(2— L:,(M,) + max(O,Fe)(l— L(,’V)

ag = Dg + max(O,—Fe)(1+ Lge) +max(0,-F,,)Lg

awmwy = - max(FW,O)(l— L\-I'\-NV)

agg = -max(0,-Fe)Lée

ap = ay +ag +agg +aww (38 ab,cde)

However, for reasons of stability the far-neighbour nodal terms apg¢ g are not considered
as unknowns, i.e., they are handled explicitly y being calculated on the basis of the solution of
the previous iteration. Since the far-neighbour coefficients can be negative, the total convective

termis not handled as in the case of UDS but is split asin Equation (39)
Fror = ar(pp —oF)+ > arr (0P — oFr) (39)
F FF

Now, thefirst term on theright-hand-side is treated implicitly, i.e ¢p and ¢ will be unknowns
in eachiteration and so are kept on the left-hand-side of Equation (30) whereas the second term
on theright-hand-side is treated explicitly, i.e., it goes to the right-hand-side of the conservation
Equation (30) to beincluded as part of the source term (contribution §,.. and Sy ). In doing

s0 thetermislinearised, i.e., thetermwill be written as
S+ Sptp = Saer(0pr —0p) = N arrdrr - 3 aprdp (40)
FF FF FF

Then, the linearised contribution term Sp¢p goes to the left-hand-side of the conservation
Equation (30) and this explains why ap includes the far-neighbour contributions agg, but
app9 pg arenot considered unknowns and were thus moved to the right-hand-side of Equation

(30).

75



rheo.pt Pinho, e-rheo.pt, 1 (2001) 63-100 ‘@

3.4.2.5- The Deferred Correction

Asexplained above, dueto stability issues theimplementation of LUDS differsfrom the rules
set out in previous sections. Similarly, the use of CDS was seen to lead al so to stability problems
when the Peclet number exceeded 2. Other discretization schemes, such as the second order
accurate quadratic upwind (QUICK), obey transportiveness and suffer from stability issues
unless the convective termsare split into implicit and explicit termsas wasdone for LUDS.

Clearly, amore systematic approach is required to address this issue and one such approach
is called the deferred correction. For this purpose it isimportant to recall that thefirst order UDS
scheme has the enormous advantage of being unconditionally stable. The deferred correction is a
general method that combines the unconditional stability of UDS with the higher accuracy of
conditionally stableschemes, at a price of slower convergence. The starting point of the deferred
correction is the algebraic Equation (30) which is here repeated.

FeAebe — FwAvdw —[ DeAl o — 9p) - DuAnldp — dw)] = Su+ Sodp

One aims at determining face values ¢ ¢ of the convective terms on the left hand side as a
function of nodal values ¢, ¢p using some interpolating scheme, which we take in this
example to be CDS. First, weadd and subtract similar convective terms to the right hand side of
the equation and rearrange it so that it becomes

(FeAe(pe - FWA/V¢W)UDS - [DeAe(pr - ¢P) - DWAN(¢P - ¢W)] = +ppp +
(FeAete — FwAntw)yps ~(Feete — FuAwbw)cps

Aswecan seein Equation (41), the convective term on the left hand side is processed using
UDS and theterm is treated implicitly to benefit from the unconditional stability of the upwind
scheme. On theright hand side of Equation (41) the added and subtracted convective terms are
processed with UDS, and the second order accurate interpolating scheme CDS. Both terms on
the right-hand-side become part of the source term and are treated explicitly, i.e, they are

calculated using nodal values from the previous iteration.
As the solution is approached the values of field ¢ from consecutive iterations tend to be

(41)

equal, so that both UDS terms cancel and only the convective terminterpolated with CDS or any
other high accuracy schemeremains.

3.4.2.6- Other High-Order Schemes

Other interpolation schemes for convection are the quadratic upwind scheme (QUICK) of
Leonard [7], which uses two nodal values upstream of the cell face and one downstream, or
schemes that combine in a special way the expressions from QUICK, CDS, UDS which are
caled high-resolution schemes (Harten [8]). High-resolution schemes combine advantages of
various schemes to ensure accuracy, stability and boundedness. The application of high-
resolution schemes to the prediction of viscoelastic fluid flows in finite volumes is quite recent
and examples aretheworks of Alveset al [9,10].
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Interpolation schemes of third and higher order can also be used, but deeper changes must be
introduced to the various approximations in the whole method if one is to benefit clearly in the
results. The approximations used in the discretization of the integrated differential equation in
Section 3 are of second order and they should be upgraded to be combined with higher order
interpolation schemes, so that the results reflect the improved accuracy. Increasing only the order
of accuracy of the interpolating schemes for convection above 2, without improvements in the
other approximations, wil have a minimum impact on the fina results but an increase in
computational cost.

3.5- Solution of the Momentum Equation in Steady Flows
So far, aconservation equation for ageneral quantity ¢ has been addressed and the flow field

has been assumed known. However, in areal CFD problemthe flow field is often unknown and
the momentum Equation (2) must also be solved, i.e,, ¢ can also be u;. Besides, the momentum

equation for u; also depends of the other components of the velocity vector u;(i =), i.e, the
momentum equationsare non-linear whereas previously the equation for ¢ was linear. The non-
linearity issue is addressed by solving the momentum equations sequentially and by assuming
that, for each component of the velocity the other componentsare known.

A second problem of solving the flow field results from an unknown pressure field and the
absence of a pressure equation. If the pressure gradient is known, solution of the momentum
equation provides the velocity field in the same way as the conservation equation for ¢ .
However, in general the pressure fieldis unknown.

In compressible flows the continuity equation can be solved to determine the fluid density,
then the thermodynamic constitutive equation determines the pressure and so the solution of the
momentum equation followsthe above guidelines for solving ¢ .

If the flow is incompressible the fluid density is constant and is not related to pressure.
Although there are four unknowns for four equations (the three momentum equations plus the
continuity equation) thereis no explicit equation for the pressure. However, continuity imposes a
constraint becauseonly acorrect pressure field will result in a velocity field that obeys both the
momentum and continuity equations.

The solution to this problem is an iterative algorithm where the continuity equation is
transformed into an equation for the pressure field. Here, we will present the original SIMPLE
strategy of Patankar and Spalding [11] and two of itsimprovements, SIMPLER and SIMPLEC.

There is yet another problem with the momentum equation. Let us consider again a one-
dimensional flow in the x-direction of Figure 1-b). Integrating Equation (2), following the finite-
volume guidelines, with auniform grid for simplicity, and considering linear interpolation for the
pressure, the pressure gradient term becomes
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According to Equation (42) the pressure gradient centered on node P is independent of pp
and is calculated with a coarser grid. The same result is obtained in the other two directions, so
that, for instance, an unphysical situation of acheckerboard field pattern of pressure can result in
the same velocity field as a well-behaved zero pressure gradient field. This lack of coupling
between the velocity and pressure fieldsrequiresaspecia remedy which was devised by Harlow
and Welch [12]: theuse of grids for the velocity components which are staggered in relation to
theoriginal pressure (or scalar) grid. In 1983 Rhie and Chow [13] formulated a new pressure-
velocity coupling strategy that avoided the need for staggered grids and opened the way for non-
orthogonal collocated grids which are far more advantageous, but that will be the issue of a later
chapter. Next, the staggered grid approachis adopted and explained.

(42)

3.5.1- Pressure-Velocity Coupling in Staggered Grids

To ensure coupling between the pressure and the x-direction velocity field (u) a second grid,
which is staggered in the x-direction relative to the origina grid, is used for the velocity
component u, with the pressure being calculated in the original grid. For a three-dimensional
flow three staggered grids are required, one for each velocity component, and the original grid is
used for the pressure and other scalars. Figure 4-a) shows the origina grid for pressure and
Figure 4-b) shows the staggered grid for the x-velocity component and the origina grid for
pressure. In Figure 4-b) the full lines represent the faces of the control volumes of the original
grid and thefilled circles thelocation of their central nodes. Similarly, the dashed lines represent
the cell faces of the staggered grid and the corresponding central nodes are marked with open
circles. The capital symbols designate the coordinates referred to the original grid whereas the
small symbols do the samefor the staggered grid. It is clear from the figure that the faces of the
staggered grid coincide with the nodes of the original grid and vice-versa.

In this way, for the u-velocity control volume centered on (i,J), the pressure gradient is now
calculated as

P _ pp — Pw (43)
0X OX\p
which only involves consecutive pressure nodes and the checkerboard pattern is no longer a
possible solution to aphysical problem.
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Figure 4- @ The origina grid for pressure and other scalars b) The origina grid and the
staggered grid for u-velocity.

A side benefit of the staggered grid is the treatment of convective terms of the ¢ conservation
equation, when ¢ is not the velocity. The origina grid stores the pressure as well as other
quantities ¢ but thevelocity field, so mass fluxes at thefaces of the original control volumes are
known because they coincide with the nodes of the staggered grids where velocities are stored,
thus eliminating the need for interpolations for those velocity components.

Once the staggered grids are established and assuming previous knowledge of the pressure
field (say, theresult of the previous iteration), the momentum equation is solved in the same way
astheequation for thescalar ¢ except that the values of the velocity are determined at the nodes
of the staggered grid and those of ¢ at the nodes of theorigina grid. So,ina 3-D flow the three
velocity componentsand the remaining quantities are all calculated at different locations; if, at the
post-processing stage, data are required at the same location it will be just a matter of
interpolation.

Since the solution of the momentum eguation assumes previous knowledge of the pressure
fielditis necessary to devise a method to obtain the pressure field from the continuity equation.

3.5.2- Solution Algorithms: SMPLE
Tge continuity Equation (1) is discretized into
3 (-1'FAr -0 (44)
f=1
which expresses the fact that the sum of incoming mass flow rates equals the sum of outgoing
mass flow rates. It is important to realise that, since the continuity equation will be used to
determine the pressure field, it is derived in the original grid for pressure. Hence, the flow rates at
thefacesof the original CV'sreadily use the staggered grid velocities without any interpolation.
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In order to turn the algebraic Equation (44) into an equation for pressure, the algorithm
SIMPLE (Semi- Implicit Method for Pressure-Linked Equations) or one of its extensions/
improvementsis adopted.

In explaining SIMPLE, a2-D steady flow problemis considered but for conciseness only the
equation for the x-velocity component will be used. In SIMPLE, a pressure field p* isinitialy
assumed known (from the previousiteration or initial conditions) and the discretised momentum
Equation (45) is solved for U at the central node (i,J) (see Figure 4-a)

3 J H*,J =y arUF + (pT—l,J - IOT,J )Ai,J +3,7 (45)
where the stars indicate that the quantities are not correct in the current iteration, because they are
based on an initially guessed pressure field, and Sis related to the source term of u. The correct
pressure and velocity are given by

p=p +p (46)

u=u +u (47)
where the prime indicates a correction. If the pressure field p used in the momentum Equation
(45) had been right, the result would have been the correct velocity field u, i.e, the momentum
equation would then be

8,34, = Y aFUr +(p|—1,3 _pI,J)Ai,J +3, (48)

Subtracting Equation (45) from Equation (48), and using the definitions in Equations (46)
and (47), thefollowing relationship between velocity and pressure corrections is derived

aiJHJ—EaFUF’r(pl_lJ—le)AiJ (49)

To avoid the need to solve another system of equations, Equation (49) is modified by
droppi ng S a,:u,: In thisway, an explicit equation for the velocity correction is obtained

& 4,3 = (pl—lJ _pIJ)AiJ (50)
from which the correct velocities are determined as

) (pll—l,\] - PiJ )AS,J
Ug=Uy+ (51)
g,

The approximation from Equation (49) to Equation (50) does not preclude an exact solution
because, in both equations, the velocity and pressure corrections U and p' tend to zero as the
correct velocity and pressure fields are approached, i.e the neglected E ar u'F also tends to zero

as the solution is approached and no conservation principle is being violated.

Expanding Equation (44) in the original grid and substituting the flow rates by their
definitions gives Equation (52)

[(PUA)HL\] (pUA)i,J ]"‘ {(PVA)| J+H T (PVA)| il= 0 (52)
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Now, the expression for the correct velocity u; 3 (Equation 51), and similar expressions for

the other velocities, are substituted in Equation (52) yielding an equation on the pressure
corrections.

aPypiy = S arpr +bp (53)
F

written here in the canonical form. In Equation (53) the superscript p indicates that the
coefficient a refers to the pressure correction equation and differs from other definitions of a
coefficients. Since the pressure, and obviously the pressure correction, is calculated in the
original grid (at (1,J) and its neighbours), subscripts P and F appear again to designate the
central node and its near neighbours, respectively. The coefficients of the pressure correction

equation are
oo [er) o (A (e e (A2
41,0 = 3 81,3 7|5 I Tl 104 7|
i+1,J i,J l,j+1 1]
p _ P . _ * _ * * _ *
ajy = ;ap ; bp = (pu A)i,J (pu A)i+1,J +(pv A)I,j (pv A)I,j+1 (54

In Equation (53) bp represents the mass imbalance of the incorrect starred velocity field
which tends to zero as the calculation proceeds towardsthe correct solution.

The pressure correction equation often diverges and, to prevent this, underrelaxation is used to
determine improved pressures as

" = p P (55)
where the underrelaxation factor «, takes a value of less than one. For the same reason the
velocity fieldis also underrelaxed by factor «, using Equation (56)

Unew = U + (1— wy )u(”"l) (56)
where u represents the corrected velocity value (present iteration) prior to underrelaxation and
U™ is the correct velocity from the previous iteration (un-)y

To summarize, the SIMPLE agorithm proceeds as followsin eachiteration:

i) Thereis an initial guess of pressure and velocity p* , ur, taken from the previous iteration
(p =p" Y,y =",

ii) Equation (45) is solved to determine anew ur at the present iteration;

i) Equation (53) determines the pressure correction field p';

iv) Pressure is corrected using Equation (46) and velocity is corrected with Equation (51). Now,
the corrected pressure and velocity fields conserve momentum and mass within a certain
residual. Naturaly, if underrelaxation is being used Equations (55) and (56) are now used
adequately to determine p"*", u"V;

v) Finally, itistime to solve the conservation equationsfor any other scalar quantities ¢ , such as

temperature;
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vi) If convergence has been attained within a pre-defined residual the iterative calculation stops,
otherwise the newly formed quantities are madeequal to p , u; and weproceed again to step (i)

to initiate anew iteration.

3.5.3- SMPLERand SMPLEC

In 1980 Patankar [1] revised his SIMPLE method to address its weakness in the pressure
caculation. Theresult wasanew algorithm called SIMPLER (SIMPLE revised). The difference
between SIMPLE and SIMPLER is at the initia steps: in SIMPLER there is an initial set of
steps aimed at determining an intermediate pressure field, which is then made equal to p* , after
which the algorithm proceeds in the way of the SIMPLE method. In this way, the problems of
divergence that resulted from the omission of E aFu'F in Equation (49) and lead aso to the
need for under-relaxation, are reduced and convergence is significantly improved.

To determine the intermediate pressure field the continuity equation is used to obtain a
pressure equation, as explained below. One starts again with the momentum Equation (48) where
u and p arethevalues from the previous iteration.

_2FUE+S . Py =P 3)AL

u (57)
" g J g J
In Equation (57) thefirst term on the rhs is made a pseudo-velocity U gvia
agU- +
G, =220 5 (58)
8,
so that Equation (57) becomes
. P13 ~PiLa )AL
Uag =4, +( ) (59)
g,

which bears similarity to Equation (51). Thediscretised continuity equation is still Equation (52)
and next, Equation (59), and its equivalent expressions for the other nodes are used to substitute
termsin the continuity Equation (52), thus resulting the following equation for the pressure field
written in canonical form

aﬁj Pg= ; alliapF +bp (60)

with all the coefficients ap, ag still given by Equation (54), but now with bp representing an
imbalance of pseudo-velocities

bp =by 5 = (PGA)LJ - (PGA)i+]_,J + (P\A/A)Lj - (P\A/A)|,j+1 (61)

The pressure calculated by Equation (60) now serves as an initial pressure field guess which,
together with the velocity field from the previous iteration, are used to continue with the SIMPLE
algorithm.

So, SIMPLER is madeof thefollowing steps:
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i) First, thereisaninitial guess of pressure and velocity fields p* , ui* where they are usually the
results of the previous iteration;

ii) Pseudo-velocities are calculated with Equation (58);

iif) The pressure Equation (60) determines an intermediate pressure field p and then p* IS set
equal to p;

IV) This better estimate of p* and the initial velocity guess u? are now the starting point of the
original SIMPLE method, which is part of SIMPLER. This better guess of p* does not impose
Su*Ch a burden on the pressure correction and Equation (45) is solved next to determine a new
U ;

V) A pressure correction p' is now obtained with Equation (53);

vi) The pressure field pressure is corrected with Equation (46) and velocity is corrected with
Equation (49). At this stage the corrected pressure and velocity fields obey the momentum and
continuity equations within a certain residual. In contrast to SIMPLE there should be no need
for under-relaxation in SIMPLER;

vii) Finaly, the equationsfor any other quantities ¢ are solved,;

viii) If convergence has been attained within a pre-defined residual the iterative calculation
process stops, otherwise the newly formed quantities are made equal to p* , ur and we proceed
againto step (i), to initiate anew iteration.

Although SIMPLER resulted in less problems of convergence than SIMPLE, it meant more
calculations because of the extraintermediate pressure field calculation.

The problem with SIMPLE was the neglect of ¥ ar u',: in Equation (49) so Van Doormal
and Raithby [14] came up with an aternative to SIMPLE and SIMPLER which they called
SIMPLEC (SIMPLE Consistent). Instead of neglecting E ar u',: in Equation (49), which puts
too much of aburden into the pressure correction, 'y aFu',: IS approximated to a non-zero value,
but in away that avoids the need to solve another system of algebraic equationsas in SIMPLER.
Instead of setting u',: to zero as in SIMPLE, Van Doormal and Raithby [14] realised that
EaFu'F is of the order of E an"J. The underlying assumption of u',: = u'i,J IS thus less
severe than the assumption in SIMPLE but still has the advantage of leading to an explicit
equation on thevelocity correction

ai,Jql,J =EaFU;,J "’(pll—lJ _p'I,J)Ai,J (62)
So, SIMPLEC is equal to SIMPLE except that instead of Equation (51) thevelocity correction is
given by

e (pll—l,J -Prg )A,J

' ! a,3-aF

In SIMPLEC, correction to the velocity field is not done exclusively by the pressure

correction term, as in SIMPLE, but is shared between two terms. This reduces the amount of

(63)
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pressure correction p' needed during the calculations which is enough to impart stability to the
algorithm and to reduce the need for underrelaxation. Everything else remains the same as in
SIMPLE, i.e the sequence of steps in SIMPLEC is identical to the sequence of steps in
SIMPLE, except that in step (iv) the velocity is instead corrected with Equation (63).

Both SIMPLEC and SIMPLER are more efficient than SIMPLE, but experiments have
shown that itis not easy to determine which is the best (Versteeg and Malaasekera [2], Ferziger
and Peric [3]).

3.6- Convergence Criteria
Any iterative computation must terminate at some stage and there should be a criterion to

define such moment. If an equation of theform
appp - ¥ aFpF = Q (64)
F

is being solved iteratively, the calculation would ideally stop when the solution at iteration n (¢")
differed from the exact solution by less than a certain pre-defined error ¢ . Obviously, except for
some control and benchmark cases, the exact solution is unknown and there must be another
way of checking that the solution is being approached. An alternative is suggested by writing

equation (64) in thefollowing form:
aP¢P_EaF¢F -Q=0 (65)
F

Thisequation is only truewhenthesolution ¢ isknown, ie, in fact, at some stage in the iterative
computation the known field ¢ is such that

appp - » appp -Q =R’ (66)
F

where R is called the residual at iteration n. As the residual decreases the exact solution is
approached and theerror «" decreases. Sincethereis one Equation (66) for each computational
cell, all theresiduals must decrease for the solution to converge.

In practice, one does not check all theresiduals of all equationseverywhere, but combine them
in away and check the progression of this result. Two different definitions are commonly used:
the Ly and L, norms.

The Ly norm of theresidual is the sum of the absoluteresiduals, i.e.

N . .
|—1=23P¢|!->—EaF¢|JD‘Q{ (67)
j=1 F
whereas the L, normisther.m.s
N 2
L= [an){DEan)IJDQJ (68)
j=1 F
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In both cases N is the number of computational cellsin the domain and the equation to be
solved should be adequately normalised, ie ¢ should represent anondimensional quantity.

Although there is proportionality between the error and the residual, it must be stressed that
such relationship is problem-dependent. Therefore, if a specific residual is synonymous to a
converged solution, within an acceptable error, that does not mean that the same value of the
residual will always garantee the same error. Equation (64) can be written in a more compact
form as

Ap =Q (69)
with ¢ representing the vector of unknowns. By definition, at iteration n theerror is

e"=9" -9 (70)
and theresidual is

R'=A4"-Q (71)

Manipulation of Equations(69-72) gives

R'=A:" (72)

This equation clearly shows that in order to compare residuals from different problems the
order of magnitude of matrix A must be the same in both cases. Amongst other things, the next
sectionillustrates thisissue particularly well: asimilar pipeflow calculation with yield stress and
nonyield stress fluids requires convergence to significantly different residuals in order to attain
results having similar errors.

4. Generalized Newtonian Fluidswith no Yield Stress

Thecalculation of laminar flowswith GNF fluids has similarities to calculations of turbulent
Newtonian flows using turbulence models based on the concept of an eddy viscosity or to
laminar Newtonian flows with temperature-dependent viscosity. In thesethree cases the viscosity
varies in the computational field and the similarity facilitates the adaptation of a turbulent
Newtonian codefor calculations of non-Newtonian laminar flows, as it suffices to eliminate the
eddy viscosity and to include the appropriate expression for the molecular viscosity. Since the
viscosity depends of a shear rate
oy duj

— + (73)
(')Xj 0%

1
2Dij D] and D] =E

the code must include the calculation of y , to be carried out on theoriginal grid.
On a turbulent Newtonian flow code this is usually not necessary as the calculation of y is
aready included as part of turbulence models

When the viscosity constitutive equation is a power law
ol

n(7) = K(r?) 2 (74)
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thereis potential for troublein flowswhere y is very close to zero or attains a value of zero, as

in planes of symmetry or in regions of stagnated flow, because the viscosity becomes

unbounded and the code may diverge or converge with difficulty.

Our experience has shown this problem to be especialy important in the first few iterations,
because the initialisation of the velocity fields to constant values produces zero values of y
everywhere. Therearethreepossible remedies to this problem:

1) To set the viscosity to aconstant largevalue whenever the shear rate y is below a predefined
small value. If the high viscosity is too large and is set up over a large flow region, the
matrices become very stiff and it can takeawhile for the codeto converge to the desired level.
However, if the need to set-up a high viscosity is very localised, as in a plane of symmetry,
thereis usually no problem becausein the nearest cells the viscosity is already well-behaved.
Convergence with power law fluids has usually no problems although it can take a bit longer
than for the similar Newtonian problem. When the degree of shear-thinning isintense, say for
n= 0.2, the required number of iterations can be two to three times those for the equivalent
Newtonian flow simulation;

2) If itisknown in advance that thereare no stagnated flow regions, or that such regions are very
localised, the calculation can be initialised, and some iterations performed, with a constant
viscosity, after which the calculation proceeds with the true variation of viscosity;

3) To substitute the power law by aviscosity model which possesses afirst Newtonian plateau at
low shear rates, followed by a power law region. One such case is the smplified Carreau-

Y asuda model given by
nc-1

) = g L+ (27 %] # (75

The user must be careful to set well the various model parameters: naturally, n.= n and
K= r,OA”C 1 but the selection of 1o and A requires an ideaof the range of flow rates (or
time scales) prevailing in the flow. Equations (74) and (75) are represented in Figure 5; A

represents the reciprocal of the shear rate separating the constant and power law viscosity
regions.

Thus, thevalue of A must be well above the estimated reciprocal of the minimum shear ratein
theflow. A good rule of thumb is A =100/y i - Note that, if y i, =0 asin agiven plane
of symmetry, y should not be calculated at the plane of symmetry, but at the nearest cell
centre. Parameter a of the Carreau model determines the rate at which the viscosity of the
Carreau-Y asuda model changesfrom a power law behaviour to a constant viscosity behaviour
inthevicinity of y =1/A . Themost commonvalue of a used for fitting true viscosity datais
a= 2, for which thesimplified Carreau model is recovered, but a higher value can be used. The
higher the value of a the more sudden thetransition between these two regions will be.
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Figure 5- Theeffect of A on the comparison between a simplified Carreau model (a= 2) and

apower law.

Table |- Comparison between the calculated and theoretical friction factors for the fully-
developed laminar pipe flow of power law and simplified Carreau fluids (Regen =5.261).

Cases f ftheory Error [%)]
Power law: 10 cells 12.314 12.165 1.22
Power law: 20 cells 12.200 12.165 0.29
Power law: 40 cells 12.185 12.165 0.16
Carreau20cellsA=0.1s 12.124 12.165 -0.34
Carreau20 cellsA=1s 12.210 12.165 0.37
Carreau20 cellsA=10s 12.211 12.165 0.38

In Figure 6-a) the normalised theoretical velocity profile for laminar pipe flow of the power
law of Figure5 is compared with predictions made in uniform meshes with different degrees of
refinement. The calculations were performed with the hybrid scheme for the convective term of
the momentum equation. The use of 20 cellsin theradial direction provides avelocity profile
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Figures 6- Velocity profilesin fully-developed laminar pipe flow for a power law fluid with n=
0.6. a) Mesh refinement effect and comparison with theory; b) Comparison between theory and
predictions with the power law and the simplified Carreau model with different values of A (20

radial cellsgrid). All calculations converged to normalised residual of 10-4.
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very close to the theoretical curve and the corresponding values of the Darcy friction factor are
listed and compared in Tablel.

For the same pipeflow, simulations were carried out adopting the Carreau model of Figure 5
in the 20 cell mesh and theresults are compared in Figure 6-b) and Table I. Except for A = 0.1
s, thesimulationswith A = 1 sand A = 10 s predict well the power law velocity profile and the
corresponding friction factor. From the power law calculation, the minimum value of shear rate
was around 0.3 s'1 in the 20 cellsgrid and of 0.095 s1 for the 40 cells grid. Compare these
values with Figure 5 to understand the limitations of the Carreau model in substituting a power
law equation. An objective criteriafor this kind of substitution has been formulated by Escudier
et al [15] in the context of annular flows for various viscosity models. The criteria can be easily
adapted to other flow geometries.

5.Yield Stress Fluids

In contrast to non-yield stress fluids, calculations with yield stress fluids pose severe
problems of convergence and of accuracy. In regions of unyielded fluid the shear rates are zero
and the viscosities become unbounded as given by the Herschel-Bulkley viscosity model of
Equation (67).

. - n=1 ly
n(y)=Ky"r+=L  forzs>zy
(7) Y (76)

y =0 for v < vy

Even when using an adequate modification of theyield stress viscosity model, to be presented
in this section, the viscosities in the unyielded regions are very high and convergence becomes
extremely slow.

The number of iterations required for convergence of a specific flow problem can be 10 to
100 times larger than for the equivalent non-yield stress fluid problem. Two reasons contribute
to this discrepancy:

i) The high viscosities in the unyielded flow regions increase the stiffness of the matrices and
this slows down convergence considerably;

ii) As will be seen in Section 5.4, the required convergence criteria (normalised residua), for a
given level of accuracy, must be 100 to 1000 times smaller than for the equivalent non-yield
stress flow problem.

A first impression of the problemin hand can be grasped by looking at Figure 7 which plots
the theoretical velocity and shear stress profiles for a Bingham plastic flow in a pipe, the case
which will be used for simulations later in the section.

To avoid unbounded viscosities the origina viscoplastic model must be modified following
one of thethreestrategies explained below: the bi-viscosity model of Beverly and Tanner [16], a
modified bi-viscosity model and the model of Papanastasiou[17].
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Figure 7- Normalised velocity and shear stress radia profiles for laminar pipe flow of a
Bingham plastic: K = 0.2 Pas,n=1, vy = 10 Pa,U = 0.1 m/s (see Equation 76). t,, is the full

shear stress at fully-developed flow and U is the bulk velocity.

5.1. The bi-viscosity model

The bi-viscosity model was originally introduced by Beverly and Tanner [16] for Bingham
plasticsbut is easily extended to other fluids, as Soares et a [18] did for the Herschel-Bulkley
fluid. The bi-viscosity modification of the Herschel-Bulkley fluidis

=1 forl)'/lsf/c

A=K ol i 70

where thecritical shear rate y . resultsfrom the intersection of the two expressions and is given
by the non-linear implicit equation

Ny }.’c = K}/Q A% (78)
This equation becomesexplicit for the case of a Bingham plastic , where J is the plastic viscosity
(u =K if n= 1inEquation 74)
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- T
Yo =—F (79)
N — 4

The value of 7, must be high to better represent the original model but, if it is too high,
matrices become too stiff and a converged solution will be difficult to obtain. A good
compromise for Bingham plasticsis 300 < 1, /fu <1000 and this is recommended by Beverly
and Tanner [16], Soares et al [18] and Vradisand Otligen [19]. Another criterion, recommended
by Vradisand Otligen [19],is r, =10007y R which in some cases gives higher values of 1,
than the previous criterion.

The use of such modifications of the original constitutive equation does not provide a solution
to all difficulties. The bi-viscosity model, or any of the other remedies to be presented, is a cure
to the unbounded viscosity issue but convergence is very slow because of the high viscosities
and the strict convergence criteriarequired for accurate solutions. Therefore, before embarking in
a calculation programme the researcher must carefully perform a series of test calculations, for
which therearereliable results, in order to select the adequate range of values of r, for his own
problem. In this preliminary study, of particular concern should be the type of result pretended:
arethey simply the bulk flow characteristics, such as the friction factor or a Nusselt number, for
which the convergence criteria need not be so tight, or is it important to be able to predict very
accurately the flow field with emphasis at separating yielded and unyielded regions?

LY [0
T T
;= ity
Tl ;1
IY- Ty

Y ' y by
Ny — 1 T
Figure 8- Schematic representation of the biviscosity (a) and modified biviscosity (b) models
applied to a Bingham plastic.

Yc =
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5.2. The modified bi-viscosity model

The problemwith the bi-viscosity model isthat it is less straighforward in two aspects:
i) For an Herschel-Bulkley fluid the value of y. must be obtained by solving the nonlinear

Equation (78) and theresult is not known a priori, i., thereis no general expressionfor y;

i) Theyield stress value t occurs (see Figure 8-afor the rheogram of a Bingham plastic) for a
shear rate corresponding to the high viscosity region, i.e the value of shear stress that marks
the separation between yielded and unyielded flow regions pertainsto the high viscosity range
of shear rateswhich should correspond only to an unyielded region. An aternative would be
to consider that the shear stress marking the yield/unyielded transition in the bi-viscosity
model isequal to 7. = KVQ + vy but that would still lead to a non-linear implicit expression
on ¢, an undesirable feature according to (i) and the critical shear stress would now be
larger than theyield stress ¢y, though by avery small amount.

This inconsistency can be resolved by using the modified bi-viscosity model which is given
by

="y f0r|}}|s}}c
v on1 vy —Kyl S (80)

n(y)=Ky" +% for [y[> ye
with y . now given by ;}C - Asregards the value of ), , the recommendation is exactly the

iy
sameas for theoriginal biviscosity model of the previous section.

In the modified bi-viscosity model, represented schematically in Figure 8-b), there is an
intersection of the high viscosity region with an equation which represents a slight modification
of the Herschel-Bulkley equation. The difference between the biviscosity and modified
biviscosity models is small given the range of values for parameter 1, recommended in the
literature, as confirmed in Figure 9, but the use of the modified equation is to be preferred by
those who wish to have no ambiguity concerning the values of y. and the corresponding value
of the shear stress. In Figure 9, a specific rheogram of the Bingham model is compared with that
of the corresponding bi-viscosity, modified bi-viscosity and Papanastasiou models for a set of
parameters. The graph was zoomed in the region of interest and differences between the bi-
viscosity, the Papanastasiou and the original Bingham model cannot be discerned for shear rates
above 0.2 s'1. However, the modified bi-viscosity model is slightly below the Bingham equation
in therange of shear ratesdisplayed. Thedifference is negligible though and diminishes with y .
At low shear ratesthe Papanastasi ou equation, to be explained below, is clearly different from the
two bi-viscosity modelsand approachesthe original Bingham law in a much better way.

92



rheo.pt Pinho, e-rheo.pt, 1 (2001) 63-100 ‘@

5.3. The Papanastasiou model

The Papanastasiou model, represented in Figure 9 with small dashes, can also be adapted to
any yield stress viscosity model and in Equation (81) it is presented as a substitute of the
Herschel-Bulkley equation

n(y) = Kyt +”7Y(1— &™) (81)

The advantage of thismodel isthat itiswritten as asingle equation but its disadvantage is the
capacity to distinguish between yielded and unyielded regions. In a calculation the values of
shear ratewill never be zero, so the user must define a criterion below which the shear rate will
be considered as pertaining to an unyielded region. For the bi-viscosity and modified bi-
viscosity models, that is set by the value of r, in one way or another, whereas in the
Papanastasi ou equation such separation is not inherent to the model.

12
T+ i

10— 7 ——

=. / Bingham. ]
of — -Bi-viscosity
— — - Modified biviscosity [
- / --------- Papanastasiou .
O / 1 1 1 1 1 1 1 1 1 1 1 1 1 1 - 1
0 0.2 0.4 0.6 0.8 Y 1

Figure 9- Comparison between th shear stress versus shear rate of a Bingham plastic (¢ = 0.2
Pas, vy = 10 Pa), with that of the corresponding biviscosity (r, = 60u), modified biviscosity
(7 =60u) and Papanastasiou (m =100) models.

93



rheo.pt Pinho, e-rheo.pt, 1 (2001) 63-100 ‘@

Recommended values for parameter m are m =100 (Papanastasiou [17]) or mBi = 300
(Meuric et a [20]), where the Bingham number (Bi) is defined as Bi = tyDp/(uU) with Dy,
representing the hydraulic diameter. As with the bi-viscosity models, the user is advised to test
the sengitivity of theresults to the numerical value of the parameter m.

The mathematical simplicity of the Papanastasiou model may convince the reader of its
apparent superiority, but that is misleading. Our own experience and of Jo&o [21] have shown
that the Papanastasiou model can take much longer to converge to a solution of equal accuracy
than any of the biviscosity models, at |east when following the recommendations in the literature
for the values of the corresponding parameters.

The interested reader is advised to carefully test the models before embarking on a long
research programme, specifically looking at convergence rates and solution accuracy for the
particular problem under investigation.

5.4. Comparison of models

To compare the performance of the various modifications of the yield stress models
calculations were made of fully-developed laminar pipe flow of the Bingham plastic represented
in Figure 9. Thebulk velocity was0.1 m/s and the pipe diameter was 10 mm. Calculations were
carried out with the bi-viscosity, the modified bi-viscosity and Papanastasiou models, for values
of the parameters encompassing the recomended ranges, in three different uniform meshes
having 10, 20 and 40 cellsin the radial direction. Due to its symmetry, the flow domain went
from theaxisto thewall.

This assessment is initiated by looking at the convergence criterion. It is worth mentioning
that all the calculations reportedin Section4 were carried out until the normalised residual in all
equations fell below 1 x1074. This is a usua vaue for Newtonian and nonyield stress
Generalised Newtonian fluid calculations and provides the kind of agreement and accuracy
shown in Figure 6 and Table I. However, thispictureis totally different for yield stress fluids.

In aseriesof calculations with the modified bi-viscosity model the effect of the convergence
criterion on theresults was assessed and theresults are shown in theradial profiles of Figure 10
andin Table I1. The results for aresidual of 1x10™* are poor and a normalised residual of at
least 1 x10~° was required for an accurate result (differences below 1%). Even with this small
residual, and also for the 1x1077 case, the values of the velocity in the plug region are
overpredicted by 0.6%, a difference in excess to that seen in Figure 6-a) for a power law fluid
calculated with the same mesh. For thetwo lower residualsthe velocity datain the central region
of Figure 10 was underpredicted. The corresponding friction factors listed in Table 11 confirm
the picture: for anormalised residual of 1 x10™* the error is 20% and to be within 0.5% of the
theoretical value aresidual of at least 1 x10™° had to be enforced.
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Table I1- Comparison between the theoretical and calculated friction factors of Figure 10.

Normalised residual f f -theoretical error [%]
1E-4 7.007 5.840 20.0
1E-5 6.121 5.840 4.8
1E-6 5.846 5.840 0.1
1E-7 5.819 5.840 -0.36

This smple comparison shows the need for tight convergence criteria (at least 100 times
stricter than for nonyield stress fluids) when performing numerical calculations with yield stress
fluids.

Next, using a normalised residual of 1E-7, a mesh refinement investigation was carried out
with the modified bi-viscosity model. The normalised radial velocity profiles are presented in
Figure 11 and the corresponding friction factorsare compared in Table 1.
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Figure 10- Radial velocity profilesin apipefor aBingham plastic. In all cases the mesh had 20
cellsin theradial direction.

Thereare obvious improvements as the mesh is refined, but this effect is not as large as was
seen with power law fluidsin Section4 andthis difference is dueto the smaller residual. Had we
done the mesh refinements with a higher residual, the difference would have been larger. For
instance, even for a mesh having 10 radia cellsthe predictions with aresidua of 1E-7 are far
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more accurate than with 20 cellsand a residual of 1E-5. This clearly shows that for yield stress
fluids it is at least as important to converge the calculations to a very small residual as it is to
refinethe mesh. For the other two models similar variations would be observed.
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Figure 11- Radia velocity profiles in a pipe for a Bingham plastic. Mesh refinement effect.
Normalisedresidual = 1E-7.

Table I 11- Comparison between the theoretical and calculated friction factors of Figure 11.

Mesh f f theoretical error [%]
10 cells 5.805 5.840 -0.60
20 cells 5.819 5.840 -0.36
40 cells 5.822 5.840 -0.31

The two bi-viscosity models are now compared in Figures 12-a and -b) and in Table IV: in
Figure 12-a) the high viscosity wasy, =1000u, whereas in Figure 12-b) 7, =300u. The
residualsin all caseswere 1 x10™7 and differencesin thevelocity profileare not distinguishable.
In terms of the friction factors listed in Table IV the differences between the two methods are
very small less than 0.1%. In this case, using a criterion of 1, / u =1000 provides only a
marginally better prediction
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Figure 12- Radia velocity profilesin a pipe for a Bingham plastic. Mesh with 20 radial cells
and normalised residual of 1E-7. Comparison between the Modified biviscosity and biviscosity
models. a) #, / u =1000; b) #, / u =300.
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Table V- Comparison between the theoretical and calculated friction factors of Figure 12.

Model f f theoretical error [%]
Biviscosity 1, / u = 1000 5.814 5.840 -0.45
Modified Biviscosity 5.819 5.840 -0.36
Biviscosity rj / u =300 5.808 5.840 -0.55
Modified Biviscosity 5.817 5.840 -0.39

Table V- Comparison between thetheoretical and calculated friction factors of Figure 13.

Model f f theoretical error [%0]
Biviscosity 5.814 5.840 -0.45
Modified Biviscosity 5.819 5.840 -0.36
Papanastasiou 5.829 5.840 -0.19

Similar findings were reached by other authors: Hammad et al [22] used the bi-viscosity
modification for laminar sudden expansion calculations and report similar difficulties and
experiences when dealing with yield stress fluids.

Finally, in Figure 13 and Table V the Papanastasiou model is compared with the two
biviscosity models. For the Papanastasiou model m was set to 100 and for the two biviscosity
models 7, / u = 1000 was used. For the Papanastasiou model both the velocity profile in the
unyielded region and thefriction factor are closer to the theoretical values than the data from the
other two models, aresult which is not surprising given the better approximation of the Bingham
equation seen in Figure 9. However, the calculation with the Papanastasiou model took
approximately twice as long as those with the two biviscosity models. This was expected given
that the Papanastasiou model approachesbetter the original Bingham law, i.e., it results in higher
viscosities in the unyielded region than the bi-viscosity eguations, hence leading to stiffer
matrices more difficult to converge. A decrease in the value of m could certainly provide a
quicker convergence at the cost of lower accuracy. It is up to the user to decide what is more
important in a particular solution and the concessions that can be made to the two conflicting
parts of the problem: the accuracy of the solution versusthe convergence.

To conclude this section, itis clear from these comparisons that the major factor affecting the
quality of the predictions is the convergence criteria: the normalised residud must be set to a
much lower value than is usual for Newtonian and nonyield stress Generalised Newtonian
calculations. Itis also clear from these comparisons that the quality of the predictions for yield
stress fluids is not as good as those obtained for nonyield stress fluids because the viscosity
model must be modified. Once their parameters have been well selected, the two bi-viscosity
model s presented for substituting the original Herschel-Bulkley equation provide similar results
and accuracy. The Papanastasiou model tends to be marginally more accurate but its
convergenceis slower.
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Figure 13- Radia velocity profilesin a pipe for a Bingham plastic. Mesh with 20 radia cells
and normalised residual of 1E-7.20 cells. Comparison between the Modified biviscosity,
biviscosity and Papanastasiou models: 1, / u = 1000 and m= 100.
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