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HW #5 

Introduction 

The project consists of a set of exercises and design problems covering most of the material 
presented in class. The use of the tools presented in class is strongly recommended, especially in the 
design problems. 

 
Reach sets 

1. Consider the system Linear model with A=[1, 0; 0, 1] and B=[1, 0]. Build an approximation to 
the reach set at time t = 10 when the system departs from the origin at time t = 0. 

2. Consider the following optimal control problem 

Min c.x(1) (c is a vector in the unit ball) 

dx/dt = Ax + Bu; x(0)= x0; u∈Ω 

Consider that you are given R(x0; 0, 1), the reach set of the system at time t = 1 when 
departing from x0 at time t = 0.  

a) Use R(x0, 0, 1) to find x*(1), the final state of the solution to the optimal control problem  

Min  c.z over all z ∈ R(x0; 0, 1) 

b) Use formula x(1) = eAx0 + 0∫ 1eA(1-t)Bu(t)dt in order to show that the optimal control u*(t) 
maximizes  the map v → cT eA(1-t) B v over Ω. 

c) Check that x*(t) minimizes p(t).z over all z∈R(x0; 0,t), onde p(t)T = cT eA(1-t)   

 Hint: Use the following facts: 
i) The minimization in a) is also satisfied when the set R(x0; 0, 1) is replaced by  

eA(1-t) [R(x0; 0, t) - x*(t) ] + x*(1).  
Observe that eA(1-t) [R(x0; 0, t) - x*(t) ] + x*(1) ⊆ R(x0; 0, 1). 

ii) x*(1)= eA(1-t) x*(t) + t∫ 1eA(1-s)Bu*(s)ds. 
iii) z ∈ A + v  implies z = z1 + v  for some z1 ∈ A. 

3. Consider the linear system:  dx/dt = Ax + Bu; x(0)=x0, u∈Ω, t∈[0,1], where x∈R3 and u∈R1 . 
Assume that the system is controllable. 

a) Let Ω=[α,β], with α<β.  Show that R(x0; 0, 1) is convex. 

b) Show that if you replace Ω=[α,β] by Ω={α,β}, the reach set  R(x0;0,1) does not change. 

Observation:  
(1) The points on the boundary of R(x0;0,1) can only be reached by values of the control 

on the boundary of  Ω. 
(2) Points in the interior of R(x0;0,1)  can be reached by values of the control on the 

boundary of  Ω (convexifying effect of the integral).  
Hint: Use the following facts (you may/should verify them): 

i)  C is a convex set if ac1+(1-a)c2∈C, for all a∈[0,1], c1∈C and c2∈C. 
ii)  Check the convexification role of the integral. 
iii) Start with one dimensional state and, then, extend to dimension 2, 3,... n. 

 



 
4. Inner polyhedral approximation to the reachable set of linear systems. 

Use the exercise in 9 to devise an algorithm to compute an inner polyhedral approximation of 
the reachable R(x0;0,1).for the linear system dx/dt = Ax + Bu; x(0)=x0, u∈Ω. 

Justify the following  observations: 

i) The solution to the minimization in 8.a) is always on the boundary of the reachable 
set. 

ii) Given a set of N ≥ n+1 points Z={z1, z2, z3,..., zN}, zi∈Rn, co[Z]⊂ R(x0,0,1). 

Here co[Z] denotes the convex hull of the set Z. Consider the system in the plane, i.e., n=2, for 
which A = [0,1; 2,1], B=[0,1]T, and U=[-1,1] in order to devise a clever way of generating 
interesting parameters ck, k=1…P, | ck|=1 that, by replacing c in the optimization problem in 
8.a) will yield convenient vertices x*k(1) of the approximating polyhedral.  

Hints: 

a) The solutions to each one of the optimal control problems can easily be computed by 
hand as you can see from the optimal control notes. 

b) Consider the following scheme:  

a. Initial face: choose an arbitrary vector c1, |c1|=1, and compute x*1(1). Then, let 
c2=-c1, and compute x*2(1). 

b. Let c3, |c3|=1 be perpendicular to the vector x*2(1)-x*1(1) and compute x*3(1). 
Then, let c4=-c3, and compute x*4(1). 

c. Proceed as previously but now minding that the interior of the approximating 
polyhedron is nonempty and that the recursively generated vectors c have to 
point outwards. 

c) Construct an approximation with 8 points and discuss the “error” of the approximation, 
i.e., the “distance” (how should it be defined? Is Hausdorff metric ok?) between the sets  

co{ x*1(1), x*2(1),…, x*P(1)} and R(x0;0,1). 

Observation: The Hausdorff distance between sets A and B is denoted by dH(A,B) and is 
defined by 

dH(A,B) =: max{ sup{d_A(b): b∈B}, sup{d_B(a): a∈A} } 

where d_C(d) is the usual concept of distance between the point d and the set C, that is  

d_C(d) =: inf{ ||c-d|| : c∈C}. 

 



Annex - Vehicle models 

We consider several models of increasing complexity for the motions of our vehicles in R2.  

The state is x=(x1, x2) ∈ R2 

The general model is  

dx/dt = f(x, u) 

  

Simple vehicle model 
dx/dt ∈ B (unit closed ball in R2)  

 

Simple vehicle model under adversarial behaviour 
dx/dt = u + v where u ∈ B (unit closed ball in R2) and v ∈ 0.5B (closed ball with radius 0.5 in R2) 

 

 “Arrow model” 
dx1/dt ∈ {-1, 0, 1}  

dx2/dt ∈ {-1, 0, 1} 

 

Unicycle model 
This model has a third state Ө to model the orientation of the vehicle. The inputs are the speed us ∈ 
[0, 1] and the angular velocity r ∈ [-.1, 1]. 

dx1/dt = us cos Ө 

dx2/dt = us sin Ө 

dӨ /dt = r 

Planar motions of autonomous vehicles are often described by this simplified model. 

 

Mode controlled unicycle model 
The potential behavior of a vehicle modelled as a unicycle is the set of all smooth curves.  This is too 
unstructured.  We restrict its behavior to 4 discrete modes of motion:  

stop (u=0, Ө =0),  

straight (u=5, Ө =0),  

left (u=0, Ө =1),  

right (u=0, Ө =-1).  

The vehicle is controlled by selecting a mode of motion. 

 

Linear model 
dx/dt = Ax + Bu, u∈U=[-1,1] 


