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Network Information Theory



The eternal problem...




Coding Theorems

Claude Shannon:

Source > Transmitter C[\rlmgir?r}:el Receiver Sink
Mathematical Model

UN X K Y K UN ~

p(u) f > p(ylx) |— g U

(almost) perfect
reconstruction



Basic Definitions

Noisy

Source Encoder ch Decoder Sink
annel
Uk XN yw Uk .
p(u) > f > plylx) |— g U
Coding rate: R=K/N
Entropy:  H@W)=S" pu)log. —
W)=Y pu) 082

Kullback-Leibler Distance:

D I _ L )log , p(u;)
(pllg)=>, " p(u,)log ()

Mutual Information:
I(X;Y)=D(p(x;,y )l p(x;)p(y;))



Fundamental Theorems

UnN XK Yy K un
Source > Encoder Channel > Decoder Sink

\

Source ,| Channel

Coding Coding
Source Coding: R>H(U)
Channel Coding: R<IXY)<C

Source/Channel Separation: HU)<I(X;Y)< C



Network Information Theory

» Information theory has been very successful
at characterizing the fundamental limits of
point-to-point communications.

» How about networks?

= |nterference
X, |
= (Cooperation

= Feedback N

Y
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Multiple Access Channel

U] X] U]
Source 1 > Encoder 1 >
(ylx; x,) !
pu,) p(u,) PLyIx; X, Decoder A Sink
U 2 Xz U 2
Source 2 > Encoder 2 > >
R, (I(X;Y), [(X3YIX,))
« Model for uplink in 1X,X,1Y) (8, R,)
. ‘ () 2
wireless networks / NO c'ooe
IX,:YIX) EXIsTs
1X,Y)

« Complete solution Conver

IS kKnown.

R]
IX,X,1Y)

1X,;Y) I(X;YIX)
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Broadcast Channel

Y U,
U2, UI _], Decoder 1 Sink 1
X
Source > Encoder ——t P( ;Y X) .
Y, U,
Decoder 2 Sink 2

Model for downlink in wireless networks

Superposition Coding
Solution only known for the degraded case with
Markov chain X-Y;-Y,

Auxiliary r.v. W

R] < I(W’ YZ)
R,<I(X;Y,JW)



Relay Channel

= User Cooperation
= Physically Degraded

= Max-flow Min-cut Bound

C = sup min{/(X,X;Y),1(X;Y,Y, 1X)}

p('x?xl)

=General solution still unknown
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Network Coding
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Store-and-Forward versus Network Coding

= |n today’s networks, information is viewed as a
commodity, which is transmitted in packets and
forwarded from router to router pretty much as water
In pipes or cars in highways.

= |n contrast, network coding allows intermediate
nodes to mix different information flows by combining
different input packets into one or more output
packets.
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A simple three-node example

~——— -

~——— -

In the current networking paradigm we require 4 transmissions.
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Network Coding

-

)
)
I
I
1
|
\

~——— -

~——— -

With network coding we require only 3 transmissions.
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Basic Principles of Network Coding

= To receive the requested data, the destination node does not

require specific packets.

= |t is sufficient to receive a sufficient number of packets, from

which the destination node can recover (or decode) the data.

= This allows us to trade off computation and communication

resources.

-
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Foundations of Network Coding

[Ahlswede, Cai, Li and Yeung, 2000]

= Max-flow min-cut capacity of a general multicast network can only be
achieved by allowing intermediate nodes to mix different data flows

[Li, Yeung and Cai, 2003]
= Linear network coding sufficient to reach multicast capacity of a network

[Koetter and Médard, 2003] @

= Algebraic framework % \Cb

[Ho et al, 2003] \ﬁ)/
= Randomized network coding

20



Algebraic Framework for Network Coding

Binary vector of length m: element in Fzm
Y(e:) Y(e2)

Random processes at nodes

Y(e3) = Zal.X(v,i) + ZﬂjY(ej)

j=12

Transfer matrix

z=xM M=AU-F)'B" Y(es)

Generalized MIN-CUT MAX-FLOW Condition
M|#0

21



Random Linear Network Coding

= Coefficients chosen independently at

random Y(e:) Y(e2)

= With high probability, transfer matrix is

non-singular

= Multicast problem, some or all e,
coefficients chosen independently from Fq

, d receivers,17 number of links with Y(;)

associated random coefficients

= Probability that random code is

valid is ( B dj”
q

22



Packetized Network Coding

Assume each packet carries L bits

s consecutive bits can be viewed as a symbol in F,

I enc. vector I I

Vv

«— L
S \1s

—_—

I_ L d \ “’l I

—

Perform network coding on a sy'mbol by symbol basis.
Output packet also has length L.

Send the coefficients (the “encoding vector”) in the header.
Information is spread over multiple packets.

23



Practical Considerations

= Encoding: Elementary linear operations which can be implemented in a

straightforward manner (with shifts and additions).

= Decoding: Once a receiver has enough linearly independent packets, it can
: . L . . 3 .

decode the data using Gaussian elimination, which requwes@[ﬂ ) operations.

= Generations: To manage the complexity and memory requirements, we mix
only generations with fixed number of packets and limit the field size. Each keeps
a buffer sorted by generation number. Non-innovative packets are discarded.

= Delay: Since we must wait until we have enough packets to decode, there is
some delay (not very significant, since we require less transmissions in many

relevant scenarios)

24



Throughput benefits of nhetwork coding

How can we send a and b to nodes Y and Z simultaneously?
(Linear)Network Coding
achieves Max-Flow bound in Multicast Networks

25



Works also for unicast sessions

How can T send a to Z and U send b to Y simultaneously?
(Linear)Network Coding improves throughput,
and can also help with robustness to failures.

26



Reliability in the presence of erasures and errors

= State-of-the-art reliable communication over noisy links relies on:

= Automatic Repeat Request (ARQ) techniques (at a price in delay)
= Forward Error Correction (FEC) mechanisms (at a price in rate)

= Network coding can achieve optimum delay and rate.

erasure probability

A

/N
L

(©)

End-to-end FEC (no delay)
R<(1—e¢)(-e,)

Decode-and- forward (delay)
R<min{(l-e¢),(1-e,)}

Network Coding (no delay)
R<min{(1-¢,),(1-¢,)}

27



Coupon Collector’s Problem

= n nodes, O(n) messages

= every node should get n messages
= Centralized gossiping algorithm:
®(n) rounds with ®(n) pairs of nodes
exchanging one message per round.
= Decentralized gossiping algorithm:
®(n log n) rounds, because some
messages become hard to collect.

= Random linear network coding:

all packets are “equal” and each node
only needs to get n packets, therefore
®(n) are sufficient — and still fully
decentralized.

28



Other benefits

= Simpler algorithms: The multicast routing problem is NP-hard
(packing Steiner trees), however with network coding there exist

polynomial time algorithms.

= Robustness: Random network coding is completely decentralized and
preserves the information in the network, even in highly volatile

networking scenarios.

29



Applications of Network Coding

First real-life application in July 2007:

Microsoft Secure Content Downloader (a.k.a. Avalanche)

= Distributed Storage and Peer-to-Peer: robustness against failures in

highly volatile networks;

= Wireless Networks: Information dissemination using opportunistic

transmission;

= Sensor Networks: Data gathering with extremely unreliable sensing

devices;

= Network Management: Assessing critical network parameters (e.g.

topology changes and link quality)

30



Capacity of Random Networks



Small World Phenomena

Many complex natural and man-made networks

share the following common properties:
» Large networks (n>> 1)

» Sparse connectivity (avg degree k << n)
» No central node (k

max << n)

» Large clustering coefficient (larger than in random
graphs of same size)

» Short average paths (~log n, close to those of
random graphs of the same size)
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Small World Models

Small-World Network (SWN) with Shortcuts

e Start with a k-connected ring lattice (VL, E;L)

- Add each edge ¢ E, to the graph with probability p.

p=0.1

[Watts & Strogatz '98, Newman & Watts '99]

l// f) A‘\\_

DTN

£\
NN
RS
LR

—
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Rewiring
Small-World Network with Rewiring

- Start with a k-connected ring lattice;

- Choose an edge in the initial lattice;

- With probability p, rewire this edge to a random node;
- Repeat until all the edges have been considered once.

REGULAR HETLLIORE SMALL WUORLD HETLIORE RAHOOM HETILORE

F=0 IHCRERSIHG RAMDOMHESS F=1

[Watts & Strogatz '98, Watts '99]
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Fundamental Properties

=Characteristic Path Length TETTTTTE e
* O

(drops sharply) sl cp)/co) ©
«Clustering Coefficient ! .

(remains almost constant) 04} \ D

ol HPILO) i
C _ ZVEV C(V) []I.]DUUT B []Ellm - I”I[:ll.lD‘l B |]|1 -~ J-11
'V I

[Waptts & Strogatz ’98]
#links between neighbours of v

ith C(v) =
with C(v) # possible links between neighbours of v

» Other parameters: sparsity, degree distribution, betweenness,...

35



Why do we care about capacity of SWN?

- The combination of strong local connectivity and long range
shortcut links renders small-world topologies particularly well
suited for

= Resource discovery in mobile ad-hoc networks [Helmy'03]

= Heterogenous networks [Reznik, Kulkarni, Verdu,'04]

= Peer-to-peer communications [Manku, Naor, Wieder,'04]

= Cellular wireless networks [Dixit, Yanmaz, Tonguz,'05]

- The notion of capacity plays a key role in many of the systems
for which small world topologies are currently envisioned.

- Capacity and network information flow may help explain why
small-world networks appear so frequently.

36



Max-Flow Min-Cut Capacity

« The max-flow min-cut bound [Ford,Fulkerson] gives the
fundamental limits of information flow for:
= One unicast session L )
= multiple independent sources and one sink L’
= correlated sources and one sink /

o ‘\‘

= multicast (with network coding)

« We will be concerned with the max-fl in- apacity
of small-world networks.

37



Capacity of SWN with added Shortcuts

Theorem 1 With high probability, the value of the capacity of a
small-world network with added shortcuts lies between(l—-¢€)c,,
and(1+é&)c,, Withe, =k +(n—1-k)p ande=./2(d+2)In(n)/c, .

1000

900
800

Bounds for the capacity of a

700}

small-world network with 5

2
8 500}

added shortcuts, for n=1000, R
k=20 and d=1.

200}

/
100/ »
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Key ingredient for the proofs

Random Sampling on Graphs [Karger’94]

Sampling with O

G

undirected graph p,
Expected cut

C, = E{cs}

The generation of small-world networks can be viewed as a
random sampling process on a graph.

unitary weights

39



Random Sampling on Graphs

Theorem (Karger, 1994): Let £=,/2(d+2)In@)/c, Then, with
probability1-o0@1/x?), every cut in G, has value between (1-¢)
and (1+¢) times its expected value (i.e., the value of the
same cutinG,_ ).

Corollary Let £=,/2(d+2)In@)/c, . Then with high
probability, the value of ¢s lies between (1—¢)c, and

(1+¢&)c,,

40



A simple lemma

Lemma 1: Let L=(V,E,) be a k-connected ring lattice and

let G=(V,,E)be a fully connected graph, in which edges €€ L
have weightw, =0 and edges /¢ E; have weight w, 20 .
Then, the global minimum cutin G is kw,+ (n—1-k)w,

AJ \\\\a//u l \\

AT
NATT
-.‘.

iy
N
Tl

f“

7

» v/f" .
‘ XOUR

'\
N
\‘_,

:-‘
:-‘

‘

™S

L v

Y A

Y v
';

ol

/TR

S
'.\‘IQ"

\‘Wf/,"‘\\“W

Each node in L has k edges of weight w,; each node in F has
n—1—k edges of weightw, .
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Sketch of Proof for Theorem 1

» Take a fully connected graph.

» Define the weight of the edges as follows:

» edges on the ring lattice have unitary weight (they
are not removed)

» edges on the remaining edges (shortcuts) have
weight p
» Apply lemma 1 withw, =1and w, = p

» The global minimum cut inG,is
c,=k+(n—-1-k)p

Joao Barros

Fundamental Limits of Communication Networks 12



Capacity Bounds for SWNs with Rewiring

Theorem 3 (Rewiring does not alter capacity):
With high probability, the capacity of a small-world
network with rewiring has a value in the interval

[A-&)k,k|, with  £=/2(d+2)In(m) [k

v ‘V" NS
“' ‘-‘\\ 7
,« ‘\Q‘\'(/ L%y
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Sketch of Proof

- Take a fully connected graph
 Assign weight /-p to edges of the lattice

« To calculate the remaining weights consider the
following events:

R, j) “Rewire the edge (i, )€ Ey;  (P(RG, )= p. Vi, )
C.(j,l):“Rewire (i,j)e E}o (i,l)¢ E,

pk
n—k—1

» Based on these events show that = P(i < j) 2

pk _

» Use lemma 1 to show that ¢, > k(11— p)+(n—k—1) P
n—k—

» Karger’s Corollary 1 yields lower bound ;
» Prove by contradiction that ¢, <k

44



Navigability of Small World Networks

If short paths exist...

...how do people find them?

45



Navigability
Given a source s and a destination t, define a greedy
local search algorithm that
1. knows the positions of the nodes on the graph

knows the neighbors and shortcuts of the current node
knows the neighbors and shortcuts of all nodes seen so far

~ W N

operates greedily, each time moving as close to t as possible

[Kleinberg'00]

» Such an algorithm does not work for the previous models.

46



Kleinberg’s model

- Consider a directed 2-dimensional lattice
 For each vertex 1 add © shortcuts

™ Y Py ) I'd ué’é

= choose vertex v as the destination I T _F i
. . O—C —O—O—O

of the shortcut with probability
_ O—< —O—O—O—0O
proportlonal to ('\ [ ]’3 Py ) P ) £ f)
= when . we have uniform iz Ll "
prObabIIItleS O JrL O @, &) O @), @)

- This model is navigable only for r=2 (otherwise
efficient distributed routing algorithms do not exist)

47



Capacity Bounds for Kleinberg networks

Lemma 1: Let ¢ be the weighted graph associated with a
Kleinberg network, and  d&Qe the global minimum cut in

G,. Then, for h<n=l

W’ S S o+ Y Y f)

x=1 y=h+2—-x x=h+2 y=1

where
Fe=alg., WD+g.,xy)

(e4y=2)" )" (ery=2)"
s(a,b) " s(a,b)

8y (@D)= (l—

s(L]) = Z(l+1)z +Z(n —1=0).(n+0)”

i=h+1

The proof is a bit too technical for this talk...

48



Capacity Bounds Kleinberg Networks

Theorem 1: For h<n-1, the capacity of a Kleinberg SWN
lies, with high probability, in the intervallM,(1+¢&)c,] where C,,
IS given by Lemma 1,

M :max{h(h+3) +q, (1—8).cw} and €=\/ 2(d+2).In(")/c,, .
80, o®
70! ..o‘.
:z o0 Bounds for the capacity of a
ORI Kleinberg network for
g o’ ©
& ooOOQO. n=80, h=2, r=2 and d=1.
20 OOOOOC:?..‘....
10 @QQQQ.....
% 5 10 15 20

Number of shortcuts per node

Parameter q <«
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Comments

- Small-world networks appear to be “everywhere” and have
appealing properties both in theory and in practice.

« Although connectivity parameters have been studied extensively
before, to the best of our knowledge these are the first results on
the capacity of SWNs.

- When it comes to capacity, rewiring is not the same as adding
shortcuts — w.h.p. rewiring does not alter the capacity.

- Navigable small-world networks are particularly interesting
because they allow for highly efficient distributed routing (and
network coding?) algorithms.

50



Fundamental Limits of
Sensor Networks



Sensor Networks

52



Motivation: Wireless Sensor Networks

W IRANNSSSA Y

Main Task: To collect and transmit data about some
physical process

=) Collected data is typically correlated!

53



Informal Problem Statement

Under what conditions on the sources and the channels is
reliable communication possible?

54



Encoding Correlated Sources

Decoder

EUI R,
Source 1 : >
5 Encoder
EUQ RZ
Source 2 |
B
R2
H(U,U,)

H(U,)
HU,IU))

HU U, HU))

R]
H(U,U,)

Sink

R,> H(U,IU,)
R,> H(U,|U,)
R,+R,> H(U,U,)

55



A network flow perspective

R]O

R,,> H(U,IU,)
R,,> H(U,IU,)

’ RZO

The Slepian-Wolf Theorem gives necessary
and sufficient conditions for feasible flows that
guarantee perfect reconstruction at node 0.

56



Many correlated sources

Perfect reconstruction 1s

possible if and only 1f

Y Ry>HU(S)IUSY))

IShY

for all sets  § < {1,2,.....M},
SNS° =0,
S#0

57



Noisy Channels

1

i X
!UI ! | Noisy Y U
Source 1 Encoder 1 >
: Channel 1
| ¢, Decoder . Sink
Source 2 [+ 2 Encoder 2 2, Beley 2 >
! Channel 2
P C,
Barros, Servetto 2002:
RZ
Perfect reconstruction is possible if and only if
H(U,U,)
H(U,IU,) < C,
G,
HWUAUD | G anacity Shannon H(U,IU,)) < G,
1948
R, H(U,U,) < C,+C,

58



Multiple Sources and Channels

Perfect reconstruction 1s

possible if and only 1f

HUS)IUS )<Y Cy

ieS
for all sets S < {1,2,....M},

SNS =0,
S#0

59



General Problem Statement

The network is described by a directed graph G=(V,E).

After W rounds of communication node 0 must produce a perfect
reconstruction of all sources.

In each round the sent codewords depend on all previously received
channel outputs.

60



Coding Strategy

Use capacity-achieving channel codes to turn the noisy
network into a noiseless network.

Use network source codes for (1) distributed
compression and (2) routing to the destination.

61



Network Source Codes

Use classical Slepian-Wolf codes at some operating point
(R]’RZ ...,RM).

View this as a flow network and consider a flow fwith M
sources and demands (R,R,...,R,,) at node 0.

If fexists, then fdetermines the number of bits that each
node must send to its neighbours.

62



Achievability
Slepian Wolf Theorem: ZRi > HU(S)IU(S9))

€S

Elementary flow concepts: Z R. < Z C,

a flow is feasible if icS icS
jese

l.e. the total amount of flow injected on one side of the
cut has to be lower than the capacity of the links
carrying that quantity of flow to the other side.

Thus, HUS)IUS)) < Z C,| Barros, Servetto 2005
€S
jes*
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Converse Proof

= Max-Flow Min-Cut Bounds do not apply here, because of
correlated sources.

= All the painstaking steps of a classical converse proof are
required.

= Key ideas:
= Take “snapshots” of source blocks

= After a finite time all the information about a snapshot has crossed
the network and arrived at the decoder.

= Exploit Markov relationship between super-blocks long enough to
accomodate this notion of network delay.

64



An Optimal Protocol Stack

= = >

Reconstructed Data field

Application Layer
(User of the data)

R,

Bt streams

Presentation Layer
(Distributed Sampling,/Cormpression)
(Interpolation)

Connections

Transport Layer

Flows 1z |

Network Layer
(Feasible Flow Computation)

Links

Link Layer
(MAC/Power/Error Control)

Independent channels

Data field

Gateway Node
Power Constrained Nodes

Physical Layer
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Network Optimization

R10
Slepian
. Wolf
H(U]| UO) ______ :‘::\ Reg|0n
H(U\UU,) [t S
Capacity' \
—C Rz

1
H(U,IU,U,) H(U,IU,)

s the rate polytope non-empty?
f yes, what is an optimal flow?
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Linear Programming
Linear cost model (e.g. energy per bit)

min&k(f)= Y wv,v,)- f(v,v))

(v;,v;)EE
: i, . SCi. <7 1<
subject to: J =g O<i,j<M
flow f@ == 0<i,j<M
constraints .
> f@,j)=0 1<i<M
eV
coding HU.IU_ )< (s,i) < c.
constraints P ;f ieS’Z].E:SC”

f(s,i)=R, 1<i<M



Bewal‘e Of Trees Barros, Servetto 2004

This example is solvable...

b= b _"\]‘ ?
1| 1 0.5\ ‘
0.5 —» ] ‘/0-5 0,5 _.'4

...but not with trees!

1.5 ] 1.5 —» ] L5 —
1 1 ; (9
0,5 "/] 0’5 - 0’5 —> 1
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Beware of Trees... indeed.

This example is also solvable...

...but the cost of using a tree is huge!

I+¢ I+¢ Ratio (P(1+€)+1) / (¢ D+3)

‘ for large ®, we get about
] “/1 1+1/¢g, unbounded for small €!
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Scalable Decoding
on Factor Graphs



Fundamental Challenge

How can we design a scalable
system that achieves
near-to-optimal performance
with manageable complexity?
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Two Key Issues

T F T LN

The algorithmic complexity should be moved from the
sensor nodes to the fusion center.

We should exploit the correlation in the sensor data
as much as possible (distributed compression, error
correction, improved estimation)

72



System Model

Sensor Model

Uyr—1 1% Y, U,
Source 1 —1 Q [ MODB-— AWGN
Source 2 > Q MODE > AWGN ' MMSE
. e . . Decoder
o [ [ o
e { ° ° .
Source M > Q MODE > AWGN >
Source Model:
_ 1 l o —
p(n) < ex (——u > uj
V2rmdetY 2

Sink
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Correlated Sensor Data

pu) <

The correlation matrix 2 determines the statistical
dependence of the collected sensor data.

In general the correlation will depend on the topology of
the network, in particular the distances between the
Sensors.
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Problem Statement

1_

0.9F Ooo ,© o o o ° ° ’ ©
ol $° 8 00 °° - hundreds of sensors
oo O L g% ° o ° uniformly distributed on the
N o unitsquare
0.5r o)
als ° o _ . * . .o Wewantto minimize the mean
S . . square error for each of the
0.2t % oo © :
oib °° o4 o 4 _ transmitted samples.
o Q0 o) 0
0O O02 Oi4m 0.6 0.8 1

A 2 .
E{(uk_uk) } — 111111
What is the optimal MMSE decoder?
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Optimal MMSE Decoding

lgnoring the spatial correlation between the
sensor measurements, we get the scalar

conditional mean estimator:

u, =FEuld )Y, =y,}

y . p(Yk lik) Scalar
—— =| Demodulation ——=
Decoder

PG ly,)

A A
|
|

P@,)
/

SNR

Symbol
Estimator

l=>

|
ui).

a priori probability a posteriori probabilities
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Optimal MMSE Decoding

However, for optimal decoding we should take the spatial
correlation between sensor measurements, into account.

In this case the optimal MMSE Decoder is given by

i, = E{i(1,)1Y =)

Yy D dulati p(y/< |ik) Vector P (ik ly) Vector u
—_— emodaulation |(————== Decoder Estimator ————==-
f:~ i fr
SNR | PG3) | udi)

a priori probabilities / a posteriori probabilities
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Main Problem: Complexity

Decoder | Complexity M =100 sensors,
(# Multiplications) |() =1 bit/sample

Scalar oM 2Q ~200
Vector | o(m2€1) ~10>

The complexity of the optimal MMSE decoder grows
exponentially with the number of sensors!



Solution: Scalable DeCOding Barros, Tuechler 2006

ol e domo g w0 Use a factor tree to
AV A ~°  approximate the

Tlat e, g et correlation structure of
N i e the data

of 8 Mwessflm® Minimize the Kullback
0o & N Leibler Distance

" T Apply the sum-product

algorithm to obtain the
desired estimates
Under mild assumptions on the graph the decoding
complexity grows linearly with the number of sensors !
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Comments

= Shannon Theory offers very powerful tools to help understand some of
the fundamental aspects of sensor networks.

= Factor Graphs methods provide scalable solutions for joint source-
channel coding and source-optimized clustering in large-scale sensor
networks.

= When computing functions, the factorisation and the message updates
need to be adapted.

= We provided algorithms for three basic functionals, but there are many
other cases with practical interest.

= Many (tough) open problems will surely require combinatorics, graph
theory, algorithms... and lots of applied math and computer science.
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Information-Theoretic
Security



Today’s Layered Architecture

Standard Protocol Stack

Application

Transport

Network

Link

Physical

Programs and applications

End-to-end reliability, cong. control
Routing and forwarding

Medium access control

Channel coding and modulation

Where is security ?
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Security: a patchwork of add-ons...

Application

Transport

Network

Link

Physical

End-to-end cryptography
Secure Sockets Layer (SSL)

Virtual private networks (IPSec)

Admission control (e.g.WPA)

Physical-layer security ?
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Information-Theoretic-Security — are we biased?

A typical graduate course in cryptography and security always starts by
discussing Shannon's notion of perfect secrecy (widely accepted as the
strictest notion of security):

X

Message W Alice

key K

Eve

A 4

Bob

key K

Then, it emphasizes its conceptual beauty.

decoded —
megsggg W, p (Wlx) =P ({x)
w

Then, it states that it is basically “useless” for any practical application.

— GOomputational Security

84



Main Questions

What are the fundamental security limits at the physical layer?
Which notions of security are we talking about?

|s information-theoretic security practical?

What kind of code constructions can we use?

How do we build protocols based on information-theoretic security?
Can we combine physical-layer security with classical cryptography?

How can we secure new wireless networking paradigms?
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Theoretical Foundations
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Notions of Security

k-bit : X X k-bit decoded
message W Alice | Bob message W,
key K X key K
Eve
Computational Security Information-Theoretic (Perfect or
unconditional) Security
= Alice sends a k-bit message W to Bob = strictest notion of security, no
using an encryption scheme; computability assumption
= Security schemes are based on = Prob{WIEve’s knowledge }=Prob{ W}
(unproven) assumptions of intractability of H(WIX)=H(W) or I(X;W)=0
certain fUﬂCtiOﬂS; = e.g. One-time pad
= Typically done at upper layers of the [Shannon, 1949] : H(K) > H(M)

protocol stack
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One-time Pad

. Aice Bob
k bits k bits
| Key Key |
k-bit message W | | ' k-bit decoded
N L Xk Xk N . message W,
AN : : AN : g
e e e e e Xk e e e e e
Eve

If Eve does not know the key and P(Key=k-tuple)=1/2*

then we have p(wlxk) = p(w).
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Shannon’s Model

k-bit
message W

Alice

key K

Eve

A 4

Bob

key K

k-bit decoded
message W,

This model is somewhat pessimistic, because most
communications channels are actually noisy.
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Wyner’s Wiretap Channel (I)

Reliability & Security

For Bob and Alice,
Prob{W£W,| Y "} — O

With respect to Eve,
(1/n) IW; Z2") — 0

as n — o0

Secrecy Capacity:

sends W

Alice

Xn

| P(ylx)

[Wyn

er, 1975]

yo decodes W,

Bob

Largest transmission rate at which both conditions can be satisfied.

Positive secrecy capacity only in the degraded case.
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Wyner’s Wiretap Channel (Il) [Wyner, 1975]

equivocation

rate
X" Y”»
Alice > p(ylx) Bob
H(W) l
b p(zlx)
1z
Transmission Eve

Cs Cy rate

Proof Idea:

« Alice assigns multiple codewords to each message, picks one at
random and thus exhausts Eve’s capacity.

- Converse uses Fano’s inequality and classical arguments.
Rate-equivocation region:

« Two critical corner points (C,,, D) and (Cg, H(W))

« Unusual shape (not convex)
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¥9 NFC Forum : About NFC - Mozilla Firefox

File Edit View History Bookmarks Tools Help
<3":| -y - @ s ﬂ_l‘ |D http:/fwww.nfc-forum.org/aboutnfc/ |'| [}l |'| multipliers ;

@ Getting Started |5 Latest Headlines | | Adobe Flash Player Do... || Fulbright Comission || Joao Barros

e

O uim

Member Login

ABOUT THE FORUM  MEMBERS  JOIN ABOUT NFC MNEWS ROOM EVENTS RESOURCES SPECIFICATIONS

© About NFC

Mear Field Communication (MFC) is a new, shortrange wireless connectivity technology that evolved
from a combination of existing contactess identification and interconnection technologies. Products
with built-in NFC will dramatically simplify the way consumer devices interact with one another, helping
people speed connections, receive and share information and even make fast and secure payments,

Operating at 13.56 MHz and transferring data at up to 424 Khitsfsecond, NFC provides intuitive,

simple, and safe communication between electronic devices. MFC is both a “read” and “write”

technology., Communication between twao NFC-compatible devices occurs when they are brought
connection,

secure. Also, physical proximity of the device to the reader gives users the reassurance

of being in control of the process.

@ RSN wELa R a S e aes

Rescurces for press and analysts

News Room

@B rPaasonic SONY Micosor NMP NEC Renesas VISA nNokia P[] Beéome

Done
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Broadcast Channel with Confidential Messages

YI’Z

- Bob

X n
Alice p(yzlx)

Zn

Eve

CS = max [(U;)Y)-1(U;Z)) [Csiszar & Koerner, 1978]

p(u,x)
U-X-YZ

Secrecy capacity is strictly positive if Bob’s channel
is less noisy than Eve’s, i.e. I(X;Y)>I(X;Z)
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Feedback (Public Discussion) [Maurer, 93]

yn
> Bob [T
X" |
Alice > p(yzlx) : public
. Z" ; authenticated
! Eve  feedback
I - | channel
|
| | '
| | ,
b e e e e e e e e e ———— - B

Secret Key agreement scheme

= Clever protocol allows Alice and Bob to increase their secrecy capacity by
exchanging information over the feedback channel

= This requires a public authenticated feedback channel!
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Increasing the Secrecy Capacity via Feedback

- Suppose Alice, Bob and Eve are connected via binary symmetric
channels and a public authenticated feedback channel is available.

Noisy Error-free Computation
Channel public
communication
Alice X V+X+E V+X+E+X V+E
Bob X+E V+X+E V V
Eve X+D V+X+E V+X+E+X+D V+E+D

= Bob and Eve observe different noises (D, E).
= Bob feeds back random value V plus what he observed (X+E)
= Eve ends up with more noise than Bob (as in the wiretap channel)
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[Ahlswede and Csiszar, 93]

Source Model

)&l
Alice
public
authenticated

Yyn feedback
p(x,y,z) | Bob channel

7n

Eve

® Alice and Bob share common randomness.
" Eve gets to see a correlated random variable.

® Alice and Eve generate a secret key using the
public authenticated channel.
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Some recent work on (weak) secrecy capacity

- Secure space-time communications (Hero, 2003)

- Secrecy rates for the relay channel (Oohama, 2004)

« Secrecy capacity of SIMO channels (Parada and Blahut, 2005)

- Secure MIMO with artificial noise (Negi and Goel, 2005)

« Gaussian MAC and cooperative jamming (Tekin and Yener, 2005)

« Secrecy capacity of slow fading channels (Barros and Rodrigues, 2006)

« Multiple access channel with confidential messages (Liang and Poor, Liu et al., 2006)
« Secure broadcasting with multiuser diversity (Khisti, Tchamkerten, and Wornell, 2006)

- Ergodic secrecy capacity (Gopala, Lai and EI Gamal, Liang, Poor and Shamai 2007)

- Strong secrecy for wireless channels (Barros and Bloch, 2008)

... and many more.
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Comments

Information Theory provides you with tools to determine

fundamental security limits in particular at the physical layer;

There exist codes which can guarantee both reliability and

information-theoretic security;

Secure communication over wireless channels is possible even

when the eavesdropper has a better channel (on average);

When it comes to security, fading is a friend and not a foe.
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