Processamento de Sinal

Conceitos, Métodos e Aplicações

Texto Tutorial da Disciplina: APSI - LEEC

J.P. Marques de Sá – jmsa@fe.up.pt Faculdade de Engenharia da Universidade do Porto © 2001 J.P. Marques de Sá

Índice

4 Estimação Espectral	3
4.1 Análise de Fourier usando a DFT	3
4.1.1 Efeito da janela	4
4.1.2 Efeito da amostragem espectral	8
4.1.3 Aplicação da Análise de Fourier	. 10
4.1.4 Análise de Fourier de Sinais Estocásticos Estacionários	. 14
4.1.4.1 O Periodograma	14
4.1.4.2 Método de Welch	17
4.2 Análise Espectral por Identificação de Sistemas	. 22
4.2.1 Formulação do Problema	. 22
4.2.2 Predição Linear	. 23
4.2.3 Aplicações de Predição Linear	. 26

4 Estimação Espectral

4.1 Análise de Fourier usando a DFT

Figura 4.1. Esquema básico da estimação espectral.

$$V(k) = \sum_{n=0}^{N-1} v(n) e^{-j(2\pi/N)kn}, \qquad k \in [0, N-1]$$
$$V(k) = V(e^{j\omega})\Big|_{\omega = k(2\pi/N)}$$

Efeitos da janela e da amostragem; estudo em sinais sinusoidais (Oppenheim, Schaffer, 1999)

Seja:

$$x(n) = a_0 \cos(w_0 n + \theta_0) + a_1 \cos(w_1 n + \theta_1)$$

Logo:

$$v(n) = a_0 w(n) \cos(w_0 n + \theta_0) + a_1 w(n) \cos(w_1 n + \theta_1)$$

$$V(\omega) = \frac{a_0}{2} \left\{ e^{j\theta_0} W(\omega - \omega_0) + e^{-j\theta_0} W(\omega + \omega_0) \right\} + \frac{a_1}{2} \left\{ e^{j\theta_1} W(\omega - \omega_1) + e^{-j\theta_1} W(\omega + \omega_1) \right\}$$

O espectro consiste em 4 réplicas do espectro da janela situadas em $\pm \omega_0 e \pm \omega_1$.

4.1.1 Efeito da janela

Caso da janela rectangular (tudo se passa como se não houvesse janela):

- Menor lobo principal para um certo comprimento
- Maiores lobos laterais entre todas as janelas

Exemplo:

 \overline{N} = 64. DFT calculada com M = 256 por forma a ter resolução razoável.

Figura 4.2. Amplitude espectral da janela rectangular de comprimento *N* = 64, mostrando o fenómeno de Gibbs.

Figura 4.3. Ilustração do repasse espectral para frequências: a) $\omega_0 = 2\pi/6$, $\omega_1 = 2\pi/3$; b) $\omega_0 = 2\pi/14$, $\omega_1 = 4\pi/15$; c) $\omega_0 = 2\pi/14$, $\omega_1 = 2\pi/12$; d) $\omega_0 = 2\pi/14$, $\omega_1 = 2\pi/15$.

Notar, devido ao efeito de repasse:

- Perda de resolução espectral
- Distorção em amplitude

Remédio: usar janela adequada, p. ex. de Kaiser

$$I_0\left(\beta \sqrt{1 - \frac{4n^2}{(L-1)^2}}\right) / I_0(\beta)$$

- L, comprimento da janela, controla a largura do lobo principal
- β controla amplitude dos lobos laterais (β =0 para janela rectangular)

Seja:

- A_{sl} a razão em dB da amplitude do lobo principal face ao maior lobo lateral.
- Δ_{ml} a largura do lobo principal, dada pela distância entre os cruzamentos por zero centrais.

Então os parâmetros da janela de Kaiser calculam-se da seguinte forma:

$$\beta = \begin{cases} 0, & A_{sl} \le 13.26 \\ 0.76609(A_{sl} - 13.26)^{0.4} + 0.09834(A_{sl} - 13.26), & 13.26 < A_{sl} < 60 \\ 0.12438(A_{sl} + 6.3), & 60 \le A_{sl} < 120 \end{cases}$$

 $L \cong \frac{24\pi (A_{sl} + 12)}{155\Delta_{ml}} + 1$

Notar a relação inversa de A_{sl} e Δ_{ml} em L.

J.P. Marques de Sá - Fac. Eng. Univ. do Porto, Portugal

6

Exemplo: Determinar a janela de Kaiser para a situação $\omega_0 = 2\pi/14$, $\omega_1 = 2\pi/8$ do exemplo anterior, por forma a obter um lobo principal de $\Delta_{ml} = 0.3$. Comparar com a janela rectangular.

Figura 4.4. Amplitude espectral da janela e do sinal, usando janela rectangular (em cima) e de Kaiser (em baixo).

4.1.2 Efeito da amostragem espectral

- Localização de picos $\Rightarrow 2\pi/N$ submúltiplo das respectivas frequências.
- Aumento da resolução nas frequências \Rightarrow aumentar *N*, adicionando zeros.

Figura 4.5. Influência de *N* na localização de picos: amplitude espectral com *N*=64 e janela rectangular para: a) $\omega_0 = 2\pi/15$, $\omega_1 = 2\pi/7$; b) $\omega_0 = 2\pi/16$, $\omega_1 = 2\pi/8$.

Figura 4.6. Influência de N na resolução em frequência: amplitude espectral para $\omega_0=2\pi/16$, $\omega_1=2\pi/8$ e janela de Kaiser para: a) N=64; b) N=256.

4.1.3 Aplicação da Análise de Fourier

Vamos ilustrar com um exemplo da análise espectral de ECGs alguns problemas que se levantam.

Figura 4.7. Segmento de 700 amostras de um ECG amostrado a 500 Hz.

Figura 4.8. À esquerda o espectro do ECG, usando janela rectangular e 1024 pontos; à direita o espectro do ECG com subtracção prévia da média (usando janela rectangular e 1024 pontos).

Figura 4.9. À esquerda o espectro do ECG com subtracção prévia da média(usando janela de Kaiser, kaiser(700,4) e 1024 pontos); à direita o espectro, obtido nas condições anteriores, para o segmento contendo apenas as ondas P e T.

Figura 4.10. Espectro, obtido nas condições anteriores, para o segmento QRS. Note-se a presença de componentes de maior frequência.

13

4.1.4 Análise de Fourier de Sinais Estocásticos Estacionários

4.1.4.1 O Periodograma

Suponhamos que a janela w(n) selecciona um comprimento finito do sinal com *L* amostras:

$$V(\omega) = \sum_{n=0}^{L-1} w(n) x(n) e^{-j\omega n}$$
, onde $x(n)$ é uma realização do processo estacionário $\mathbf{x}(n)$

O periodograma é a estimativa do espectro de potência dada por:

$$\hat{S}(\omega) = \frac{1}{LU} |V(\omega)|^2,$$

para uma janela rectangular; quando a janela não é rectangular chama-se *periodograma modificado*. *U* é um factor de normalização que compensa o viés da estimativa.

Mostra-se que:

$$\hat{S}(\omega) = \frac{1}{LU} \sum_{m=-(L-1)}^{L-1} c_{vv}(m) e^{-j\omega m}$$

com

$$c_{vv}(m) = \sum_{n=0}^{L-1} x(n)w(n)x(n+m)w(n+m), \text{ autocorrelação de um segmento finito de } x(n)w(n).$$

Ao calcular $\hat{S}(\omega)$ a componente de pode dominar e obscurecer o espectro. É, por isso, geralmente conveniente subtrair previamente a estimativa da média.

Mostra-se que (ver Oppenheim, Schafer, 1999):

1-
$$\operatorname{E}[\hat{S}(\omega)] = \frac{1}{2\pi L U} \int_{-\pi}^{\pi} S(\theta) S_{WW}(e^{j(\omega-\theta)}) d\theta; \qquad S_{WW}(\omega) = |W(\omega)|^2$$

Logo, existe um viés causado pela janela. Para L crescente S_{ww} tende para um trem de impulsos periódicos e aproximamo-nos cada vez mais de S(w), desde que se escolha U tal que:

$$\frac{1}{2\pi LU} \int_{-\pi}^{\pi} |W(\omega)|^2 d\omega = \frac{1}{LU} \sum_{n=0}^{L-1} w^2(n) = 1 \quad \Rightarrow \quad U = \frac{1}{L} \sum_{n=0}^{L-1} w^2(n)$$

Para a janela rectangular, U=1, logo: $\hat{S}(\omega) = |V(\omega)|^2 / L$.

2- $\operatorname{var}[\hat{S}(\omega)] \cong S^2(\omega)$!

Logo o periodograma não é um estimador consistente (variância não tende para zero com L crescente).

Exemplo:

 $\mathbf{x}(n)$ é o gerador de números aleatórios com distribuição uniforme em [-1,1[.

Figura 4.11. Periodogramas para o gerador de números aleatórios, calculado para L=16, 64, 128, 256 e 512 usando fft com N=1024.

Notar que:

17

Para *m* próximo de $L \Rightarrow$ número pequeno de amostras usadas na autocorrelação \Rightarrow grande variabilidade no cálculo da autocorrelação em valores adjacentes \Rightarrow grande variabilidade nas estimativas do periodograma em todas as frequências.

Para $N = L \Rightarrow$ as amostras do periodograma tornam-se não correlacionadas.

4.1.4.2 Método de Welch

Trata-se de obter médias de periodogramas modificados.

Divide-se a sequência x(n) em K segmentos com uma janela de comprimento L:

 $x_r(n) = x(rR + n)w(n);$ $0 \le n \le L - 1, 1 \le r \le K$

Os segmentos podem ser contíguos (R = L) ou não (R < L). O periodograma do segmento r, é:

$$\hat{S}_r(\omega) = \frac{1}{LU} |V_r(\omega)|^2$$

O periodograma médio é:

$$\overline{S}(\omega) = \frac{1}{K} \sum_{r=0}^{K-1} \hat{S}_r(\omega)$$

Mostra-se que (supondo e periodogramas S_r identicamente e independentemente distribuídos):

- O viés é semelhante ao do periodograma usual.
- A variância é inversamente proporcional ao número de segmentos.
- Se R=L/2 a variância sofre uma redução (máxima) por um factor de 2

A fim de evitar problemas de repasse e de dependência inter-segmento é conveniente usar uma janela não-rectangular.

Exemplos:

a) Sequência aleatória anterior.

Matlab: psd(x,512,1,hanning(256),128)

Figura 4.12. Periodograma de Welch para a sequência de números aleatórios com distribuição uniforme.

b) Realização com 1000 amostras de um processo estocástico de 1ª ordem (ver Capítulo 3).

$$\mathbf{y}(n) - a\mathbf{y}(n-1) = \mathbf{x}(n); \quad a = 0.8$$
$$S_{yy}(\omega) = \frac{1}{1 - 2a\cos\omega + a^2}$$

Matlab: psd(y,512,1,hanning(256),128)

Figura 4.13. Periodograma de Welch para uma realização do processo estocástico de 1^a ordem (*a*=0.8). A vermelho, a curva teórica.

c) Detecção de componentes harmónicos em sinais aparentemente estocásticos.

EEG amostrado a 128 Hz.

Figura 4.14. Um sinal EEG de vigilância (1537 amostras), aparentemente estocástico.

Figura 4.15. Periodograma de Welch do sinal anterior com detrending linear (Matlab: psd(x, 512, 128, hanning(256), 128, 'linear')). São visíveis quatro bandas de actividade.

Figura 4.16. Periodograma anterior em dB mostrando o intervalo de confiança de 95% da estimativa.

4.2 Análise Espectral por Identificação de Sistemas

4.2.1 Formulação do Problema

Identificação de um sistema cuja resposta é uma boa aproximação do sinal, s(n). A característica nas frequências do sistema é o espectro desejado.

Caso de particular interesse: SLIT:

$$\hat{S}(z) = \frac{\sum_{i=0}^{N-1} b_i z^{-i}}{1 + \sum_{j=1}^{M-1} a_j z^{-i}}$$

Logo, neste caso, o sinal é estimado por uma *predição linear* a partir da entrada, u(n), presente e passada e da saída passada:

$$\hat{s}(n) = -\sum_{j=1}^{M-1} a_j s(n-j) + \sum_{i=0}^{N-1} b_i u(n-i)$$

A resposta considera-se para uma entrada de espectro unitário:

- Impulso de Dirac, no caso de sinais determinísticos
- Ruído branco, no caso de sinais estocásticos

4.2.2 Predição Linear

Vamos considerar apenas sistemas AR (só pólos):

$$\hat{s}(n) = -\sum_{j=1}^{p} a_j s(n-j)$$

p = M - 1 é a ordem do sistema.

Estimamos os parâmetros *a_i* pelo MMQ.

Sinal determinístico:

$$\min E = \sum_{n} e^{2}(n)$$

$$\operatorname{com} e(n) = s(n) - \hat{s}(n) = s(n) + \sum_{j=1}^{p} a_{j} s(n-j)$$

Obtém-se as equações normais:

$$\frac{\partial E}{\partial a_i} = 0 \implies \sum_{j=1}^p a_j \left(\sum_n s(n-j)s(n-i) \right) = -\sum_n s(n)s(n-i)$$

para $1 \le i \le p$

O intervalo em que calculamos os erros da aproximação (i.e. o intervalo de n), determina duas abordagens distintas.

• *Método da autocorrelação*, assume a minimização em $-\infty < n < \infty$:

$$\sum_{j=1}^{p} a_j r(i-j) = -r(i) \quad \text{com} \quad r(i) = \sum_{n=-\infty}^{\infty} s(n) s(n+i)$$

A matriz dos R(i) é simétrica Toeplitz (todos os elementos de qualquer uma diagonal, são iguais).

Na prática o sinal é conhecido apenas num intervalo finito pelo que se multiplica o sinal por uma janela adequada em antes de calcular R(i).

• *Método da covariância*, assume a minimização em $0 \le n \le N - 1$:

$$\sum_{j=1}^{p} a_{j} \varphi_{ji} = -\varphi_{0i} \qquad \text{com} \qquad \varphi_{ij} = \sum_{n=0}^{N-1} s(n-i)s(n-j)$$

A matriz das covariâncias φ_{ii} é simétrica mas não Toeplitz.

Existem algoritmos específicos para resolução das equações normais.

Sinal estocástico:

$$\min E = \mathbf{E}\left[\sum_{n} e^{2}(n)\right]$$

Logo, as equações normais são:

$$\sum_{j=1}^{p} a_j \mathbf{E}[s(n-j)s(n-i)] = -\mathbf{E}[s(n)s(n-i)]$$

Duas situações:

• Processo estacionário: E[s(n-j)s(n-i)] = R(i-j)

Resultados idênticos aos da autocorrelação de sinais determinísticos, podendo-se substituir médias de conjuntos por médias temporais se o processo for ergódico.

• Processo não-estacionário: E[s(n-j)s(n-i)] = R(n-j, n-i)

Para detalhes sobre este caso ver p. ex. (Makhoul, 1975).

Notar que a modelização AR é a mais popular porque:

- A modelização MA é de cálculo mais difícil que a AR
- A modelização ARMA é não-determinística
- Na prática podemos obter aproximações AR arbitrariamente boas (aproximação de zero por número elevado de pólos).

4.2.3 Aplicações de Predição Linear

a) Modelização espectral de sinais determinísticos

Formantes de sons vocalizados, amostrados a f_s = 6300 Hz (2261 amostras). Matlab: a = arcov(x,15); [h,f] = freqz(1,a,512,6300); plot(f,abs(h))

Figura 4.17. Espectro para a vogal 'a', obtido por modelização AR de ordem 15.

Figura 4.18. Espectro para a vogal 'e', obtido por modelização AR de ordem 15.

b) Modelização de sinais determinísticos

Modelização de complexos QRS de ECG, com vista a classificação usando os coeficientes LPC.

Figura 4.19. Espectros e coeficientes obtidos por predição linear (rotina lpc do Matlab) para três tipos diferentes de complexos de ondas QRS do ECG (região a amarelo). Ordem do modelo: p = 9.

c) Modelização espectral de sinais estocásticos

Exemplo do EEG (ver Capítulo 2).

Métodos e condições:

- Modelização por covariância (rotina arcov do Matlab). A modelização por autocorrelação também é aceitável se for legítimo assumir pequenos desvios da estacionaridade.
- Ordem do preditor: p = 7

A escolha da ordem do modelo é importante e não trivial. Limitamo-nos aqui a indicar um critério de escolha (Akaike).

• Obtenção da resposta em frequência usando a rotina freqz do Matlab.

Figura 4.20. Espectro para o EEG de vigilância, obtido por modelização AR de ordem 7. Notar as componentes de frequência elevadas, perto de 0.18*128 = 23 Hz, na banda beta.

Figura 4.21. Espectro para o EEG de sono, obtido por modelização AR de ordem 7. Notar que só existem componentes de baixa frequência, abaixo de 0.07*128 = 9 Hz, nas bandas delta e teta.