COMPUTER SECURITY

Cryptography: general protection techniques (2) Protection basics (3) Purpose (3) Secure channel (4) Protection Properties (6) Authentication (6) Confidentiality (9) Integrity (12) Integrity + Confidentiality (24) Pointers... (25)

Cryptography: general protection techniques

Protection basics

Purpose

- provide **access control** to resources (e.g. users' information)
 - \circ by building secure channels
 - for communication
 - for storage
 - $\circ \quad \text{with properties} \quad$
 - main: <u>confidentiality</u>, <u>integrity</u> and <u>authentication</u>
 - secondary: <u>anonymity</u>, <u>forward secrecy</u>, etc.

...Protection basics...

Secure channel

- cryptographically-protected conversation line between two identified subjects
 called, in some contexts, *security association*
- basic, expected properties:
 - \circ Authentication assuring that each subject is talking to the genuine other
 - \circ $\;$ Integrity assuring that deletion, change or addition of data is detected
 - \circ Confidentiality assuring that data is understandable only by subjects

... Protection basics: secure channel...

Utilization of secure channel

- 1st: <u>Authentication</u> of one or both subjects and probable parameter negotiation
 - o usually,
 - an asymmetrical cipher is used
 - a "session key"¹ is created
- 2nd: <u>Utilization</u> proper
 - \circ $\;$ maybe also with protection for $\;$
 - confidentiality
 - integrity
 - $\circ\;$ usually,
 - a symmetrical cipher is used (with above session key)

1 more on this, elsewhere

Protection Properties

Authentication

- assuring the identity of the entities involved
 - binding identifiers to subjects
- sometimes: certifying a location
 - e.g. machine's¹ in the Net, machine's or user's geographical position
- authentication system's operation: two phases
 - <u>setup</u>: generation and storage of subjects' authentication data in system
 - repeated whenever user changes own authentication data
 - <u>usage</u>: normal procedure for authentication of subjects
- authentication operation: two steps
 - presentation (of subject) [sometimes: *identification*²]
 - <u>validation</u> (proof of authenticity) [sometimes: *authentication*]
- 1 origin of a communication...
- 2 Note: this occasional use of "identification" is unfortunate. In reality, <u>identification is the process of binding an identifier to an</u> <u>individual, as yet unknown</u> (i.e. for whom no label, or name, was yet presented).

... Protection Properties: Authentication...

Remote authentication

- user's physical intervention is not possible (or required)
 - o presentation by non-physical identifier
 - validation by *proof of knowledge*, typically of <u>challenge-response</u> type
- based on the use of pre-distributed keys
- generally, use *nonces*

Nonce:

- piece of data that is <u>both</u>:
 - fresh
 - not guessable (random)
- random number generated when about to be used
- used for binding two messages in a challenge-response sequence

... Protection Properties: Authentication...

...Protection Properties...

Confidentiality

- assurance of limited disclosure of information
 - implies Authentication of the entities involved!

Solutions

- hide the sensitive documents
 - physically saving them
 - \circ cunningly disguising them
 - steganography! [FIG¹]
- encipher documents
 - parties need appropriate keys

1 Presumably, the original of this picture (coloured, 1024×768 pixel), contains in compressed form the complete unabridged text of five Shakespeare's plays, totaling more that 700kB of text. (Tanenbaum, Modern Operating Systems)

J. Magalhães Cruz Computer Security – Cryptography: general protection techniques

... Protection Properties: Confidentiality...

Hiding of documents

• not covered here (see steganography examples in the literature)

Encipherment of documents

- symmetrical technique
- asymmetrical technique

Fig C. Base encipherment techniques: a) shared key; b) public key.

... Protection Properties: Confidentiality...

Practical problems:

- durable symmetric keys are difficult to manage
- asymmetrical operations are very inefficient
- So, usual solution is a mix:¹
 - 1. exchange symmetric key by public-key means
 - encipher documents with exchanged shared (ephemeral) key
- Fig. Usual solution for a confidentialityprotected communication channel.

1 Conceptually, techniques for following the steps are sometimes called: 1. key encapsulation mechanism (KEM); 2. data encapsulation mechanism (DEM).

J. Magalhães Cruz Computer Security – *Cryptography: general protection techniques* (<u>ToC</u>) 11-25

... Protection Properties...

Integrity

- assurance that a change in "document"¹ is detected²
 - implies Authentication of the entities involved!

Solutions

- encipher the document³
 - with symmetric or asymmetric algorithms
- use integrity code
 - \circ with shared key
- digitally sign the document
 - $\circ~$ directly, with private key
 - \circ $\,$ through its digest, with private key
- 1 file, message,...
- 2 if detected, abusive change cannot (in general) be reversed (corrected)
- 3 In reality, this is not a (good) solution!

... Protection Properties: Integrity...

Simple "solution" for integrity problem: encipher everything!

- exchange ciphered information
 - detection of alteration of message¹
 - confidentiality also granted²

Fig. A *not* real solution for the integrity protection of a communication channel.

Problems

- symmetric cipher: no origin authenticity (repudiation is possible)!
- asymmetric cipher: low efficiency!
- in any case, alterations can go unnoticed:
 - \circ in applications with general binary data (numbers, pictures...)
 - with some confidentiality algorithms that do not guarantee integrity³
- 1 e.g. because intelligibility is affected
- 2 but not relevant here
- 3 e.g. One-time pad

... Protection Properties: Integrity...

Better solution: use Message Integrity Codes, MIC¹

- parties agree on a (shared) key
- sender builds an *hash* of "message *plus* key":² that is the MIC!
 - e.g. MIC = $h(m \parallel K)$, where \parallel means concatenation
- sender transmits both message and MIC
- receiver checks message's integrity, by repeating hash with knowledge of the key

$$\begin{array}{c} \hline K \\ + \\ \hline m \end{array} \end{array} \xrightarrow{h \rightarrow} \begin{array}{c} MAC_{K}(m) \\ \hline m \\ \hline m \\ \end{array} \xrightarrow{m} \end{array} \xrightarrow{m} \end{array} \begin{array}{c} \text{send!} \end{array}$$

Fig. General construction principle and usage of Message Integrity/Autentication Codes.

1 The *Message Integrity Check* term (RFC 1421), is currently not much used and said deprecated in RFC 4949; the designation in fashion is *Message Authentication Code*, MAC. Some authors make a slight distinction between the two (e.g. Menezes et al. in *Handbook of Applied Cryptography*); I will not and prefer MIC, as I find it more clear.

(A related term, *authenticator*, was probably first used in 1983 (Davies and Clayden) in the description of a *Message Authenticator Algorithm*.)

2 *keyed hash* technique

... Protection Properties: Integrity with message integrity codes...

Problems

- uses a shared key
 - parties must exchange it, somehow
 - there is no prevention for:
 - message alteration or forging by the recipient
 - message repudiation by the sender!

Exercises:

- Usually, hashing is an iterated calculation of message blocks. That might enable the emergence of vulnerabilities:
 - what vulnerability would readily turn up if in the *keyed hash* technique MIC/MAC was instead defined as $h(K \parallel m)$?
 - however, even with format $h(m \parallel K)$, there is a problem if one can find a hash collision: for $m \mathrel{!=} m'$, h(m) = h(m'). Verify it.

... Protection Properties: Integrity with message integrity codes...

A secure MIC: the HMAC

- HMAC, Hashed Message Authentication Code, IETF RFC 2104
 - HMAC (H, K, m) = $H \{(K \oplus \text{opad}) || H [(K \oplus \text{ipad}) || m)]\}$

J. Magalhães Cruz Computer Security – Cryptography: general protection techniques (ToC) 16-25

... Protection Properties: Integrity...

Great solution: use digital signatures

- allow:
 - checking of a document for alteration
 - associating a document to its author
- and so:
 - $\circ~$ only author can change the original document
 - \circ $\,$ readers are assured of the identity of author $\,$
 - \circ author is not able to deny authorship of document (repudiate it)

Techniques

- public key¹
- message digest (<u>with public key</u>!)

...Protection Properties: Integrity with digital signatures...

Digital signatures: (plain) public key technique

- encipherment with sender's private key
- decipherment with sender's public key

Fig. Integrity protection with digital signatures: plain public-key technique.

Problems (plain technique)

- "major":
 - asymmetric cipher: low efficiency!
- "minor":
 - \circ $\,$ sender's private key must be kept secret $\,$
 - \circ $\,$ sender's public key must be known in advance
 - \circ $\,$ longevity of protection of sent document implies safe keeping of key pair $\,$

... Protection Properties: Integrity with digital signatures...

Digital signatures: message digest (with public key) technique

Fig. Integrity protection with digital signatures: message digest technique. (*in* Tanenbaum, ...)

...Protection Properties: Integrity with digital signatures...

Problems (message digest technique)

- "major":
 - greater complexity¹
 - hash function should be collision-free
- "minor":
 - same as (simple) public key's technique

Exercises:

- Verify that this technique² prevents attacks of the types:
 - "existential forgery", whereas someone can produce a signature for a message (whose content might be of no relevance) and say it is of someone else.³
 - "specific forgery", whereas someone can produce a signature for a message related to other known signed messages.⁴
- 1 but without significant efficiency penalty as: hashing is very fast; public-key operations are on few bytes (e.g. 32 B with SHA-256)
- 2 contrary to the (plain) public-key signature
- 3 For example, if P is signed with $K_{E}(P) = S$ and both (P, S) were sent to a receiver, an attacker could forge E's signature for another message by choosing a signature S_M , doing $K_{E}(S_M)$ to get P_M and sending both (P_M, S_M) to the receiver!
- 4 E.g. for RSA: if $P1, K_E(P1)$ and $P2, K_E(P2)$ are known, a forgery of P1*P2's signature could be performed, as the property $K_E(P1) * K_E(P2) = K_E(P1*P2)$ is verified in RSA.

... Protection Properties: Integrity with digital signatures...

Attacks on digital signatures¹

Goal:

• forge the signature of a new message or, preferably, grasp the signing key

Possible approaches:

- <u>normal</u>
 - \circ $\,$ only some few messages and their signatures are available
- <u>known original text</u> ("passively" obtained)
 - \circ for a variety of known messages, their signatures are available
- <u>planned original text</u> ("actively" prepared)
 - specific chosen messages are made to be signed
- <u>vulnerable fingerprinting function</u> (digest method)
 - find hashing collisions to help with previous approaches

1 Extension to the section *Breaking cryptographic systems*, presented in a previous chapter.

... Protection Properties: Integrity with digital signatures (ex.)...

Part I: Emission

- Emitter *E* of application/document *APP*
 - digitally signs APP
 - usually, digest technique...
 - generates $[APP]_E^{1}$
 - appends to $[APP]_E$ a digital certificate $[DC(E)]_{CA}$
 - certificate has K_E^+
 - is signed by CA^2
 - \circ $\,$ sends everything to Receiver $\,$

2 also trusted by Receiver!

(ToC) 22-25

... Protection Properties: Integrity with digital signatures (ex.)...

Part II: Reception

- Receiver *R* of application/document
 - gets K_E^+ of Emitter¹
 - by processing the digital certificate
 [DC(E)]_{CA}
 - must already know, or somehow get, K_{CA}^+
 - checks the integrity of $[DC(E)]_{CA}$
 - \circ checks the integrity of $[APP]_E$
 - uses *APP* with confidence!

(<u>ToC</u>) 23-25

... Protection Properties...

Integrity + Confidentiality

- confidentiality protection does not guarantee integrity protection
- so, some type of integrity protection must be added
 - \circ $\;$ basic example: combine secrecy with digital signatures
 - in general: use *authenticated encipherment* modes (to be seen)

Fig. Confidentiality and integrity protection of a communication channel: basic solution (not considering efficiency).

Pointers...

- Steganography: Hiding Data Within Data, 2001 Gary Kessler
 - <u>www.garykessler.net/library/steganography.html</u>
- The "HMAC RFC", 1997 H. Krawczyk, M. Bellare, R. Canetti

 tools.ietf.org/html/rfc2104
- The "**Handbook of Applied Cryptography**"- 1 ed, 1996 A. Menezes, P. van Oorschot, S. Vanstone, CRC Press, *Chap. 11 Digital Signatures*, p. 425
 - o <u>freecomputerbooks.com/handbook-of-applied-cryptography.html</u>
- "Authenticated encryption", -2024 Wikipedia
 - o <u>en.wikipedia.org/wiki/Authenticated_encryption</u>