COMPUTER SECURITY

Cryptography: THE security mechanism (2) Basics (3)Classification of cryptographic systems (<u>12</u>) On the secret (13)On the method (15)On the purpose (17)Cryptographic Keys (21) *Key* types of cryptographic keys (21) Key Management (22) Randomness (25) Cryptographic libraries (26) Cryptographic algorithms (27) Cryptographic transformations (28) Some numbers... (<u>31</u>) Pointers... (<u>32</u>)

Cryptography: THE security mechanism ¹

"Security!" --> "1676c0cf7e901d443bd9cad6c5253fee"

(AES cipher, ECB mode, PKCS#7 padding, 128-b key: "I am JohnDoe 007"; French quotes are just delimiters.)

1 However, keep in mind: «*Cryptography is rarely ever the solution to a security problem.*» (D. Gollmann, Computer Security, p. 203)

J. Magalhães Cruz Computer Security – Cryptography: THE security mechanism

Basics

History

- Originally:
 - \circ science (and art) of secret writing
 - \circ $\,$ aimed at hinder the knowledge of sensitive information $\,$
- Currently:
 - science (and art?) of providing mechanisms to ensure security properties (confidentiality, integrity...)
 - \circ $\;$ aims to control the access to information $\;$

Practical uses

- Traditional:
 - control access to information by **concealing** it, i.e. making it unintelligible
- Modern:
 - the traditional, plus
 - control access to information by **identifying** it with a *fingerprint* (or *hash*¹)
 - **support** all above uses
 - produce (almost) random numbers
 - derive secret numbers (keys)²

Relevant types of professionals:

- *cryptographers* try to master and enhance that access control
- *cryptanalysts* try to break the enabled access control
- 1 PT: síntese, sumário
- 2 pieces of data necessary for using cryptographic security mechanisms

Notation

Symbol	Name of symbol	Meaning of symbol		
Р	plaintext ¹	original, uncovered information		
Ε	enciphering algorithm	method to conceal the info		
K_e	enciphering key	parameter of the concealment methods		
С	ciphertext	hidden information		
D	deciphering algorithm	method to recover the original info		
K_d	deciphering key	parameter of the recovering methods		
H, h	hash algorithm, hash value	method to transform (hash) the info, transformed info		
F	fingerprint, hash value	transformed info		

1 PT: texto inteligível

...Basics: Notation...

Operation	Symbolic representation	_	If	Cryptography type	
ciphoring	$C = E_{Ke}(P)$	_	$K_e = K_d$	symmetric	
cipnering	$C = E(P, K_e)$ $C = K_e(P)$		$K_e \neq K_d$	asymmetric	
deciphering	$P = D_{Kd} (C)$ $P = D (C, K_d)$	_	$K_e = K^+$ $K_d = K^-$	public-key (asymmetric)	
decipitering	$P = K_d(C)$		Advance notice for Digital Signatures		
(cyptographic) hashing ¹	h = H (P) F = H (P) F = h (P)		$[Doc]_E <=:$	$=> K_{E}^{-} (\text{Doc}) <==> K_{E}^{-} (H(\text{Doc}))$	
reversing	$D_{Kd}\left(E_{Ke}\left(P ight) ight)=P$				

1 Note: *cryptographic* hashing is different from *database* hashing.

Traditional use of Cryptography

- confidentiality protection:
 - conceal information, by making it unintelligible
 - elsewhere or later, retrieve original information

Fig. Original Cryptography: basic model of concealment and recovery of info with examples of attacks (*in* several of Tanenbaum's books).

Added, newer, usage of Cryptography

- integrity protection:
 - information is *fingerprinted*,¹ by calculating its *hash (or digest)*
 - $\circ~$ elsewhere or later, the hash will be used to detect the adulteration of the original information

Fig. Newer use of Cryptography: basic model for the validation of info (e.g. integrity protection). Note the need for a protected channel!

1 small array of bytes that represents the original information

Breaking cryptographic systems

- Professionals: cryptanalysts, random crackers
- Methods: mathematics, statistics, intuition¹
- Goals: depend on type of usage

Attacks in traditional use

- Goal: grasp the deciphering key! Sometimes, at least, grasp plaintexts.
- Approaches (in descending order of difficulty):
 - o <u>normal</u>
 - only ciphertexts are available
 - <u>known original text</u> ("passively" obtained)
 - both some original texts and their enciphered counterparts are available
 - <u>planned original text</u> ("actively" prepared)
 - specific original texts are made to be enciphered
- 1 For an example, see Bishop: "*Introduction*", Chap.8; "*Art & Science*", chap.9.

...Basics: Breaking cryptographic systems...

Attacks in added recent usage

- Goal: break integrity protection
- Approaches¹ (in descending order of difficulty):
 - \circ find collisions²
 - produce chosen document pairs (*birthday attack*³)
 - produce another document for a specific original

- 1 The special case of "digital signatures" will be seen elsewhere.
- 2 meaning: different documents with same fingerprint
- 3 https://en.wikipedia.org/wiki/Birthday_attack

...Basics

Ideal cryptographic system's requirements

- hard to break
 - in a reasonable future horizon
 - formal proof would be nice...
- easy to use
 - otherwise will be rejected or bypassed by users
- if broken, easily replaceable
 - \circ $\,$ this should be a must, as systems will be broken!
 - depends on what was broken (type of secret)

Classification of cryptographic systems

Perspective	Variant	Sub-variant	Examples
on the secret	secret algorithm		RC4, Crypto1 (¹)
	secret key(s)	single key, shared-key, symmetric	AES
		two-key, public key, asymmetric	RSA
on the method	stream ²		RC4, One-time pad
	block	(pure)	AES, RSA ³ in ECB ; SHA-2
		mixed	AES in CBC
on the purpose	hiding stigned recordible to a source	symmetric (for confidentiality ⁴)	
	bidirectional, reversible, two-way	asymmetric (for authentication ⁵)	RSA
	unidirectional, irreversible, one-way	(for integrity)	SHA-2, SHA-3
	mixed	(for confidentiality & integrity)	AES-CBC-HMAC-SHA1

1 Originally, both were secret; now, they are **not**!

2 PT: contínuo, sequencial

3 Many authors do not ever classify asymmetric systems (e.g. RSA) as "block"... (more on this later)

4 usually, with temporary keys

5 main usage, with personal and durable (long-lasting) keys

J. Magalhães Cruz Computer Security – Cryptography: THE security mechanism

...Classification of cryptographic systems

On the secret

Perspective	Variant	Comments	Exs
on the	secret algorithm	• used in closed applications: military, commercial	RC4 ² ,
		 not recommended by academics¹ 	Crypto1
secret	secret key(s)	• used everywhere: military, commercial, personal applications	AES^4 ,
	•••	 recommended by academics³ 	кзА

1 because, sooner or later, the secret will be discovered and a replacement is always difficult

2 Rivest Cipher 4

- 3 and by common sense as well, if history is something to go by
- 4 Advanced Encryption Standard
- 5 Rivest-Shamir-Adleman

...Classification of cryptographic systems: on the secret

Perspective	Variant	Sub-variant ¹	Comments	Exs
 on the secret	····	single key, shared-key, symmetric: $K_e = K_d = K$	 heuristic constructions very efficient computation: very suitable for large amounts of data difficult combination and sharing of key: preferred for closed environments 	AES
	secret key(s)	two-key, public key, asymmetric: $K_e = K^+$ \neq $K_d = K^-$	 math-based constructions very heavy computation: not suitable for large amounts of data easy combination and exchange of keys: ideal for open environments 	RSA

1 often, the two sub-variants are used in conjunction (more on this later...)

...Classification of cryptographic systems

On the method

"Long" texts1

- cryptographic operations² have to be done on (equal sized) pieces (blocks)³
 - typical size: 8 B (64 b) and 16 B (128 b)⁴
- enciphering (and deciphering)
 - *modes of operation*,⁵ are ways to use keys in the processing of each piece
- hashing
 - does not use keys (in general)
- final piece might need to be "*padded*"⁶
 - $\circ~$ as, in general, data size is not a multiple of the piece size
- 1 In practice, almost any text is "long"...
- 2 ciphering, deciphering, hashing
- $3 \quad P = P_1 P_2 \dots$
- 4 could be 1 b, 1 B, ...
- 5 to be discussed later
- 6 to be discussed later

...Classification of cryptographic systems: on the method

Perspective	Variant	Sub- variant	<i>Comments</i> ¹	Exs
on the method	stream		 each piece is (de)ciphered with a different key, K = K₁K₂ e.g. C = K(P) = K₁(P₁) K₂(P₂) 	RC4, One-time pad
	block	(pure)	 each piece is (de)ciphered with the same key, <i>K</i> e.g. <i>C</i> = <i>K</i>(<i>P</i>) = <i>K</i>(<i>P</i>₁) <i>K</i>(<i>P</i>₂) fingerprinting does not use keys in general, <i>F</i> = <i>H</i>(<i>P</i>) = <i>H</i>(<i>P</i>₁) <i>H</i>(<i>P</i>₂) 	AES, RSA ² (both) in ECB ³ mode ; SHA-2, SHA-3 ⁴
		mixed	• each piece is (de)ciphered with a "virtual" different key, combination of the same key with additional (and different) information per block	AES in CBC⁵ mode

1 will apply to (de)ciphering, as hashing does not use keys

2 Many authors do not consider RSA to be a block cipher, as it is not efficient enough to be used consecutively (block after block) in long documents. E.g., see section 3.5 of Peter Gutmann, *Lessons Learned in Implementing and Deploying Crypto Software*.

- 3 Electronic Code Book
- 4 SHA: Secure Hash Algorithms
- 5 Cipher Block Chaining

...Classification of cryptographic systems

On the purpose

Perspective	Variant	Sub-variant	Comments	Exs
on the purpose	bidirectional, reversible, two-way	symmetric	 usage: mostly, confidentiality¹ (see picture C below) 	AES
		asymmetric	 usage: mostly, authentication²; also confidentiality³ (see picture A1 below) 	RSA
	unidirectional, irreversible, one-way		 usage: authentication, integrity (see pictures A2, I below) 	SHA-2, SHA-3
	mixed		 usage: mostly, both confidentiality & integrity (see picture CI below) 	AES-CBC- HMAC-SHA1

1 with temporary keys

2 with personal and durable (long-lasting) keys

3 of small amounts of data, e.g. symmetric keys

...Classification of cryptographic systems: on the purpose...

...Classification of cryptographic systems: on the purpose...

Fig A2. Authentication with cryptographic hashing.

Fig I. Integrity with cryptographic hashing.

(ToC) 19-32

J. Magalhães Cruz Computer Security – Cryptography: THE security mechanism

...Classification of cryptographic systems: on the purpose

Fig CI. Confidentiality & Integrity (Authenticated Encipherment).

Cryptographic Keys

Definition

- <u>cryptographic key</u> piece of data needed for cryptographic operations
 - usually: number or string hard to memorize
 - some times: fit to a mathematical procedure (algorithm)¹
 - most of the times: secret

Key types of cryptographic keys

Designation	"Owner" entity	Main application	Cryptographic type	Longevity	Efficiency
personal	human	authentication	public-key	extended	low
session	communication channel	confidentiality	shared-key	short ²	high ³

1 so, user cannot "choose" it: a "cryptographic key generator" is needed

- 2 to be use-resistant (prevent brute-force search and repetition attacks)
- 3 so, can accommodate heavy traffic

Key Management

- generation
 - problem solved: just take care with choosing of seed values¹
- storage
 - many "solutions", but still a problem swept under the rug!
- distribution
 - **big problem:**
 - physically separated entities must exchange/agree on cryptographic keys
 - solutions:
 - several, depending on type of cryptography (symmetric or asymmetric)
 - specific of asymmetric:
 - *public key* is distributed mostly by <u>digital certificates</u>

1 here, randomness is essential

...Key Management: Digital Certificate...

Digital certificate

- document that maps an entity to a cryptographic public key
 - the mapping is guaranteed by *T*¹, by digital signing the document²

- 1 *T* is entity trusted by *A* and *B*: 1- they believe *T* operates in an honest way; 2- they have previously exchanged cryptographic info with *T*. Usually, but not necessarily, *T* is connoted with a *Certification Authority* (CA).
- 2 so, assuring the legitimacy of the certificate's content; technique will be discussed later

J. Magalhães Cruz Computer Security – Cryptography: THE security mechanism

(<u>ToC</u>) 23-32

...Key Management: Digital Certificate

Typical content

I hereby certify that the public key 19836A8B03030CF83737E3837837FC3s87092827262643FFA82710382828282A belongs to Robert John Smith 12345 University Avenue Berkeley, CA 94702 Birthday: July 4, 1958 Email: bob@superdupernet.com SHA-1 hash of the above certificate signed with the CA's private key

Fig. *Really* relevant content type of a digital certificate (*in* several of Tanenbaum's books).

- identity of key's owner
- his/her public key
- identity of emitter¹
- digital signature of emitter

- expiration date of certificate
- serial number
- specific purpose
- etc.

1 e.g. tipically, a Certificate Authority

Randomness

- essential in Cryptography!
 - $\circ~$ one time pad, IV (initialization values), stream cipher seeds
 - o hashes
 - *nonces*, key generation (e.g. asymmetric keys)...
- generation
 - excellent: physical source
 - inherent: radioactive decay, Brownian movement, ...
 - depending on initial conditions: (non-biased) roulette, dice, ...
 - \circ $\;$ reasonable: algorithmic-based with physical seed
 - cryptographically secure pseudorandom number generators
 - use physical (hopefully random) sources (e.g. mouse movements)
 - Linux's getrandom() (/dev/random, /dev/urandom)
 - bad: algorithmic-based
 - pseudorandom number generators
 - POSIX's random()

Cryptographic libraries

- essential in cryptographic programming
 - \circ $\,$ encryption, hashing, signing... different algorithms... all ready to be used
 - coupled with a "cryptographically secure pseudorandom number generator"
 - why not write your own library?
 - Highly dangerous! It is not just implementing algorithms, it is how they are used, how "random" numbers are generated and chosen, etc.¹
- examples
 - OpenSSL: the reference!²
 - components: application & C library
 - EVP (envelope) "high level" API (lab classes)
 - WebCrypto: JavaScript (by W3C)
 - Bouncy Castle: Java and C# (by Australia's Legion...)
 - Libgcrypt: C (OpenPGP library) (by GnuPG community)
 - PyCryptodome: Phyton
- 1 see, for instance, https://security.stackexchange.com/questions/18197/why-shouldnt-we-roll-our-own
- 2 in spite of same infamous bugs, such as *The Heartbleed Bug* (<u>heartbleed.com</u>)

Cryptographic algorithms

- <u>RC4</u>: stream key generation (1987, survives with medication)
- <u>DES</u>¹: reversible system, secret key (1975, defunct)
- <u>AES</u>: reversible system, secret key (1998, still healthy)
- <u>RSA</u>²: reversible system, public key (1977, still healthy)
- <u>MD5</u>³: irreversible system (1992, defunct)
- <u>SHA-1</u>⁴: irreversible system (1995, defunct)
- <u>SHA-2</u>: irreversible system (2001, still healthy)
- <u>SHA-3</u>⁵: irreversible system (2015, yet in phase of wide adoption)

- 1 Data Encryption Standard, a landmark of cryptography
- 2 another landmark of (public-key) cryptography
- 3 yet another landmark of cryptography
- 4 about SHA-1 end of life, see <u>sha-mbles.github.io</u>
- 5 based on new paradigm sponge construction (<u>keccak.team/sponge_duplex.html</u>)

(ToC) 27-32

Cryptographic transformations

- diverse, generally follow some major "patterns" for each type of cryptography
- in general, Shannon's recommended properties¹ are followed:
 - *diffusion* each plaintext unit (e.g. char) affects many transformed units
 - *confusion* transformed output depends complexly on key (if it exists)

Common patterns² - symmetric cryptography

- <u>Transposition</u> exchange (swapping) of positions of elements *P*-box
- <u>Substitution</u> exchange of elements (e.g. Caesar's cipher) *S*-box
- <u>Combination</u> transposition and substitution cascade *product cipher* [Fig.C]
- Feistel construct (e.g. 3DES) [Fig.F]
- ...

- 1 Those were thought to symmetric cryptography, the only that existed at the time (1949); however, they are applied, at least partially, to other, contemporary cryptographic systems.
- 2 or transformations

...Cryptographic transformations: common patterns...

Fig C. Symmetric transformations: a) permutation box; b) substitution box; c) "complete", product cipher. Exercise: find out the algorithms for P- and S- boxes and validate them with c).

Fig F. Feistel symmetric construct "in action". *F* is Feistel (or *round*) function.

(ToC) 29-32

...Cryptographic transformations: common patterns...

Common patterns - asymmetric constructs

- based on apparent intractability of computational problems:
 - easy to compute with knowledge of some data;
 otherwise, most difficult (intractable) to compute¹
 - common computational problems:
 - integer factorization (e.g. RSA)
 - discrete logarithm problem (e.g. DSA)
 - ...

Common patterns - "hash" cryptography

- most common are *iterated hash functions*
 - Merkle-Damgård construct (e.g. SHA-2)
 - sponge construct (e.g. SHA-3)
 - o ...
- 1 Informally, an easy or tractable problem can be solved in less than n^k (polynomial) time units, k being an integer and n the size of the problem (e.g. number of items to sort); a hard or intractable problem will need k^n (exponential) time units to be solved.

(ToC) 30-32

Some numbers...

• $2^8 = 256$	number of values represented by a byte
• $2^{32} = 4294967296$	maximum number of IPv4 addresses
	\simeq 0,5 * number of people on Earth in 2023
• $2^{56} = 72\ 057\ 594\ 037$	927 936 number of different keys for DES algorithm
• $2^{64} = 18\ 446\ 744\ 073$	709 551 616
1+ number of grain	s of wheat in chess board (from 1, doubled in each square)
• $2^{76} \simeq 10^{23}$	mass of the Moon in kg
• $2^{79} \simeq 10^{24}$	Avogadro's constant
• $2^{82} \simeq 10^{25}$	mass of the Earth in kg
• $2^{101} \simeq 10^{30}$	mass of the Sun in kg
• 2 ¹²⁸ = 340 282 366 920) 938 463 463 374 607 431 768 211 456
$\simeq 10^{38}$	maximum number of IPv6 addresses
• $2^{256} \simeq 10^{77}$	number of values of SHA-256 hash
• $2^{280} \simeq 10^{84}$ num	nber of fundamental particles in the observable universe

Pointers...

- The **"Public-key cryptography paper**", 1976 W. Diffie , M. E. Hellman
 - <u>www-ee.stanford.edu/~hellman/publications/24.pdf</u>
- The "**RSA paper**", 1978 R. L. Rivest, A. Shamir, and L. Adleman
 <u>dx.doi.org/10.1145/359340.359342</u>
- The "**ElGamal Signature Scheme**", 1985 Taher Elgamal
 - <u>ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=01057074</u>
- The "DES Cryptanalysis paper", 1977 W. Diffie , M. E. Hellman
 www-ee.stanford.edu/~hellman/publications/27.pdf
- The "**Rijndael, AES Proposal**", 1999 Joan Daemen, Vincent Rijmen
 - <u>citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.36.640</u>
- The "MD5 Message Digest Algorithm", 1992, R. Rivest
 - o tools.ietf.org/html/rfc1321
- The **"The Keccak SHA-3 submission**", 2011, G. Bertoni et al.
 - o <u>keccak.team/files/Keccak-submission-3.pdf</u>
- The "Crypto Mini-FAQ", Internet FAQ Archives, -2014, Roger Schlafly
 - <u>www.faqs.org/faqs/crypto/faq/</u>

