
Replicated INAR(1) processes

Isabel Silva1, 4, M. Eduarda Silva∗,1, 3, Isabel Pereira2, 3, Nélia Silva2, 3

(imsilva@fc.up.pt, mesilva@fc.up.pt, isabelp@mat.ua.pt)

1 Departamento de Matemática Aplicada, Faculdade de Ciências, Universidade do Porto, Portugal

2 Departamento de Matemática, Universidade de Aveiro, Portugal

3 UI&D Matemática e Aplicações, Universidade de Aveiro, Portugal

4 Departamento de Engenharia Civil, Faculdade de Engenharia, Universidade do Porto, Portugal

Abstract

Replicated time series are a particular type of repeated measures, which consist of time-

sequences of measurements taken from several subjects (experimental units). We consider in-

dependent replications of count time series that are modelled by first-order integer-valued au-

toregressive processes, INAR(1). In this work, we propose several estimation methods using the

classical and the Bayesian approaches and both in time and frequency domains. Furthermore,

we study the asymptotic properties of the estimators. The methods are illustrated and their

performance is compared in a simulation study. Finally, the methods are applied to a set of

observations concerning sunspot data.

Keywords: INAR Process, Replicated Time Series, Time Series Estimation, Whittle Crite-

rion, Bayesian Estimation.

1 Introduction

Usually in time series analysis the inference is based on a single, long (or not so) time series.

However, time series methodology is becoming more widely used in many areas of application where

the available data consists of replicated series {Xk,t : k = 1, . . . , r; t = 1, . . . , n} and the emphasis is

on the estimation of population characteristics rather than on the behaviour of the individual series.

Examples occur in experimental biology, environmental sciences and economy, with independent

replicates of the same process appearing through the observation of a single series in a number

of locals (the locals being sufficiently apart to be treated as independent) or the application of a

treatment to a number of individuals (behaving independently of the others).

The analysis of replicated time series when the inferential focus is on the dependence of the mean

response on time, experimental treatment or other explanatory variables is well documented in the

literature and usually referred to as longitudinal data analysis (Diggle and al-Wasel, 1997). However,

statistical analysis of replicated time series when the mean response is constant (or not of interest)

and the inferential focus is on the stochastic variation about the mean has received little attention,
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in particular for time series of counts. In the context of replicated Gaussian time series the works of

Azzalini (1981, 1984) and Dégerine (1987) should be mentioned.

The usual linear models for time series, the well known ARMA models, are suitable for modelling

stationary dependent sequences under the assumption of Gaussianity, which is inappropriate for

modelling counting processes. Thus, motivated by the need of modelling correlated series of counts,

several models for integer valued time series were proposed in the literature, in particular the INteger-

valued AutoRegressive (INAR) processes proposed by Al-Osh and Alzaid (1987) and Du and Li

(1991). These processes have been considered as the discrete counter part of AR processes, but their

highly nonlinear characteristics lead to some statistical challenging problems, namely in parameter

estimation.

In this paper, the replicated INAR process, denoted by RINAR process, consisting of independent

replications of INAR time series is considered. We address the problem of parameter estimation using

several methods that can be classified into two main approaches: the estimating functions framework

and Bayesian methods. The theory of estimating functions1 proposed by Godambe (1960) provides

a unified approach to the usual estimation methods in time series analysis, such as Yule-Walker

equations, Conditional Least Squares, Conditional Maximum Likelihood in the time domain and the

Whittle criterion in the frequency domain. Among these, the Conditional Least Squares estimators

with a particular set of weights lead to optimal estimators within the class of linear estimating

functions. Expressions for the asymptotic standard errors of the estimates are obtained whenever is

possible and in particular, the information matrix for Conditional Maximum Likelihood is computed.

Alternatively, we consider Bayesian methods, which have been widely applied in the time series

context and have played a significant role in recent developments. However, these methods have not

yet been successfully applied to the INAR (and other related) processes, although Congdon (2003)

refers the possibility of using the WinBugs Bayesian package for these models.

This work is organized as follows: in Section 2 we define the replicated INAR, RINAR, processes. In

Section 3 we propose several estimation methods from both the classical and the Bayesian approaches

and in the time and frequency domain and study the asymptotic properties of the estimators. In

Section 4 we conduct a simulation study to assess and compare the performance of the small sample

properties of the proposed estimators. Finally, in Section 5 we apply the RINAR model to a set of

data concerning sunspot data.

2 Replicated INAR process

Consider a non negative integer-valued random variable X and α ∈ [0, 1], and define the generalized

thinning operation, hereafter denoted by ‘∗’, as

α ∗ X =
X
∑

j=1

Yj , (1)

where {Yj}, j = 1, . . . , X, is a sequence of independent and identically distributed non-negative

integer-valued random variables, independent of X, with finite mean α and variance σ2. This sequence

1An estimating function, g(y, θ), is a function of the data, y, as well of the parameter, θ. An estimator is obtained

by equating the estimating function to zero and solving with respect to the parameter.
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is called the counting series of α ∗ X. Note that Steutel and Van Harn (1979) firstly defined the

binomial thinning operation, in which {Yj} is a sequence of Bernoulli random variables. For an

account of the properties of the thinning operation see Gauthier and Latour (1994) and Silva and

Oliveira (2004, 2005).

A discrete time positive integer valued stochastic process, {Xt} , is said to be an INAR(p) process if

it satisfies the following equation

Xt = α1 ∗ Xt−1 + α2 ∗ Xt−2 + · · · + αp ∗ Xt−p + et, (2)

where

1. {et} is a sequence of independent and identically distributed integer-valued random variables,

with E[et] = µe, Var[et] = σ2
e and E[e3

t ] = γe;

2. all counting series of αi ∗Xt−i, i = 1, . . . , p, {Yi,j}, j = 1, . . . , Xt−i, are mutually independent,

and independent of {et}, and such that E[Yi,j ] = αi, Var[Yi,j ] = σ2
i and E[Y 3

i,j ] = γi;

3. 0 ≤ αi < 1, i = 1, . . . , p − 1, and 0 < αp < 1.

The existence and stationarity conditions for the INAR(p) processes is that the roots of zp−α1z
p−1−

· · · − αp−1z − αp = 0 lie inside the unit circle (Du and Li, 1991) or equivalently that
∑p

j=1 αj < 1,

(Latour, 1997, 1998). Probabilistic characteristics of the INAR models, in terms of second and third

order moments and cumulants, have been obtained by Silva and Oliveira (2004, 2005).

Now, consider a replicated time series data set {Xk,t : k = 1, . . . , r; t = 1, . . . , n}, where Xk,t denotes

the kth time series observed at t = 1, 2, . . . , n. We assume that all the replicates have the same

length, since this seems the most common case in practice. We define a RINAR(p) model for the

replicated time series {Xk,t} as

Xk,t = α1 ∗ Xk,t−1 + α2 ∗ Xk,t−2 + · · · + αp ∗ Xk,t−p + ek,t, (3)

where ∗ is the (generalized) thinning operation and {ek,t} is a set of independent, integer-valued

random variables with means E[ek,t] = µe,k and variances Var[ek,t] = σ2
e,k.

Here, we consider only Poisson RINAR(1) processes, with p = 1, α1 = α ∈ ]0, 1[, ∗ the binomial

thinning operation where the counting series, {Y (k)
i,j }, are a set of Bernoulli random variables with

P (Y
(k)
i,j = 1) = 1 − P (Y

(k)
i,j = 0) = α, and {ek,t} is a sequence of independent Poisson distributed

variables with parameter λ, independent of all counting series.

The replicated RINAR(1) process thus defined has mean and autocovariance function given by

µX = E[Xk,t] =
λ

1 − α
, γ(j) = E[(Xk,t − µX)(Xk,t+j − µX)] =



















λ

1 − α
, if j = 0

αj λ

1 − α
, if j 6= 0

,

respectively. The spectral density function can be written as

f(ω) =
1

2π

λ(1 + α)

1 − 2α cos ω + α2
, −π ≤ ω ≤ π. (4)
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3 Estimation of the parameters

In this section we consider the estimation of the unknown parameters, θ = [α, λ]T , in the Poisson

RINAR(1), from the observation matrix Xr,n defined as follows:

Xr,n = [x1,n,x2,n, . . . ,xr,n]T =













X1,1 X1,2 · · · X1,n

X2,1 X2,2 · · · X2,n

...
...

. . .
...

Xr,1 Xr,2 · · · Xr,n













. (5)

The methods under study are the method of moments (Yule-Walker equations), Conditional Least

Squares (weighted and unweighted), Conditional Maximum Likelihood and Whittle criterion, which

may be included in the unifying estimating functions framework and Bayesian methodology.

3.1 Yule-Walker Estimation

Let γ̂k(j) = 1
n

∑n−j
t=1 (Xk,t − Xr,n)(Xk,t+j − Xr,n), j ∈ Z, be the sample autocovariance function

of the kth replicate, xk,n, where Xr,n = 1
nr

∑r
k=1

∑n
t=1 Xk,t is the overall sample mean, and let

ρ̂k(j) = γ̂k(j)/γ̂k(0) be the corresponding sample autocorrelation function.

Under our hypothesis, we incorporate the extra information brought on by the replicates, averaging

over the replicates the sample functions, obtaining

γ(j) =
1

r

r
∑

k=1

γ̂k(j) =
1

nr

r
∑

k=1

n−j
∑

t=1

(Xk,t − Xr,n)(Xk,t+j − Xr,n), ρ(j) =
γ(j)

γ(0)
.

Thus, for r replicated Poisson RINAR(1) process, the Yule-Walker (method of moments) estimate

of α can be written as

α̂Y W =
γ(1)

γ(0)
= ρ(1) =

∑r
k=1

∑n−1
t=1 (Xk,t − Xr,n)(Xk,t+1 − Xr,n)
∑r

k=1

∑n
t=1 (Xk,t − Xr,n)2

, (6)

and an estimator of λ is given by

λ̂Y W = Xr,n(1 − α̂Y W ). (7)

According to Du and Li (1991), γ̂k(j) and ρ̂k(j) are strongly consistent. Therefore, γ(j) and ρ(j)

and consequently α̂Y W and λ̂Y W are also strongly consistent estimators. The estimators α̂Y W and

λ̂Y W are asymptotically unbiased normally distributed, with respect to n, with variances given by

(I. Silva, 2005)

Var[
√

nr α̂Y W ] =
α(1 − α)

µX
+ (1 − α)2, (8)

Var[
√

nr λ̂Y W ] = µX(1 − α) ((1 + α)(1 + µX) + α) . (9)

This result generalizes the work of Park and Oh (1997). Thus, as expected, the replicated observa-

tions lead to a variance reduction of the estimators of order 1/r.
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3.2 Conditional Least Squares Estimation

The Conditional Least Squares (CLS) method, proposed by Klimko and Nelson (1978), has been

widely used in the time series context and, in particular, for estimating the parameters of INAR

processes (Du and Li, 1991). Its application to the estimation of the parameters of the RINAR(1)

model is straightforward and is described in Section 3.2.1. However, the fact that the conditional

variance of the RINAR(1) process given by

V (θ, Xk,t−1) = Var[Xk,t|Xk,t−1] = α(1 − α)Xk,t−1 + λ. (10)

is not constant over time, suggests that we also consider Iterative Weighted Conditional Least Squares

estimation, IWCLS. Moreover, since

g(θ, Fk,t−1) = E[Xk,t|Xk,t−1] = αXk,t−1 + λ, (11)

there is a linear relationship between the conditional mean and variance of the process and IWCLS

is a quasi-likelihood estimation method in the sense of Wedderburn (1974). IWCLS estimators are

discussed in Section 3.2.2.

3.2.1 CLS

Let xk,n be the kth replicate INAR(1) process with parameter vector θ and let Fk,t = F(Xk,1, . . . ,

Xk,t) be the σ-algebra generated by {Xk,1, . . . , Xk,t}. As we have seen, the conditional mean of Xk,t

given Fk,t−1, is defined in (11) by

g(θ, Fk,t−1) = E[Xk,t|Fk,t−1] = αXk,t−1 + λ.

The, the CLS estimator of the parameter vector θ is obtained minimizing

Q(θ) =
r
∑

k=1

n
∑

t=2

(Xk,t − g(θ, Fk,t−1))
2 =

r
∑

k=1

n
∑

t=2

(Xk,t − αXk,t−1 − λ)2.

Therefore, given r replicates of a Poisson RINAR(1) process in the matrix of observations Xr,n,

defined in (5), the CLS estimators of α and λ, are given by

α̂CLS =
(n − 1)r

∑r
k=1

∑n
t=2 Xk,tXk,t−1 − (

∑r
k=1

∑n
t=2 Xk,t)(

∑r
k=1

∑n
t=2 Xk,t−1)

(n − 1)r
∑r

k=1

∑n
t=2 X2

k,t−1 − (
∑r

k=1

∑n
t=2 Xk,t−1)

2 , (12)

λ̂CLS =

∑r
k=1

∑n
t=2 Xk,t − α̂CLS

∑r
k=1

∑n
t=2 Xk,t−1

(n − 1)r
. (13)

It can easily be seen that the function g given by (11) is such that ∂g/∂α, ∂g/∂λ and ∂2g/∂α∂λ

satisfy all the regularity conditions of Theorem 3.1 in Klimko and Nelson (1978). Therefore, the CLS

estimators for Poisson RINAR(1) processes are strongly consistent. Moreover, since E[|ek,t|3] < ∞
for the Poisson distribution, by Theorem 3.2 of Klimko and Nelson (1978), it follows that the CLS

estimators for the Poisson RINAR(1) process are asymptotically normally distributed

√
nr
(

θ̂CLS − θ

)

d→ N
(

0,V−1
WV

−1
)

, (14)
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with V = [Vij ] and W = [Wij ] defined as

Vij = E

[

∂g(θ, Fk,t−1)

∂θi

∂g(θ, Fk,t−1)

∂θj

]

, i, j = 1, 2, (15)

Wij = E

[

u2
2(θ)

∂g(θ, Fk,t−1)

∂θi

∂g(θ, Fk,t−1)

∂θj

]

, i, j = 1, 2, (16)

and where u2(θ) = Xk,2 − αXk,1 − λ is the one-step-ahead linear prediction error (I. Silva, 2005).

Also in this case, the variance of the estimators is reduced by a factor of 1/r due to the presence of

the replicates.

3.2.2 IWCLS

The IWCLS estimator of the parameter vector θ is obtained minimizing the sum of the squared error

between each observation and its conditional mean, (Xk,t − g(θ, Xk,t−1))
2, weighted by the inverse

of the conditional variance, 1/V̂ (θ̂, Xk,t−1).

Thus, the IWCLS estimate of θ is obtained by minimizing iteratively QW (θ), defined as

QW (θ) =
r
∑

k=1

n
∑

t=2

(Xk,t − αXk,t−1 − λ)2

α̂(1 − α̂)Xk,t−1 + λ̂
, (17)

As initial values, α̂(0) and λ̂(0), for α̂ and λ̂, respectively, we choose a set of consistent estimates for

instance, Conditional Least Squares estimates. At iteration i the weights in (17) are updated with

α̂(i−1) and λ̂(i−1), and new estimates of the parameters, α̂(i) and λ̂(i), are successively obtained, until

convergence is achieved.

The structural relationship between INAR(1) processes and subcritical branching processes (Dion

et al, 1995), suggests the use of the Weighted Conditional Least Squares method (Winnicki, 1988;

Wei and Winnicki, 1989), with a set of weights given by
√

1 + Xk,t−1. However, the former approach

proposed here is to be preferred since it can be proved that the associated estimating function

Ψ(θ) = ∂QW

∂θ
, is an unbiased and regular estimating function. Therefore, θ̂IWCLS is an optimal

estimator within the class of linear estimating functions.

Brännäs (1995) stated that for one replicate of a stationary Poisson INAR(1) process, the consistency

and asymptotic normality of the IWCLS estimator follow directly from the work of Godambe (1960);

Wooldridge (1994). Moreover, Freeland and McCabe (2004) has obtained an approximate expression

for the asymptotic variance of the IWCLS estimator, which is correct up to a constant. Thus, these

properties are easily extended to the IWCLS estimator in the Poisson RINAR model framework.

3.3 Conditional Maximum Likelihood Estimation

The conditional likelihood function of the r replicates from a Poisson INAR(1) process is the con-

volution of the distribution of the innovation process and that resulting from the binomial thinning

operation, Bi(α, Xt−1) (Johnson and Kotz, 1969; Al-Osh and Alzaid, 1987; Freeland and McCabe,

2004). Thus, given an initial value xk,1 = [X1,1, X2,1, . . . , Xr,1], the conditional likelihood function

of the RINAR(1) process is given by the following expression

L(Xr,n, θ|xk,1) =
r
∏

k=1

n
∏

t=2

P (Xk,t|Xk,t−1), (18)
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where

P (Xk,t|Xk,t−1) = e−λ

Mk,t
∑

i=0

λ(Xk,t)−i

((Xk,t) − i)!

(

Xk,t−1

i

)

αi(1 − α)(Xk,t−1)−i,

with Mk,t = min{Xk,t−1, Xk,t}.
The Conditional Maximum Likelihood (CML) estimator, θ̂, is obtained maximizing L(Xr,n, θ|xk,1),

or equivalently, the conditional log-likelihood function

ℓ(Xr,n, θ|xk,1) =
r
∑

k=1

n
∑

t=2

log P (Xk,t|Xk,t−1).

Let Hk(t) = P (Xk,t − 1|Xk,t−1)/P (Xk,t|Xk,t−1), then the derivatives of ℓ(Xr,n, θ|xk,1) are given by

ℓ ′

α =
∂ℓ(Xr,n, θ|xk,1)

∂α
=

r
∑

k=1

n
∑

t=2

[Xk,t − αXk,t−1 − λHk(t)] /α(1 − α), (19)

ℓ ′

λ =
∂ℓ(Xr,n, θ|xk,1)

∂λ
=

r
∑

k=1

n
∑

t=2

Hk(t) − (n − 1)r. (20)

The CML estimates satisfy the following equation, obtained cancelling the derivatives (19) and (20).

r
∑

k=1

n
∑

t=2

Xk,t − α̂CML

r
∑

k=1

n
∑

t=2

Xk,t−1 = (n − 1)rλ̂CML. (21)

If we eliminate one of the parameters in (21), say α̂CML, then ℓ ′

λ in (20) can be written as a function

of only λ and the estimate λ̂CML can be found by iterating ℓ ′

λ.

Franke and Seligmann (1993) and Franke and Subba Rao (1995) have shown that, for stationary

Poisson INAR(1) processes and under some regularity conditions (that are satisfied by the Poisson

law), the CML estimates are consistent and asymptotically normal. Since these properties are easily

extended to the estimators of the Poisson RINAR model parameters we may write

√
rn

(

α̂ − α

λ̂ − λ

)

d→ N
(

0, i−1
)

, (22)

where i is the Fisher information matrix whose elements are the expectation of the second-order

derivatives of the log-likelihood function of the process, given by the following expressions (N. Silva,

2005)

ℓ ′′

λλ =
r
∑

k=1

n
∑

t=2

{

P (Xk,t − 2|Xk,t−1)

P (Xk,t|Xk,t−1)
−
(

P (Xk,t − 1|Xk,t−1)

P (Xk,t|Xk,t−1)

)2
}

,

ℓ ′′

αλ =
r
∑

k=1

n
∑

t=2

{

Xk,t−1P (Xk,t − 2|Xk,t−1 − 1)

P (Xk,t|Xk,t−1)
− Xk,t−1P (Xk,t − 1|Xk,t−1)

P (Xk,t − 1|Xk,t−1 − 1)

}

,

ℓ ′′

αα =
1

(1 − α)2

r
∑

k=1

n
∑

t=2

{

2Xk,t−1P (Xk,t − 1|Xk,t−1 − 1)

P (Xk,t|Xk,t−1)
− Xk,t−1

+
Xk,t−1(Xk,t−1 − 1)P (Xk,t − 2|Xk,t−1 − 2)

P (Xk,t|Xk,t−1)

−
(

Xk,t−1P (Xk,t − 1|Xk,t−1 − 1)

P (Xk,t|Xk,t−1)

)2
}

.

7



Noting that the second derivatives are functions of (Xk,t, Xk,t−1), we obtain for the elements of i

E[ℓ ′′

λλ] =
r
∑

k=1

n
∑

t=2

E[h(Xk,t, Xk,t−1)]

=
r
∑

k=1

n
∑

t=2

+∞
∑

xk,t=0

+∞
∑

xk,t−1=0

h(Xk,t, Xk,t−1)P (Xk,t = xt, Xk,t−1 = xt−1)

= (n − 1)r
+∞
∑

xk,t=0

+∞
∑

xk,t−1=0

P (Xk,t−1 = xt−1)

{

P (Xk,t − 2|Xk,t−1) −
P (Xk,t − 1|Xk,t−1)

2

P (Xk,t|Xk,t−1)

}

;

(23)

similarly,

E[ℓ ′′

αλ] =
(n − 1)r

1 − α

+∞
∑

xk,t=0

+∞
∑

xk,t−1=0

Xt−1P (Xk,t−1 = xt−1)

{

P (Xk,t − 2|Xk,t−1 − 1)

− P (Xk,t − 1|Xk,t−1)P (Xk,t − 1|Xk,t−1 − 1)

P (Xk,t|Xk,t−1)

}

, (24)

and

E[ℓ ′′

αα] =
(n − 1)r

(1 − α)2

+∞
∑

xk,t=0

+∞
∑

xk,t−1=0

P (Xk,t−1 = xt−1)

{

2Xk,t−1P (Xk,t − 1|Xk,t−1 − 1)

P (Xk,t|Xk,t−1)
− Xk,t−1

+
Xk,t−1(1 − Xk,t−1)P (Xk,t − 2|Xk,t−1 − 2)

P (Xk,t|Xk,t−1)

− Xk,t−1P (Xk,t − 1|Xk,t−1 − 1)

P (Xk,t|Xk,t−1)

}

. (25)

The elements of matrix i are calculated truncating the infinite sums to m, which corresponds to

substituting the sample space, {0, 1, . . .} of Xk,t by the sample space {0, 1, . . . , m}. The value for

m is selected so that P (Xt > m) < 10−15. These elements may also be computed using numerical

derivatives.

3.4 Whittle Estimation

In this section we consider a frequency domain estimation procedure based on the Whittle criterion.

This approach was originally proposed by Whittle (1953, 1954) for Gaussian processes and further

investigated by several authors (Walker, 1964; Hannan, 1973; Rice, 1979; Dzhaparidze and Yaglom,

1983). It has been used in many situations: Fox and Taqqu (1986); Sesay and Subba Rao (1992);

Subba Rao and Chandler (1996) and Silva and Oliveira (2004, 2005). The main motivation for

the Whittle criterion is the fact that the spectral density function of a process may be easy to

obtain whereas an exact likelihood may not. Thus, Whittle proposed to represent the likelihood of

a (Gaussian) stochastic process via its spectral properties.

Although the Whittle criterion is usually considered an approximation to a Gaussian likelihood, it

may also be obtained as an approximation for the likelihood function of collections of sample Fourier

coefficients for several classes of processes, namely for non-Gaussian mixing processes (Dzhaparidze
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and Yaglom, 1983; Chandler, 1997). Thus, the use of Whittle estimation in the context of RINAR

processes is justified by the fact that these processes belong to the class of non-Gaussian mixing

processes, as we show in the following. It suffices to argue the proof for INAR processes since

RINAR processes are independent repetitions of these processes.

A stochastic process {Xt} belongs to the class of non-Gaussian mixing processes if the following

conditions are satisfied:

(NGMP1) Xt is strictly stationary;

(NGMP2) Xt has finite absolute moments of all orders, i.e.

E[|Xt|k] < ∞, t ∈ Z, k ∈ N;

(NGMP3) Let Ck(s1, . . . , sk−1) be the kth-order cumulant of the Xt process, then

∞
∑

s1=−∞

. . .
∞
∑

sk−1=−∞

|Ck(s1, . . . , sk−1)| < ∞, k = 2, 3, . . .

Note that (NGMP3) is a mixing condition on Xt that guarantees a fast decrease of the statistical

dependence between Xt and Xt+s as s → ∞.

Now, condition (NGMP1) follows from Corollary 1 of Dion et al (1995), which states that a statio-

nary INAR(p) process is strictly stationary. To prove condition (NGMP3) it is sufficient to prove

that an INAR process is strongly mixing. Well, the INAR(p) process defined in (2) may be written as

a p-dimensional INAR(1) process and, moreover if 0 < αi < 1 for i = 1, . . . , p, and 0 < P (et = 0) < 1,

then any solution of the equation satisfied by the p-dimensional INAR(1) process is an irreducible

and aperiodic Markov chain on N0
p (Lemma 3 of Franke and Subba Rao (1995)). Since a Markov

chain is irreducible and aperiodic if and only if it is strongly mixing (Rosenblatt, 1971, p. 207),

we obtain that the INAR is strongly mixing and therefore satisfies condition (NGMP3). Finally,

since the absolute cumulants are summable, all the cumulants of the process exist and are finite.

Therefore, the moments of all orders of an INAR process exist and are finite because the existence of

the cumulants is equivalent to the existence of the moments (Rosenblatt, 1983). Thus, the condition

(NGMP2) is satisfied by INAR models.

Now, if a model is a non-Gaussian mixing process then the periodogram ordinates, I(·), at the Fourier

frequencies, ωj = 2πj/n, j = 1, . . . , [n/2], are asymptotically independent random variables, distrib-

uted as f(ωj)χ
2
2/2 variates, where f(·) is the spectral density function of the process (Brillinger,

2001, p. 126). Then, the probability density of the variables I(ωj), denoted by pI(I(ωj)), j =

1, . . . , [(n − 1)/2], is asymptotically given by

pI =

[(n−1)/2]
∏

j=1

1

f(ωj)
exp

−I(ωj)

f(ωj)
,

ℓI = log(pI) = −
[(n−1)/2]
∑

j=1

(

log(f(ωj)) +
I(ωj)

f(ωj)

)

. (26)

The last equation, (26), is a discrete version of the Whittle criterion, up to a constant.
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Thus, for RINAR processes, we obtain the Whittle estimate of θ by minimizing

ℓ̃(Xr,n) =
1

n

r
∑

k=1

[n/2]
∑

j=1

(

log f(ωj) +
Ik(ωj)

f(ωj)

)

=
r

n

[n/2]
∑

j=1

(

log f(ωj) +
Ī(ωj)

f(ωj)

)

, (27)

where f(ωj) is the value of the spectral density function at the Fourier frequency ωj = 2πj/n, for

j = 1, . . . , [n/2] and Ī(ωj) is the sample mean periodogram ordinate at the same frequency,

Ī(ω) =
1

r

r
∑

k=1

Ik(ω) =
1

2πnr

r
∑

k=1

∣

∣

∣

∣

∣

n
∑

t=1

Xk,te
iωt

∣

∣

∣

∣

∣

2

.

Dzhaparidze and Yaglom (1983) proved the consistency and asymptotic normality of Whittle estima-

tors for non-Gaussian mixing processes. However, the asymptotic variance of (θ̂WHT − θ) depends

on the fourth-order cumulant spectral density function, that is very difficult to obtain.

3.5 Bayesian Estimation

In this section, we consider a Bayesian analysis of the parameters of the RINAR(1) model. For this

analysis prior distributions of the parameters α and λ are needed. In the context of the RINAR(1)

model under study, we consider the conjugates of the Binomial and Poisson distributions and thus,

α ⌢ Beta(a, b), a, b > 0 and λ ⌢ Gamma(c, d), c, d > 0. Assuming independence between α and λ,

the prior distribution of (α, λ) is proportional to

p(α, λ) ∝ λc−1 exp(−dλ)αa−1(1 − α)b−1, λ > 0, 0 < α < 1, (28)

where a, b, c and d are known parameters. Note that, as a → 0, b → 0 c → 0 and d → 0 we have a

vague prior distribution.

The posterior distribution of (α, λ) can be written as

p(λ, α|Xr,n) ∝L(Xr,n, θ|xk,1) p(λ, α)

= exp [−(d + (n − 1)r)λ] λc−1αa−1(1 − α)b−1

r
∏

k=1

n
∏

t=2

Mk,t
∑

i=0

λ(Xk,t)−i

((Xk,t) − i)!

(

Xk,t−1

i

)

αi(1 − α)(Xk,t−1)−i, (29)

where L(Xr,n|xk,1) is given by (18) and p(α, λ) by (28). The complexity of p(α, λ|Xr,n) does not

allow us to get the marginal distribution of each of the unknown parameters and thus we cannot

calculate the posterior mean value of α and λ. Thus, we use a Markov Chain Monte Carlo (MCMC)

methodology to sample from (29). For the Gibbs sampling algorithm (Gelfand and Smith, 1990),

we need to derive the full conditional posterior distribution of each unknown variable. Thus, using

the expression (29), the full conditional of λ is given by

p(λ|α,Xr,n) =
p(λ, α|Xr,n)

p(α|Xr,n)
∝ exp[−(d + (n − 1)r)λ]λc−1

r
∏

k=1

n
∏

t=2

Mk,t
∑

i=0

C(k, t, i)λ(Xk,t)−i, (30)

where

C(k, t, i) =
1

((Xk,t) − i)!

(

Xk,t−1

i

)

αi(1 − α)(Xk,t−1)−i and λ > 0.
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Proceeding in a similar way it can be shown that the full conditional distribution of α is

p(α|λ,Xr,n) =
p(λ, α|Xr,n)

p(λ|Xr,n)
∝ αa−1(1 − α)b−1

r
∏

k=1

n
∏

t=2

Mk,t
∑

i=0

K(k, t, i)αi(1 − α)(Xk,t−1)−i, (31)

where

K(k, t, i) =
λ(Xk,t)−i

((Xk,t) − i)!

(

Xk,t−1

i

)

0 < α < 1.

It is interesting to note that when a gamma prior is used for λ, the full conditional posterior density

function of λ is a linear combination of gamma densities and if a beta distribution for α is considered,

the full conditional distribution of α, is a linear combination of beta densities.

4 Monte Carlo simulation study

The purpose of the simulation study presented in this section is twofold: to study and compare the

small sample properties of the different estimators and to assess the effect of the replicates in the

estimates.

We consider r = 1, 10, 20 replicates of time series of n = 25, 50, 100 observations, generated by

INAR(1) models for the following set of parameters values α = 0.1, 0.3, 0.7, 0.9 and λ = 1 and 3.

For every possible combination of the parameters α and λ, 500 sets of r replicates of length n are

simulated and the sample mean, variance and mean squared error of the estimates are calculated.

The main reason for choosing a Monte Carlo study based on 500 repetitions is the extremely large

amount of time need for the computation of Bayes estimates.

The asymptotic variance of YW, CLS and CML estimators, as given by equations (8), (9), (14),

(15), (16), (22), (23), (24) and (25), is also provided for comparison purposes.

The Yule-Walker estimates (YW) for α and λ are obtained from equations (6) and (7) and the Condi-

tional Least Squares estimates (CLS) are calculated from the normal equations given in (12) and (13).

The Iterative Weighted Conditional Least Squares estimates (IWCLS) are computed as described

in section 3.2.2 and using the MATLAB function lsqnonneg to minimize (17). The Whittle esti-

mates (WHT) of α and λ, are obtained using the constrained minimization algorithm implemented

in the MATLAB function fmincon. This algorithm finds a constrained minimum of a function of

several variables (here the function is given in (27)) by a Sequential Quadratic Programming method.

The CLS estimates are chosen as initial values for the algorithm. The constraints considered are

0 < α < 1 and λ > 0. The Conditional Maximum Likelihood estimates (CML) of the parameters α

and λ are computed from equation (21), as explained in Section 3.3, and using a bisection method to

find the zero solution of (20). To calculate the Bayesian estimates (Bayes), we run the Gibbs sam-

pler algorithm with initial value α = αCLS . In order to sample from full conditionals which are not

log-concave densities, we have to use the Adaptive Rejection Metropolis Sampling -ARMS- (Gilks

and Best, 1987), inside the Gibbs sampler. To reduce autocorrelation between MCMC samples, we

considered only samples from every 20 iterations. Among these, we ignored the first 1100 samples as

burn-in time, and use 2000 samples after the burn-in for posterior inference. In order to use vague

prior distributions we considered all the hyperparameters a, b, c, d = 10−4.

Note that YW, CLS and IWCLS estimates for α do take values outside the admissible range [0, 1]

when α lies near zero or one. A constrained minimization algorithm was used with the Whittle
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criterion to avoid this. On the other hand, CML and Bayes estimates always lie in the admissible

range.

Numerical results are presented only for the models with α = 0.1, 0.3, 0.9 and λ = 1, in Tables 1 to

6, since these illustrate well the following overall conclusions.

The estimates for α and λ present sample mean biases and variances which decrease both with the

sample size n and the number of replicates, r, in agreement with the asymptotic properties of the

estimators: unbiasedness and consistency.

Also, it can be noted that the absolute sample biases are larger for larger values of α and λ, and

for a fixed α, the sample variance of λ̂ increase with λ. Furthermore, in general, α̂ presents negative

sample mean biases for all the estimation methods regardless of the size and number of replicates, in-

dicating that α is underestimated, whilst the estimates for λ shows positive sample biases, indicating

overestimation for λ.

The YW estimates, among all the methods, present the larger sample biases. For α < 0.5, the

CLS, IWCLS, CML and WHT estimates of α and λ present the lower sample mean biases, while for

α > 0.5, the lower sample mean bias is presented by CML and Bayes. The sample variance of the

Bayes estimates is the lowest, among all the methods.

The root mean squared errors of the estimates are close to the corresponding standard deviations,

indicating small biases.

Generally the asymptotic and the sample standard deviations of the estimators are comparable

and are, in fact, quite similar for larger values of n and/or r. However, it is noticeable that CML

asymptotics are rather conservative, except for α̂ when α is large.

Boxplots of the sample bias are presented in Figures 1 to 3. The boxplots indicate that the marginal

distributions of the estimators are, generally, symmetric in agreement to the theoretical results.

However, for small sample sizes there is evidence of departure from symmetry in the marginal

distributions, specially for values of the parameters near the non-stationary region.

The above conclusions are the same for other values of the parameter λ.

5 Example

Sunspots are magnetic regions on the Sun that appear as dark group of spots on its surface with

many shapes and forms. The spots change from day to day, even from hour to hour, and vary in

size, from small dot (pores) to large spots groups covering a vast area of the solar surface, which

after a time get smaller and disappear. The time from birth to death of a sunspot group varies from

a few days to six months, with the median less than two weeks.

Sporadic naked-eye observations exist in Chinese dynastic histories since 28 BC. Telescopic obser-

vations of sunspots have been made in Europe since 1610 AD. Modern systematic measurements

of sunspots began in 1835. In order to quantify the results of the observations, Rudolf Wolf in-

troduced, in 1848, the Relative Sunspot Numbers (now referred to as the International Sunspot

Numbers) as a measure of sunspots activity. Recently, Hoyt and Schatten (1998) have introduced

the Group Sunspot Number, that uses the number of sunspot groups observed, rather than groups

and individual sunspots.

Here, we consider number of sunspot groups available on-line at the National Geophysical Data Cen-
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α̂

(α, λ) = (0.1, 1.0) r n YW CLS IWCLS CML WHT Bayes

25 -0.0538 0.0052 0.0601 0.0873 0.0300 0.0430

1 50 -0.0271 0.0012 0.0326 0.0427 0.0196 0.0105

100 -0.0121 -0.0043 0.0108 0.0219 0.0026 -0.0122

sample 25 -0.0109 -0.0033 -0.0023 0.0015 -0.0027 -0.0289

bias 10 50 -0.0105 -0.0026 -0.0077 -0.0059 -0.0026 -0.0283

100 -0.0039 0.0020 -0.0029 -0.0031 0.0017 -0.0165

25 -0.0097 -0.0025 -0.0053 -0.0040 -0.0037 -0.0268

20 50 -0.0041 -0.0006 -0.0022 -0.0028 -0.0013 -0.0167

100 -0.0025 -0.0014 -0.0015 -0.0015 -0.0016 -0.0068

25 0.1839 0.1342 0.1162 0.1330 0.1470 0.0800

(0.1888) (0.2070) (0.1987)

1 50 0.1458 0.1049 0.0996 0.1010 0.1127 0.0693

(0.1335) (0.1464) (0.1425)

100 0.1029 0.0849 0.0799 0.0762 0.0883 0.0566

sample (0.0944) (0.1035) (0.1012)

standard 25 0.0662 0.0600 0.0615 0.0539 0.0624 0.0458

deviation (0.0597) (0.0655) (0.0642)

10 50 0.0461 0.0480 0.0453 0.0412 0.0490 0.0412

(theoretical 0.0422 0.0463 0.0454

standard 100 0.0322 0.0346 0.0325 0.0332 0.0346 0.0374

deviation) 0.0298 0.0327 0.0321

25 0.0454 0.0447 0.0457 0.0412 0.0458 0.0412

(0.0422) (0.0463) (0.0454)

20 50 0.0314 0.0332 0.0321 0.0316 0.0332 0.0374

(0.0298) (0.0327) (0.0321)

100 0.0229 0.0245 0.0232 0.0224 0.0245 0.0245

(0.0211) (0.0231) (0.0227)

25 0.1916 0.1342 0.1308 0.1590 0.1500 0.0909

1 50 0.1483 0.1049 0.1048 0.1097 0.1145 0.0698

root 100 0.1037 0.0854 0.0807 0.0791 0.0883 0.0581

mean 25 0.0671 0.0600 0.0616 0.0535 0.0624 0.0540

square 10 50 0.0473 0.0480 0.0459 0.0417 0.0490 0.0496

error 100 0.0325 0.0346 0.0326 0.0326 0.0346 0.0406

25 0.0465 0.0447 0.0460 0.0413 0.0458 0.0490

20 50 0.0317 0.0332 0.0322 0.0323 0.0332 0.0408

100 0.0231 0.0245 0.0232 0.0226 0.0245 0.0262

Table 1: Sample means, sample standard deviations, theoretical standard deviations (in brackets)

and sample root mean square error for α = 0.1, λ = 1.
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λ̂

(α, λ) = (0.1, 1.0) r n YW CLS IWCLS CML WHT Bayes

25 0.0529 -0.0164 0.0525 -0.1176 -0.0420 -0.0739

1 50 0.0209 -0.0043 0.0191 -0.0551 -0.0377 -0.0259

100 0.0091 -0.0056 0.0083 -0.0258 -0.0158 0.0086

sample 25 0.0090 -0.0011 0.0051 -0.0018 -0.0032 0.0308

bias 10 50 0.0134 0.0039 0.0115 0.0068 0.0027 0.0310

100 0.0067 -0.0024 0.0056 0.0065 0.0000 0.0215

25 0.0104 0.0030 0.0062 0.0047 0.0057 0.0300

20 50 0.0050 0.0002 0.0031 0.0058 -0.0022 0.0212

100 0.0027 0.0027 0.0018 0.0038 0.0018 0.0097

25 0.2835 0.2532 0.2955 0.2307 0.3612 0.2027

(0.3113) (0.2981) (0.2743)

1 50 0.2084 0.1811 0.2127 0.1729 0.2502 0.1565

(0.2201) (0.2108) (0.2021)

100 0.1479 0.1245 0.1489 0.1327 0.1688 0.1192

sample (0.1556) (0.1491) (0.1454)

standard 25 0.0932 0.0964 0.0962 0.0860 0.1249 0.0825

deviation (0.0984) (0.0943) (0.0931)

10 50 0.0643 0.0693 0.0656 0.0632 0.0872 0.0648

(theoretical (0.0696) (0.0667) (0.0661)

standard 100 0.0455 0.0490 0.0456 0.0458 0.0608 0.0510

deviation) (0.0492) (0.0471) (0.0468)

25 0.0669 0.0608 0.0685 0.0632 0.0860 0.0648

(0.0696) (0.0667) (0.0660)

20 50 0.0458 0.0480 0.0464 0.0141 0.0632 0.0510

(0.0492) (0.0471) (0.0468)

100 0.0338 0.0346 0.0339 0.0332 0.0860 0.0346

(0.0348) (0.0333) (0.0330)

25 0.2884 0.2538 0.3001 0.2586 0.3636 0.2156

1 50 0.2095 0.1811 0.2136 0.1812 0.2532 0.1584

root 100 0.1482 0.1245 0.1492 0.1352 0.1697 0.1193

mean 25 0.0937 0.0964 0.0963 0.0862 0.1249 0.0881

square 10 50 0.0656 0.0693 0.0666 0.0635 0.0872 0.0715

error 100 0.0460 0.0490 0.0460 0.0467 0.0608 0.0553

25 0.0677 0.0608 0.0688 0.0637 0.0860 0.0716

20 50 0.0461 0.0480 0.0465 0.0460 0.0632 0.0548

100 0.0339 0.0346 0.0340 0.0329 0.0447 0.0363

Table 2: Sample means, sample standard deviations, theoretical standard deviations (in brackets)

and sample root mean square error for α = 0.1, λ = 1.
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α̂

(α, λ) = (0.3, 1.0) r n YW CLS IWCLS CML WHT Bayes

25 -0.0826 -0.0672 -0.0458 -0.0003 -0.0305 -0.0596

1 50 -0.0406 -0.0331 -0.0331 -0.0135 -0.0140 -0.0615

100 -0.0261 -0.0304 -0.0233 -0.0110 -0.0235 -0.0446

sample 25 -0.0172 -0.0132 -0.0055 -0.0086 -0.0206 -0.0211

bias 10 50 -0.0109 -0.0049 -0.0049 -0.0039 -0.0086 -0.0085

100 -0.0034 -0.0018 -0.0004 -0.0021 -0.0035 -0.0046

25 -0.0162 -0.0040 -0.0041 -0.0039 -0.0124 -0.0090

20 50 -0.0076 -0.0001 -0.0017 -0.0016 -0.0043 -0.0039

100 -0.0044 0.0016 -0.0014 -0.0008 -0.0007 -0.0019

25 0.1860 0.1811 0.1642 0.1510 0.1957 0.1265

(0.1596) (0.2056) (0.1839)

1 50 0.1324 0.1345 0.1294 0.1257 0.1418 0.1192

(0.1129) (0.1454) (0.1313)

100 0.0983 0.1077 0.0991 0.0911 0.1114 0.1005

sample (0.0798) (0.1028) (0.0926)

standard 25 0.0617 0.0640 0.0640 0.0600 0.0663 0.0663

deviation (0.0505) (0.0650) (0.0584)

10 50 0.0458 0.0447 0.0459 0.0400 0.0469 0.0412

(theoretical 0.0357 0.0460 0.0412

standard 100 0.0315 0.0316 0.0317 0.0300 0.0316 0.0300

deviation) 0.0252 0.0325 0.0291

25 0.0455 0.0469 0.0471 0.0424 0.0500 0.0436

(0.0357) (0.0460) (0.0412)

20 50 0.0326 0.0316 0.0332 0.0300 0.0316 0.0300

(0.0252) (0.0325) (0.0291)

100 0.0229 0.0245 0.0231 0.0200 0.0245 0.0200

(0.0178) (0.0230) (0.0205)

25 0.2035 0.1342 0.1705 0.1509 0.1500 0.1398

1 50 0.1385 0.1049 0.1385 0.1261 0.1145 0.1341

root 100 0.1018 0.0854 0.1018 0.0919 0.0883 0.1099

mean 25 0.0641 0.0600 0.0643 0.0608 0.0624 0.1093

square 10 50 0.0471 0.0480 0.0472 0.0403 0.0490 0.0422

error 100 0.0317 0.0346 0.0317 0.0292 0.0346 0.0299

25 0.0483 0.0447 0.0473 0.0424 0.0458 0.0447

20 50 0.0335 0.0332 0.0333 0.0293 0.0332 0.0298

100 0.0233 0.0245 0.0231 0.0202 0.0245 0.0206

Table 3: Sample means, sample standard deviations, theoretical standard deviations (in brackets)

and sample root mean square error for α = 0.3, λ = 1.
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λ̂

(α, λ) = (0.3, 1.0) r n YW CLS IWCLS CML WHT Bayes

25 0.1229 0.0767 0.1077 -0.0310 0.0036 0.0385

1 50 0.0501 0.0483 0.0441 -0.0041 0.0024 0.0623

100 0.0315 0.0349 0.0273 0.0064 0.0130 0.0538

sample 25 0.0194 0.0119 0.0034 0.0091 0.0199 0.0270

bias 10 50 0.0104 0.0057 0.0018 0.0053 0.0038 0.0115

100 0.0068 0.0027 0.0026 0.0055 0.0049 0.0093

25 0.0244 0.0053 0.0071 0.0055 0.0147 0.0124

20 50 0.0089 -0.0014 0.0001 0.0047 0.0078 0.0081

100 0.0041 -0.0020 -0.0002 0.0022 0.0030 0.0039

25 0.3396 0.3489 0.3554 0.2704 0.3581 0.2608

(0.3719) (0.3381) (0.3031)

1 50 0.2312 0.2520 0.2348 0.2064 0.2632 0.2138

(0.2630) (0.2390) (0.2186)

100 0.1696 0.1811 0.1726 0.1546 0.2027 0.1703

sample (0.1859) (0.1690) (0.1560)

standard 25 0.1037 0.1049 0.1075 0.0985 0.1200 0.1058

deviation (0.1176) (0.1069) (0.0989)

10 50 0.0758 0.0742 0.0769 0.0686 0.0837 0.0707

(theoretical (0.0832) (0.0756) (0.0698)

standard 100 0.0536 0.0548 0.0538 0.0469 0.0616 0.0480

deviation) (0.0588) (0.0535) (0.0494)

25 0.0760 0.0800 0.0782 0.0700 0.0894 0.0721

(0.0832) (0.0756) (0.0698)

20 50 0.0541 0.0539 0.0549 0.0469 0.0608 0.0469

(0.0588) (0.0535) (0.0494)

100 0.0401 0.0387 0.0404 0.0332 0.0424 0.0332

(0.0416) (0.0378) (0.0348)

25 0.3612 0.2538 0.3714 0.2718 0.3636 0.2634

1 50 0.2366 0.1811 0.2389 0.2061 0.2532 0.2224

root 100 0.1725 0.1245 0.1748 0.1546 0.1697 0.1784

mean 25 0.1055 0.0964 0.1076 0.0988 0.1249 0.0697

square 10 50 0.0765 0.0693 0.0770 0.0689 0.0872 0.0714

error 100 0.0541 0.0490 0.0539 0.0473 0.0608 0.0486

25 0.0798 0.0608 0.0786 0.0699 0.0860 0.0729

20 50 0.0549 0.0480 0.0549 0.0469 0.0632 0.0480

100 0.0403 0.0346 0.0404 0.0332 0.0447 0.0340

Table 4: Sample means, sample standard deviations, theoretical standard deviations (in brackets)

and sample root mean square error for α = 0.3, λ = 1.
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α̂

(α, λ) = (0.9, 1.0) r n YW CLS IWCLS CML WHT Bayes

25 -0.2156 -0.1755 -0.1686 -0.0083 -0.0980 -0.0140

1 50 -0.1040 -0.0868 -0.0818 -0.0074 -0.0547 -0.0099

100 -0.0476 -0.0389 -0.0383 -0.0031 -0.0216 -0.0041

sample 25 -0.0510 -0.0101 -0.0143 -0.0011 -0.0030 -0.0015

bias 10 50 -0.0253 -0.0061 -0.0064 -0.0006 -0.0086 -0.0009

100 -0.0125 -0.0034 -0.0036 -0.0006 -0.0100 -0.0007

25 -0.0426 -0.0058 -0.0062 -0.0006 -0.0043 -0.0008

20 50 -0.0216 -0.0038 -0.0034 -0.0006 -0.0112 -0.0007

100 -0.0111 -0.0021 -0.0019 -0.0002 -0.0095 -0.0003

25 0.1517 0.1766 0.1644 0.0374 0.2114 0.0400

(0.0276) (0.0892) (0.0354)

1 50 0.0946 0.0943 0.0945 0.0265 0.1245 0.0283

(0.0195) (0.0631) (0.0248)

100 0.0625 0.0566 0.0628 0.0173 0.0707 0.0173

sample (0.0138) (0.0446) (0.0168)

standard 25 0.0334 0.0316 0.0330 0.0100 0.0970 0.0100

deviation (0.0087) (0.0282) (0.0104)

10 50 0.0216 0.0200 0.0209 0.0100 0.0469 0.0100

(theoretical (0.0062) (0.0199) (0.0074)

standard 100 0.0146 0.0141 0.0141 0.0100 0.0200 0.0100

deviation) (0.0044) (0.0141) (0.0052)

25 0.0223 0.0224 0.0205 0.0100 0.0775 0.0100

(0.0062) (0.0199) (0.0074)

20 50 0.0150 0.0141 0.0146 0.0100 0.0374 0.0100

(0.0044) (0.0141) (0.0052)

100 0.0105 0.0100 0.0100 0.0100 0.0141 0.0100

(0.0031) (0.0100) (0.0037)

25 0.2636 0.2490 0.2356 0.0380 0.2330 0.0422

1 50 0.1406 0.1285 0.1250 0.0280 0.1360 0.0296

root 100 0.0786 0.0686 0.0736 0.0178 0.0735 0.0183

mean 25 0.0610 0.0332 0.0360 0.0107 0.0970 0.0108

square 10 50 0.0332 0.0200 0.0219 0.0072 0.0469 0.0073

error 100 0.0193 0.0141 0.0145 0.0051 0.0224 0.0051

25 0.0481 0.0224 0.0214 0.0072 0.0775 0.0072

20 50 0.0263 0.0141 0.0150 0.0051 0.0387 0.0052

100 0.0153 0.0100 0.0102 0.0037 0.0173 0.0038

Table 5: Sample means, sample standard deviations, theoretical standard deviations (in brackets)

and sample root mean square error for α = 0.9, λ = 1.
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λ̂

(α, λ) = (0.9, 1.0) r n YW CLS IWCLS CML WHT Bayes

25 2.1159 1.7143 1.6724 0.0035 0.2893 0.0509

1 50 1.0130 0.8573 0.7883 0.0108 0.2283 0.0314

100 0.4728 0.3791 0.3766 0.0094 0.1092 0.0185

sample 25 0.5092 0.0983 0.1396 0.0101 0.3522 0.0147

bias 10 50 0.2561 0.0567 0.0653 0.0054 0.1828 0.0070

100 0.1278 0.0299 0.0391 0.0099 0.0893 0.0107

25 0.4200 0.0596 0.0566 0.0055 0.3513 0.0076

20 50 0.2124 0.0388 0.0296 0.0104 0.1756 0.0112

100 0.1114 0.0170 0.0194 0.0052 0.0890 0.0053

25 1.6835 1.8866 1.7528 0.3282 0.6145 0.3527

(0.9338) (0.8944) (0.3342)

1 50 0.9570 0.9531 0.9392 0.2280 0.4260 0.2337

(0.6603) (0.6325) (0.2379)

100 0.6196 0.5913 0.6211 0.1673 0.2512 0.1688

sample (0.4669) (0.4472) (0.1680)

standard 25 0.3349 0.3124 0.3258 0.1049 0.2040 0.1058

deviation (0.2953) (0.2828) (0.1063)

10 50 0.2260 0.2054 0.2198 0.0735 0.1225 0.0742

(theoretical (0.2088) (0.2000) (0.0749)

standard 100 0.1497 0.1400 0.1436 0.0510 0.0781 0.0510

deviation) (0.1476) (0.1414) (0.0532)

25 0.2216 0.2128 0.2028 0.0728 0.1404 0.0735

(0.2088) (0.2000) (0.0749)

20 50 0.1475 0.1493 0.1426 0.0510 0.0831 0.0510

(0.1476) (0.1414) (0.0532)

100 0.1095 0.1025 0.1039 0.0374 0.0510 0.0387

(0.1044) (0.1000) (0.0374)

25 2.7039 2.5491 2.4226 0.3278 0.6792 0.3560

1 50 1.3935 1.2820 1.2262 0.2280 0.4833 0.2356

root 100 0.7794 0.7024 0.7264 0.1674 0.2739 0.1698

mean 25 0.6095 0.3276 0.3545 0.1052 0.4069 0.1069

square 10 50 0.3416 0.2133 0.2293 0.0738 0.2200 0.0745

error 100 0.1969 0.1432 0.1488 0.0519 0.1183 0.0523

25 0.4748 0.2211 0.2106 0.0729 0.3783 0.0735

20 50 0.2586 0.1543 0.1456 0.1007 0.1942 0.0525

100 0.1562 0.1039 0.1057 0.0380 0.1025 0.0385

Table 6: Sample means, sample standard deviations, theoretical standard deviations (in brackets)

and sample root mean square error for α = 0.9, λ = 1.
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Figure 1: Boxplots of the biases for α = 0.9, λ = 1, r = 1, n = 25, 50, 100.
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Figure 2: Boxplots of the biases for α = 0.9, λ = 1, r = 20, n = 25, 50, 100.
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Figure 3: Boxplots of the biases for α = 0.9, λ = 1, r = 1, 10, 20, n = 100.

ter (http://www.ngdc.noaa/gov/), in the section about Solar Sunspot Region. The data consists

of the total number of sunspot groups per week, during two years (1990-1991), in a total of n = 104

observations, registered in two solar observatories: National Geophysical Data Center at Boulder

(Colorado, USA) and Palehua Solar Observatory (Hawaii, USA). Figure 4 shows the two series with

the corresponding sample autocorrelation functions and sample partial correlation functions.

Note that the number of sunspot groups in a week can be considered as the number of sunspot

groups existing in the previous week that have not disappeared, with probability α, plus the new

spot groups that appear in the current week.

For the Palehua series, the analysis of the correlogram and partial correlogram indicates a first-order

model. The choice of p = 1 is corroborated by the AICC criterion for order selection in INAR models

(I. Silva, 2005), which attains a minimum value of 403.32 for p = 1, when p is allowed to vary up

to 10. On the other hand, for the Boulder series, the correlogram and partial correlogram indicate

orders 1 and 3 as candidates for the order of the model. In this case, the AICC criterion gives a

minimum value 383.2491 for p = 1 versus a value 404.8081 when p = 3. In addition, the variance of

the residuals (when the parameters of the model are estimated by constrained Whittle criterion) is

17.6546 for the INAR(1) model and 17.9486 for the INAR(3) model. Therefore, we find that a first

order model is suitable for both series. Further, considering that both observatories are observing

the Sun we assume that the same INAR(1) model is appropriate for both series. Thus, although

these series may present some degree of dependence, we consider that the series are a realization of

a Poisson RINAR(1) process with r = 2 replicates. The parameters, (α, λ), are estimated by the

methods proposed in the previous sections and presented in Table 7.
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Figure 4: Number of sunspot groups per week, during two years (1990-1991) registered in two solar

observatories and sample autocorrelation and sample partial autocorrelation functions.

In order to verify the goodness-of-fit of the RINAR(1) to the observations, we calculate the sample

correlogram and sample partial correlogram for the residuals defined as

resM,t = Xk,t − α̂MXk,t−1 − λ̂M ,

where k = 1, 2; t = 2, . . . , 104 and M represents the estimation method. The usual randomness

tests for the standardized residuals

ResM,t =
resM,t − resM

σ̂resM

,

where resM is the sample mean of the residuals and σ̂resM
is the sample standard deviation of

the residuals, do not reject the hypothesis of uncorrelatedness. Thus, the RINAR(1) process is a

reasonable model for the description of the data.
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Method α̂ λ̂ µ̂X

YW 0.390 (0.047) 9.936 (1.105) 16.284

CLS 0.399 (0.064) 9.795 (1.059) 16.303

IWCLS 0.399 9.795 16.303

CML 0.297 (0.122) 11.466 (2.025) 16.311

WHT 0.366 10.313 16.272

Bayes 0.289 11.627 16.344

Table 7: Parameter estimates of the RINAR(1) model for the total number of sunspot groups, per

week (r = 2, n = 104), with the corresponding standard errors (in brackets).
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