
Modeling and Testing Hierarchical GUIs

Ana C. R. Paiva1, Nikolai Tillmann3, João C. P. Faria12, and Raul F. A. M.
Vidal1

1 Engineering Faculty of Porto University,
2 INESC Porto

Rua Dr. Roberto Frias, s/n, 4200-465 Porto, Portugal
(apaiva, jpf, rmvidal)@fe.up.pt

3 Microsoft Research, One Microsoft Way
Redmond, WA 98052, USA
nikolait@microsoft.com

Abstract. This paper presents a new approach to model and test hi-
erarchical Graphical User Interfaces (GUIs). We exploit the structure
of Hierarchical Finite State Machines (HFSMs) to reduce the number
of states in the ”flat” Finite State Machine (FSM) resulting from the
exploration of the model. Firstly, independent dialogs are identified and
highlighted in a HFSM built from the FSM. Then, the portion of the FSM
that describes each dialog is reduced. To illustrate the approach, we con-
struct a model of the Notepad application, which is part of Microsoft
Windows. The model is written in Spec] and is converted automatically
to a FSM using the Spec Explorer tool developed at Microsoft Research.
The HFSM is then defined and the total number of states of the FSM
is reduced. Spec Explorer generates test cases from the FSM, and also
tests the conformity between the specification and the implementation.

1 Introduction

Today’s software systems usually feature Graphical User Interfaces (GUIs). GUIs
are the established medium of interaction with computer systems and can be a
crucial point in the users’ decisions to use or not use the system.

The user interface development process isn’t mature yet. Integrated tools for
specifying, implementing, and testing user interfaces are still lacking.

GUI testing is extremely time-consuming and costly. Applications are becom-
ing bigger and more complex and manual testing of GUIs is labor-intensive, fre-
quently monotonous, and is becoming an even more difficult activity. Currently
used GUI testing methods are almost always ad hoc. Test cases are constructed
manually, without guaranties of adequate coverage according to some criteria,
and the evaluation decision whether the GUI is adequately tested is taken based
on the developer’s experience without theoretical foundation. When the GUI is
modified, the developer needs to redefine the test suite and run the tests again.

Although Formal Methods have been criticized over past years for not being
able to meet expectations, it is agreed upon that there should be a way of mod-
eling user interfaces in an unambiguous form, supporting the formal evaluation
of requirements.



The paper is organized as follows: the next section presents a way to model
GUIs, outlines common Hierarchical Finite State Machines (HFSM) properties,
and describes how to take advantage of them. Section 3 presents an approach
to generate test cases from those state machines. Section 4 illustrates the ap-
proach by constructing the model of the Notepad application, generating the
test cases and running the test cases to check the conformity between the appli-
cation and the specification. Section 5 discusses related work and the last section
summarizes the results achieved.

2 Modeling GUIs and Using Their HFSM Properties

State machines are well suited to model reactive systems. A state machine defines
a set of states and transitions between states caused by actions. GUIs are reactive
systems that respond to user actions. State machines can be very useful to guide
the testing of software applications [7].

In general, the state of a GUI can be rich, e.g. include text typed by the
user. Thus, the state machines are often infinite in size. Abstract State Ma-
chines (ASMs) [6] provide a way to model any system at an adequate level of
abstraction. In our case of GUIs, the interface is naturally defined by events like
user actions and program reactions. Still, the level of abstraction varies by what
one considers as a single event: the pressing-down or releasing of a single key, the
combined action ”a letter has been typed”, or the input of an entire sentence.
In virtually all GUI implementations, such events are placed in a message queue
and processed in order. This outer message loop can be seen as an ASM with
guarded actions which fire only when an appropriate message is fetched from
the queue.

A common problem with state machines is state explosion. One solution is to
obtain a FSM from an ASM by exploring the state space while applying bounds.
Here, the challenge is to find appropriate bounds.

HFSMs provide a way to deal with the state explosion problem. A HFSM
is a FSM in which vertices can represent single states or groups of states (and
transitions between the states of the group). These groups of states (and tran-
sitions) are themselves FSMs. Given a HFSM, it is possible to obtain a ”flat”
FSM by recursively substituting each group of states by its associated FSM.

HFSM are well suited to partition the behavior of a GUI: the hierarchical
structure of the HFSM can mimic the hierarchical structure of objects and di-
alogs of the GUI. For example, a GUI might have a main window with a top
menu (possibly with submenus) allowing the user to open modal dialog win-
dows. While a modal dialog window is opened, user interaction with the other
windows of the same application is disabled. This very common structure can
be modeled by a HFSM with one group of states for each modal dialog. When
we do not consider nested modal dialogs, then each modal dialog can be seen as
an independent FSM.

The existence of independent modal dialogs allows us to reduce the number
of states to consider. Assume we have an application with one main window,



described by a FSM with m states, and k independent modal dialogs D1, D2, ...,
Dk that can be accessed from the main window, with each Di described by a FSM
with ni states. Without restrictions, the total number of states of the complete
application would be the product m ·n1·... ·nk (because a state of the application
is a combination of states of the main window and the dialog windows). But, if
the Dis are modal, only one dialog can be open at a time, and fewer states have
to be considered. Assume that, in the state machine that describes each dialog
Di, there is one distinctive state that represents the situation where the dialog
is closed, and all the other ni-1 states represent situations where the dialog is
open. The possible states of the application can be grouped as follows:

– a group with m · 1·...·1 = m states representing the situation where all the
dialogs are closed and only the main window is active;

– for each dialog Di, a group with m·1·...·(ni-1)·...·1=m(ni-1) states represent-
ing the situation where Di is open and all the other dialogs are closed.

Summing up, the total number of states of the application is m·(n1+...+nk-k+1).
In the case of an application with modeless dialog windows, a similar reduc-

tion of the number of states cannot be achieved, because any number of modeless
windows can be open at the same time. But, if the behavior of each dialog win-
dow is not affected by the state of the other dialog windows, then they can be
considered independent. For testing purposes, it is not necessary to consider all
the combinations of states of the different dialogs, as will be explained in the
next section. Basically, it will suffice to fully test the behavior of one dialog,
for only one particular state of all the other dialogs. Roughly, this corresponds
to consider a reduced state machine similar to the one obtained in the case of
modal dialogs, for testing purposes.

3 Test Case Generation

Generating test cases from FSMs is not a new research area [4],[7]. Coverage of
all states and coverage of all transitions are common criteria used to generate
test cases from a FSM. Since a HFSM can be converted to a FSM, those algo-
rithms can also be applied. But, in this case, we are not taking advantage of
the hierarchical structure to optimize the process. We will present an approach
to generate test cases from HFSMs based on the notion of independent dialogs.
We start by providing a more precise definition of independence based on the
determination and analysis of variables manipulated by each dialog.

3.1 Determination of the Variables Manipulated by each Dialog

Consider an application with dialogs, D1, D2, ..., Dk, manipulating a set of
variables V . W.l.o.g., we name the elements of this set as follows:

V = {v1, ..., v|V |}. (1)



Without restrictions, the state space of the application, SSA, will be the
Cartesian product of the values of the variables in the set V :

SSA = dom(v1) × ... × dom(v|V |). (2)

From the complete FSM of the application, FSMA, it is possible to obtain
the subsets of FSMA that describe each dialog Di, FSMDi, by state grouping
according to a criteria provided by the developer. For example, FSMDi could
correspond to the group of states (and transitions between them) where dialog
Di is enabled.

Having delimited the state machine FSMD that describes the behavior of a
dialog D, it is possible to automatically deduce which variables are manipulated
(read or written) by that dialog.

A variable vi is written by (or is affected by) a dialog D if there is a transition
in FSMD that changes the value of vi. Formally,

[∃T ∈ Trans(FSMD) · Source(T ).vi 6= Dest(T ).vi] ⇒ vi is written by D. (3)

A variable vi is read by (or influences the behavior of) a dialog D if at least
one of the following conditions holds:

– there are two transitions T and T ′ in FSMD and a variable vk in V (not
necessarily i 6= k) such that: (i) the source states of T and T ′ are different
only in the value of vi; (ii) T and T ′ have the same triggering action (name
and arguments); (iii) the destination states of T and T ′ have different values
of vk; and (iv) at least one of the transitions (say T ) changes the value of vk;

– there are two states S and S′ and a transition T with source S in FSMD

such that: (i) S and S′ are different only in the value of vi; (ii) there is no
transition T ′ with source S′ and the same action as T .

Formally,







































(∃T, T ′ ∈ Trans(FSMD) · Source(T ) = S ∧ Source(T ′) = S′∧
S.vi 6= S′.vi ∧ (∀j 6= i · S.vj = S′.vj) ∧ Action(T ) = Action(T ′)
∧∃vk ∈ V · Dest(T ).vk 6= Dest(T ′).vk ∧ S.vk 6= Dest(T ).vk)
∨
(∃S, S′ ∈ States(FSMD) · ∃T ∈ Trans(FSMD) · Source(T ) = S

∧S.vi 6= S′.vi ∧ (∀j 6= i · S.vj = S′.vj) ∧ ¬∃T ′ ∈ Trans(FSMD)·
Source(T ′) = S′ ∧ Action(T ) = Action(T ′))







































(4)

⇒ vi is read by D.

Informally, this means that the response to user actions (and the actions
available) in the context of dialog D depends on the value of vi. In practice,
this means that any implementation of dialog D must read (or query) the value
of vi when responding to user actions (or when determining which actions are
available). A demonstration of the formula presented above is outside the scope
of this paper, but can be found in www.fe.up.pt/˜apaiva/demo3.pdf.



For instance, consider an application with state variables V = {v1,v2,v3},
and two dialogs D1 and D2 with the behavior described by the state machine of
Fig. 1. The state machine also includes transitions (labeled A2 and A7) that do
not belong to any of the dialogs, but allow switching between them.

(0,0, a) (1,0, a) (1,1, a)(0,1, a)

A2

A1

(0,0, b) 

(0,0, c) 

(0,0, f) 

(0,0, d)

(0,0, e)

(0,1, b)

(0,1, c)

(0,1, f) 

(0,1, d)

(0,1, e)

A1

A1

A3

A4
A5

A6

A3

A4 A5

A6A4 A4

A2
A7 A7

A1

FSMD1

FSMD2

Fig. 1. State machine of an application with dialogs D1 (action A1) and D2 (actions
A3 to A6)

Dialog D1 is enabled when v3=a. Dialog D2 is enabled when v3 6=a and v1=0.

Given the transition (0,0,a)
A1−→(0,1,a) in D1, we conclude, by (eq. 3), that v2

is written by D1. This is the only variable manipulated by D1. From transition

(0,0,b)
A3−→(0,0,c) in D2, we conclude that v3 is written by D2. From transitions

(0,0,b)
A4−→(0,0,d) and (0,0,c)

A4−→(0,0,f) in D2, we conclude, by (eq. 4), that v3 is
also read by D2. This is the only variable manipulated by D2.

3.2 Independent Dialogs

Given two dialogs, if the set of variables written by one of the dialogs is dis-
joint from the set of variables manipulated by the other dialog, then they are
independent. Informally, two dialogs are independent if the behavior of any of
the dialogs is not affected by the state and interactions that occur in the other
dialog. For example, dialogs D1 and D2 described above are independent.

3.3 Structuring the HFSM based on the Variables Manipulated by

each Dialog

Under certain conditions1, there is a relationship between the state variables
manipulated by each dialog Di and the structure of the FSM of the application
(FSMA), that allow us to structure FSMA into a HFSM.

1 A sufficient condition is that the enabling condition of each dialog restricts the
domain of each variable independently of the other variables.



Let PFSMDi be the projection of FSMDi onto the variables manipulated by
Di, as illustrated in Fig. 2. PFSMDi describes the behavior of Di.

In the opposite direction, FSMDi is the union of the instances of PFSMDi

for all possible combinations of values of the variables that are not manipulated
by Di (restricted to the enabling condition of Di). For example, FSMD1 (Fig.
1) has 2 instances of PFSMD1 (Fig. 2) with v1=0 ∧ v3=a, and v1=1 ∧ v3=a.

Fig. 2. State machines of dialogs D1 and D2 projected from the FSM at Fig. 1. Dotted
lines represent test cases

Given this, FSMA can be organized into a 3-level HFSM. The first (top) level
has only two vertices, one for each dialog, as illustrated in Fig. 3. The criterion
to group states together is given between square brackets. The intermediate level
corresponds to Fig. 2, and the third (bottom) level corresponds to Fig. 1.

   D1

[v3=a]

         D2

[v3�a ∧ v1=0]

A2

A7

Fig. 3. Top level of the HFSM

3.4 FSM Reduction and Test Case Generation

Using the transition coverage criteria to generate test cases from the FSM of
Fig. 1 (with 18 transitions), we would get 4 test cases (paths) with 21 steps.

But, since D1 and D2 are independent dialogs, they don’t need to be tested
every time there is a change on variables on which they don’t depend. Only one
instance of each dialog need to be tested. To test dialog Di, the values of the
variables that are not manipulated by Di are fixed to a particular value, and
the transition coverage criteria is applied to the PFSM of Di to generate test
cases. For example, to test D1 we could fix v1=0 (v3=a is already fixed) and
generate the test case illustrated by the dotted line in Fig. 2. To test D2 we
could fix v2=0 (v1=0 is already fixed). With this approach, only 7 transitions



are exercised, instead of 21. The instances of D1 and D2 that are tested are the
ones shown on the left-hand side of Fig. 1.

To fully test the application, actions that do not belong to these dialogs, also
have to be exercised. This is the case of actions A2 and A7 in Fig. 1. Applying
the same approach to each of these actions (each one can be regarded as a dialog
with a single action), we conclude that only one instance of each action need be
tested in this case. For example, we can exercise (test) the instances of A2 and A7

shown with thick lines in Fig. 1. Overall, the transitions that need be exercised
are all the transitions shown with thick lines in Fig. 1. Three test cases (paths),
with a total of 10 steps, are enough to cover them. The size of the test suite is
reduced from 21 steps to 10 steps.

In some cases, it is not sufficient to test only one instance of each dialog.
After assuring that one instance is fully tested, a second instance may have to
be traversed (usually only in part, by the shortest path) in order to reach some
state or transition that has to be exercised. For example, assume that, with
respect to Fig. 1, it is important to reach state (0,1,e), because it is the source
of a transition that has not been tested yet (not represented in Fig. 1). In such
case, the path shown with dotted lines in Fig. 1 also has to be included in the
test suite.

In general, the selection of sequences in a way that all of the application’s
behavior is exercised, is a problem as hard as deciding the reachability of a state.
Partial order reduction (POR) techniques used in model checking [10] address a
very similar problem: Given a property of the system, e.g. a temporal property
describing the reachability of a state, POR reduces the number of states that
must be explored in order to decide whether the property holds for the entire
state space. POR exploits redundancies of the state space like the commutativity
of enabled transitions.

4 Example

In this example, the Notepad application, part of Microsoft Windows, is used
to illustrate the approach to model and test GUIs. We have chosen Spec] as
the specification language to encode the actions of the message loop; the Spec
Explorer tool is used to test conformity between the specification and the im-
plementation.

4.1 Spec] and Spec Explorer

Spec Explorer (http://research.microsoft.com/SpecExplorer) is a software mod-
eling and testing tool developed at Microsoft Research. The model can be written
in the abstract state machine language (AsmL) (http://research.microsoft.com/
fse/AsmL), or Spec], which is a superset of C]. Certain methods are annotated
as actions, which represent possible transitions of a (possibly infinite) transition
system. Preconditions, written as ”requires” clauses, define in which states ac-
tions are enabled. The state of the system is comprised by the variables of the
model program.



Consider the following example which could describe a part of a text editor.
It defines the state as a text string. The TypeText method is marked as an action
by an attribute. It is enabled when the combined length of the current text and
the newly typed text does not exceed a specified maximum. When it is fired, it
appends the newly typed text to the current text string.

string text = "";

[Action] void TypeText(string typedText)

requires text.Length + typedText.Length < 100; {

text += typedText; }

The transition systems discussed in this paper are deterministic. In this case,
an explicit state model checker built into Spec Explorer systematically explores
all transitions reachable within certain bounds. Spec Explorer can be configured
to restrict the search space by various means including state filters and equiv-
alence class groupings. The latter partitions states into equivalence classes and
prevents further exploration from any state of such a class once a specified num-
ber of representatives has been reached. This idea was first described in [5], a
generalization can be found in [12]. The resulting FSM can be traversed using
different coverage criteria, which yields a set of transition sequences forming a
test suite. Conformance between the model and an implementation can be es-
tablished by binding the model actions to implementation actions, executing the
test suites on both the model and the implementation, and comparing their re-
sults. In general, Spec Explorer can handle non-deterministic transition systems,
and the conformance relation is defined by interface automata [13]. An overview
of the predecessor tool can be found in [2].

4.2 The model

We have constructed a complete model of the Notepad application but here
only the Open and Replace dialogs will be used to illustrate the approach. The
first is a modal dialog and the second is a modeless dialog. The model presented
captures only the possible actions and sequences of actions the user can perform.

Variables like NotepadObjAct, OpenObjAct, and Replace−ObjAct are used
to point out the interaction object or dialog that has the input focus. The other
three variables, FindWhat, FileName, and FileOpened are needed because
they influence the behavior of the application.

At the initial state, the Notepad application is closed. The only possible
action at this state is to launch the application.

string NotepadObjAct="NotOpen";

string OpenObjAct="NotOpen", ReplaceObjAct="NotOpen";

string FileName=null, FindWhat=null, FileOpened=null;

[Action] void LaunchNotepad() requires NotepadObjAct=="NotOpen"; {

NotepadObjAct = "ClientArea"; }

Spec. 1. Start the Notepad application



After launching the application, it is possible to interact with the client area
typing text, open the File and Edit menus, and close the application.

bool NotepadEnabled {get {return NotepadObjAct notin

Set{"NotOpen","OpenDlg", "ReplaceDlg"};} }

[Action] void TypeText(string text)

requires NotepadObjAct=="ClientArea";{}

[Action] void File() requires NotepadEnabled ; {

NotepadObjAct="FileMenu"; }

[Action] void Edit() requires NotepadEnabled; {

NotepadObjAct="EditMenu"; }

[Action] void Close() requires NotepadEnabled; {

NotepadObjAct="NotOpen"; ReplaceObjAct="NotOpen";

FileOpened=null; FindWhat=null; }

Spec. 2. Possible actions after starting the application

When the File menu is opened, it is possible to select the Open option. This
option will open the Open dialog. When the Edit menu is opened, it is possible
to select the Replace option. This option will open the Replace dialog.

[Action] void Open() requires NotepadObjAct=="FileMenu"; {

NotepadObjAct="OpenDlg"; OpenObjAct="FileName"; }

[Action] void Replace() requires NotepadObjAct=="EditMenu"; {

ReplaceObjAct="FindWhat"; NotepadObjAct="ReplaceDlg";

FindWhat = null; }

Spec. 3. Options inside the File and Edit menus

When the Open dialog is open, it is possible to type a file name, select a
file type, and press the Cancel and Open buttons. The OpenObjAct variable
indicates which control has the focus in the Open dialog.

[Action] void FileName_O(string fileName)

requires NotepadObjAct=="OpenDlg"; {

FileName = fileName; OpenObjAct = "FileName"; }

[Action] void FilesOfType_O(int index)

requires NotepadObjAct=="OpenDlg"; {

OpenObjAct = "FilesOfType"; }

[Action] void Cancel_O() requires NotepadObjAct=="OpenDlg"; {

OpenObjAct = "NotOpen"; NotepadObjAct = "ClientArea";

FileName = null; }

[Action] void Open_O() requires NotepadObjAct=="OpenDlg"; {

if (FileExists(FileName)) {

OpenObjAct = "NotOpen"; NotepadObjAct = "ClientArea";

FileOpened = FileName; FileName = null;} }

Spec. 4. Actions inside the Open dialog



When the Replace dialog is opened, it is possible to fill the word to search for,
to fill the word to replace for, and also to press the buttons Find Next, Replace,
Replace All, and Cancel. Since the Replace dialog is modeless, it is also possible
to switch to the Notepad main window and the other way around.

[Action] void FindWhat_R(string str)

requires NotepadObjAct=="ReplaceDlg" ; {

FindWhat = str; ReplaceObjAct = "FindWhat"; }

[Action] void ReplaceWith_R(string str)

requires NotepadObjAct=="ReplaceDlg" ; {

ReplaceObjAct = "ReplaceWith"; }

[Action] void FindNext_R()

requires NotepadObjAct=="ReplaceDlg" && FindWhat!=null; {

ReplaceObjAct = "FindNext"; }

// similar actions omitted for Replace and ReplaceAll

[Action] void Cancel_R()

requires NotepadObjAct=="ReplaceDlg" ; {

ReplaceObjAct = "NotOpen";

NotepadObjAct = "ClientArea"; FindWhat = null; }

[Action] void SwitchToReplaceDlg()

requires ReplaceObjAct=="NotActive" && NotepadObjAct!="OpenDlg";

{ NotepadObjAct = "ReplaceDlg"; ReplaceObjAct = "FindWhat"; }

[Action] void SwitchToNotepad()

requires NotepadObjAct!="OpenDlg" && ReplaceObjAct!="NotOpen"; {

NotepadObjAct = "ClientArea"; ReplaceObjAct = "NotActive"; }

Spec. 5. Actions inside the Replace dialog

As soon as the model is constructed, Spec. 1,..., Spec. 5, and the domains
of the functions’ parameters and variables are defined, the Spec Explorer tool
generates automatically the corresponding FSM. By providing criteria to define
equivalence classes among the set of states, it is possible to generate a HFSM
with different levels of abstraction.

The first level of abstraction, Fig. 4, will give an overview of the struc-
ture of the application. Each vertex corresponds to a different value of the
NotepadObjAct variable. In this view, it is possible to see that the user can
open the File menu or the Edit menu, interact with the client area typing text,
open one of the two dialogs, Open and Replace, and it is also possible to switch
the focus to the Replace dialog when this dialog is opened. The interaction inside
those dialogs is detailed in the next level of abstraction, Fig. 5, and Fig. 6.

The state machine of the Open dialog, Fig. 5, was obtained by grouping
together states with equal values of the variables manipulated by the Open
dialog (OpenObjAct and FileName). Each vertex shows the values of those
variables. In this view, it is possible to see that the user can fill the file name,
select the file type, open a file, and close the dialog. When the Open dialog is
opened, the interaction object with the focus is the FileName textbox.



Fig. 4. Top level of the HFSM

Fig. 5. State Machine of the Open dialog

The state machine of the Replace dialog, Fig. 6, was obtained by grouping
together states with equal values of the variables manipulated by the Replace
dialog (ReplaceObjAct and FindWhat). The Replace dialog is a modeless dialog,
from which it is possible to interact with other elements on screen; in particular,
it is possible to switch to the Notepad main window. The Replace dialog is in
the NotActive state when it is opened but doesn’t have the focus. This view
shows that the user can fill the Find What and Replace With textboxes, and
can press the Find Next, Replace, and Replace All buttons.

4.3 FSM Reduction

The complete FSM of our example has 399 steps and 69 states. Using the transi-
tion coverage criteria, without optimizing (reducing) the FSM, a test suite with
at least 399 steps would be generated. This test suite would exercise the Open
dialog 6 times and the Replace dialog 2 times. With our approach it is possible
to reduce the size of the test suite.



Fig. 6. State Machine of the Replace dialog. States where the dialog is active are
surrounded by a dashed line

Fig. 7. Reduced FSMs of the Open (left) and Replace (right) dialogs

The Open dialog occurs six times in the flattened FSM. Each instance of this
dialog correspond to the states enclosed by a dashed line in Fig. 5, combined
with the different values of the variables from which this dialog does not depend
on (ReplaceObjAct, FindWhat, and FileOpened). So, the second or higher
occurrence of the Open dialog can be substituted by the reduced state machine
(with two states only) constructed with the minimum paths to reach the final
states, as illustrated in the left-hand side of Fig. 7. Since the Open dialog has
6 states and occurs 6 times, the total number of states is reduced from 36 to
6+2*5=16. The number of transitions was reduced by 160.

The Replace dialog occurs twice in the flattened FSM, for two different values
of a variable on which this dialog does not depend on. The second occurrence of
the FSM of the Replace dialog can be reduced to just one state, as illustrated
in the right-hand side of Fig. 7. This leaves us with 9+1=10 states instead of
9*2=18 states. The number of transitions was reduced by 72.

Overall, the flattened FSM with initial 69 states and 399 transitions is re-
duced to a state machine with 69-(36-16)-(18-10)=41 states and 399-160-72=167
transitions.



4.4 Test Case Generation and Execution

The Spec Explorer tool generates automatically a test suite from the FSM cov-
ering all transitions.

To execute the test cases generated, it is necessary to bind model actions
to implementation actions (methods) available in a .NET assembly. To serve as
a bridge between the Spec] specification and the executable binary file of the
Notepad application, we constructed some intermediate code in C], to execute
and interact with the Notepad application simulating the user (trigger events
like mouse clicks or keyboard keys).

Every time there is an inconsistency between the model and the implemen-
tation, the Spec Explorer tool stops and reports the error. An inconsistency can
be obtained by several reasons:

– the model is trying to act on a window that is not reachable or is not opened
(e.g., the window we want to reach is behind a modal dialog);

– the model is trying to act on a control that cannot be found in the imple-
mentation;

– the expected result was not displayed (e.g., a text box does not display the
expected content).

In our experiment, no inconsistencies were found. This in not surprising since
the Notepad application has been in use and tested for years already. Another
explanation is that we modeled the behavior as we know it, accommodating any
flaws or inconsistencies which we got used to.

5 Related Work

There is some research work addressing the automation of GUI testing.
Some tools for computer-based GUI testing, called capture & replay tools,

are already commercially available. Examples of these tools can be found at
(www.stlabs.com/marick/faqs/t-gui.htm). With these tools it is possible to record
the user interactions (mouse clicks, mouse motions, keyboard input, ...) with a
graphical user interface and replay them later. These tools can be helpful in
several contexts like demonstrations; remote support; analysis of user behavior;
macro functionality; and educational scenarios. But, for testing purposes, they
are the subject of severe critics [14]: the test scripts are manually developed
without coverage criteria concerns; the scripts contain hard-coded values; these
tools store information at a low level of abstraction, capturing mouse positions,
button clicks and storing bitmaps. Representing the information at such a low
level of abstraction makes these tools very dependent on the physical properties
of the use interface. A small change on the layout of the user interface might
invalidate all the test cases.

There are several approaches to automate the generation of test cases from
models of the GUI. Memon uses a model with a hierarchical structure in his
work [8], to guide the generation of test cases, but not to reduce the size of the



test suite. He defines a set of operators that are organized in hierarchies. The
operators at upper levels are constructed from simpler ones at lower levels. These
simpler operators correspond to user actions. Each operator has a pre condition
that must be true before executing the operator, and the effect. Memon uses
planning from Artificial Intelligence to generate test cases. Given a set of opera-
tors, an initial state, and a goal state, a planner produces a sequence of operators
that will change the initial state to the goal state. He generates test cases from
the upper hierarchical levels of abstraction and then nested invocations to the
planner during abstract operator decomposition. Alternative test cases can be
obtained by substituting the different test cases obtained for the lower levels into
the high-level plan.

Andrews, at [1], uses HFSMs to model Web applications and uses constraints
to reduce the set of input values and to help solving the state explosion problem.

Belli, in [3], presents an approach to model the legal and the illegal behavior
of GUIs using FSA, Finite State Automata, and regular expressions. Belli starts
identifying all legal sequences of user system interaction and then expands the
model with illegal behavior. The final model is used to generate test cases that
can bring the system into legal states, producing the desired system response,
or into a faulty situation, producing an error message.

Shehady, in [11], uses VFSM, Variable Finite State Machines to model GUIs.
VFSMs are FSMs with an added condition associated to each transition. The
transition can be expressed by: name <state> <input> <next state> <output>.
The VFSM is converted into a FSM to generate test cases using the partial W
algorithm [4].

Some of the authors of this paper have already used a tool that preceded the
Spec Explorer tool (the AsmL Tester tool) to automate the testing of GUIs [9],
but the reduction of the FSM was n ot addressed.

A popular approach to test GUI is to code the test cases ”manually” but, in
this case, the developer has a hard work to test adequately the GUI behavior.

6 Conclusion

We presented an approach to model GUIs with HFSMs and to generate test
cases from those models in an optimized way taking advantage of the hierarchical
structure.

The Spec] specification language, developed by Microsoft Research based on
Abstract State Machines, was used to construct the model of the application.
This model was converted automatically into a FSM using the Spec Explorer
tool. With the definition of expressions to construct state groups, it was also
possible to obtain a HFSM. This tool was also used to generate test cases and
execute them to perform conformity checks between a specification and an im-
plementation. To test conformity between the specification and the implemen-
tation, an intermediate code in C] was constructed to simulate the user actions
and interact with the application.



The approach was illustrated with a model of the Notepad application from
Windows where it was possible to reduce the number of states of the initial FSM
from 69 to 41 using the structure of the corresponding HFSM.

As future work, we plan to refine the approach described in this paper and
automate the FSM reduction.

References

1. Andrews, A. A., Offutt, J., and Alexander, R. T.: Testing Web Application by
Modeling with FSMs. presented at the SOftware SYstems Modeling. (2004)

2. Barnett, M., Grieskamp, W., Nachmanson, L., Schulte, W., Tillmann, N., and
Veans, M.: Model-Based Testing with AsmL.NET, presented at the 1st European
Conference on Model-Driven Software Engineering, (2003).

3. Belli, F.: Finite State Testing and Analysis of Graphical User Interfaces, presented
at the ISSRE 2001, (2001).

4. Fujiwara, S., Bochmann, G. v., Khendek, F., Amalou, M., and Ghedamsi, A.: Test
selection based on finite state models, IEEE Transactions on Software Engineering,
Vol. 17(6), (1991) 591–603.

5. Grieskamp, W., Gurevich, Y., Schulte, W., and Veanes, M.: Generating Finite
State Machines from Abstract State Machines, presented at the ISSTA 2002, In-
ternational Symposium on Software Testing and Analysis, July, (2002).

6. Gurevich, Y.: ”Evolving Algebras 1993: Lipari Guide,” in Specification and Vali-
dation Methods, E. Börger, ed. (Oxford University Press, 1995), pp. 9–36.

7. Lee, D. and Yannakakis, M.: Principles and Methods of Testing Finite State Ma-
chines – A Survey, Proceedings of the IEEE, Vol. 84, (1996) 1090-1996.

8. Memon, A. M., Pollack, M. E., and Soffa, M. L.: Hierarchical GUI Test Case Gen-
eration Using Automated Planning, IEEE Transactions on Software Engineering,
Vol. 27(2), (2001).

9. Paiva, A. C. R., Faria, J. C. P., and Vidal, R. M.: Automated Specification-based
Testing of Interactive Components with AsmL, presented at the 5th edition of the
Quatic (Quality: the bridge to the future in ICT) international conference, Porto,
(2004).

10. Peled, D., Clarke, E., and Grumberg, O.: Model checking (MIT Press, Cambridge,
Massachusetts, 2000).

11. Shehady, R. K. and Siewiorek, D. P.: A Method to Automate User Interface Testing
Using Variable Finite State Machines, presented at the 27th International Sympo-
sium on Fault-Tolerant Computing, (1997).

12. Veanes, M. and Campbell, C.: State Exploration with Multiple State Groupings,
submitted to the 12th International Workshop on Abstract State Machines, (2005).

13. Veanes, M., Campbell, C., Schulte, W., and Kohli, P.: ”On-The-Fly Testing of
Reactive Systems,” (to appear as a Microsoft Research Technical Report).

14. Zambelich, K.: Totally Data-Driven Automated Testing. Whitepaper, Auto-
mated Testing Specialists (ATS), retrieved at http://www.sqa-test.com/White-
Paper.doc.


