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Information Processing 

Scalable Distributed Compression

Distributed Inference

Secure Quantization

Distributed Storage

Information Security

Information-Theoretic Security

Information Theory

Multi-user Information Theory

Interplay IT and Estimation Theory

Rate-Distortion Theory

Network coding

Information Networks

Integration in Heterogeneous Networks
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Cooperatively Secure Routing

Secure Network Coding

Secret Key Agreement

Data Gathering in Sensor Networks

Vehicular Ad-hoc Networks

Small-World Networks
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� WITS: Wireless Information-Theoretic Security

� CALLAS: Calculii and Languages for Sensor Networks

� SeNeCom: Secure Network Communications

� 8 PhD Fellowships

� DYNAMO: Foundations and Algorithms of Dynamic Networks

� DAIDALOS I and II: Integration of Heterogenous Networks 

� N-CRAVE: Network Coding in Highly Volatile Networks

(Portuguese NSF)

European Union
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� EURO-NFI: Network of Excellence on Future Internet

� WiPhySec: Wireless Physical-Layer Security

� NeCo: Network Coding Opportunities

� SENECA: Secure Network Coding

� NET-PEEC: Network Coding for P2P



Network Information Theory
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The eternal problem…
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Coding Theorems

Claude Shannon:

Noisy 

Channel
ReceiverSource SinkTransmitter

8

g Û fp(u)

Mathematical Model

U N X K p(y|x)
Y K Û N

(almost) perfect 
reconstruction



Basic Definitions

Noisy

Channel
DecoderSource SinkEncoder

g Û fp(u) U K X N p(y|x)
Y N Û K
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Fundamental Theorems

Channel DecoderSource SinkEncoder

Source

Coding 

Channel 

Coding

U N X K Y K Û N
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Coding Coding

H(U) < I(X;Y) < C

Source Coding:

Channel Coding:

Source/Channel Separation:

R > H(U)

R < I(X;Y) < C



Network Information Theory

Y

� Information theory has been very successful 

at characterizing the fundamental limits of 

point-to-point communications.

�How about networks? 
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� Interference

� Cooperation

� Feedback

Network

X1

X3

X4

X2

Y1

Y2



Multiple Access Channel

Model for uplink in 

Decoder

Source 1 Encoder 1

Source 2

U1

U2

Û1

Û2
Encoder 2

Sinkp(u1) p(u2)

X1

X2

Y
p(y|x1 x2)

R2 (I(X1;Y), I(X2;Y|X1))
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• Model for uplink in 

wireless networks

• Complete solution

is known.
R1

I(X1X2 |Y)

I(X1X2 |Y)

I(X2;Y)

I(X1; Y)

I(X2;Y|X1)

I(X1;Y|X2)

1 2 1



Broadcast Channel

• Model for downlink in wireless networks

Decoder 1

Source Encoder

Sink 1
X

p( y1 y2 |x)

Y1

Y2
Decoder 2 Sink 2

U2,U1
Û1

Û2
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• Model for downlink in wireless networks

• Superposition Coding

• Solution only known for the degraded case with 

Markov chain X-Y1-Y2

• Auxiliary r.v. W
R1 ≤ I(W;Y2)

R2 ≤ I(X;Y2|W)



Relay Channel
� User Cooperation

� Physically Degraded

� Max-flow Min-cut Bound

X

X1

Y
Y1{ })|,;(),;,(minsup 111

),( 1

XYYXIYXXIC
xxp

=
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�General solution still unknown



Network Coding
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Store-and-Forward versus Network Coding

� In today’s networks, information is viewed as a 

commodity, which is transmitted in packets and 

forwarded from router to router pretty much as water 

in pipes or cars in highways.
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� In contrast, network coding allows intermediate 

nodes to mix different information flows by combining 

different input packets into one or more output 

packets.



A simple three-node example

A
B

C

a a

b

17

A C
b b

In the current networking paradigm we require 4 transmissions.



Network Coding

A
B

C

a b
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A C

With network coding we require only 3 transmissions.

a+b



Basic Principles of Network Coding

� To receive the requested data, the destination node does not 

require specific packets.

� It is sufficient to receive a sufficient number of packets, from 

which the destination node can recover (or decode) the data.

� This allows us to trade off computation and communication 
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resources. 

A
B

C

a b

a+b



Foundations of Network Coding

� [Ahlswede, Cai, Li and Yeung, 2000] 

� Max-flow min-cut capacity of a general multicast network can only be 

achieved by allowing intermediate nodes to mix different data flows

� [Li, Yeung and Cai, 2003]

� Linear network coding sufficient to reach multicast capacity of a network
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� [Koetter and Médard, 2003]

� Algebraic framework

� [Ho et al, 2003]

� Randomized network coding



Algebraic Framework for Network Coding

� Binary vector of length m: element in  

� Random processes at nodes

F
2

m

Y (e3) = α iX(v,i) + β jY (e j )
j=1,2

∑
i

∑
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� Transfer matrix 

� Generalized MIN-CUT MAX-FLOW Condition

z = xM M = A(I − F)−1BT

M ≠ 0



Random Linear Network Coding

� Coefficients chosen independently at 

random

� With high probability, transfer matrix is 

non-singular

� Multicast problem, some or all
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� Multicast problem, some or all

coefficients chosen independently from     

, d receivers,    number of links with 

associated random coefficients

� Probability that random code is 

valid is
1−

d

q

 

 
 

 

 
 

η

Fq

η



Packetized Network Coding

� Assume each packet carries L bits

� s consecutive bits can be viewed as a symbol in Fq

L

enc. vector
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L
s

� Perform network coding on a symbol by symbol basis.

� Output packet also has length L.

� Send the coefficients (the “encoding vector”) in the header.

� Information is spread over multiple packets.



Practical Considerations

� Encoding: Elementary linear operations which can be implemented in a 

straightforward manner (with shifts and additions).

� Decoding: Once a receiver has enough linearly independent packets, it can 

decode the data using Gaussian elimination, which requires             operations.

� Generations: To manage the complexity and memory requirements, we mix 

only generations with fixed number of packets and limit the field size. Each keeps 
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only generations with fixed number of packets and limit the field size. Each keeps 

a buffer sorted by generation number. Non-innovative packets are discarded. 

� Delay: Since we must wait until we have enough packets to decode, there is 

some delay (not very significant, since we require less transmissions in many 

relevant scenarios)
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W

a b

a

a

a

b

b

b

a b

a

a

b

b
a or b?

S

T U

W

S

T U

W

a b

a

a

b

b
a+b

Throughput benefits of network coding
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Y Z

ab

Y Z

X

Y Z

X
a+b a+b

How can we send a and b to nodes Y and Z simultaneously?
(Linear)Network Coding 
achieves Max-Flow bound in Multicast Networks



a b

a b

a or b?

T U

W

X

Works also for unicast sessions

a

T U

W

X

b

a

a

b

b
a+b

a+b a+b
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Y Z

How can T send a to Z and U send b to Y simultaneously?
(Linear)Network Coding improves throughput,
and can also help with robustness to failures.

a

Y Z

a+b a+b

abb



Reliability in the presence of erasures and errors

� State-of-the-art reliable communication over noisy links relies on:

� Automatic Repeat Request (ARQ) techniques (at a price in delay)

� Forward Error Correction (FEC)  mechanisms (at a price in rate)

� Network coding can achieve optimum delay and rate.

erasure probability � End-to-end FEC (no delay)
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A B C
e1 e2

erasure probability � End-to-end FEC (no delay)

� Decode-and- forward (delay)

� Network Coding (no delay)

)1)(1( 21 eeR −−≤

)}1(),1min{( 21 eeR −−≤

)}1(),1min{( 21 eeR −−≤



Coupon Collector’s Problem

� n nodes, O(n) messages
� every node should get n messages
� Centralized gossiping algorithm: 
Θ(n) rounds with Θ(n) pairs of nodes 
exchanging one message per round.
� Decentralized gossiping algorithm: 
Θ(n log n) rounds, because some 
messages become hard to collect.
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messages become hard to collect.
� Random linear network coding:      
all packets are “equal” and each node 
only needs to get n packets, therefore 
Θ(n) are sufficient – and still fully 
decentralized.



Other benefits

� Simpler algorithms: The multicast routing problem is NP-hard 

(packing Steiner trees), however with network coding there exist 

polynomial time algorithms.

� Robustness: Random network coding is completely decentralized and 

preserves the information in the network, even in highly volatile 

29

preserves the information in the network, even in highly volatile 

networking scenarios.



Applications of Network Coding

� Distributed Storage and Peer-to-Peer:  robustness against failures in 

highly volatile networks;

Wireless Networks: Information dissemination using opportunistic 

First real-life application in July 2007: 

Microsoft Secure Content Downloader (a.k.a. Avalanche)
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� Wireless Networks: Information dissemination using opportunistic 

transmission;

� Sensor Networks: Data gathering with extremely unreliable sensing 

devices;

� Network Management: Assessing critical network parameters (e.g. 

topology changes and link quality)



Capacity of Random Networks

31



Small World Phenomena

Many complex natural and man-made networks

share the following common properties:
�Large networks (n >> 1)

�Sparse connectivity (avg degree k << n)

�No central node (k << n)
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�No central node (kmax << n)

�Large clustering coefficient (larger than in random 

graphs of same size)

�Short average paths (~log n, close to those of 

random graphs of the same size)



Small-World  Network (SWN) with Shortcuts

• Start with a k-connected ring lattice           ;

• Add each edge            to the graph with probability p.

Small World ModelsSmall World Models

LEe∉

( )LL EV ,
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[Watts & Strogatz ’98, Newman & Watts ’99]



RewiringRewiring
Small-World Network with Rewiring

- Start with a k-connected ring lattice;

- Choose an edge in the initial lattice;

- With probability p, rewire this edge to a random node;

- Repeat until all the edges have been considered once.
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[Watts & Strogatz ’98, Watts ’99]



Fundamental PropertiesFundamental Properties

�Characteristic Path Length

(drops sharply)

�Clustering Coefficient

(remains almost constant)
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||V

C(v)
C Vv∑ ∈=

vofneighboursbetweenlinkspossible

vofneighboursbetweenlinks
vC

#

#
)( =with

[Watts & Strogatz ’98]

� Other parameters: sparsity, degree distribution, betweenness,... 

... 



• The combination of strong local connectivity and long range 

shortcut links renders small-world topologies particularly well 

suited for

� Resource discovery in mobile ad-hoc networks [Helmy’03]

� Heterogenous networks [Reznik, Kulkarni, Verdu,’04]

� Peer-to-peer communications [Manku, Naor, Wieder,’04]

Cellular wireless networks [Dixit, Yanmaz, Tonguz,’05]

Why do we care about capacity of SWN?
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� Cellular wireless networks [Dixit, Yanmaz, Tonguz,’05]

• The notion of capacity plays a key role in many of the systems 

for which small world topologies are currently envisioned.

• Capacity and network information flow may help explain why

small-world networks appear so frequently.



Max-Flow Min-Cut Capacity
• The max-flow min-cut bound [Ford,Fulkerson] gives the 

fundamental limits of information flow for:

� one unicast session

� multiple independent sources and one sink

� correlated sources and one sink

� multicast (with network coding)
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� multicast (with network coding)

• We will be concerned with the max-flow min-cut capacity

of small-world networks.



Capacity of SWN with added ShortcutsCapacity of SWN with added Shortcuts

Theorem 1 With high probability, the value of the capacity of a 

small-world network with added shortcuts lies between             

and             , with                        and                                .
wc)1( ε−

wc)1( ε+ wcnd /)ln()2(2 +=εpknkcw )1( −−+=
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Bounds for the capacity of a

small-world network with

added shortcuts, for n=1000,

k=20 and d=1.



Key ingredient for the proofsKey ingredient for the proofs

G sG

ep

sc

wc

Sampling with

ep

ep ep
ep

Random Sampling on Graphs [Karger’94]Random Sampling on Graphs [Karger’94]
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G sG

wG

ep

ep

ep

ep

ep ep
ep

{ }sw cEc =

Expected cut
undirected graph

unitary weights

The generation of small-world networks can be viewed as a 
random sampling process on a graph.



Random Sampling on GraphsRandom Sampling on Graphs

Theorem (Karger, 1994): Let                            . Then, with 

probability               , every cut in       has value between           

and            times its expected value (i.e., the value of the 

same cut in      ).

sG

wG

wcnd /)ln()2(2 +=ε

)/1(1 dnO− )1( ε−

)1( ε+
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Corollary  Let                              . Then with high 

probability, the value of      lies between              and                  

.

sc wcnd /)ln()2(2 +=ε

wc)1( ε−

wc)1( ε+



A simple lemmaA simple lemma

Lemma 1: Let                be a k-connected ring lattice and 

let               be a fully connected graph, in which edges           

have weight           and edges          have weight           . 

Then, the global minimum cut in     is

( )LL EVL ,=

( )EVG L,= LEe∈

01 ≥w LEf ∉ 02 ≥w

G
21 )1( wknkw −−+
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Each node in L has edges of weight     ; each node in F has                  

edges of weight     .

1w

2wkn −−1

k

L F



� Take a fully connected graph.

� Define the weight of the edges as follows:

� edges on the ring lattice have unitary weight (they 

are not removed) 

� edges on the remaining edges (shortcuts) have 

weight p 

Sketch of Proof for Theorem 1Sketch of Proof for Theorem 1
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João Barros 

Fundamental Limits of Communication Networks

weight p 

� Apply lemma 1 with        and  

� The global minimum cut in     iswG

11 =w pw =2

pknkcw )1( −−+=



Capacity Bounds for SWNs with RewiringCapacity Bounds for SWNs with Rewiring

Theorem 3 (Rewiring does not alter capacity):

With high probability, the capacity of a small-world 

network with rewiring has a value in the interval                  

, with                             .[ ]kk,)1( ε− knd /)ln()2(2 +=ε
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p=0.1 p=0.5 p=0.9



Sketch of Proof
• Take a fully connected graph

• Assign weight 1-p to edges of the lattice

• To calculate the remaining weights consider the  

following events:

: “Rewire the edge                ”;

: “Rewire                to                ”.

( )jipjiRP ,,)),(( ∀=),( jiR

Eji ∈),(

LEji ∈),(

Eli ∉),(),( ljC
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: “Rewire                to                ”.LEji ∈),( LEli ∉),(),( ljCi

� Based on these events show that

� Use lemma 1 to show that 

� Karger’s Corollary 1 yields lower bound ;

� Prove by contradiction that 

1
)(

−−
≥↔⇒

kn

pk
jiP

k
kn

pk
knpkcw =

−−
−−+−>

1
)1()1(

kcs <



Navigability of Small World Networks

If short paths exist…

45

…how do people find them?



Navigability 
• Given a source s and a destination t, define a greedy 

local search algorithm that

1. knows the positions of the nodes on the graph

2. knows the neighbors and shortcuts of the current node

3. knows the neighbors and shortcuts of all nodes seen so far

4. operates greedily, each time moving as close to t as possible
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4. operates greedily, each time moving as close to t as possible

[Kleinberg’00]

� Such an algorithm does not work for the previous models. 

not  navigable not navigable



Kleinberg’s model

• Consider a directed 2-dimensional lattice

• For each vertex u add q shortcuts

� choose vertex v as the destination 

of the shortcut with probability 

proportional to [d(u,v)]-r
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� when r = 0, we have uniform 

probabilities

• This model is navigable only for r=2 (otherwise 

efficient distributed routing algorithms do not exist)



Capacity Bounds for Kleinberg networks

Lemma 1: Let      be the weighted graph associated with a 

Kleinberg network, and     be the global minimum cut in        

. Then, for           ,

where

wG

wG

wc

1−< nh
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The proof is a bit too technical for this talk…



Capacity Bounds Kleinberg Networks

Theorem 1: For           , the capacity of a Kleinberg SWN 

lies, with high probability, in the interval                   where      

is given by Lemma 1,                                   

and                                  .

1−< nh

( )[ ]wcM .1, ε+ wc

wcnd /)ln().2(2
2+=ε( )









−+
+

= wcq
hh

M .1,
2

)3(
max ε
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Bounds for the capacity of a 

Kleinberg network for

n =80, h =2, r =2 and d =1.

Number of shortcuts per node



CommentsComments

• Small-world networks appear to be “everywhere” and have 

appealing properties both in theory and in practice.

• Although connectivity parameters have been studied extensively 

before, to the best of our knowledge these are the first results on 

the capacity of SWNs.

• When it comes to capacity, rewiring is not the same as adding 
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• When it comes to capacity, rewiring is not the same as adding 

shortcuts – w.h.p. rewiring does not alter the capacity. 

• Navigable small-world networks are particularly interesting 

because they allow for highly efficient distributed routing (and 

network coding?) algorithms.



Fundamental Limits of
Sensor Networks
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Sensor Networks



Sensor Networks
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Motivation: Wireless Sensor Networks
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Main Task:Main Task:Main Task:Main Task: To collect and transmit data about some
physical process
Collected data is typically correlated!



Informal Problem Statement

3

4

U0

C40

0

sink

U2

C23
C30

U1 C03

C

1

2

C21C12

C13 U3

U

C34
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Under what conditions on the sources and the channels is 

reliable communication possible?

4U2 C24

2
U4



Encoding Correlated Sources 

Decoder

Source 1 Encoder 1

U1

U2

R1

R2

Û1

Û2
Encoder 2

Sink

R2

Encoder

Source 2

p(u1,u2)
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R1+R2 > H(U1U2)

R1 > H(U1|U2)

R2

R1

Slepian

Wolf

1973

H(U1|U2) H(U1)

H(U2)

H(U2|U1)

H(U1U2)

H(U1U2)

R2 > H(U2|U1)

Shannon

1948



A network flow perspective

1

0

U1

U

R10

R10+R20 > H(U1U2)

R10 > H(U1|U2)

R20 > H(U2|U1)
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2U2 R20

R10+R20 > H(U1U2)

The Slepian-Wolf Theorem gives necessary 

and sufficient conditions for feasible flows that 

guarantee perfect reconstruction at node 0. 



Many correlated sources

1

2

U1

U2

R10

R20
))(|)((0

c

Si
i SUSUHR >∑

∈

Perfect reconstruction is

possible if and only if
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Noisy Channels 

Barros, Servetto 2002:

Noisy

Channel 1

Decoder Sink

Encoder 1

U1

U2

Û1

Û2
Encoder 2

Noisy

Channel 2

X1

X2

Y1

Y2

p(u1,u2)

Source 1

Source 2

C1

C2

R2
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Perfect reconstruction is possible if and only if

H(U1U2) < C1+C2

H(U1|U2) < C1

R2

R1

H(U1|U2)

H(U2|U1)

H(U1U2)

H(U1U2)

H(U2|U1) < C2

C2

C1

Capacity

Slepian

Wolf

Shannon

1948



Multiple Sources and Channels

1

2

U1

U2

C10

C20

∑< i
c CSUSUH 0)(|)((

Perfect reconstruction is

possible if and only if
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General Problem Statement

3

4

U0

C40

0

sink

U2

C23
C30

U1 C03

C24

1

2

C21C12

C13 U3

U4

C34
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The network is described by a directed graph G=(V,E).

After W rounds of communication node 0 must produce a perfect 

reconstruction of all sources.

In each round the sent codewords depend on all previously received 

channel outputs. 



Coding Strategy

Use capacity-achieving channel codes to turn the noisy

network into a noiseless network.
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Use network source codes for (1) distributed 

compression and (2) routing to the destination.



Network Source Codes

3

4

U0

C40

0

sink

U2

C23
C30

U1 C03

C24

1

2

C21C12

C13 U3

U4

C34
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Use classical Slepian-Wolf codes at some operating point 

(R1,R2 …,RM).

View this as a flow network  and consider a flow f with M 

sources and demands  (R1,R2 …,RM) at node 0.

If f exists, then f determines the number of bits that each 

node must send to its neighbours.



Achievability

Slepian Wolf Theorem:

Elementary flow concepts: 

a flow is feasible if

))(|)(( c

Si
i SUSUHR >∑

∈

∑∑
∈

∈∈

<

cSj
Si

ij
Si

i CR
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i.e. the total amount of flow injected on one side of the 

cut has to be lower than the capacity of the links 

carrying that quantity of flow to the other side.

Thus, ∑
∈

∈

<

cSj
Si

ij
c CSUSUH ))(|)(( Barros, Servetto 2005



Converse Proof

� Max-Flow Min-Cut Bounds do not apply here, because of 

correlated sources.

� All the painstaking steps of a classical converse proof are 

required.

� Key ideas:
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� Key ideas:

� Take “snapshots” of source blocks

� After a finite time all the information about a snapshot has crossed 

the network and arrived at the decoder.

� Exploit Markov relationship between super-blocks long enough to 

accomodate this notion of network delay. 



An Optimal Protocol Stack

c20c21 c10c12v1 v2 v0

v1 v2 v0

Links
'12 '10v1 v2 v0Flows

Reconstructed Data �eld v0v2v1
R1Bit streams

Connections
R1
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Link Layer(MAC/Power/Error Control)

Network Layer(Feasible Flow Computation)
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(User of the data)Application Layer

Physical Layer
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Network Optimization
R10

Slepian
Wolf 
Region

C2H(U1|U2U0)

H(U1|U0)

1

2

U0

C02

C

0

sink

U

C12
C10

U1
C01

C21
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C1
H(U2|U0)H(U2|U1U0)

Capacity

R20

2 C20
U2

Is the rate polytope non-empty?

If yes, what is an optimal flow?



Linear Programming

Linear cost model (e.g. energy per bit)

subject to:
ijcjif ≤),(

∑
∈
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subject to:
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Beware of Trees

This example is solvable…
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Barros, Servetto 2004
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…but not with trees!
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Beware of Trees... indeed.

This example is also solvable…

1

2 2,1

01,1

1+ε,Φ

1,1

1+ε

1

1

2 1,1

01,1

ε,Φ1+ε 1

2 1,1

0

1
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…but the cost of using a tree is huge!

1

2 1

0

1+ε

1

1+ε Ratio (Φ(1+ε)+1) / (ε Φ+3) 

for large Φ, we get about
1+1/ε, unbounded for small ε!



Scalable Decoding 
on Factor Graphs
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on Factor Graphs



Fundamental Challenge

How can we design a scalable 

system that achieves 

near-to-optimal performance 
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near-to-optimal performance 

with manageable complexity?



Two Key Issues

� The algorithmic complexity should be moved from the
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� The algorithmic complexity should be moved from the

sensor nodes to the fusion center.

� We should exploit the correlation in the sensor data

as much as possible (distributed compression, error

correction, improved estimation)



System Model 

MMSE
Decoder

Source 1

Sink

Q
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AWGN
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Correlated Sensor Data

The correlation matrix Σ determines the statistical
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The correlation matrix Σ determines the statistical

dependence of the collected sensor data.

In general the correlation will depend on the topology of

the network, in particular the distances between the

sensors.



hundreds of sensors

uniformly distributed on the 
unit square

We want to minimize the mean 

square error for each of the 

transmitted samples.

Problem Statement

0.2
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0.4

0.5
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0.7

0.8

0.9

1
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transmitted samples.

0 0.2 0.4 0.6 0.8 1
0
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What is the optimal MMSE decoder?



Optimal MMSE Decoding

Ignoring the spatial correlation between  the 

sensor measurements, we get the scalar
conditional mean estimator:

}|)(~{ˆ kkkk IuEu yY ==
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)( kiP

a priori probability

Demodulation
Scalar

Decoder
Symbol

Estimator

SNR

y ( | )k kp iy ( | )k kP i y û

( )u i%

a posteriori probabilities



However, for optimal decoding we should take the spatial 

correlation between sensor measurements, into account.

In this case the optimal MMSE Decoder is given by

}|)(~{ˆ yY == kk IuEu

Optimal MMSE Decoding
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a posteriori probabilitiesa priori probabilities

Demodulation
Vector
Decoder

Vector 

Estimator

SNR
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û
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Main Problem: Complexity

Decoder Complexity

(# Multiplications)

sensors,

bit/sample

Scalar

Vector

)2( QMO

)2( QMMO

100=M
1=Q

3210≈

200≈
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Vector )2( QMMO 3210≈

The complexity of the optimal MMSE decoder grows 

exponentially with the number of sensors!



0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Solution: Scalable Decoding

Use a factor tree to 

approximate the 

correlation structure of 

the data  

Minimize the Kullback 

Leibler Distance

Barros, Tuechler 2006
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Leibler Distance

Apply the sum-product 

algorithm to obtain the 

desired estimates

Under mild assumptions on the graph the decoding 

complexity grows linearly with the number of sensors !



Comments

� Shannon Theory offers very powerful tools to help understand some of 

the fundamental aspects of sensor networks.

� Factor Graphs methods provide scalable solutions for joint source-

channel coding and source-optimized clustering in large-scale sensor 

networks.
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� When computing functions, the factorisation and the message updates 

need to be adapted.

� We provided algorithms for three basic functionals, but there are many 

other cases with practical interest.

� Many (tough) open problems will surely require combinatorics, graph 

theory, algorithms... and lots of applied math and computer science.



Information-Theoretic
Security

81

Security



Today’s Layered Architecture

Standard Protocol Stack

Application

Transport

Programs and applications

End-to-end reliability, cong. control

Routing and forwarding
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Link

Network

Physical

Routing and forwarding

Medium access control

Channel coding and modulation

Where is security ?



Security: a patchwork of add-ons…

Application

Transport

End-to-end cryptography

Secure Sockets Layer  (SSL)

Application

Transport
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Link

Network

Physical

Virtual private networks (IPSec)

Admission control (e.g.WPA)Link

Network

Physical Physical-layer security ?



A typical graduate course in cryptography and security always starts by 

discussing Shannon's notion of perfect secrecy (widely accepted as the 

strictest notion of security):

Alice

Eve

BobMessage W
decoded 

message Wb

key K

X X

X key K

p(w|x)=p(x)

Information-Theoretic-Security – are we biased?
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Then, it emphasizes its conceptual beauty.

Then, it states that it is basically “useless” for any practical application. 

Eve

Computational Security



Main Questions

• What are the fundamental security limits at the physical layer?

• Which notions of security are we talking about?

• Is information-theoretic security practical?

• What kind of code constructions can we use?
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• How do we build protocols based on information-theoretic security?

• Can we combine physical-layer security with classical cryptography?

• How can we secure new wireless networking paradigms?



Theoretical Foundations

86

Theoretical Foundations



Notions of Security

Computational Security Information-Theoretic (Perfect or 

unconditional) Security

Alice

Eve

Bob
k-bit 

message W

k-bit decoded 
message Wb

key K

X X

X key K
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� Alice sends a k-bit message W to Bob 

using an encryption scheme;

� Security schemes are based on 

(unproven) assumptions of intractability of 

certain functions;

� Typically done at upper layers of the 

protocol stack

unconditional) Security

� strictest notion of security, no 

computability assumption

� Prob{W | Eve’s knowledge}=Prob{W} 

H(W|X)=H(W) or I(X;W)=0

� e.g. One-time pad 

[Shannon, 1949] : H(K) ≥ H(M)



Eve

Key
k-bit message W

Xk

k bits

Key

k bits

k-bit decoded 
message Wb

Alice Bob

Xk

Xk

One-time Pad
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Eve

If Eve does not know the key and P(Key=k-tuple)=1/2k

then we have p(w|xk) = p(w).



Alice

Eve

Bob
k-bit 
message W

k-bit decoded 
message Wb

key K key K

X X

X

Shannon’s Model
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This model is somewhat pessimistic, because most 

communications channels are actually noisy.



Reliability & Security

For Bob and Alice, 

Prob{W≠Wb| Y n} → 0

Wyner’s Wiretap Channel (I)
[Wyner, 1975]

BobAlice
X n

p(y|x)
Y n

p(z|y)

sends W decodes Wb
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With respect to Eve, 

(1/n) I(W; Zn) → 0

as n→ ∞

Secrecy Capacity: 

Largest transmission rate at which both conditions can be satisfied.

Positive secrecy capacity only in the degraded case.

p(z|y)

Eve

Zn



Wyner’s Wiretap Channel (II)

BobAlice
X n

p(y|x)
Y n

p(z|x)

Eve

Zn

H(W)

C C

D

Transmission 
rate

equivocation 

rate

[Wyner, 1975]
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Proof Idea:

• Alice assigns multiple codewords to each message, picks one at 

random and thus exhausts Eve’s capacity.

• Converse uses Fano’s inequality and classical arguments.

Rate-equivocation region:

• Two critical corner points (CM , D) and (CS , H(W))

• Unusual shape (not convex)

CS CM
rate
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Because the transmission range is so short, NFC-enabled transactions are inherently

secure. Also, physical proximity of the device to the reader gives users the reassurance

of being in control of the process.



Broadcast Channel with Confidential Messages

Bob

Alice
X n p(yz|x)

Y n

Eve
Zn
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Secrecy capacity is strictly positive if Bob’s channel 

is less noisy than Eve’s, i.e. I(X;Y)>I(X;Z)

));();((max
),(

ZUIYUIC
YZXU

xup
S −=

−−

[Csiszár & Koerner, 1978]



Feedback (Public Discussion) 

Bob

Alice
X n p(yz|x)

Y n

Eve
Zn

public 
authenticated
feedback
channel

[Maurer, 93]
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Secret Key agreement scheme

� Clever protocol allows Alice and Bob to increase their secrecy capacity by 

exchanging information over the feedback channel

� This requires a public authenticated feedback channel!



Increasing the Secrecy Capacity via Feedback

• Suppose Alice, Bob and Eve are connected via binary symmetric 

channels and a public authenticated feedback channel is available.

Noisy 
Channel

Error-free
public 

communication

Computation

Alice X V+X+E V+X+E+X V+E
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Alice X V+X+E V+X+E+X V+E

Bob X+E V+X+E V V

Eve X+D V+X+E V+X+E+X+D V+E+D

� Bob and Eve observe different noises (D, E).

� Bob feeds back random value V plus what he observed (X+E)

� Eve ends up with more noise than Bob (as in the wiretap channel)



Source Model

Bob

Alice
X n

p(x,y,z)
Y n

Zn

public 
authenticated
feedback
channel

[Ahlswede  and Csiszar, 93]
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Eve
Zn

� Alice and Bob share common randomness.

� Eve gets to see a correlated random variable.

� Alice and Eve generate a secret key using the 

public authenticated channel.



Some recent work on (weak) secrecy capacity

• Secure space-time communications  (Hero, 2003) 

• Secrecy rates for the relay channel (Oohama, 2004)

• Secrecy capacity of SIMO channels (Parada and Blahut, 2005)

• Secure MlMO with artificial noise (Negi and Goel, 2005)

• Gaussian MAC and cooperative jamming  (Tekin and Yener, 2005)

• Secrecy capacity of slow fading channels (Barros and Rodrigues, 2006)
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• Multiple access channel with confidential messages (Liang and Poor, Liu et al., 2006) 

• Secure broadcasting with multiuser diversity (Khisti, Tchamkerten, and Wornell, 2006)

• Ergodic secrecy capacity (Gopala, Lai and El Gamal, Liang, Poor and Shamai 2007)

• Strong secrecy for wireless channels (Barros and Bloch, 2008)

… and many more.



Comments 

• Information Theory provides you with tools to determine 

fundamental security limits in particular at the physical layer;

• There exist codes which can guarantee both reliability and 

information-theoretic security;

• Secure communication over wireless channels is possible even 
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• Secure communication over wireless channels is possible even 

when the eavesdropper has  a better channel (on average); 

• When it comes to security, fading is a friend and not a foe.


