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Abstract
In the first paper of this series (Pinho and Oliveira, e-rheo.pt 1 (2001) 1) a brief history on

the use of finite-volumes in the context of computational rheology was presented. In the same
work, the relevant conservation equations and the constitutive equations, of stress-explicit and
stress-implicit types, for purely viscous and viscoelastic fluids respectively, were presented.

This paper is the second in the series and in it, the basics of the finite-volume methodology is
outlined. We quickly review the method starting with diffusion and convection of a general
quantity , such as the thermal energy, then the specificities of solving the momentum equation
and of coupling pressure and velocity fields are dealt with in the context of staggered meshes.
The problems encountered in the discretization of the convective terms are also discussed and the
specific issues related to the calculation of variable viscosity, and especially of yield stress,
typical of some non-Newtonian fluids, are also addressed. To address the problem of
unbounded viscosity in yield stress fluids, modifications of the yield stress law by the bi-
viscosity, modified bi-viscosity and Papanastasiou models are suggested and the methods are
compared.

1. Introduction

We need to start from the very beginning for the benefit of the newcomer but, since the

fundamentals of the finite-volume method are well established and extensively explained in such

reference books as Patankar [1], Versteeg and Malalasekera [2] and Ferziger and Perić  [3] we

do so quickly and give a more detailed presentation on issues which are less well explained or

absent in those references and on topics specific to non-Newtonian fluids.

As our main concern is to present a series of papers that are pedagogically sound we present

here the finite-volume method following the classical approach of using staggered grids and

orthogonal coordinates. In one of the next papers the generalisation of the method to non-

orthogonal coordinates and colocated grids will be presented.

This paper is organised as follows: the set of equations to be solved for a non-Newtonian

stress-explicit fluid is written down, then the finite-volume methodology is explained in the

classical way in order to obtain the solution of the conservation equation for a general quantity

: first, the equation for pure diffusion with source terms, then the equation for convection-

diffusion. Various discretization schemes will be discussed for convection. This will be followed

by the solution of the momentum equation and the explanation of the strategy to ensure coupling
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between the pressure and the velocity fields via staggered meshes. From Section 4 to the end the

paper discusses issue s involving the solution of purely viscous non-Newtonian fluids and their

specific difficulties, with emphasis on handling yield stress fluids. Some results of pipe flow

calculations are presented.

2. Fundamental equations

The equations to be solved and the coordinate system were presented in the first paper (Pinho

and Oliveira [4]), but here we briefly remember them for the sake of completeness when the

model is the stress-explicit Generalised Newtonian Fluid (GNF). The coordinate system is the

Cartesian system xi  and the equations are:

- conservation of mass for incompressible fluids (non-Newtonian fluids are liquids)
ui

xi
0 (1)

where ui  represents the velocity field;

- conservation of linear momentum

ui

t

u jui

xj

p

xi
gi

ij

x j
(2)

where t is the time,  is the fluid density, p is the pressure field and gi  is the aceleration of

gravity;

- and the differential constitutive equation, here an explicit expression for the ij component of the

stress tensor, ij

ij ˙ ui

x j

u j

xi

2

3
˙ uk

xk
ij     (3)

The second term on the right-hand-side vanishes according to continuity. However, especially

when dealing with viscoelastic fluids, there are numerical advantages in keeping this term. In this

paper, and henceforth, it will be dropped.

The viscosity function ˙  can be given by any of the models presented in the previous

paper. Alternatively, we can also use a viscoelastic model as a constitutive equation but, since we

are only interested on explicit models on the stress ij , the choice is limited. One such example

is the Criminale- Eriksen-Filbey constitutive equation

  
ij 2 ˙ Dij 4

1

2 1 ˙ 2 ˙ Dik Dkj 1 ˙ 
DDij

Dt
(4-a)

where   D Dt  is the Jaumann derivative

  

DDij

Dt

Dij

t
uk

Dij

xk
ik Dkj Dik kj (4-b)

ij  the vorticity tensor is
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ij
1

2

ui

xj

u j

xi
(4-c)

and 1  and 2  represent the first and second normal stress difference coefficients,

respectively. Other stress-explicit constitutive equations are of integral type but a discussion on

these in postponed to the future. In the following we concentrate on dealing with GNF fluids

(Eq. 3).

When trying to solve equations (1) and (2) for GNF fluids, in the context of a finite-volume

method, there are two possibilities:

i) The explicit constitutive equation is substituted into the momentum equation (2), thus

eliminating variable ij . This results in an equation which is similar to that for Newtonian

fluids with variable viscosity, as appears in turbulent Newtonian flows or in laminar

Newtonian flows with temperature-dependent viscosity. Equation (2) becomes

ui

t

u jui

x j

p

xi
gi xj

˙ ui

x j

u j

xi
(5)

and, as with Newtonian fluids, it is advantageous to rearrange the viscous stress terms as

x j

˙ ui

xj

u j

xi x j

˙ ui

x j x j

˙ 
u j

xi
(6)

so that we have finally

ui

t

u jui

x j xj

˙ ui

x j

p

xi
gi x j

˙ 
u j

xi
(7)

The momentum equation (7) is written here in the so-called strong formulation which is

advantageous to finite-volumes because it automatically ensures global momentum

conservation in the calculation methods and also with all the normal diffusion terms appearing

on the left-hand-side  and the cross diffusion terms on the right-hand-side (rhs). As usual in

the specialised literature, those terms on the left-hand-side of a conservation equation will be

dealt with implicitly whereas those appearing on the right-hand-side are handled explicitly.

The actual meaning of this will become clear at a later stage.

ii) Alternatively, the constitutive equation (3) is kept separately, i.e, there will be an equation on
the stress ij  to be solved in each case. In this case, and for reasons of stability that will

become clear in a future paper on stress-implicit viscoelastic fluids of the differential type, it is

advantageous to add and subtract a diffusion term and to rewrite the momentum equation (2)

as

ui

t

u jui

x j xj

˙ ui

x j

p

xi
gi

ij

x j xj

˙ ui

xj
(8)
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Again, those terms on the left-hand-side will be handled implicitly whereas those on the right-

hand-side will be solved explicitly.

The advantage of using equation (8) is its generality, i.e, the momentum equation is now

independent of the constitutive model adopted. However, there are added diffusion terms in

the momentum equation for the sake of convergence stability and these need to be adequately

handled, especially when doing transient calculations, to avoid spurious effects.

On the other hand, if our aim is to solve purely viscous fluids it is worth to stay with the

first strategy which leads to the same code used for solving turbulent Newtonian flows or

non-isothermal laminar flows with temperature-dependent properties, where the turbulent and

laminar viscosities vary throughout the calculation domain. So, the adaptation of such codes

to deal with Generalised Newtonian fluids is straighforward.

Often, we also need to solve the internal energy equation (  would be the temperature) or an

equation of conservation for a chemical species (less frequent in non-Newtonian calculations)

so we adopt the general form of the diffusion-convection equation which is written, in the strong

formulation, as (see Section 2.3 of Pinho and Oliveira [4])

t xi
ui xi xi

S (9)

Henceforth, we will be dealing with steady flows so we drop the first term on the left-hand-side.

Due account of unsteady flows will be addressed in a future paper.

Equation (9) is very general and is not exclusively for scalar quantities: Equations (7) and (8)

have the same form provided u j  and S accounts for everything standing on the right-hand-

side. So, conservation of mass, momentum, energy, and also the constitutive equation for

viscoelastic fluids (as will be seen in a future paper), can all be written in the form of Equation

(9) and it is with this equation that we describe the finite-volume method in the next section.

3. The Finite-Volume Methodology
In this method, the first step is the integration of a generic transport equation for quantity 

over a three-dimensional control volume V and there is here no approximation whatsoever

xi
ui dV

V
xi xi

dV

V

S dV

V

(10)

Next, we apply Gauss' divergence theorem to the left-hand-side of Equation (10), that is
i

xi
dV

V

inidA

A

 (11)

where ni  is the unit vector normal to the surface element dA. This theorem transforms volume

integrals of divergence terms into surface integrals of fluxes all around the control volume,

Gauss' theorem leads to the following integrated conservation equation
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ni ui dA

A

ni xi
dA

A

S dV

V

 (12)

x,1

y,2

a) b)

P

N

S

W
E

f+=ef-=w

s

n

Figure 1- Two-dimensional control volumes in an orthogonal grid. a) General grid; b) A control

volume and its neighbours.

In general, this equation cannot be solved analytically and a numerical solution will require

that we need transform it into an algebraic equation. This transformation is called the

discretization; it requires approximations to evaluete integrals and to do interpolations. For

simplicity, we shall illustrate the procedure using the Cartesian two-dimensional grid represented

in Figure 1 instead of the actual three-dimensional grid. For the method explained here the mesh

must be orthogonal, not necessarily Cartesian, and the treatment of the generalised coordinates is

left to a future paper.

Figure 1-a) shows the grid mapping of a specific calculation domain in the x-y plane

representing, for instance, flow in and out of a box. Figure 1-b) isolates a computational

molecule made of a control volume surrounded by its nearest neighbours, and presents the

corresponding notation. The central control volume is represented by its node P, where the fluid

and flow quantities are stored and its neighbour nodes are denoted by W, E, S, N for west, east,

south and north cells, respectively. In the z-direction, not shown here, there are the B (bottom)

and T (top) cells. Nodes are always represented by capital letters and the faces of the control

volume P adjacent to a given neighbour cell F= W, E, S, N is identified by the corresponding

small letter f= w, e, s, n.

In discretizing Equation (12) the following approximations are applied:

i) The integral of g is approximated in terms of the values of g at several locations on the cell

face. The simplest approximation adopted here is the midpoint rule, which is of second order,

whereby g  is the value at the center of the cell face (represented by crosses in Figure 1-b), i.e.
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gdA

A f

g f A f (13)

In this integral g f  may represent a convection flux ni ui f  or a diffusion flux

ni xi f
. It is noted that other higher-order approximations could be applied but they

lead to an integration rule requiring more points on the cell face.
ii) the cell face values of the function g f  are approximated in terms of the nodal values gF . Also

here, a second order accurate scheme will be used to calculate the cell face values of any

function g from their values at central nodes.

3.1- Steady-state diffusion

We start the discretization of Equation (12) by looking at one-dimensional diffusion (along

direction x) for which the equation to be solved simplifies to
d

dx

d

dx
dV

V

S dV
V

      - nx
d

dx
dA

A

S dV
V

(14)

With the above two approximations, the left- and right-handd-side terms become

 nx
d

dx
dA

A

A
d

dx e
A

d

dx w
(15-a)

S dV
V

S V (15-b)

with the overbar denoting here the average value over the control volume P.

Equation (15-a) indicates that the gradients of  are to be evaluated at the center of faces e

and w and this requires further assumptions, this time for the variation of fluid and flow

properties between nodal points. For the flow properties the simplest assumption is a linear

variation which is called central differencing, but this is not always an adequate approximation

for fluid properties as will be shown in Section 3.3. For an uniform grid the central difference

approximation leads to

A
d

dx e
e Ae

E P

xEP
(16)

and similarly for diffusion fluxes along the other directions. In Equation (16) xEP  represents

the distance between nodes E and P along x. The source term S  may be a function of  and in

this case it should be linearised as (Patankar, 1980):
S V Su SP P (17)

Grouping all terms, we arrive at the following discretized equation for one-dimensional

steady-state diffusion

eAe
E P

xEP
wAw

P W

xPW
Su SP P (18)
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which can be rearranged into

e Ae

xPE

wAw

xWP
SP P

wAw

xWP
W

eAe

xPE
E Su (19)

Equation (19) is often written in the canonical form
aP P aW W aE E Su (20-a)

with coefficients

aW
wAw

xWP
;    aE

eAe

xPE
;    aP aE aW SP (20-b)

We can generalise Equation (20-a) to a three-dimensional problem

aP P aF F
F 1

6
Su (21-a)

with coefficients

aF
f Af

xFP
; aP aF

F 1

6
SP (21-b)

where F runs over the 6 near-neighbour nodes W, E, S, N, B and T and the small letters

represent the corresponding cell-faces (adjacent to cells F and P). P  and F  represent the

unknown values of  that need to be numerically determined.

As we can see, the diffusion term on the left-hand-side of the conservation Equation (14) gave

rise to the terms with unknowns P  and F , i.e, terms that are dealt with implicitly. On the other

hand, if Su  depends on P  and F  in any way, for the solution of Equation (20) or (21) Su  is

assumed known, either because the field  was initialised to allow the determination of Su  or, in

an iterative process, the field  used to calculate Su  is the solution from the previous iteration.

3.2- Boundary-conditions

Solution of Equation (21) requires boundary conditions, as in the original differential

equations, which are usually set as values of , or its flux at the boundaries. If a particular

boundary condition provides the value of , then we know  at specific cell faces located at the
boundary f . Then, the flux of Equation (16) for the cell P closest to the border (which is the

west boundary in the example in Figure 2) uses the cell face value f  and is given by

A
d

dx e
e Ae

e P

xeP
(22)

i.e., E  is no longer an unknown for this flux.

If the boundary condition provides ˙ Q  instead, Equation (16) is substituted by Equation (22)

with e  given by

e P

˙ Q xeP

e Ae
(23)
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So, in any case, a value of  east of cell P, either E  or P , is no longer an unknown. The

two typical boundary conditions are illustrated in Figure 2 for a cell P with a boundary in its

west face.

The boundary conditions have an immediate consequence on writing Equation (21) at a

boundary. The discretised conservation equation at the boundary control volume P still obeys the

same general form but, since  is now known at the boundary, the corresponding coefficient

aF aFB  (subscript FB  stands for neighbour cell at the boundary domain) is set to zero with

the corresponding algebraic modification carried over to the source term, i.e., the source term at a
boundary cell is now calculated as Su,B Su aFB FB .

1 2 3
A

x xx/2

a)
1 2 3

out,h

x x

b)

x/2

A

q
.

q̇ h A out A out
q̇

h

Figure 2- Examples of boundary conditions: a) Value of  at boundary; b) Flux ˙ q  of  at

boundary.

In Figure 2-a)  is known at the west face of the one-dimensional domain of constant cross-

section area A. The equation for the control volume centered in node P= 1 is
A

x

A

x / 2 P
A

x / 2 A
A

x E (24)

which is written in canonical form with coefficients

aE
A

x
; aW 0; SP

2 A

x
 and Su

2 A

x A (25)

Handling the flux boundary condition of Figure 2-b) is similar.

3.3- Fluid properties at interfaces

Whereas the variation of flow properties across cell faces is adequately calculated using linear

interpolation and providing secon-order accuracy, the calculation of fluid properties may have to

follow a different strategy whenever there are large variations in properties across the cell face. A

linear variation is physically incorrect and fails miserably as is well illustrated by the problem of

heat conduction across an interface of materials of very different thermal conductivities. The

sudden change in this property has similarities, in the context of non-Newtonian fluids, to large

changes in viscosity for strongly shear-thinning fluids and especially yield stress fluids: in the

latter case, the issue of determining the correct viscosity  at the interface between the yielded and

the plug regions of yield stress fluid flows becomes especially important and it is fundamental to

use the strategy explained below for accurate predictions.
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The solution to this problem is also described in the classical literature on finite-volumes and

is easy to understand by analogy with the one-dimensional heat conduction across interfaces of

solid materials. The objective is to obtain the correct flux of , say the heat flux, so the rule to
calculate the fluid property f  at interface f is the same as that for obtaining the equivalent

thermal conductivity of two consecutive slabs of different thermal conductivities, i.e.

f
1 L f

P

L f

F

1

(26)

where L f  is an interpolation factor defined by

L f
x fF

xPF
(27)

3.4- Steady-state convection and diffusion

Now, we extend the previous analysis of Equation (12) by including the convection term but

continue to use a one-dimensional equation for simplicity. The 1-D conservation equation for 

becomes

x
u

x x
S (28)

The unknown is still , and the flow field u satisfies the continuity and momentum equations.

On Equation (28) the finite-volume method is applied: the equation is volume-integrated, Gauss'

theorem is applied and a discretization is performed leading to

uA e uA w A
d

dx e
A

d

dx w
S V  (29)

The diffusion and source terms are handled as in Section 3.1. It is useful at this stage to

introduce the concept of diffusion conductance D x . Regarding the convection terms, the

convective flux is defined as F u  and now we rewrite Equation (29) as

FeAe e FwAw w De Ae E P DwAw P W Su SP P (30)

As we can see, whereas diffusion directly gave rise to values of  at the nodes ( P  and F ),
convection gave values of  at faces ( f ). These are unknowns that need to be determined as a

function of nodal values via an interpolation function, which os adequate for convection. The

obvious choice is the linear interpolation of the neighbour nodal values, already used for

diffusion, which is called the central differencing scheme (CDS). It is a second order scheme

and is able to provide accurate solutions, but has the disadvantage of being unstable when
convective fluxes are supercritical, i.e., when Ff D f 2 . It brings us to the issues of stability,

accuracy and other properties of discretization schemes. Although this is a very important matter,

we do not spend much time on it as there are no specific problems related to GNF or viscoelastic

stress-explicit constitutive equations. Therefore, the reader interested in details should consult the

works of Patankar [1], Versteeg and Malalasekera [2] and Ferziger and Perić  [3].
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3.4.1. Properties of discretisation shemes

Five properties are discussed here: consistency, stability, convergence, boundedness and

transportiveness.

Consistency requires the truncation error of the discretization method to become zero as the

mesh is refined. Consistency also requires that, in the balance of any quantity over a CV, the flux

calculated at a cell face to be the same as the flux at the same face viewed from the adjacent

control volume. All schemes used here and in the future papers in this series, and those we

recommend, are formulated to obey consistency.

Stability requires the method not to amplify any disturbance that appears in the course of the

calculation. If stable the method does not diverge and, for time-dependent problems, the solution

of the algebraic set of equations is bounded when the differential equation is bounded.

The numerical method is convergent when the solution of the set of algebraic equations tends

to the solution of the original differential equations with mesh refinement. As this is a difficult

property to demonstrate, the user is usually requested to validate the numerical method against

various known and relevant experimental, numerical or analytical solutions. With consistent,

stable and convergent schemes, mesh refinement provides grid-independent results in the course

of the validation procedure.

As mentioned in Section 2, one of the advantages of finite-volumes is that by writing the

conservation equations in a strong formulation, as they have been throughout the paper,

conservation of the quantities is guaranteed for each individual cell and the overall calculation

domain. This advantage can not be overstated and its strength has fostered the appearance of

hybrid finite-volume/ finite-element methods, as in Wapperom and Webster [5].

The numerical solution of the algebraic equations should be bounded within some limits

which usually have a physical origin. For instance, in the absence of sources or sinks of thermal

energy then its value should be bounded by the values imposed by the boundary conditions.

Boundedness is guaranteed by some first-order discretisation and interpolation methods and by

appropriately formulating and bounding higher-order methods. Lack of boundedness is also

usually associated with stability and convergence problems and consequently, unbounded

methods should be avoided. A sufficient condition for a convergent iterative method is to have
aF

F

aP

1 at all nodes           

1 at one node at least
(31)

Eq. (31) results in matrices which are diagonally dominant and we must ensure that all

coefficients aP, aF  of the discretised equations have the same sign, usually positive. The reader

should note that the definition embodied in Equation (21) guarantees positive coefficients for aF

and for aP provided SP 0, which is the case.
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The discretization of the differential equations should be accurate using methods that are at

least of second order accuracy, ie., the progression of the error decrease with mesh refinement

should at least be quadratic to reduce the need for highly refined meshes which become

excessively expensive in computational resources.

Due to the presence of convection, a given quantity  that is locally produced will not spread

equally in all directions, a situation that would occur in pure diffusion. The measure of the

relative strengths of diffusion and convection is the Peclet number

Pe
F

D
(32)

In pure diffusion the Peclet number is equal to zero and  will spread equally in all

directions, whereas for a Peclet number of infinity  will be transported exclusively in the

direction of convection, away from its source. It is important for any interpolation scheme for

convection to be able to reproduce, as faithfully as possible, the ratio of these two strengths.

3.4.2. Discretization schemes for convection

 For simplicity uniform meshes will be considered in the following description of
discretization schemes. In Equation (30) the cell face values f  must be calculated from nodal

values so that the resulting equation is written in the canonical form of Equation (21).

3.4.2.1- Central Differencing Scheme (CDS)
Using linear interpolation, also called CDS, to determine the cell face values f  from the

adjacent nodal values P  and F , Equation (30) is written in the canonical form of Equation

(21) with coefficients a assuming the form

aw Dw
Fw

2
; ae De

Fe

2
; aP aW aE Fe Fw (33)

In one-dimensional flow continuity ensures the last term of aP to be zero, so aP is just the

sum of the neighbour coefficients. These neighbour coefficients can only be positive if Pe < 2,

otherwise CDS becomes unstable. When convection is too strong in comparison to diffusion

( Pe 2), CDS violates boundedness. It can also be seen that CDS does not possess
transportiveness as it brings into f  a diffusive behaviour, i.e. CDS does not obey the

transportiveness property but it has the advantage of being second order accurate.

3.4.2.2- Upwind Differencing Scheme (UDS)

An alternative method, which is unconditionally stable and obeys transportiveness, is the
upwind scheme (UDS). It basically states that if the flow is from West to East, then w W
and e P , i.e, the cell face value f  takes the value of  at the node immediately upstream.

With UDS adopted for convection, the coefficients a of the canonical equation (21-a) take the

form
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aw Dw max Fw,0 ; ae De max 0, Fe ; aP aW aE Fe Fw (34)

The coefficients aP and aF  are now always positive and this feature makes the method

unconditionally stable. However, the corresponding Taylor series expansion and truncation

shows us that the method is only first-order accurate. UDS also suffers from what is called false

(or numerical) diffusion which is the smearing of transported properties, as happens in diffusion

dominated processes, when the direction of the flow is oblique to the mesh used.

3.4.2.3- The Hybrid Differencing Scheme (HDS)

The hybrid differencing scheme (HDS) is a combination of UDS and CDS and was derived

by Spalding [6]. The idea was to combine the advantages of UDS and CDS, but since its

accuracy remains of first order, the scheme lost popularity in the late eighties when issues of

accuracy became very important. With HDS the a coefficients become

aw max Fw , Dw
Fw

2
,0 ; ae max Fe, De

Fe

2
, 0 ; aP aW aE Fe Fw (35)

Equation (35) shows that HDS switches from CDS to UDS whenever the absolute value of

the Peclet number exceeds 2. If convection is strong, HDS becomes the upwind scheme and this

explains the accuracy of the method which tends to that of the poorest scheme used unless the

mesh is refined to reduce the Peclet number.

An alternative to HDS is the power law scheme. It is based on the exact solution of the one-

dimensional convection-diffusion problem (Patankar [1]), but again the method is first-order

accurate and is very seldom used.

3.4.2.4- Linear Upwind Differencing Scheme (LUDS)

This scheme has the advantage of second order accuracy, obeys transportiveness by bringing

some upwinding, but is not unconditionally stable. In one-dimensional flow the cell face value

f  is evaluated by linear extrapolation from the two closest upstream nodal values along the

same coordinate (see Figure 3). So, for e  we have

e
P P W 1 Lw ,      if    Fe 0

E E EE 1 Lee ,     if    Fe 0
(36)

To build the coefficients a for LUDS the notation must be further extended according to

Figure 1. When referring to a given cell P, and for any given direction, say direction x or 1, cell

faces f- and f+ refer to the faces on the negative (west, south, bottom) and positive (east, north,

top) sides of P, respectively. Then, for a given cell face (f- or f+) there are two different

interpolation factors L f  and L f  which are defined as

L f

l fP

l fP l fF
 and L f 1 L f (37)
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PW E EEWW w eww ee

e

w

flow direction

Figure 3- Representation of the linear upwind scheme.

The novelty of LUDS is that it brings the need to account not only for the near-neighbours

but also for the far neighbours. EE represents the node to the east of node E and ee refers to the

cell face adjacent to E and EE (see Figure 3). Consequently, for the one-dimensional problem

there are now four aF  coefficients plus the central coefficient aP:

aW Dw max Fw,0 2 Lww max 0,Fe 1 Lw

aE De max 0, Fe 1 Lee max 0, Fw Le

aWW max Fw ,0 1 Lww

aEE max 0, Fe Lee

aP aW aE aEE aWW (38 a,b,c,d,e)

However, for reasons of stability the far-neighbour nodal terms aFF FF  are not considered

as unknowns, i.e., they are handled explicitly y being calculated on the basis of the solution of

the previous iteration. Since the far-neighbour coefficients can be negative, the total convective

term is not handled as in the case of UDS but is split as in Equation (39)
 Ff f aF P F

F
aFF P FF

FF
(39)

Now, the first term on the right-hand-side is treated implicitly, i.e, P  and F  will be unknowns

in each iteration and so are kept on the left-hand-side of Equation (30) whereas the second term

on the right-hand-side is treated explicitly, i.e., it goes to the right-hand-side of the conservation
Equation (30) to be included as part of the source term (contribution SuFF

 and SpFF
). In doing

so the term is linearised, i.e., the term will be written as
Su SP P aFF FF P

FF
aFF FF

FF
aFF P

FF
(40)

Then, the linearised contribution term SP P  goes to the left-hand-side of the conservation

Equation (30) and this explains why aP includes the far-neighbour contributions aFF , but

aFF FF  are not considered unknowns and were thus moved to the right-hand-side of Equation

(30).
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3.4.2.5- The Deferred Correction

As explained above, due to stability issues the implementation of LUDS differs from the rules

set out in previous sections. Similarly, the use of CDS was seen to lead also to stability problems

when the Peclet number exceeded 2. Other discretization schemes, such as the second order

accurate quadratic upwind (QUICK), obey transportiveness and suffer from stability issues

unless the convective terms are split into implicit and explicit terms as was done for LUDS.

Clearly, a more systematic approach is required to address this issue and one such approach

is called the deferred correction. For this purpose it is important to recall that the first order UDS

scheme has the enormous advantage of being unconditionally stable. The deferred correction is a

general method that combines the unconditional stability of UDS with the higher accuracy of

conditionally stable schemes, at a price of slower convergence. The starting point of the deferred

correction is the algebraic Equation (30) which is here repeated.
FeAe e FwAw w De Ae E P DwAw P W Su SP P

One aims at determining face values f  of the convective terms on the left hand side as a

function of nodal values F , P  using some interpolating scheme, which we take in this

example to be CDS. First, we add and subtract similar convective terms to the right hand side of

the equation and rearrange it so that it becomes
FeAe e FwAw w UDS De Ae E P DwAw P W Su SP P

FeAe e FwAw w UDS Fe Ae e FwAw w CDS

(41)

As we can see in Equation (41), the convective term on the left hand side is processed using

UDS and the term is treated implicitly to benefit from the unconditional stability of the upwind

scheme. On the right hand side of Equation (41) the added and subtracted convective terms are

processed with UDS, and the second order accurate interpolating scheme CDS. Both terms on

the right-hand-side become part of the source term and are treated explicitly, i.e., they are

calculated using nodal values from the previous iteration.

As the solution is approached the values of field  from consecutive iterations tend to be

equal, so that both UDS terms cancel and only the convective term interpolated with CDS or any

other high accuracy scheme remains.

3.4.2.6- Other High-Order Schemes

Other interpolation schemes for convection are the quadratic upwind scheme (QUICK) of

Leonard [7], which uses two nodal values upstream of the cell face and one downstream, or

schemes that combine in a special way the expressions from QUICK, CDS, UDS which are

called high-resolution schemes (Harten [8]). High-resolution schemes combine advantages of

various schemes to ensure accuracy, stability and boundedness. The application of high-

resolution schemes to the prediction of viscoelastic fluid flows in finite volumes is quite recent

and examples are the works of Alves et al [9,10].
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Interpolation schemes of third and higher order can also be used, but deeper changes must be

introduced to the various approximations in the whole method if one is to benefit clearly in the

results. The approximations used in the discretization of the integrated differential equation in

Section 3 are of second order and they should be upgraded to be combined with higher order

interpolation schemes, so that the results reflect the improved accuracy. Increasing only the order

of accuracy of the interpolating schemes for convection above 2, without improvements in the

other approximations, wil have a minimum impact on the final results but an increase in

computational cost.

3.5- Solution of the Momentum Equation in Steady Flows

So far, a conservation equation for a general quantity  has been addressed and the flow field

has been assumed known. However, in a real CFD problem the flow field is often unknown and
the momentum Equation (2) must also be solved, i.e.,  can also be ui . Besides, the momentum

equation for ui  also depends of the other components of the velocity vector ui (i j ), i.e., the

momentum equations are non-linear whereas previously the equation for  was linear. The non-

linearity issue is addressed by solving the momentum equations sequentially and by assuming

that, for each component of the velocity the other components are known.

A second problem of solving the flow field results from an unknown pressure field and the

absence of a pressure equation. If the pressure gradient is known, solution of the momentum

equation provides the velocity field in the same way as the conservation equation for .

However, in general the pressure field is unknown.

In compressible flows the continuity equation can be solved to determine the fluid density,

then the thermodynamic constitutive equation determines the pressure and so the solution of the

momentum equation follows the above guidelines for solving .

If the flow is incompressible the fluid density is constant and is not related to pressure.

Although there are four unknowns for four equations (the three momentum equations plus the

continuity equation) there is no explicit equation for the pressure. However, continuity imposes a

constraint because only a correct pressure field will result in a velocity field that obeys both the

momentum and continuity equations.

The solution to this problem is an iterative algorithm where the continuity equation is

transformed into an equation for the pressure field. Here, we will present the original SIMPLE

strategy of Patankar and Spalding [11] and two of its improvements, SIMPLER and SIMPLEC.

There is yet another problem with the momentum equation. Let us consider again a one-

dimensional flow in the x-direction of Figure 1-b). Integrating Equation (2), following the finite-

volume guidelines, with a uniform grid for simplicity, and considering linear interpolation for the

pressure, the pressure gradient term becomes
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p

x

pe pw

xew

pE pP

2

pP pW

2
xew

pE pW

2 xew
(42)

According to Equation (42) the pressure gradient centered on node P is independent of pP

and is calculated with a coarser grid. The same result is obtained in the other two directions, so

that, for instance, an unphysical situation of a checkerboard field pattern of pressure can result in

the same velocity field as a well-behaved zero pressure gradient field. This lack of coupling

between the velocity and pressure fields requires a special remedy which was devised by Harlow

and Welch [12]: the use of grids for the velocity components which are staggered in relation to

the original pressure (or scalar) grid. In 1983 Rhie and Chow [13] formulated a new pressure-

velocity coupling strategy that avoided the need for staggered grids and opened the way for non-

orthogonal collocated grids which are far more advantageous, but that will be the issue of a later

chapter. Next, the staggered grid approach is adopted and explained.

3.5.1- Pressure-Velocity Coupling in Staggered Grids

To ensure coupling between the pressure and the x-direction velocity field (u) a second grid,

which is staggered in the x-direction relative to the original grid, is used for the velocity

component u, with the pressure being calculated in the original grid. For a three-dimensional

flow three staggered grids are required, one for each velocity component, and the original grid is

used for the pressure and other scalars. Figure 4-a) shows the original grid for pressure and

Figure 4-b) shows the staggered grid for the x-velocity component and the original grid for

pressure. In Figure 4-b) the full lines represent the faces of the control volumes of the original

grid and the filled circles the location of their central nodes. Similarly, the dashed lines represent

the cell faces of the staggered grid and the corresponding central nodes are marked with open

circles. The capital symbols designate the coordinates referred to the original grid whereas the

small symbols do the same for the staggered grid. It is clear from the figure that the faces of the

staggered grid coincide with the nodes of the original grid and vice-versa.

In this way, for the u-velocity control volume centered on (i,J), the pressure gradient is now

calculated as
p

x

pP pW

xWP
(43)

which only involves consecutive pressure nodes and the checkerboard pattern is no longer a

possible solution to a physical problem.
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(i,J+1)

(i,J-1)
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b)

Figure 4- a) The original grid for pressure and other scalars; b) The original grid and the

staggered grid for u-velocity.

A side benefit of the staggered grid is the treatment of convective terms of the  conservation

equation, when  is not the velocity. The original grid stores the pressure as well as other

quantities  but the velocity field, so mass fluxes at the faces of the original control volumes are

known because they coincide with the nodes of the staggered grids where velocities are stored,

thus eliminating the need for interpolations for those velocity components.

Once the staggered grids are established and assuming previous knowledge of the pressure

field (say, the result of the previous iteration), the momentum equation is solved in the same way

as the equation for the scalar  except that the values of the velocity are determined at the nodes

of the staggered grid and those of  at the nodes of the original grid. So, in a 3-D flow the three

velocity components and the remaining quantities are all calculated at different locations; if, at the

post-processing stage, data are required at the same location it will be just a matter of

interpolation.

Since the solution of the momentum equation assumes previous knowledge of the pressure

field it is necessary to devise a method to obtain the pressure field from the continuity equation.

3.5.2- Solution Algorithms: SIMPLE

The continuity Equation (1) is discretized into

1 f F f A f
f 1

6

0 (44)

which expresses the fact that the sum of incoming mass flow rates equals the sum of outgoing

mass flow rates. It is important to realise that, since the continuity equation will be used to

determine the pressure field, it is derived in the original grid for pressure. Hence, the flow rates at

the faces of the original CV's readily use the staggered grid velocities without any interpolation.
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In order to turn the algebraic Equation (44) into an equation for pressure, the algorithm

SIMPLE (Semi- Implicit Method for Pressure-Linked Equations) or one of its extensions/

improvements is adopted.

In explaining SIMPLE, a 2-D steady flow problem is considered but for conciseness only the

equation for the x-velocity component will be used. In SIMPLE, a pressure field p*  is initially

assumed known (from the previous iteration or initial conditions) and the discretised momentum

Equation (45) is solved for u*  at the central node (i,J) (see Figure 4-a)

ai,J ui,J
* aFuF

* p I 1,J
* pI,J

* Ai,J Si, J  (45)

where the stars indicate that the quantities are not correct in the current iteration, because they are

based on an initially guessed pressure field, and S is related to the source term of u. The correct

pressure and velocity are given by

p p* p' (46)

u u* u' (47)

where the prime indicates a correction. If the pressure field p used in the momentum Equation

(45) had been right, the result would have been the correct velocity field u, i.e, the momentum

equation would then be

ai,J ui,J aFuF p I 1,J pI,J Ai,J Si, J  (48)

Subtracting Equation (45) from Equation (48), and using the definitions in Equations (46)

and (47), the following relationship between velocity and pressure corrections is derived

ai,J ui,J
' aFuF

' p I 1,J
' pI,J

' Ai,J (49)

To avoid the need to solve another system of equations, Equation (49) is modified by

dropping aFuF
' . In this way, an explicit equation for the velocity correction is obtained

ai,J ui,J
' p I 1,J

' pI,J
' Ai,J (50)

from which the correct velocities are determined as

ui,J ui,J
*

p I 1,J
' pI,J

' Ai,J

ai, J
(51)

The approximation from Equation (49) to Equation (50) does not preclude an exact solution

because, in both equations, the velocity and pressure corrections u'  and p'  tend to zero as the

correct velocity and pressure fields are approached, i.e, the neglected aFuF
'  also tends to zero

as the solution is approached and no conservation principle is being violated.

Expanding Equation (44) in the original grid and substituting the flow rates by their

definitions gives Equation (52)

uA i 1,J uA i,J vA I, j 1 vA I, j 0 (52)
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Now, the expression for the correct velocity ui,J  (Equation 51), and similar expressions for

the other velocities, are substituted in Equation (52) yielding an equation on the pressure

corrections.

a I,J
p pI,J

' aF
PpF

'

F
bP (53)

written here in the canonical form. In Equation (53) the superscript p indicates that the

coefficient a refers to the pressure correction equation and differs from other definitions of a

coefficients. Since the pressure, and obviously the pressure correction, is calculated in the

original grid (at (I,J) and its neighbours), subscripts P and F appear again to designate the

central node and its near neighbours, respectively. The coefficients of the pressure correction

equation are

a I 1,J
p A2

a
i 1,J

; a I 1,J
p A2

a
i,J

; a I,J 1
p A2

a
I, j 1

; a I,J 1
p A2

a
I, j

a I,J
p aF

P

F
 ; bP u*A

i,J
u*A

i 1,J
v*A

I, j
v*A

I, j 1
(54)

In Equation (53) bP  represents the mass imbalance of the incorrect starred velocity field

which tends to zero as the calculation proceeds towards the correct solution.

The pressure correction equation often diverges and, to prevent this, underrelaxation is used to

determine improved pressures as

pnew p*
p p' (55)

where the underrelaxation factor p  takes a value of less than one. For the same reason the

velocity field is also underrelaxed by factor u  using Equation (56)

unew uu 1 u u n 1 (56)

where u represents the corrected velocity value (present iteration) prior to underrelaxation and

u n 1  is the correct velocity from the previous iteration (unew
(n 1)).

To summarize, the SIMPLE algorithm proceeds as follows in each iteration:

i) There is an initial guess of pressure and velocity p* , ui
* , taken from the previous iteration

( p* p(n 1) , ui
* ui

(n 1));

ii) Equation (45) is solved to determine a new ui
*  at the present iteration;

iii) Equation (53) determines the pressure correction field p' ;

iv) Pressure is corrected using Equation (46) and velocity is corrected with Equation (51). Now,

the corrected pressure and velocity fields conserve momentum and mass within a certain

residual. Naturally, if underrelaxation is being used Equations (55) and (56) are now used

adequately to determine pnew , unew ;

v) Finally, it is time to solve the conservation equations for any other scalar quantities , such as

temperature;
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vi) If convergence has been attained within a pre-defined residual the iterative calculation stops,

otherwise the newly formed quantities are made equal to p* , ui
*  and we proceed again to step (i)

to initiate a new iteration.

3.5.3- SIMPLER and SIMPLEC

In 1980 Patankar [1] revised his SIMPLE method to address its weakness in the pressure

calculation. The result was a new algorithm called SIMPLER (SIMPLE revised). The difference

between SIMPLE and SIMPLER is at the initial steps: in SIMPLER there is an initial set of

steps aimed at determining an intermediate pressure field, which is then made equal to p* , after

which the algorithm proceeds in the way of the SIMPLE method. In this way, the problems of

divergence that resulted from the omission of aFuF
'  in Equation (49) and lead also to the

need for under-relaxation, are reduced and convergence is significantly improved.

To determine the intermediate pressure field the continuity equation is used to obtain a

pressure equation, as explained below. One starts again with the momentum Equation (48) where

u and p are the values from the previous iteration.

ui,J
aFuF Si, J

ai,J

pI 1,J pI,J Ai,J

ai,J
 (57)

In Equation (57) the first term on the rhs is made a pseudo-velocity ˆ u i,J via

ˆ u i,J
aFuF Si,J

ai, J
(58)

so that Equation (57) becomes

ui,J ˆ u i,J
p I 1,J pI,J Ai,J

ai, J
(59)

which bears similarity to Equation (51). The discretised continuity equation is still Equation (52)

and next, Equation (59), and its equivalent expressions for the other nodes are used to substitute

terms in the continuity Equation (52), thus resulting the following equation for the pressure field

written in canonical form

a I,J
p pI,J aF

PpF
F

bP (60)

with all the coefficients aP, aF  still given by Equation (54), but now with bP  representing an

imbalance of pseudo-velocities
bP bI,J ˆ u A i,J

ˆ u A i 1,J
ˆ v A I, j

ˆ v A I, j 1 (61)

The pressure calculated by Equation (60) now serves as an initial pressure field guess which,

together with the velocity field from the previous iteration, are used to continue with the SIMPLE

algorithm.

So, SIMPLER is made of the following steps:
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i) First, there is an initial guess of pressure and velocity fields p* , ui
*  where they are usually the

results of the previous iteration;

ii) Pseudo-velocities are calculated with Equation (58);

iii) The pressure Equation (60) determines an intermediate pressure field p and then p*  is set

equal to p;

iv) This better estimate of p*  and the initial velocity guess ui
*  are now the starting point of the

original SIMPLE method, which is part of SIMPLER. This better guess of p*   does not impose

such a burden on the pressure correction and Equation (45) is solved next to determine a new
ui

*;

v) A pressure correction p'  is now obtained with Equation (53);

vi) The pressure field pressure is corrected with Equation (46) and velocity is corrected with

Equation (49). At this stage the corrected pressure and velocity fields obey the momentum and

continuity equations within a certain residual. In contrast to SIMPLE there should be no need

for under-relaxation in SIMPLER;

vii) Finally, the equations for any other quantities  are solved;

viii) If convergence has been attained within a pre-defined residual the iterative calculation

process stops, otherwise the newly formed quantities are made equal to p* , ui
*  and we proceed

again to step (i), to initiate a new iteration.

Although SIMPLER resulted in less problems of convergence than SIMPLE, it meant more

calculations because of the extra intermediate pressure field calculation.

The problem with SIMPLE was the neglect of aFuF
'  in Equation (49) so Van Doormal

and Raithby [14] came up with an alternative to SIMPLE and SIMPLER which they called

SIMPLEC (SIMPLE Consistent). Instead of neglecting aFuF
'  in Equation (49), which puts

too much of a burden into the pressure correction, aFuF
'  is approximated to a non-zero value,

but in a way that avoids the need to solve another system of algebraic equations as in SIMPLER.

Instead of setting uF
'  to zero as in SIMPLE, Van Doormal and Raithby [14] realised that

aFuF
'  is of the order of aFui, J

' . The underlying assumption of uF
' ui,J

'  is thus less

severe than the assumption in SIMPLE but still has the advantage of leading to an explicit

equation on the velocity correction

ai,J ui,J
' aFui,J

' pI 1,J
' pI, J

' Ai, J (62)

So, SIMPLEC is equal to SIMPLE except that instead of Equation (51) the velocity correction is

given by

ui,J ui,J
*

p I 1,J
' pI,J

' Ai,J

ai, J aF
(63)

In SIMPLEC, correction to the velocity field is not done exclusively by the pressure

correction term, as in SIMPLE, but is shared between two terms. This reduces the amount of
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pressure correction p'  needed during the calculations which is enough to impart stability to the

algorithm and to reduce the need for underrelaxation. Everything else remains the same as in

SIMPLE, i.e, the sequence of steps in SIMPLEC is identical to the sequence of steps in

SIMPLE, except that in step (iv) the velocity is instead corrected with Equation (63).

Both SIMPLEC and SIMPLER are more efficient than SIMPLE, but experiments have

shown that it is not easy to determine which is the best (Versteeg and Malalasekera [2], Ferziger

and Perić [3]).

3.6- Convergence Criteria

Any iterative computation must terminate at some stage and there should be a criterion to

define such moment. If an equation of the form
aP P aF F

F

Q (64)

is being solved iteratively, the calculation would ideally stop when the solution at iteration n ( n )

differed from the exact solution by less than a certain pre-defined error . Obviously, except for

some control and benchmark cases, the exact solution is unknown and there must be another

way of checking that the solution is being approached. An alternative is suggested by writing

equation (64) in the following form:
aP P aF F

F

Q 0 (65)

This equation is only true when the solution  is known, ie, in fact, at some stage in the iterative

computation the known field  is such that

 aP P aF F
F

Q Rn (66)

where Rn  is called the residual at iteration n. As the residual decreases the exact solution is

approached and the error n  decreases. Since there is one Equation (66) for each computational

cell, all the residuals must decrease for the solution to converge.

In practice, one does not check all the residuals of all equations everywhere, but combine them

in a way and check the progression of this result. Two different definitions are commonly used:

the L1  and L2  norms.

The L1  norm of the residual is the sum of the absolute residuals, i.e.

L1 aP P
j aF P

j

F

Q
j 1

N

(67)

whereas the L2  norm is the r.m.s

 L2 aP P
j aF P

j

F

Q

2

j 1

N

(68)
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In both cases N is the number of computational cells in the domain and the equation to be

solved should be adequately normalised, ie  should represent a nondimensional quantity.

Although there is proportionality between the error and the residual, it must be stressed that

such relationship is problem-dependent. Therefore, if a specific residual is synonymous to a

converged solution, within an acceptable error, that does not mean that the same value of the

residual will always garantee the same error. Equation (64) can be written in a more compact

form as

A Q (69)

with  representing the vector of unknowns. By definition, at iteration n the error is
n n (70)

and the residual is

Rn A n Q (71)

Manipulation of Equations (69-72) gives

Rn A n (72)

This equation clearly shows that in order to compare residuals from different problems the

order of magnitude of matrix A must be the same in both cases. Amongst other things, the next

section illustrates this issue particularly well: a similar pipe flow calculation with yield stress and

nonyield stress fluids requires convergence to significantly different residuals in order to attain

results having similar errors.

4. Generalized Newtonian Fluids with no Yield Stress

The calculation of laminar flows with GNF fluids has similarities to calculations of turbulent

Newtonian flows using turbulence models based on the concept of an eddy viscosity or to

laminar Newtonian flows with temperature-dependent viscosity. In these three cases the viscosity

varies in the computational field and the similarity facilitates the adaptation of a turbulent

Newtonian code for calculations of non-Newtonian laminar flows, as it suffices to eliminate the

eddy viscosity and to include the appropriate expression for the molecular viscosity. Since the

viscosity depends of a shear rate

˙ 2Dij Dij  and Dij
1

2

ui

x j

u j

xi
(73)

the code must include the calculation of ˙ , to be carried out on the original grid.

On a turbulent Newtonian flow code this is usually not necessary as the calculation of ˙  is

already included as part of turbulence models

When the viscosity constitutive equation is a power law

˙ K ˙ 2
n 1
2 (74)
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there is potential for trouble in flows where ˙  is very close to zero or attains a value of zero, as

in planes of symmetry or in regions of stagnated flow, because the viscosity becomes

unbounded and the code may diverge or converge with difficulty.

Our experience has shown this problem to be especially important in the first few iterations,

because the initialisation of the velocity fields to constant values produces zero values of ˙ 

everywhere. There are three possible remedies to this problem:

1) To set the viscosity to a constant large value whenever the shear rate ˙  is below a predefined

small value. If the high viscosity is too large and is set up over a large flow region, the

matrices become very stiff and it can take a while for the code to converge to the desired level.

However, if the need to set-up a high viscosity is very localised, as in a plane of symmetry,

there is usually no problem because in the nearest cells the viscosity is already well-behaved.

Convergence with power law fluids has usually no problems although it can take a bit longer

than for the similar Newtonian problem. When the degree of shear-thinning is intense, say for

n= 0.2, the required number of iterations can be two to three times those for the equivalent

Newtonian flow simulation;

2) If it is known in advance that there are no stagnated flow regions, or that such regions are very

localised, the calculation can be initialised, and some iterations performed, with a constant

viscosity, after which the calculation proceeds with the true variation of viscosity;

3) To substitute the power law by a viscosity model which possesses a first Newtonian plateau at

low shear rates, followed by a power law region. One such case is the simplified Carreau-

Yasuda model given by

˙ 0 1 ˙ a
nc 1

a (75)

The user must be careful to set well the various model parameters: naturally, nc = n and

K 0
nc 1  but the selection of 0  and  requires an idea of the range of flow rates (or

time scales) prevailing in the flow. Equations (74) and (75) are represented in Figure 5; 

represents the reciprocal of the shear rate separating the constant and power law viscosity

regions.

Thus, the value of  must be well above the estimated reciprocal of the minimum shear rate in
the flow. A good rule of thumb is 100 ˙ min . Note that, if ˙ min 0 as in a given plane

of symmetry, ˙  should not be calculated at the plane of symmetry, but at the nearest cell

centre. Parameter a of the Carreau model determines the rate at which the viscosity of the

Carreau-Yasuda model changes from a power law behaviour to a constant viscosity behaviour

in the vicinity of ˙ 1 . The most common value of a used for fitting true viscosity data is

a= 2, for which the simplified Carreau model is recovered, but a higher value can be used. The

higher the value of a the more sudden the transition between these two regions will be.
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Figure 5- The effect of  on the comparison between a simplified Carreau model (a= 2) and

a power law.

Table I- Comparison between the calculated and theoretical friction factors for the fully-
developed laminar pipe flow of power law and simplified Carreau fluids (Regen 5.261).

Cases f ftheory Error [%]

Power law: 10 cells 12.314 12.165 1.22

Power law: 20 cells 12.200 12.165 0.29

Power law: 40 cells 12.185 12.165 0.16

Carreau 20 cells:  = 0.1 s 12.124 12.165 -0.34

Carreau 20 cells:  =1 s 12.210 12.165 0.37

Carreau 20 cells:  = 10 s 12.211 12.165 0.38

In Figure 6-a) the normalised theoretical velocity profile for laminar pipe flow of the power

law of Figure 5 is compared with predictions made in uniform meshes with different degrees of

refinement. The calculations were performed with the hybrid scheme for the convective term of

the momentum equation. The use of 20 cells in the radial direction provides a velocity profile
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Figures 6- Velocity profiles in fully-developed laminar pipe flow for a power law fluid with n=

0.6. a) Mesh refinement effect and comparison with theory; b) Comparison between theory and

predictions with the power law and the simplified Carreau model with different values of  (20

radial cells grid). All calculations converged to normalised residual of 10-4.
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very close to the theoretical curve and the corresponding values of the Darcy friction factor are

listed and compared in Table I.

For the same pipe flow, simulations were carried out adopting the Carreau model of Figure 5

in the 20 cell mesh and the results are compared in Figure 6-b) and Table I. Except for  0.1

s, the simulations with  1 s and  10 s predict well the power law velocity profile and the

corresponding friction factor. From the power law calculation, the minimum value of shear rate

was around 0.3 s-1 in the 20 cells grid and of 0.095 s-1 for the 40 cells grid. Compare these

values with Figure 5 to understand the limitations of the Carreau model in substituting a power

law equation. An objective criteria for this kind of substitution has been formulated by Escudier

et al [15] in the context of annular flows for various viscosity models. The criteria can be easily

adapted to other flow geometries.

5. Yield Stress Fluids

In contrast to non-yield stress fluids, calculations with yield stress fluids pose severe

problems of convergence and of accuracy. In regions of unyielded fluid the shear rates are zero

and the viscosities become unbounded as given by the Herschel-Bulkley viscosity model of

Equation (67).

˙ K˙ n 1 Y
˙ 

     for Y

˙ 0                            for Y

(76)

Even when using an adequate modification of the yield stress viscosity model, to be presented

in this section, the viscosities in the unyielded regions are very high and convergence becomes

extremely slow.

The number of iterations required for convergence of a specific flow problem can be 10 to

100 times larger than for the equivalent non-yield stress fluid problem. Two reasons contribute

to this discrepancy:

i) The high viscosities in the unyielded flow regions increase the stiffness of the matrices and

this slows down convergence considerably;

ii) As will be seen in Section 5.4, the required convergence criteria (normalised residual), for a

given level of accuracy, must be 100 to 1000 times smaller than for the equivalent non-yield

stress flow problem.

A first impression of the problem in hand can be grasped by looking at Figure 7 which plots

the theoretical velocity and shear stress profiles for a Bingham plastic flow in a pipe, the case

which will be used for simulations later in the section.

To avoid unbounded viscosities the original viscoplastic model must be modified following

one of the three strategies explained below: the bi-viscosity model of Beverly and Tanner [16], a

modified bi-viscosity model and the model of Papanastasiou [17].
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Figure 7- Normalised velocity and shear stress radial profiles for laminar pipe flow of a
Bingham plastic: K  0.2 Pas, n= 1, Y  10 Pa, U = 0.1 m/s (see Equation 76). w  is the full

shear stress at fully-developed flow and U is the bulk velocity.

5.1. The bi-viscosity model

The bi-viscosity model was originally introduced by Beverly and Tanner [16] for Bingham

plastics but is easily extended to other fluids, as Soares et al [18] did for the Herschel-Bulkley

fluid. The bi-viscosity modification of the Herschel-Bulkley fluid is

r                             for ˙ ˙ c

˙ = K ˙ n-1 + Y
˙ 

        for ˙ ˙ c
(77)

where the critical shear rate ˙ c  results from the intersection of the two expressions and is given

by the non-linear implicit equation

r ˙ c = K ˙ c
n + Y (78)

This equation becomes explicit for the case of a Bingham plastic , where µ  is the plastic viscosity

( K  if n= 1 in Equation 74)
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˙ c
Y

r
(79)

The value of r  must be high to better represent the original model but, if it is too high,

matrices become too stiff and a converged solution will be difficult to obtain. A good

compromise for Bingham plastics is 300 r 1000  and this is recommended by Beverly

and Tanner [16], Soares et al [18] and Vradis and Ötügen [19]. Another criterion, recommended

by Vradis and Ötügen [19], is r 1000 Y R U  which in some cases gives higher values of r

than the previous criterion.

The use of such modifications of the original constitutive equation does not provide a solution

to all difficulties. The bi-viscosity model, or any of the other remedies to be presented, is a cure

to the unbounded viscosity issue but convergence is very slow because of the high viscosities

and the strict convergence criteria required for accurate solutions. Therefore, before embarking in

a calculation programme the researcher must carefully perform a series of test calculations, for

which there are reliable results, in order to select the adequate range of values of r  for his own

problem. In this preliminary study, of particular concern should be the type of result pretended:

are they simply the bulk flow characteristics, such as the friction factor or a Nusselt number, for

which the convergence criteria need not be so tight, or is it important to be able to predict very

accurately the flow field with emphasis at separating yielded and unyielded regions?

Y

.
˙c

Y

r

r Y

r

a)

Y

.
˙c

Y

r

b)

Figure 8- Schematic representation of the biviscosity (a) and modified biviscosity (b) models

applied to a Bingham plastic.
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5.2. The modified bi-viscosity model

The problem with the bi-viscosity model is that it is less straighforward in two aspects:
i) For an Herschel-Bulkley fluid the value of ˙ c  must be obtained by solving the nonlinear

Equation (78) and the result is not known a priori, i.e, there is no general expression for ˙ c ;

ii) The yield stress value Y  occurs (see Figure 8-a for the rheogram of a Bingham plastic) for a

shear rate corresponding to the high viscosity region, i.e, the value of shear stress that marks

the separation between yielded and unyielded flow regions pertains to the high viscosity range

of shear rates which should correspond only to an unyielded region. An alternative would be

to consider that the shear stress marking the yield/unyielded transition in the bi-viscosity

model is equal to c K ˙ c
n

Y  but that would still lead to a non-linear implicit expression

on c , an undesirable feature according to (i)  and the critical shear stress would now be

larger than the yield stress Y , though by a very small amount.

This inconsistency can be resolved by using the modified bi-viscosity model which is given

by

r                                        for ˙ ˙ c

˙ = K ˙ n-1 + Y K ˙ c
n

˙ 
        for ˙ ˙ c

(80)

with ˙ c  now given by ˙ c
Y

r
. As regards the value of r , the recommendation is exactly the

same as for the original biviscosity model of the previous section.

In the modified bi-viscosity model, represented schematically in Figure 8-b), there is an

intersection of the high viscosity region with an equation which represents a slight modification

of the Herschel-Bulkley equation. The difference between the biviscosity and modified

biviscosity models is small given the range of values for parameter r  recommended in the

literature, as confirmed in Figure 9, but the use of the modified equation is to be preferred by
those who wish to have no ambiguity concerning the values of ˙ c  and the corresponding value

of the shear stress. In Figure 9, a specific rheogram of the Bingham model is compared with that

of the corresponding bi-viscosity, modified bi-viscosity and Papanastasiou models for a set of

parameters. The graph was zoomed in the region of interest and differences between the bi-

viscosity, the Papanastasiou and the original Bingham model cannot be discerned for shear rates

above 0.2 s-1. However, the modified bi-viscosity model is slightly below the Bingham equation

in the range of shear rates displayed. The difference is negligible though and diminishes with ˙ .

At low shear rates the Papanastasiou equation, to be explained below, is clearly different from the

two bi-viscosity models and approaches the original Bingham law in a much better way.
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5.3. The Papanastasiou model

The Papanastasiou model, represented in Figure 9 with small dashes, can also be adapted to

any yield stress viscosity model and in Equation (81) it is presented as a substitute of the

Herschel-Bulkley equation

˙ K˙ n 1 Y
˙ 

1 e m ˙ 
(81)

The advantage of this model is that it is written as a single equation but its disadvantage is the

capacity to distinguish between yielded and unyielded regions. In a calculation the values of

shear rate will never be zero, so the user must define a criterion below which the shear rate will

be considered as pertaining to an unyielded region. For the bi-viscosity and modified bi-

viscosity models, that is set by the value of r  in one way or another, whereas in the

Papanastasiou equation such separation is not inherent to the model.

0

2

4

6

8

10

12

0 0.2 0.4 0.6 0.8 1
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Figure 9- Comparison between th shear stress versus shear rate of a Bingham plastic (  0.2

Pas, Y  10 Pa), with that of the corresponding biviscosity ( r 60 ), modified biviscosity

( r 60 ) and Papanastasiou (m 100) models.
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Recommended values for parameter m are m 100  (Papanastasiou [17]) or mBi 300
(Meuric et al [20]), where the Bingham number (Bi) is defined as Bi Y Dh U  with Dh

representing the hydraulic diameter. As with the bi-viscosity models, the user is advised to test

the sensitivity of the results to the numerical value of the parameter m.

The mathematical simplicity of the Papanastasiou model may convince the reader of its

apparent superiority, but that is misleading. Our own experience and of João [21] have shown

that the Papanastasiou model can take much longer to converge to a solution of equal accuracy

than any of the biviscosity models, at least when following the recommendations in the literature

for the values of the corresponding parameters.

The interested reader is advised to carefully test the models before embarking on a long

research programme, specifically looking at convergence rates and solution accuracy for the

particular problem under investigation.

5.4. Comparison of models

To compare the performance of the various modifications of the yield stress models

calculations were made of fully-developed laminar pipe flow of the Bingham plastic represented

in Figure 9. The bulk velocity was 0.1 m/s and the pipe diameter was 10 mm. Calculations were

carried out with the bi-viscosity, the modified bi-viscosity and Papanastasiou models, for values

of the parameters encompassing the recomended ranges, in three different uniform meshes

having 10, 20 and 40 cells in the radial direction. Due to its symmetry, the flow domain went

from the axis to the wall.  

This assessment is initiated by looking at the convergence criterion. It is worth mentioning

that all the calculations reported in Section 4 were carried out until the normalised residual in all

equations fell below 1 10 4 . This is a usual value for Newtonian and nonyield stress

Generalised Newtonian fluid calculations and provides the kind of agreement and accuracy

shown in Figure 6 and Table I. However, this picture is totally different for yield stress fluids.

In a series of calculations with the modified bi-viscosity model the effect of the convergence

criterion on the results was assessed and the results are shown in the radial profiles of Figure 10

and in Table II. The results for a residual of 1 10 4  are poor and a normalised residual of at

least 1 10 6  was required for an accurate result (differences below 1%). Even with this small

residual, and also for the 1 10 7  case, the values of the velocity in the plug region are

overpredicted by 0.6%, a difference in excess to that seen in Figure 6-a) for a power law fluid

calculated with the same mesh. For the two lower residuals the velocity data in the central region

of Figure 10 was underpredicted. The corresponding friction factors listed in Table II confirm

the picture: for a normalised residual of 1 10 4  the error is 20% and to be within 0.5% of the

theoretical value a residual of at least 1 10 6  had to be enforced.
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Table II- Comparison between the theoretical and calculated friction factors of Figure 10.

Normalised residual f f -theoretical error [%]

1E-4 7.007 5.840 20.0

1E-5 6.121 5.840 4.8

1E-6 5.846 5.840 0.1

1E-7 5.819 5.840 -0.36

This simple comparison shows the need for tight convergence criteria (at least 100 times

stricter than for nonyield stress fluids) when performing numerical calculations with yield stress

fluids.

Next, using a normalised residual of 1E-7, a mesh refinement investigation was carried out

with the modified bi-viscosity model. The normalised radial velocity profiles are presented in

Figure 11 and the corresponding friction factors are compared in Table III.
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Figure 10- Radial velocity profiles in a pipe for a Bingham plastic. In all cases the mesh had 20

cells in the radial direction.

There are obvious improvements as the mesh is refined, but this effect is not as large as was

seen with power law fluids in Section 4 andthis difference is dueto the smaller residual. Had we

done the mesh refinements with a higher residual, the difference would have been larger. For

instance, even for a mesh having 10 radial cells the predictions with a residual of 1E-7 are far
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more accurate than with 20 cells and a residual of 1E-5. This clearly shows that for yield stress

fluids it is at least as important to converge the calculations to a very small residual as it is to

refine the mesh. For the other two models similar variations would be observed.
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Figure 11- Radial velocity profiles in a pipe for a Bingham plastic. Mesh refinement effect.

Normalised residual = 1E-7.

Table III- Comparison between the theoretical and calculated friction factors of Figure 11.

Mesh  f f theoretical error [%]

10 cells 5.805 5.840 -0.60

20 cells 5.819 5.840 -0.36

40 cells 5.822 5.840 -0.31

The two bi-viscosity models are now compared in Figures 12-a and -b) and in Table IV: in

Figure 12-a) the high viscosity was r 1000 , whereas in Figure 12-b)  r 300 . The

residuals in all cases were 1 10 7  and differences in the velocity profile are not distinguishable.

In terms of the friction factors listed in Table IV the differences between the two methods are

very small less than 0.1%. In this case, using a criterion of r / 1000 provides only a

marginally better prediction
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Figure 12- Radial velocity profiles in a pipe for a Bingham plastic. Mesh with 20 radial cells

and normalised residual of 1E-7. Comparison between the Modified biviscosity and biviscosity

models. a) r / 1000; b) r / 300 .
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Table IV- Comparison between the theoretical and calculated friction factors of Figure 12.

Model f f theoretical error [%]

Biviscosity r / 1000 5.814 5.840 -0.45

Modified Biviscosity 5.819 5.840 -0.36

Biviscosity r / 300 5.808 5.840 -0.55

Modified Biviscosity 5.817 5.840 -0.39

Table V- Comparison between the theoretical and calculated friction factors of Figure 13.

Model f f theoretical error [%]

Biviscosity 5.814 5.840 -0.45

Modified Biviscosity 5.819 5.840 -0.36

Papanastasiou 5.829 5.840 -0.19

Similar findings were reached by other authors: Hammad et al [22] used the bi-viscosity

modification for laminar sudden expansion calculations and report similar difficulties and

experiences when dealing with yield stress fluids.

Finally, in Figure 13 and Table V the Papanastasiou model is compared with the two

biviscosity models. For the Papanastasiou model m was set to 100 and for the two biviscosity
models r / 1000 was used. For the Papanastasiou model both the velocity profile in the

unyielded region and the friction factor are closer to the theoretical values than the data from the

other two models, a result which is not surprising given the better approximation of the Bingham

equation seen in Figure 9. However, the calculation with the Papanastasiou model took

approximately twice as long as those with the two biviscosity models. This was expected given

that the Papanastasiou model approaches better the original Bingham law, i.e., it results in higher

viscosities in the unyielded region than the bi-viscosity equations, hence leading to stiffer

matrices more difficult to converge. A decrease in the value of m could certainly provide a

quicker convergence at the cost of lower accuracy. It is up to the user to decide what is more

important in a particular solution and the concessions that can be made to the two conflicting

parts of the problem: the accuracy of the solution versus the convergence.

To conclude this section, it is clear from these comparisons that the major factor affecting the

quality of the predictions is the convergence criteria: the normalised residual must be set to a

much lower value than is usual for Newtonian and nonyield stress Generalised Newtonian

calculations. It is also clear from these comparisons that the quality of the predictions for yield

stress fluids is not as good as those obtained for nonyield stress fluids because the viscosity

model must be modified. Once their parameters have been well selected, the two bi-viscosity

models presented for substituting the original Herschel-Bulkley equation provide similar results

and accuracy. The Papanastasiou model tends to be marginally more accurate but its

convergence is slower.

 
Pinho, e-rheo.pt, 1 (2001) 63-100 

 
 

  

 

98



0

0.5

1

1.5

2

0 0.2 0.4 0.6 0.8 1

Theory
Mod. bi-viscosity
Bi-viscosity
Papanastasiou

u/U

r/R

Figure 13- Radial velocity profiles in a pipe for a Bingham plastic. Mesh with 20 radial cells

and normalised residual of 1E-7.20 cells. Comparison between the Modified biviscosity,

biviscosity and Papanastasiou models: r / 1000 and m= 100.
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