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Abstract

Consider the following network communication setup, originating in a sensor networking application we

refer to as the “sensor reachback” problem. We have a directed graphG = (V,E), whereV = {v0v1...vn}

and E ⊆ V × V . If (vi, vj) ∈ E, then nodei can send messages to nodej over a discrete memoryless

channel(Xij , pij(y|x),Yij), of capacityCij . The channels are independent. Each nodevi gets to observe a

source of informationUi (i = 0...M ), with joint distributionp(U0U1...UM ). Our goal is to solve an incast

problem inG: nodes exchange messages with their neighbors, and after a finite number of communication

rounds, one of theM + 1 nodes (v0 by convention) must have received enough information to reproduce

the entire field of observations(U0U1...UM ), with arbitrarily small probability of error. In this paper, we

prove that such perfect reconstruction is possible if and only if

H(US |USc) <
∑

i∈S,j∈Sc

Cij ,

for all S ⊆ {0...M}, S 6= ∅, 0 ∈ Sc. Our main finding is that in this setup a general source/channel

separation theorem holds, and that Shannon information behaves as a classical network flow, identical in

nature to the flow of water in pipes. At first glance, it might seem surprising that separation holds in a

fairly general network situation like the one we study. A closer look, however, reveals that the reason for

this is that our model allows only for independent point-to-point channels between pairs of nodes, and not

multiple-access and/or broadcast channels, for which separation is well known not to hold [5, pp. 448-49].

This “information as flow” view provides an algorithmic interpretation for our results, among which perhaps

the most important one is the optimality of implementing codes using alayeredprotocol stack.
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I. I NTRODUCTION

A. The Sensor Reachback Problem

Wireless sensor networks made up of small, cheap, and mostlyunreliable devices equipped with lim-

ited sensing, processing and transmission capabilities, have recently sparked a fair amount of interest in

communications problems involving multiple correlated sources and large-scale wireless networks [6]. It is

envisioned that an important class of applications for suchnetworks involves a dense deployment of a large

number of sensors over a fixed area, in which a physical processunfolds—the task of these sensors is then

to collect measurements, encode them, and relay them to somedata collection point where this data is to

be analyzed, and possibly acted upon. This scenario is illustrated in Fig.1.

Fig. 1. A large number of sensors is deployed over a target area. After collecting the data of interest, the sensors mustreach back

and transmit this information to a single receiver (e.g., an overflying plane) for further processing.

There are several aspects that make this communications problem interesting:

• Correlated Observations:If we have a large number of nodes sensing a physical process within a

confined area, it is reasonable to assume that their measurements are correlated. This correlation may

be exploited for efficient encoding/decoding.

• Cooperation among Nodes:Before transmitting data to the remote receiver, the sensornodes may

establish aconferenceto exchange information over the wireless medium and increase their efficiency

or flexibility through cooperation.

• Channel Interference:If multiple sensor nodes use the wireless medium at the same time (either

for conferencing or reachback), their signals will necessarily interfere with each other. Consequently,

reliable communication in a reachback network requires a set of rules that control (or exploit) the

interference in the wireless medium.

In order to capture some of these key aspects, while still being able to provide complete results, we make

some modeling assumptions, discussed next.
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1) Source Model:We assume that the sources are memoryless, and thus consideronly the spatial

correlation of the observed samples and not their temporal dependence (since the latter dependencies could

be dealt with by simple extensions of our results to the case of ergodic sources). Furthermore, each sensor

nodevi observes only one componentUi and must transmit enough information to enable the sink nodev0 to

reconstruct the whole vectorU1U2 . . . UM . This assumption is the most natural one to make for scenariosin

which data is required at a remote location for fusion and further processing, but the data capture process is

distributed, with sensors able to gatherlocal measurements only, and deeply embedded in the environment.

A conceptually different approach would be to assume that all sensor nodes get to observe independently

corrupted noisy versions of one and the same source of information U , and it is this source (and not the

noisy measurements) that needs to be estimated at a remote location. This approach seems better suited for

applications involving non-homogeneous sensors, where each one of the sensors gets to observe different

characteristics of the same source (e.g., multispectral imaging), and therefore leads to a conceptually very

different type of sensing applications from those of interest in this work. Such an approach leads to the so

calledCEO problemstudied by Berger, Zhang and Viswanathan in [7].

2) Independent Channels:Our motivation to consider a network of independent DMCs is twofold.

From a pure information-theoretic point of view independentchannels are interesting because, as shown

in this paper, this assumption gives rise to long Markov chains which play a central role in our ability

to prove the converse part of our coding theorem, and thus obtain conclusive results in terms of capacity.

Moreover, a corollary of said coding theorem does provide a conclusive answer for a special case of the

multiple access channel with correlated sources, a problemfor which no general converse is known.

From a more practical point of view, the assumption of independent channels is valid for any network

that controls interference by means of a reservation-basedmedium-access control protocol (e.g., TDMA).

This option seems perfectly reasonable for sensor networking scenarios in which sensors collect data over

extended periods of time, and must then transmit their accumulated measurements simultaneously. In this

case, a key assumption in the design of standard random access techniques for multiaccess communication

breaks down—the fact that individual nodes will transmit with low probability [8, Chapter 4]. As a result,

classical random access would result in too many collisionsand hence low throughput. Alternatively, instead

of mitigating interference, a medium access control (MAC) protocol couldattempt toexploit it, in the form

of using cooperation among nodes to generate waveforms thatadd up constructively at the receiver (cf. [9],

[10], [11]). Providing an information-theoretic analysis of such cooperation mechanisms would be very

desirable, but since it entails dealing with correlated sources and a general multiple access channel, dealing

with correlated sources and an array of independent channels constitutes a reasonable first step towards

October 2, 2005. DRAFT



4

that goal, and is also interesting in its own right, since it provides the ultimate performance limits for an

important class of sensor networking problems.

3) Perfect Reconstruction at the Receiver:In our formulation of the sensor reachback problem, the

far receiver is interested in reconstructing the entire fieldof sensor measurements with arbitrarily small

probability of error. This formulation leads us to a naturalcapacityproblem, in the classical sense of Shannon.

Alternatively, one could relax the condition of perfect reconstruction, and tolerate some distortion in the

reconstruction of the field of measurements at the far receiver, thus leading to the so calledMultiterminal

Source Codingproblem studied by Berger [12]. This condition could be further relaxed, to require a faithful

reproduction of theimageof some functionf of the sources, leading to a problem studied extensively by

Csiszar, K̈orner and Marton [13], [14].

B. An Information Theoretic View of Architectural Issues

For large-scale, complex systems of the type of interest in this work, the complexity of basic questions

of design and performance analysis appears daunting:

• How should nodes cooperate to relay messages to the data collector nodev0? Should they decode

received messages, re-encode them, and forward to other nodes? Should they map channel outputs to

channel inputs without attempting to decode? Should they do something else?

• How should redundancy among the sources be exploited? Shouldwe compress the information as

much as possible? Should we leave some of that redundancy to combat noise in the channels? Is there

a source/channel separation theorem in these networks?

• How do we measure performance of these networks, what are appropriate cost metrics? How do we

design networks that are efficient under an appropriate cost metric?

In [15], a number of examples are identified in which the existence of a simple architecture has played an

enabling role in the proliferation of technology: the von Neuman computer architecture, separation of source

and channel coding in communications, separation of plant and controller in control systems, and the OSI

layered architecture model. So what all these questions boildown to is an issue similar to those considered

in [15]: what are appropriate abstractions of the network, similar to the IP protocol stack for the Internet,

based on which we can break the design task into independent reusable components, optimize the design of

these components, and obtain anefficientsystem as a result? In this work, we show how information theory

is indeed capable of providing very meaningful answers to this problem.

Information theory, in one of its applications, deals with the analysis of performance of communication

systems. So, to some it may seem the natural theory to turn to for guidance in the task of searching for
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a suitable network architecture. However, to others it may seem unnatural to do so: it is well known that

information theory and communication networks have not hadfruitful interactions in the past, as explained

by Ephremides and Hajek [16]. Thus, in the presence of these mixed indicators, we take the stand that

indeed information theory has a great deal to offer in the task at hand. And to justify our position, consider

Shannon’s model for a communications system, as illustratedin Fig. 2.

Noise

Error Control Coding Error CorretionChannel (p(yjx))Xn Y n

Soure Reonstruted SoureUn
Data Compression Data De-Compressionbits

Soure Enoder Channel Deoder UserUn Xn Y n Ûn

Enoder Deoder
Fig. 2. Shannon’s model for a point-to-point system. Top figure: abstract view, consisting of a source, an encoder from

source symbols to channel symbols, a conditional probability distribution to model the random dependence of outputs

on inputs, and a decoder to map from received messages back tosource symbols; bottom figure: a capacity-achieving

architecture for this system, in which error control codes are used to create an illusion of a noiseless bit pipe.

For this setup, Shannon established that reliable communication of a source over a noisy channel is possible

if and only if the entropy rate of the source is less than the capacity of the channel [5, Ch. 8.13]. This

result, known as the source/channel separation theorem, has a double significance. On one hand, it provides

an exact single-letter characterization of conditions under which reliable communication is possible. On the

other hand, and of particular interest to the task at hand forus, it is a statement about thearchitectureof an

optimal communication system: the encoder/decoder designtask can be split into the design and optimization

of two independent components. So it is inspired by Shannon’s teachings for point-to-point systems that

we ask in this work, and answer in the affirmative, the questionof whether it is possible or not to derive

similar useful architectural guidelines for the class of networks under consideration.

C. Related Work

The problem of communicating distributed correlated sources over a network of point-to-point links is

closely related to several classical problems in network information theory. To set the stage for the main

contributions of this paper, we now review related previouswork.
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1) Distributed Correlated Sources and Multiple Access:The concept of separate encoding of correlated

sources was studied by Slepian and Wolf in their seminal paper[17], where they proved that two correlated

sources(U1U2) drawn i.i.d.∼ p(u1u2) can be compressed at rates(R1, R2) if and only if

R1 ≥ H(U1|U2)

R2 ≥ H(U2|U1)

R1 + R2 ≥ H(U1U2).

Assume now that(U1U2) are to be transmitted with arbitrarily small probability oferror to a joint

receiver over a multiple access channel with transition probability p(y|x1x2). Knowing that the capacity

of the multiple access channel with independent sources is given by the convex hull of the set of points

(R1, R2) satisfying [5, Ch. 14.3]

R1 < I(X1; Y |X2)

R2 < I(X2; Y |X1)

R1 + R2 < I(X1X2; Y ),

it is not difficult to prove that Slepian-Wolf source coding of(U1U2) followed by separate channel coding

yields the followingsufficientconditions for reliable communication

H(U1|U2) < I(X1; Y |X2)

H(U2|U1) < I(X2; Y |X1)

H(U1U2) < I(X1X2; Y ).

These conditions, which basically state that the Slepian-Wolf region and the capacity region of the multiple

access channel have a non-empty intersection, are sufficientbut not necessary for reliable communication,

as shown by Cover, El Gamal, and Salehi with a simple counterexample in [18]. In that same paper, the

authors introduce a class ofcorrelatedjoint source/channel codes, which enables them to increasethe region

of achievable rates to

H(U1|U2) < I(X1; Y |X2U2) (1)

H(U2|U1) < I(X2; Y |X1U1) (2)

H(U1U2) < I(X1X2; Y ), (3)

for somep(u1u2x1x2y) = p(u1u2) · p(x1|u1) · p(x2|u2) · p(y|x1x2). Also in [18], the authors generalize this

set of sufficient conditions to sources(U1U2) with a common partW = f(U1) = g(U2), but they were not
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able to prove a converse, i.e., they were not able to show thattheir region is indeed the capacity region

of the multiple access channel with correlated sources. Later, it was shown with a carefully constructed

example by Dueck in [19] that indeed the region defined by eqns.(1)-(3) is not tight. Related problems

were considered by Slepian and Wolf [20], and Ahlswede and Han[21]. To this date however, the general

problem still remains open.

Assuming independent sources, Willems investigated a cooperative scenario, in which encoders exchange

messages overconferencelinks of limited capacity prior to transmission over the multiple access channel [22].

In this case, the capacity region is given by

R1 < I(X1; Y |X2Z) + C12

R2 < I(X2; Y |X1Z) + C21

R1 + R2 < min{ I(X1X2; Y |Z) + C12 + C21, I(X1X2; Y ) },

for some auxiliary random variableZ such that|Z| ≤ min(|X1|·|X2|+2, |Y|+3), and for a joint distribution

p(zx1x2y1y2) = p(z) · p(x1|z) · p(x2|z) · p(y|x1x2).

2) Correlated Sources and Networks of DMCs:Very recently, an early paper was brought to our attention,

in which Han considers the transmission of correlated sources to a common sink over a network of

independent channels [23]. Although the problem setup is less general than ours, in that (a) each source

block and each transmitted codeword partipate only once in the encoding process, and (b) the intermediate

nodes are assumed to decode the data before passing it on, Theorem 3.1 of [23] is very similar to our

Theorem1.

Our work, done independently of Han’s, differs from it and complements it in the following ways:

• Our setup is more general. We allow for arbitrary forms of joint source-channel coding to take place

inside the network while data flows towards the decoder, and thenprovethat a one-step encoding process,

pure routing, and separate source/channel coding are sufficient. Han assumes decode-and-forward in

his problem statement, as well as a one-step encoding process.

• The proof techniques are different. Han takes a purely combinatorial approach to the problem: he

thoroughly exploits the polymatroidal structure of the capacity function for the network of channels,

and the co-polymatroidal structure for the Slepian-Wolf region. We establish our achievability result by

explicitly constructing a routing algorithm for the Slepian-Wolf indices, and our converse by standard

methods based on Fano’s inequality.

Furthermore our work, being motivated by a concrete sensor networking application, establishes connections

and relevance to practical engineering problems (see Section III ) that are not a concern in [23].
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3) Network Coding:Another closely related problem is the well knownnetwork codingproblem, intro-

duced by Ahlswede, Cai, Li and Yeung [24]. In that work, the authors establish the need for applying coding

operations at intermediate nodes to achieve the max-flow/min-cut bound of a general multicast network. A

converse proof for this problem was provided by Borade [25].Linear codes were proposed by Li, Yeung

and Cai in [26], and Koetter and Ḿedard in [27].

Effros, Médard et al. have developed a comprehensive study on separate and joint design of linear source,

channel and network codes for networks with correlated sources under the assumption that all operations

are defined over a common finite field [28]. For this particular case, optimality of separate linear source

and channel coding was observed in the one-receiver instance, but the result of [28] does not prove that

it holds for general networks and channels with arbitrary input and output alphabets. Error exponents for

multicasting of correlated sources over a network of noiseless channels were given by Ho, Médard et al.

in [29], and networks with undirected links were consideredby Li and Li in [30].

Another problem in which network flow techniques have been found useful is that of finding the maximum

stable throughput in certain networks. In this problem, posed by Gupta and Kumar in [31], it is sought to

determine the maximum rate at which nodes can inject bits into a network, while keeping the system stable.

This problem was reformulated by Peraki and Servetto as a multicommodity flow problem, for which tight

bounds were obtained using elementary counting techniques[32], [33].

D. Main Contributions and Organization of the Paper

Our main original contributions can be summarized as follows:

• A general coding theorem yielding necessary and sufficient conditions for reliable communication of

M + 1 correlated sources to a common sink over a network of independent DMCs.

• An achievability proof which combines classical coding arguments with network flow methods and a

converse proof that establishes the optimality of separatesource and channel coding.

• A detailed discussion on the engineering implications of our main result, and the concepts of information-

theoretically optimal network architectures and protocolstacks.

The rest of the paper is organized as follows. In SectionII we give formal definitions, to then state and

prove our main theorem. We also look at three special cases: anetwork with three nodes, the non-cooperative

case, and an array of orthogonal Gaussian channels. In Section III we address the practical implications of our

main result, by describing an information-theoretically optimal protocol stack, elaborating on the tractability

of related network architecture and network optimization problems, and discussing the suboptimality of

correlated codes for orthogonal channels. The paper concludes with SectionIV.

October 2, 2005. DRAFT



9

II. A C ODING THEOREM FORNETWORK INFORMATION FLOW WITH CORRELATED SOURCES

A. Formal Definitions and Statement of the Main Theorem

A networkis modeled as the complete graph onM +1 nodes. For each(vi, vj) ∈ E (0 ≤ i, j ≤ M ), there

is a discrete memoryless channel(Xij , pij(y|x),Yij), with capacityCij = maxpij(x) I(Xij ; Yij).1 At each

nodevi ∈ V , a random variableUi is observed (i = 0...M ), drawn i.i.d. from a known joint distribution

p(U0U1...UM ). Nodev0 is thedecoder– the goal in this problem is to find conditions under whichU1...UM

can be reproduced reliably atv0. We now make this statement more precise, by describing how the nodes

communicate and by giving the formal definitions of code, probability of error and reliable communication.

Time is discrete. EveryN time steps, nodevi collects a blockUN
i of source symbols – we refer to the

collection of all blocks[UN
0 (k)UN

1 (k)...UN
M (k)] collected at timekN (k ≥ 1) as ablock of snapshots. Node

vi then sends a codewordXN
ij to nodevj . This codeword depends on awindowof K previous blocks of source

sequencesUN
i observed at nodevi, and ofT previously received blocks of channel outputs, corresponding

to noisy versions of the codewords sent by all nodes to nodevi in the previousT communications steps

(corresponding toNT time steps).

For a block of snapshots observed at timekN , at time (k + W )N (that is, after allowing for a finite

but otherwise arbitrary amount of time to elapse,2 in which the information injected by all nodes reaches

v0), an attempt is made to decode atv0. The decoder produces an estimate of the block of snapshots

UN
0 (k)UN

1 (k)...UN
M (k) based on the local observationsUN

0 (k), and the previousW blocks of N channel

outputs generated by codewords sent tov0 by the other nodes.

Thus, acodefor this network consists of:

• four integersN , K, T andW ;

• encoding functions at each node

gij :
K

⊗

l=1

UN
i ×

T
⊗

t=1

M
⊗

m=0

YN
mi −→ XN

ij ,

for 0 ≤ i, j ≤ M .

1Note thatCij could potentially be zero, thus assuming a complete graph does not mean necessarily that any node can send

messages to any other node in one hop.

2During the time that a block of snapshots spends within the network, arbitrarily complex coding operations are allowed within

the pipeline: nodes can exchange information, redistribute their load, andin general perform any form of joint source-channel coding

operations. The only constraint imposed is that all information eventually be delivered to destination, within a finite time horizon.
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• the decoding function at nodev0:

h : UN
0 ×

W
⊗

w=1

M
⊗

m=1

YN
m0 −→

M
⊗

m=1

ÛN
m .

• the block probability of error:

P (N)
e = P (UN

1 ...UN
M 6= ÛN

1 ...ÛN
M ).

We say that blocks of snapshotsUN
1 ...UN

M can bereliably communicatedto v0 if there exists a sequence

of codes as above, withP (N)
e → 0 asN → ∞, for some finite valuesK, T andW , all independent ofN .

With these definitions, we are now ready to state our main theorem.

Theorem 1:Let S denote a non-empty subset of node indices that does not contain node0: S ⊆ {0...M},

S 6= ∅, 0 ∈ Sc. Then, it is possible to communicateU1...UM reliably tov0 if and only if, for all S as above,

H(US |USc) <
∑

i∈S,j∈Sc

Cij . (4)

B. Achievability Proof

Our coding strategy is based on separate source and channel coding. We first use capacity attaining channel

codes to turn the noisy network into a network of noiseless links (of capacityCij). Then, we use Slepian-

Wolf source codes, jointly with a custom designed routing algorithm, to deliver all this data to destination.

Since the channel coding aspects of the proof are rather straightforward extensions of classical point-to-point

arguments, in the following we only focus on the less obvioussource coding and routing aspects.

1) Mechanics of the Coding Strategy:Consider a “noise-free” version of the problem formulated above:

we still have a complete graph, now withnoiselesslinks of capacityCij . VariablesUi are still observed at

each nodevi, and the goal remains to reproduce all of these atv0. Each node uses a classical Slepian-Wolf

code: there is a source encoder at nodevi that maps a sequenceUN
i to an index from the random binning

set {1, 2, . . . , 2NRi}, thus compressing the block of observationsUN
i using codes as in [5, Thm. 14.4.2].

Let (R1...RM ) denote the rate allocation to each of the nodes. To achieve perfect reconstruction, these bits

must be delivered to nodev0.

• Set K = T = 1 – each block of source symbols and each block of codewords participates in the

encoding process only once.

• To deliver the bin indices produced by the Slepian-Wolf codesto destination, the noise-free network

is regarded as a flow network [34, Ch. 26]. Letϕ(vi, vj) be a feasible flow in this network, withM
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sourcesv1...vM , supplyRi at sourcevi, and a single sinkv0. If no such feasible flow exists, the code

construction fails.

• If there is a feasible flowϕ then thisϕ uniquely determines, at each nodevi, the number of bits that

need to be sent to each of its neighbors – thus fromϕ we derive the encoding functionsgij as follows:

– Consider the directedacyclic graph G′ of G induced byϕ, by taking V (G′) = V (G), and

E(G′) = {(vi, vj) ∈ E : ϕ(vi, vj) > 0}. Define a permutationπ : {0...M} → {0...M}, such

that [vπ(0)vπ(1)...vπ(M)] is a topological sortof the nodes inG, as illustrated in Fig.3.

Fig. 3. A topological sort of the nodes of a directed acyclic graph isa linear orderingv1...vM such that if(vi, vj) is

an edge, theni < j.

– Consider a block of snapshotsU(k) = [UN
0 (k)UN

1 (k)...UN
M (k)] captured at timekN . At time

(k + l)N (for l = 0...M ), nodevπ(l) will have received all bits with portions of the encodings of

U(k) generated by nodes upstream in the topological order – thus,together with its own encoding

of UN
π(l)(k), all the bits forU(k) up to and including nodevπ(l) will be available there, and thus

can be routed to nodes downstream in the topological order.

– Consider now all edges of the form(vπ(k), v
′) for which ϕ(vπ(k), v

′) > 0:

1) Collect them =
∑

v′ ϕ(v′, vπ(k)) information bits sent by the upstream nodesv′.

2) Consider now the set of all downstream nodesv′′, for which ϕ(vπ(k), v
′′) > 0. Due to flow

conservation forϕ,
∑

v′′ ϕ(vπ(k), v
′′) = m + Rπ(k), whereRπ(k) is the rate allocated to node

vπ(k).

3) For eachv′′ as above, defineg(k)
π(k)v′′

to be a message such that|g
(k)
π(k)v′′

| = ϕ(vπ(k), v
′). Partition

the m + Rπ(k) available bits according to the values ofϕ, and send them downstream, as

illustrated in Fig.4.

• To decode, at time(k + M)N , nodev0 does the following:

– Decode all channel outputs received at time(k +M − 1)N , to recover the bits sent by each 1-hop

neighbor of the sink.

– Reassemble the set of bin indices from the segments receivedfrom each neighbor.
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vπ(k)

b3b4b5

b1

b5b6b7

b2b3b4

b1b2

Fig. 4. To illustrate the operations performed at each node. In thisexample, five bits come into nodevπ(k) from

neighbouring nodes, two on the top link and three on the bottom link. The information bits from other nodes come

in the form of noisy codewords – they need to be decoded from the received channel outputs. Now, because flow

conservation holds forϕ, we know that the aggregate capacity of the three output links will be at least five bits plus

some local bits (the encoding of a block of local observations UN
π(k), denoted byb6 andb7 here). So at this point we

split those bits in a way such that the individual capacity constraints of the output links are not violated, and then they

are sent on their way tov0.

– Perform typical set decoding (as in [5, pg. 411]), to recover the block of snapshot[UN
1 (k)...UN

M (k)].

An important observation is that, in this setup, network coding (in the sense of [24]) is not needed. This

is because we have a case ofM sources and a single sink interested in collecting all messages, a case for

which it was shown in [35] that routing alone suffices.

Our next task is to find conditions under which this coding strategy results inP (N)
e → 0 asN → ∞.

2) Analysis of the Probability of Error:The coding strategy proposed above hinges on two main elements:

• Slepian-Wolf codes: in this case, we know that provided the rate vector(R1...RM ) is such that, for all

partitionsS of {0...M}, S 6= ∅, 0 ∈ Sc,

∑

i∈S

Ri > H(US |USc), (5)

then there exist Slepian-Wolf codes with arbitrarily low probability of error [5, Ch. 14.4].

• Network flows: from elementary flow concepts we know that if a flowϕ is feasible in a networkG,

then for allS ⊆ {0...M}, S 6= ∅, 0 ∈ Sc,

∑

i∈S

Ri
(a)
=

∑

i∈S,j∈V

ϕ(vi, vj)

(b)
=

∑

i∈S,j∈Sc

ϕ(vi, vj)

(c)

≤
∑

i∈S,j∈Sc

Cij , (6)

where(a) and(b) follow from the flow conservation properties of a feasible flow (all the flow injected

by the sources has to go somewhere in the network, and in particular all of it has to go across a network
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cut with the destination on the other side); and(c) follows from the fact that in any flow network, the

capacity of any cut is an upper bound to the value of any flow.

Thus, from (5) and (6), we conclude that if, for all partitionsS as above, we have that

H(US |USc) <
∑

i∈S,j∈Sc

Cij , (7)

thenP
(N)
e → 0 asN → ∞.

C. Converse Proof

The converse proof is fairly long and tedious, but by virtue ofbeing based on Fano’s inequality and

standard information-theoretic arguments, it is relatively straightforward – therefore, we omit it here and

provide the technical details in AppendixA. At this point however, we would like to sketch out an informal

argument on why this converse should hold.

Consider an arbitrary network partitionS of {0...M}, S 6= ∅, 0 ∈ Sc. For each such partition we define

a two-terminal system, with a “supersource” that has accessto the whole vector of observationsU1...UM ,

and a “supersink” that has access only toUSc . The supersource and supersink are connected by an array of

parallel DMCs: if i ∈ S and j ∈ Sc, then (Xij , pij(y|x),Yij) from the network is one of the channels in

the array. This is illustrated in Fig.5.

v0S S

Fig. 5. An artificial two-terminal system: all sources inS are treated as a supersource, connected to a supersink made

of all the sinks inSc by an array of DMCs (those going across the cut). Intuitively, any necessary condition for this

system should also be necessary for our system (although this requires a formal statement and proof). The interesting

statement thus is to show that the set of all conditions obtained in this form (by considering all possible cuts) is also

sufficient.

Clearly, H(US |USc) <
∑

i∈S,j∈Sc Cij is an outer bound for this two-terminal system (follows directly

from the source/channel separation theorem, [5, Sec. 8.13]). And intuitively, it is also clear that any outer

bound for this two-terminal system provides necessary conditions for reliable communication to be possible
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in our network. Thus, by considering all possible partitions(S, Sc) as above, we obtain a set of necessary

conditions matching those of the achievability result.3

We would also like to highlight that, because of the correlation between sources, a simple max-flow/min-

cut bounding argument as suggested in [5, Section 14.10]) is not sufficient to establish the source-channel

separation result we seek – proving said result requires allthe steps of a typical converse.

A formal proof for this converse is provided in AppendixA.

D. Special Cases

1) A Network with Three Nodes:To provide an illustration of the meaning of Theorem1, and of the

optimality of the flow-based solution, we specialize Theorem1 to the case of a network with three nodes.

In this case, those conditions become:

H(U1|U2U0) < C10 + C12 (8)

H(U2|U1U0) < C20 + C21 (9)

H(U1U2|U0) < C10 + C20. (10)

A network with three nodes as considered here is illustratedin Fig. 6.C10v1 v0 v2C20C21C12
Fig. 6. A network with three nodes.

Next, we regard the network in Fig.6 as aflow network [34, Ch. 26]: a flow network with two sources

(v1 and v2) and a single sink (v0). Encodings ofU1 injected at sourcev1 at rateR1, and ofU2 injected

at v2 at rateR2, are the “objects” that flow in this network and are to be delivered to the sinkv0. This is

illustrated in Fig.7.

In the simple flow network of Fig.7, any feasible flowϕ must satisfy someconservationequations:

R1 = ϕ(v1, v0) + ϕ(v1, v2),

R2 = ϕ(v2, v0) + ϕ(v2, v1),

R1 + R2 = ϕ(v1, v0) + ϕ(v1, v2) + ϕ(v2, v0) + ϕ(v2, v1) = ϕ(v1, v0) + ϕ(v2, v0),

3We thank our Reviewer B, for suggesting this simple and very clear interpretation for the converse.
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15C10v1 v0 v2C20C21C12 enoderU1 U2enoder R1 R2
Fig. 7. A flow network with three nodes, suppliesR1 andR2 and nodesv1 andv2, and a sinkv0.

where the last equality follows from the fact that flow conservation holds: the total amount of flow injected

(R1 + R2) must equal the total amount of flow received by the sink (ϕ(v1, v0) + ϕ(v2, v0)) [34]. Similarly,

any feasible flow must also satisfy allcapacityconstraints:

ϕ(v1, v0) + ϕ(v1, v2) ≤ C10 + C12,

ϕ(v2, v0) + ϕ(v2, v1) ≤ C20 + C21,

ϕ(v1, v0) + ϕ(v2, v0) ≤ C10 + C20.

Combining these last two sets of constraints, and the conditions from the Slepian-Wolf theorem on feasible

(R1, R2) pairs, we immediately get

H(U1|U2U0) < R1 ≤ C10 + C12,

H(U2|U1U0) < R2 ≤ C20 + C21,

H(U1U2|U0) < R1 + R2 ≤ C10 + C20.

It is interesting to observe in this argument that the regionof achievable rates forms a convex polytope,

in which three of its faces come from the Slepian-Wolf conditions, and three come from the capacity

constraints. This polytope is illustrated in Fig.8. This polytope plays a central role in our analysis: reliable

H(U1U2jU0) C10 + C20
C10 + C12H(U2jU1U0)C20 + C21 R

H(U1jU2U0)
R1

R2

Fig. 8. The polytopeR of admissible rates.

communication is possibleif and only ifR 6= ∅. Thus, the view of “information as a flow” in this class of

networks is complete.
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2) No Cooperation and No Side Information atv0: We consider now the special case ofM non-

cooperating nodes and one sink, as illustrated in Fig.9. Necessary and sufficient conditions for reliable

communication under this scenario follow naturally from our main theorem by settingCij = 0 for all j 6= 0,

and |U0| = 1.

C10 CM0v1 v2 vM
v0C20

Fig. 9. M non-cooperating nodes.

Corollary 1: The sourcesU1, U2, . . . , UM can be communicated reliably over an array of independent

channels of capacityCi0, i = 1 . . . M , if and only if

H(US |USc) <
∑

i∈S

Ci0,

for all subsetsS ⊆ {1, 2, . . . , M}, S 6= ∅.

An illustration of this corollary for two sourcesU1 and U2 is shown in Fig.10. When we have two

��
��
��
��

��
��
��
��

Slepian−Wolf

capacity
region

region

R1H(U1U2)H(U1jU2)
H(U2)H(U1U2)

H(U2jU1)C20
C10 + C20H(U1)C10

R2
capacity
region

Slepian−Wolf
region

R1H(U1U2)
H(U1U2)

C20
C10 + C20

R2
H(U2jU1)H(U2)

H(U1jU2) C10H(U1)
Fig. 10. Relationship between the Slepian-Wolf region and the capacity region for two independent channels. In the left figure, as

H(U1|U2) < C10 andH(U2|U1) < C20 the two regions intersect and therefore reliable communication is possible.The figure on

the right shows the case in whichH(U2|U1) > C20 and there is no intersection between the two regions.

independent channels with capacitiesC10 and C20, the capacity region becomes a rectangle with side

lengthsC10 and C20 [5, Chapter 14.3]. Also shown is the Slepian-Wolf region of achievable rates for

separate encoding of correlated sources. Clearly,H(U1U2) < C10 +C20 is a necessary condition for reliable
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communication as a consequence of Shannon’s joint source andchannel coding theorem for point-to-point

communication. Assuming that this is the case, consider nowthe following possibilities:

• H(U1) < C10 and H(U2) < C20. The Slepian-Wolf region and the capacity region intersect, so any

point (R1, R2) in this intersection makes reliable communication possible. Alternatively, we can argue

that reliable transmission ofU1 and U2 is possible even with independent decoders, therefore a joint

decoder will also achieve an error-free reconstruction of the source.

• H(U1) > C10 and H(U2) > C20. SinceH(U1U2) < C10 + C20 there is always at least one point

of intersection between the Slepian-Wolf region and the capacity region, so reliable communication is

possible.

• H(U1) < C10 andH(U2) > C20 (or vice versa). IfH(U2|U1) < C20 (or if H(U1|U2) < C10) then the

two regions will intersect. On the other hand, ifH(U2|U1) > C20 (or if H(U1|U2) > C10), then there

are no intersection points, but it is not immediately clear whether reliable communication is possible

or not (see Fig.10), since examples are known in which the intersection between the capacity region

of the multiple access channel and the Slepian-Wolf region ofthe correlated sources is empty and still

reliable communication is possible [18].

Corollary 1 gives a definite answer to this last question: in the special case of correlated sources and

independent channels an intersection between the capacityregion and the Slepian-Wolf rate regions is not

only sufficient, but also a necessary condition for reliable communication to be possible—in this case,

separation holds.

3) Arrays of Gaussian Channels:We should also mention that Theorem1 applies to other channel models

that are relevant in practice, for instance Gaussian channels with orthogonal multiple access. For simplicity,

we illustrate this issue in the context of Corollary1. The capacity of the Gaussian multiple access channel

with M independent sources is given by

∑

i∈S

Ri ≤
1

2
log

(

1 +

∑

i∈S Pi

σ2

)

,

for all S ⊆ {1...M}, S 6= ∅, and whereσ2 and Pi are the noise power and the power of thei-th user

respectively [5, pp. 378-379]. If we use orthogonal accessing (e.g. TDMA), and assign different time slots

to each of the transmitters, then the Gaussian multiple access channel is reduced to an array ofM independent

single-user Gaussian channels each with capacity

Ci0 = τi0 ·
1

2
log

(

1 +
Pi0

σ2τi0

)

, 1 ≤ i ≤ M,
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whereτi0 is the time fraction allocated to source useri to communicate with the data collector nodev0,

andPi0 is the corresponding power allocation.

Applying Theorem1, we obtain the reachback capacity of the Gaussian channel with orthogonal access-

ing.4 Then, reliable communication is possible if and only if

H(US |USc) ≤
∑

i∈S

τi0

2
log

(

1 +
Pi0

σ2τi0

)

,

for all subsetsS ⊆ {1, 2, . . . , M}, S 6= ∅.

III. PRACTICAL /ENGINEERING IMPLICATIONS OF THEOREM 1

A. An Information Theoretically Optimal Protocol Stack

We believe that the fact that in networks of point-to-point noisy links with one sink Shannon information

has the exact same properties of classical network flows is of particular practical relevance. This is so

because there is a richalgorithmic theory associated with it, which allows us to cast standard information

theoretic problems into the language of flows and optimization. Perhaps most relevant among these is is the

optimality of implementing codes using alayeredprotocol stack, as illustrated in Fig.11.

As discussed in the Introduction, the decision to turn a wireless network into a network of point-to-point

links is an arbitrary one. But, due to complexity and/or economic considerations, this arbitrary decision is

one made very often, and thus we believe it is of great practical interest to understand what are appropriate

design criteria for such networks. And our Theorem1 offers valuable insights in this regard –if we decide

to define a link-layer based on a MAC protocol that deals with interference by suppressing it,then all

remaining layers in Fig.11 follow from the achievability proof of Theorem1. We see therefore that indeed,

in this class of networks, Fig.11 provides a set of abstractions analogous to those of Fig.2 for classical

two-terminal systems.

B. Algorithmic/Computational Issues

As an illustration of the benefits of the “information as flow” interpretation for our results, in this subsection

we outline some initial results on an optimal routing problem. This topic however will be developed in full

depth elsewhere.

4The generalization of Theorem1 for channels with real-valued output alphabets can be easily obtained using the techniques

in [5, Sec. 9.2 & Ch. 10].
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2021 1012v1 v2 v0

v1 v2 v0

Links
'12 '10v1 v2 v0Flows

Reonstruted Data �eld v0v2v1
R1Bit streams

Connetions
R1

v0v2v1U1 U2 U0Gateway NodeData �eldPower Constrained Nodes

R2

'20
R2

Link Layer(MAC/Power/Error Control)
Network Layer(Feasible Flow Computation)
Transport Layer(Routing)
Presentation Layer(Distributed Sampling/Compression)(Interpolation)
(User of the data)Appliation Layer

Physial Layer
Fig. 11. Abstractions that follow from the achievability proof, illustrated here for three nodes. At the physical layer

there are nodes with power constraints, a data field of which these nodes collect samples in space and time, and a

gateway node that will deliver all this data to destination.On top of this physical substrate, we construct a sequence

of abstractions: noiseless point-to-point links of a givencapacity (theLink Layer); a flow network (theNetwork

Layer); a set of connections (theTransport Layer); and a set of distributed signal processing algorithms forsampling,

compression and interpolation of the space/time continuous process (thePresentation Layer). In the end, an approximate

representation of the underlying data field is delivered to applications.

1) Optimization Aspects of Protocol Design:A natural question that follows from our previous develop-

ments is one ofoptimization: given a non-empty feasibility polytopeR, we have the freedom of choosing

among multiple assignments of values to flow variables, and thus it is only natural to ask if there is an

optimal flow. To this end, we define a cost functionκ as follows:

κ(ϕ) =
∑

(vi,vj)∈E

c(vi, vj) · ϕ(vi, vj),
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wherec(vi, vj) is a constant that, multiplied by the total number of bitsϕ(vi, vj) that a flowϕ assigns to

an edge(vi, vj), determines the cost of sending all that information over the channel(Xij , pij(y|x),Yij).

The resulting optimization problem is shown in Fig.12.

min
∑

(vi,vj)∈E c(vi, vj) · ϕ(vi, vj)

subject to:

Standard flow constraints (capacity / skew symmetry / flow conservation)

ϕ(vi, vj) ≤ Cij , 0 ≤ i, j ≤ M.

ϕ(vi, vj) = −ϕ(vj , vi), 0 ≤ i, j ≤ M.
∑

v∈V ϕ(vi, v) = 0, 1 ≤ i ≤ M.

Rate admissibility constraints

H(US |USc) <
∑

i∈S ϕ(s, vi) ≤
∑

i∈S,j∈Sc Cij , S ⊆ {1...M}, S 6= ∅.

ϕ(s, vi) = Ri, 1 ≤ i ≤ M.

Fig. 12.Linear programming formulation for the assignment of values to flow variables (observe the introduction of a

“supersource”s, which suppliesRi units of flow tovi). A solution to this problem provides optimal routes (thosewith

positive flow assignment) and loads on each link. Note as wellthat, by choosingc(vi, vj) = 0 for all (vi, vj) ∈ E,

this LP is solvable if and only ifR 6= ∅ – that is, the decision problem for reliable communication (i.e., for whether

a given loadp(U0U1...UM ) can be carried over a given networkG) admits a linear programming formulation too.

The choice of a linear cost model in this setup can be justified based on a number of reasons. First of

all, linearity is a very natural assumption: in simple language, it says that it costs twice as much to double

the amount of information sent on any channel. For example, we could takec(vi, vj) to be theminimum

energy per information bitrequired for reliable communication over the DMC fromvi to vj [36], and then

κ(ϕ) would give us the sum of the energy consumed by all nodes when transporting data as dictated by

a particular flowϕ. Specifically in the context of routing problems, another important consideration is that

the main drawback often cited for solving optimal routing problems based on network flow formulations is

given by the fact that cost functions such asκ only optimizeaveragelevels of link traffic, ignoring other

traffic statistics [8, pg. 436]. But this is not at all an issue here, since the values of flow variables (i.e.,

Shannon information) are already average quantities themselves.

2) A Routing Example:As one example of the usefulness of the LP formulation in Fig.12, we consider

next the problem of designing efficient mechanisms for data aggregation, as motivated in [37]. There has

been a fair amount of work reported in the networking literature, on the design and performance analysis of
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tree structures for aggregation—for example, the work of Goel and Estrin on the construction of trees that

perform well simultaneously under multiple concave costs [38]. Based on our LP formulation, we construct

two examples which show the extent to which trees could give rise to suboptimalities, as opposed to other

topological structures. And we start by showing an example in which, althoughR 6= ∅, there are no feasible

trees. This case is illustrated in Fig.13.

11 1
11:5 v1

v20:5
v0 v01:5 v1

v20:5=1 0:5=0:5
1=1 v0v1

v20=1 0:5=0:5
0=0

0:5
Fig. 13. To illustrate a solvable problem that cannot be solved using trees.Left: a flow network; middle/right: the decomposition of

a feasible flow into two single flows, showing how much of the flow injected at each source is sent over which link (x/c next to

an edge means that the edge carriesx units of flow, and has capacityc).

As illustrated in Fig.13, a solution to the transport problem exists. However, it is easy to check that if we

constrain data to flow along trees, none of the three possible trees ({(v1, v0); (v2, v0)}, or {(v1, v2); (v2, v0)},

or {(v2, v1); (v1, v0)}) are feasible: in all cases, there is one link for which the capacity constraint is violated.

Next we consider a case where feasible trees exist, but the lowest cost of any tree differs from the optimal

cost by an arbitrarily large factor. This case is illustratedin Fig. 14.

v01; (v2; v1) = 11 + � v1
v21 2; (v2; v0) = 1

1 + �; (v1; v0) = `� 1
1; (v1; v2) = 1 v01 + � v1

v21=1 1=1
�=1 + � v0v1

v20=1 1=1
0=0

1
Fig. 14. To illustrate a problem in which trees are very expensive. Left: aflow network with costs; right: an optimal solution to the

linear program in Fig.12. Such a case could arise, e.g., in a situation where there is heavy interference in the direct path fromv1

to v0.

In this case, there exists only one feasible tree:{(v1, v0); (v2, v0)}, with costℓ(1+ǫ)+1. However, because

of the “expensive” link(v1, v0) along which the tree is forced to send all its data, the cost issignificantly

increased: by splitting the encoding ofU1 as illustrated in Fig.14, the cost incurred into by this structure

would beǫℓ + 3. Hence, we see that in this case, the cost of the best feasibletree is ℓ(1+ǫ)+1
ǫℓ+3 times larger
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than that of an optimal solution allowing splits. And this “overpayment factor” could be significant: when

ℓ is large, this is≈ 1 + 1
ǫ
, and it grows unbound for smallǫ.

Note as well that any time that a network is operated close to capacity, it will be necessary to split flows.

And that is a situation likely to be encountered often in power-constrained networks, since minimum energy

designs will necessarily result in links being allocated the least amount of power needed to carry a given

traffic load. Thus, we see that these examples above arenot pathological cases of limited practical interest,

but instead, they are good representatives of situations likely to be encountered often in practice.

C. Suboptimality of Correlated Codes for Orthogonal Channels

The key ingredient of the achievability proof presented by Cover, El Gamal and Salehi for the multiple

access channel with correlated sources is the generation ofrandom codes, whose codewordsXN
i are

statistically dependent on the source sequencesUN
i [18]. This property, which is achieved by drawing

the codewords according to
∏N

j=1 p(xij |uij) with uij and xij denoting thej-th element ofUN
i and XN

i ,

respectively, implies thatUN
i andXN

i are jointly typical with high probability. Since the source sequences

UN
1 andUN

2 are correlated, the codewordsXN
1 (UN

1 ) andXN
2 (UN

2 ) are also correlated, and so we speak of

correlated codes. This class of random codes, which is treated in more general terms in [21], can be viewed

as joint source and channel codes that preserve the given correlation structure of the source sequences, based

upon which the decoder can lower the probability of error.

The class of correlated codes is of interest to us because of two main reasons:

• From a practical point of view, correlated codes have a very strong appeal: sensor nodes with limited

processing capabilities may be forced to use very simple codes that do not eliminate correlations between

measurements prior to transmission [39] (e.g., a simple scalar quantizer and simple BPSK modulation).

• From a theoretical point of view, since these codes yield the largest known admissibility region for the

problem of communicating distributed sources over multiple-access channels, it would be interesting

to know how these codes fare in our context, where we know separate source and channel coding to

achieve optimality.

Thus, specializing the achievability proof of [18] to the case ofM independent channels, we get the following

result.

Corollary 2 (From Theorem 1 of [18]):A set of correlated sources[U1U2...UM ] can be communicated

reliably over independent channels(X1, p(y1|x1),Y1) . . . (XM , p(yM |xM ),YM ) to a sinkv0, if

H(US |USc) <
∑

i∈S

I(Xi; Y0|USc),
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for all subsetsS ⊆ {1, 2, . . . , M}, S 6= ∅.

Proof: This result can be obtained from theM -source version of the main theorem in [18], by

specializing it to a multiple access channel with conditional probability distribution

p(y|x1x2...xM ) = p(y1y2 . . . yM |x1x2 . . . xM ) =
M
∏

i=1

p(yi|xi).

Part of the reason why we feel this is an interesting result isthat the main theorem in [18] doesnot

immediately specialize to Corollary1: whereas the achievability results do coincide, [18] does not provide

a converse. To illustrate this point better, we focus now on the case ofM = 2:

• In general, we have thatI(X1X2; Y1Y2) ≤ I(X1; Y1)+I(X2; Y2), for anyp(u1u2x1x2)p(y1|x1)p(y2|x2);

but for this upper bound on the sum-rate to be achieved, we must takep(u1u2x1x2) = p(u1u2)p(x1)p(x2)

– that is, the codewords must be drawn independently of the source. And for this special case, our

Theorem1 does provide a converse.

• As argued earlier, due to practical considerations it may not be feasible to remove correlations in

the source before choosing channel codewords, in which casewe face a situation where correlated

codes are used, despite their obvious suboptimality. In this case, it is of interest to determine the

rate losses resulting from the use of correlated codes, defined as ∆1 = I(X1; Y1) − I(X1; Y1|U2),

∆2 = I(X2; Y2) − I(X2; Y2|U1), and∆0 = I(X1; Y1) + I(X2; Y2) − I(X1X2; Y1Y2). Straightforward

manipulations show that∆1 = I(Y1; U2), ∆2 = I(Y2; U1), and∆0 = I(Y1; Y2).

• Since∆i ≥ 0, i ∈ {0, 1, 2} (mutual information is always nonnegative), we conclude that the region of

achievable rates given by Corollary2 is contained in the region defined by Corollary1. Furthermore,

we find that the rate loss terms have a simple, intuitive interpretation:∆0 is the loss in sum rate due to

the dependencies between the outputs of different channels, and∆1 (or ∆2) represent the rate loss due

to the dependencies between the outputs of channel1 (or 2) and the source transmitted over channel2

(or 1). All these terms become zero if, instead of using correlated codes, we fixp(x1)p(x2) and remove

the correlation between the source blocks before transmission over the channels.

At first glance, this observation may seem somewhat surprising, since the problem addressed by Corollary1

is a special case of the multiple access channel with correlated sources considered in [18], where it is shown

that in the general case correlated codes outperform the concatenation of Slepian-Wolf codes (independent

codewords) and optimal channel codes. The crucial difference between the two problems is the presence (or

absence) of interference in the channel. Albeit somewhat informally, we can state that correlated codes are

advantageous when the transmitted codewords are combined in the channel through interference, which is
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obviously not the case in our problem. Practical code constructions built around this observation have been

reported in [39].

IV. CONCLUSIONS

A. Summary

In this paper we have considered the problem of encoding a setof distributed correlated sources for delivery

to a single data collector node over a network of DMCs. For this setup we were able to obtain single-letter

information theoretic conditions that provide an exact characterization of the admissibility problem. Two

important conclusions follow from the achievability proof:

• Separate source/channel coding is optimal in any network with one sink in which interference is dealt

with at the MAC layer by creating independent links among nodes.

• In such networks, the properties of Shannon information are exactly identical to those of water in pipes

– information is a flow.

B. Discussion

A few interesting observations follow from our results:

• It is a well known fact that turning a multiple access channelinto an array of orthogonal channels

by using a suitable MAC protocol is a suboptimal strategy in general, in the sense that the set of

rates that are achievable with orthogonal access is strictly contained in the Ahlswede-Liao capacity

region [5, Ch. 14.3]. However, despite its inherent suboptimality, there are strong economic incentives

for the deployment of networks based on such technologies, related to the low complexity and cost

of existing solutions, as well as experience in the fabrication and operation of such systems. As a

result, most existing standard implementations we are aware of (e.g., the IEEE 802.11 and 802.15.*

families, or Bluetooth), are based on variants of protocolslike TDMA/FDMA/CDMA or Aloha, that

treat interference among users as noise or collisions, and deal with it by creating orthogonal links. We

feel therefore that some of the interest in our results stemsfrom the fact that they provide a thorough

analysis for what we deem to be, with high likelihood, the vast majority of wireless communication

networks to be deployed for the foreseeable future.

• A basic question follows from the results in this paper: whenexactly does Shannon information act like

a classical flow in a network setup? In this paper, we showed that far more often than common wisdom

would suggest: forany network made up of independent links and one sink, Shannon information is a

flow. The assumption of independence among channels is crucial, since well known counterexamples
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hold without it [18]. But, as argued before, far from being just some technical assumption needed for

the theory to hold, independent channels arise naturally inpractical applications. In establishing the

flow properties of information, we showed how some well understood network flow tools can be applied

to address network design problems that have traditionallybeen difficult to deal with using standard

tools in network information theory, and we illustrated this with a simple example involving optimal

routing. In particular we showed that, at least from an information theoretic point of view, there is

little justification for the common practice of designingtreesfor collecting data picked up by a sensor

network, thus opening up interesting problems of protocol design.

• In retrospect, perhaps the results we prove in this paper should not have been surprising. In the context

of two-terminal networks, we do know the following:

– Feedback does not increase the capacity. Therefore, the capacity of individual links is unaffected

by the ability of our codes to establish a conference mechanism among nodes.

– Compression rates are not reduced by explicit cooperation,as it follows from the Slepian-Wolf

theorem: the minimum rate required to communicateU1 to a decoder that has access to side-

information U0 is H(U1|U0), and knowledge ofU0 does not reduce the rates needed for coding

U1. Therefore, the amount of information that needs to flow through our network is not reduced

either by the ability of nodes to establish conferences.

Of course the statements above only hold for individual links, and a proof was needed to carry that

intuition to the general network setup considered in this work. But those observations we think are the

key to understanding why our results hold.

C. Future Work

After having established coding theorems for the problem ofnetwork information flow with correlated

sources, a natural question that arises: what if, in a given scenario,R = ∅? In that case, the best we can

hope for is to reconstruct anapproximationto the original source message — and the answer is given by

rate-distortion theory [40]. The rate-distortion formulation of our problem in the case of non-cooperating

encoders is equivalent to the well known (and still open)Multiterminal Source Codingproblem [12]. Our

current efforts are focused on completing work on the rate/distortion problem, and on fully developing the

ideas outlined in SectionIII-B (e.g., to deal with problems of the type considered in [41]).
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APPENDIX

A. Converse Proof for Theorem1

1) Preliminaries: Assume there exists a sequence of codes such that the decoderat v0 is capable of

producing a perfect reconstruction of blocks ofN snapshotsU = [UN
0 UN

1 ...UN
M ], with P

(N)
e → 0 as

N → ∞. Consider now decodingL blocks ofN snapshots (indexed byl = 0...L − 1):

• The 1-st block of snapshots (l = 0) is computed based on messagesY N
i0 received byv0 from all nodes

vi at timeskN (k = 0 ... W−1).

• The2-nd block of snapshots (l = 1) is computed based on messagesY N
i0 received byv0 from all nodes

vi at timeskN (k = 1 ... W ).
...

• The L-th block of snapshots (l = L − 1) is computed based on messagesY N
i0 received byv0 from all

nodesvi at timeskN (k = L−1 ... W +(L−2)).

Thus, we regard the network as apipeline, in which “packets” (i.e., blocks ofN source symbols injected

by each source) takeNW units of time to flow, and each source gets to injectL packets total. We are

interested in the behavior of this pipeline in the regime of largeL.

For any fixedL, the probability ofat least oneof the L blocks being decoded in error isP (LN)
e =

1 − (1 − P
(N)
e )L. Thus, from the existence of a code with lowblock probability of error we can infer the

existence of codes for which the probability of error for theentire pipeline is low as well, by considering

a large enough block lengthN .

We begin with Fano’s inequality. If there is a suitable code as defined in the problem statement, then we

must have

H(ULN
1 ULN

2 . . . ULN
M |ÛLN

1 ÛLN
2 . . . ÛLN

M ) ≤ P (LN)
e log

(

|ULN
1 × ULN

2 × · · · × ULN
M |

)

+ h(P (LN)
e ), (11)
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whereh(·) denotes the binary entropy function, andÛLN
i = (ÛN

i (1), ÛN
i (2), . . . , ÛN

i (L)) denotesL blocks

of N snapshots reconstructed atv0. For convenience, we define also

δ(P (LN)
e ) =

(

P (LN)
e log

(

|ULN
1 × ULN

2 × · · · × ULN
M |

)

+ h(P (LN)
e )

)

/LN.

It follows from eqn. (11) that

H(ULN
1 ULN

2 . . . ULN
M |ULN

0 Y BN
10 Y BN

20 . . . Y BN
M0 )

(a)
= H(ULN

1 ULN
2 . . . ULN

M |ULN
0 Y BN

10 Y BN
20 . . . Y BN

M0 ÛLN
1 ÛLN

2 . . . ÛLN
M )

≤ H(ULN
1 ULN

2 . . . ULN
M |ÛLN

1 ÛLN
2 . . . ÛLN

M )

≤ LNδ(P (LN)
e ),

where Y BN
ij = (Y N

ij (1), Y N
ij (2), . . . , Y N

ij (B)) denotesB = W + (L − 1) blocks of N channel outputs

observed by nodevj while communicating with nodevi, and (a) follows from the fact that the estimatesÛLN
i ,

i = 1 . . .M , are functions ofULN
0 and of the received channel outputsY BN

i0 , i = 1 . . .M . From the chain

rule for entropy, from the fact that conditioning does not increase entropy, and for anyS ⊆ M = {0...M},

S 6= ∅, 0 ∈ Sc, it follows that

H(ULN
S |ULN

Sc Y BN
S→ScY BN

Sc→Sc) ≤ H(ULN
S |ULN

Sc Y BN
S→0Y

BN
Sc\{0}→0) ≤ LNδ(P (LN)

e ). (12)

Let the set ofB codewords sent by the nodes in a subsetA to the nodes in a subsetD be

XBN
A→D = {XBN

ij : i ∈ A and j ∈ D},

and, likewise, the corresponding channel outputs be denoted as

Y BN
A→D = {Y BN

ij : i ∈ A and j ∈ D}.

We will make use of the following lemmas.

Lemma 1:Let XS→Sc be a set of channel inputs andYS→Sc be a set of channel outputs of an array of

independent channels{Xij , pij(y|x),Yij}, ∀i ∈ S and∀j ∈ Sc. Then,

I(XS→Sc ; YS→Sc) ≤
∑

i∈S,j∈Sc

I(Xij ; Yij). (13)

Proof: Without loss of generality, assume thatS = {1, . . . , x0} andSc = {x0 + 1, . . . , M}. From the

definition of mutual information, it follows that

I(XS→Sc ; YS→Sc) = H(YS→Sc) − H(YS→Sc |XS→Sc).
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Expanding the first term on the right handside, we get

H(YS→Sc) = H(Y1→ScY2→Sc . . . Yx0→Sc)

≤
∑

i∈S

H(Yi→Sc)

=
∑

i∈S

H(Yi→x0+1Yi→x0+2 . . . Yi→M )

≤
∑

i∈S,j∈Sc

H(Yij)

Similarly, the second term reduces to

H(YS→Sc |XS→Sc)

= H(Y1→ScY2→Sc . . . Yx0→Sc |X1→ScX2→Sc . . . Xx0→Sc)

= H(Y1→Sc |X1→ScX2→Sc . . . Xx0→Sc) +

x0
∑

i=2

H(Yi→Sc |X1→ScX2→Sc . . . Xx0→ScY1→Sc . . . Yi−1→Sc)

= H(Y1→Sc |X1→Sc) +

x0
∑

i=2

H(Yi→Sc |Xi→Sc)

=
∑

i∈S

H(Yi→Sc |Xi→Sc)

=
∑

i∈S

H(Yi→x0+1Yi→x0+2 . . . Yi→M |Xi→x0+1Xi→x0+2 . . . Xi→M )

=
∑

i∈S

(

H(Yi→x0+1|Xi→x0+1Xi→x0+2 . . . Xi→M )

+
M
∑

j=x0+2

H(Yi→j |Xi→x0+1Xi→x0+2 . . . Xi→M )Yi→x0+1 . . . Yi→j−1)

)

=
∑

i∈S

(

H(Yi→x0+1|Xi→x0+1) +
M
∑

j=x0+2

H(Yi→j |Xi→j)

)

=
∑

i∈S,j∈Sc

H(Yij |Xij).

Combining the two expressions, we get

I(XS→Sc ; YS→Sc) ≤
∑

i∈S,j∈Sc

H(Yij) − H(Yij |Xij) =
∑

i∈S,j∈Sc

I(Xij ; Yij),

thus proving the lemma.

Lemma 2:ULN
S → (ULN

Sc Y BN
S→Sc) → Y BN

Sc→Sc forms a Markov chain.
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Proof: We begin by expandingp(uLN
S uLN

Sc yBN
S→ScyBN

Sc→Sc) according to

p(uLN
S uLN

Sc yBN
S→ScyBN

Sc→Sc) = p(uLN
S ) · p(uLN

Sc yBN
S→Sc |uLN

S ) · p(yBN
Sc→Sc |uLN

S uLN
Sc yBN

S→Sc).

To prove thatULN
S can be removed from the last factor in the previous expression, we will use an induction

argument on the length of the pipeline,L, and window sizes,K andT .

Fix (S, Sc) andi, j ∈ Sc. Let L = K = T = 1. The encoding functions producegij(U
N
i ) = XN

i→j , which

result in the channel outputsY N
i→j after transmission over the DMC between nodesi and j. In shorthand,

we write

gij(U
N
i ) = XN

i→j
DMC
−→ Y N

i→j .

Thus, the first block of channel inputsX1...N
Sc→Sc generated in the node setSc depends only on source symbols

U1...N
Sc available inSc. Moreover, since the channels are DMCs, the channel outputsdepend only on the

channel inputs. Thus, we conclude thatU1...N
S andY 1...N

Sc→Sc are independent givenU1...N
Sc .

Since we consider a pipeline of lengthL = 1, there are no more blocks to inject, but not all data may have

arrived to destination, so we have to allow for a few (W , to be precise) extra transmissions. By “flushing

the pipeline”, we have

gij(Y
1...N
S→i Y 1...N

Sc→i) = XN+1...2N
i→j

DMC
−→ Y N+1...2N

i→j .

It follows that Y N+1...2N
Sc→Sc is independent ofU1...N

S given Y 1...N
S→Sc andU1...N

Sc . Similarly, we have

gij(Y
(W−2)N+1...(W−1)N
S→i Y

(W−2)N+1...(W−1)N
Sc→i ) = X

(W−1)N+1...WN
i→j

DMC
−→ Y

(W−1)N+1...WN
i→j ,

from which we conclude thatY (W−1)N+1...WN

Sc→Sc is independent ofU1...N
S given Y

(W−2)N+1...(W−1)N
S→Sc and

U1...N
Sc . Thus, for K = T = L = 1, and W arbitrary,5 the Markov chain in the lemma holds (with

B = L + W − 1).

To proceed with the inductive proof, we still takeK = T = 1, (S, Sc) fixed, i, j ∈ Sc, but L is now

arbitrary. By inductive hypothesis, we have the following Markov chain

U
(L−1)N
S → (U

(L−1)N
Sc Y

(B−1)N
S→Sc ) → Y

(B−1)N
Sc→Sc .

Encoding and transmission of the last block of each source yields

gij(U
(L−1)N+1...LN
i Y

(L−1)N+1...LN

S→i Y
(L−1)N+1...LN

Sc→i ) = X
LN+1...(L+1)N
i→j

DMC
−→ Y

LN+1...(L+1)N
i→j ,

5SinceW is the delay used to allow data to flow to the destination, it would not be reasonable to perform induction onW for a

given fixed network. Instead we takeW as a parameter, which must be greater or equal to the diameter of the network.
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such that for the last block, we have that

ULN
S → (ULN

Sc Y
(L+1)N
S→Sc ) → Y

(L+1)N
Sc→Sc .

This is not yet the sought Markov chain, as we still need to flush the pipe. But similarly to how it was done

for the base case of this inductive argument, we have that

gij(Y
LN+1...(L+1)N
S→i Y

LN+1...(L+1)N
Sc→i ) = X

(L+1)N+1...(L+2)N
i→j

DMC
−→ Y

(L+1)N+1...(L+2)N
i→j ,

...

gij(Y
(B−2)N+1...(B−1)N
S→i Y

(B−2)N+1...(B−1)N
Sc→i ) = X

(B−1)N+1...BN
i→j

DMC
−→ Y

(B−1)N+1...BN
i→j ,

and therefore, now yes, we have thatY BN
Sc→Sc is independent ofU1...N

S given Y BN
S→Sc andU1...N

Sc .

The proof of the lemma is completed by performing the exact same induction steps onK andT as done

on L. For brevity, those same steps are omitted from this proof.

2) Main Proof: We now take an arbitrary non-empty subsetS ⊆ M = {0...M}, S 6= ∅, 0 ∈ Sc. and

start by boundingH(ULN
S ) according to

H(ULN
S ) = I

(

ULN
S ; ULN

Sc Y BN
S→ScY BN

Sc→Sc

)

+ H
(

ULN
S |ULN

Sc Y BN
S→ScY BN

Sc→Sc

)

(a)

≤ I
(

ULN
S ; ULN

Sc Y BN
S→ScY BN

Sc→Sc

)

+ LNδ(P (LN)
e )

= I
(

ULN
S ; ULN

Sc

)

+ I(ULN
S ; Y BN

S→Sc |ULN
Sc ) + I(ULN

S ; Y BN
Sc→Sc |ULN

Sc Y BN
S→Sc) + LNδ(P (LN)

e ),

where (a) follows from (12). From Lemma2, we have thatI(ULN
S ; Y BN

Sc→Sc |ULN
Sc Y BN

S→Sc) = 0, and so we

get

H(ULN
S ) ≤ I(ULN

S ; ULN
Sc ) + I(ULN

S ; Y BN
S→Sc |ULN

Sc ) + LNδ(P (LN)
e ). (14)

Developing the second term on the right handside yields:

I(ULN
S ; Y BN

S→Sc |ULN
Sc )

=
BN
∑

k=1

I(ULN
S ; YS→Sc(k)|ULN

Sc Y k−1
S→Sc)

≤
BN
∑

k=1

I(ULN
S ; YS→Sc(k)|ULN

Sc Y k−1
S→Sc) +

BN
∑

k=1

I(XS→Sc(k); YS→Sc(k)|ULN
Sc Y k−1

S→ScU
LN
S )

=
BN
∑

k=1

I(XS→Sc(k)ULN
S ; YS→Sc(k)|ULN

Sc Y k−1
S→Sc)

=
BN
∑

k=1

I(XS→Sc(k); YS→Sc(k)|ULN
Sc Y k−1

S→Sc) + I(ULN
S ; YS→Sc(k)|ULN

Sc Y k−1
S→ScXS→Sc(k))
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(a)
=

BN
∑

k=1

I(XS→Sc(k); YS→Sc(k)|ULN
Sc Y k−1

S→Sc)

=

BN
∑

k=1

H(YS→Sc(k)|ULN
Sc Y k−1

S→Sc) − H(YS→Sc(k)|ULN
Sc Y k−1

S→ScXS→Sc(k))

(b)
=

BN
∑

k=1

H(YS→Sc(k)|ULN
Sc Y k−1

S→Sc) − H(YS→Sc(k)|XS→Sc(k))

(c)

≤
BN
∑

k=1

H(YS→Sc(k)) − H(YS→Sc(k)|XS→Sc(k))

=
BN
∑

k=1

I(XS→Sc(k); YS→Sc(k))

(d)

≤
BN
∑

k=1

∑

i∈S,j∈Sc

I(Xij(k); Yij(k))

=
∑

i∈S,j∈Sc

BN
∑

k=1

I(Xij(k); Yij(k))

≤
∑

i∈S,j∈Sc

BNCij

where we use the following arguments:

(a) given the channel inputsXS→Sc(i) the channel outputsYS→Sc(i) are independent of all other random

variables;

(b) same as (a);

(c) conditioning does not increase the entropy;

(d) direct application of lemma1.

Substituting in (14) yields

H(ULN
S ) ≤ I(ULN

S ; ULN
Sc ) +

∑

i∈S,j∈Sc

BNCij + LNδ(P (LN)
e ).

Using the fact that the sources are drawn i.i.d., this last expression can be rewritten as

LNH(US) ≤ LNI(US ; USc) +
∑

i∈S,j∈Sc

BNCij + LNδ(P (LN)
e ),

or equivalently,

H(US |USc) ≤
B

L

∑

i∈S,j∈Sc

Cij + δ(P (LN)
e ) ≤

(W + L − 1)

L

∑

i∈S,j∈Sc

Cij + δ(P (LN)
e )
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Finally, we observe that this inequality holds for all finite values ofL. Thus, it must also be the case that

H(US |USc) < inf
L=1,2,...

(W + L − 1)

L

∑

i∈S,j∈Sc

Cij + δ(P (LN)
e )

=
∑

i∈S,j∈Sc

Cij + δ(P (LN)
e ).

But sinceδ(P
(LN)
e ) goes to zero asP (N)

e → 0, we get

H(US |USc) <
∑

i∈S,j∈Sc

Cij ,

thus concluding the proof. �
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