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1 Introduction

Signals convey information. Systems transform signals.... A signal
is a function that maps a domain, often time or space, into a range,
often a physical measure such as air pressure or light intensity. A
system is a function that maps signals from its domain – its input
signals - into signals in its range – its output signals. The domain and
the range are both sets of signals (signal spaces). Thus, systems are
functions that operate on functions..... For systems, we look at the
relationship between the input and output signals (this relationship
is a declarative description of the system) and the procedure for
converting an input signal into an output signal (this procedure is
an imperative description of the system). In [17].

We are interested in designing systems (controllers) to control other systems
(controlled systems). To design a controller we need descriptions of:

• Controlled system.

• Specification of the desired behavior for the controlled system.

We need formal models of the controlled system and the specification to rea-
son about the design of the controller and communicate the design in clear way
with precise semantics. Such models are much more precise than the English-
language descriptions that are commonly used for such systems.

These notes are about reviewing fundamental concepts in control systems
and developing the intuition behind these concepts. The focus is on the geomet-
ric intuition, rather than on the mathematical details. The notes are intended
to develop this geometric intuition around the properties of the system’s reach
set – informally this is the set of states that can be reached by the trajectories
of the system. In this setting, system’s properties such as invariance, stability,
attainability and safety are described in an uniform way, and the intuition for
controller design is developed.

First we discuss systems as functions, and present examples of systems de-
scribed by differential equations, difference equations, state-machines and hy-
brid automata. We do this to present the systems’ background in all of its
generality. Finally, we particularize the discussion to systems described by dif-
ferential equations. This is done to make the discussion more tangible. With the
exception of details specific to differential equations, the presentation is aimed
at building a conceptual framework applicable to other system’s descriptions.

The notation and approach follow closely [17].

2 Descriptions of systems

This section follows closely [17].
A description of a system as a function involves three entities: the set of

input signals, the set of output signals, and the function itself,



F : InputSignals → OutputSignals (1)

Several types of systems of interest to control design are described in this
section.

A broad class of systems can be characterized using the concept
of state and the idea that a system evolves through a sequence of
changes in state, or state transitions. Such characterizations are
called state-space models. A state-space model describes a system
procedurally, giving a sequence of step-by-step operations for the
evolution of a system. It shows how the input signal drives changes
in state, and how the output signal is produced. It is thus an imper-
ative description. Implementing a system described by a state-space
model in software or hardware is straightforward. The hardware or
software simply needs to sequentially carry out the steps given by
the model. In [17].

2.1 Continuous-time systems

Consider a class of systems given by functions

S : ContSignals → ContSignals (2)

where ContSignals is a set of continuous-time signals.
ContSignals = [Time → Realsn] or ContSignals = [Time → Complexn],

where Time = Reals or Time = Reals+.
These are often called continuous-time systems because they operate on

continuous-time signals. Frequently, such systems can be defined by differential
equations that relate the input signal to the output signal.

A prototypical description of a controlled (there is a control input signal)
continuous-time system is:

ẋ(t) = f(t, x(t), u(t)), u(t) ∈ U(t) (3)

where f : Time×Realsn×Realsp → Realsn satisfies the conditions for existence
and uniqueness of the ordinary differential equation and u is our control.

2.2 Discrete-time systems

Consider another class of systems given by functions

S : DiscSignals → DiscSignals (4)

where DiscSignals is a set of discrete-time signals.
DiscSignals = [Integers → Realsn] or DiscSignals = [Integers → Complexn]

or DiscSignals = [Naturals0 → Realsn].



These are often called discrete-time systems because they operate on discrete-
time signals. Frequently, such systems can be defined by difference equations
that relate the input signal to the output signal.

A prototypical description of a controlled discrete-time system is:

∀n ∈ Integers ; x(n + 1) = x(n) + F (n, x(n), u(n)), u(n) ∈ U(n) (5)

where F : Integers× Realsn × Realsp → Realsn.

2.3 State machines

For a state machine, the input and output signals have the form EventStream :
Naturals0 → Symbols; where Naturals0 = 0; 1; 2; . . . and Symbols is an arbitrary
set. The domain of these signals represents ordering but not necessarily time
(neither discrete nor continuous time). The ordering of the domain means that
we can say that one event occurs before or after another event.

A state machine constructs the output signal one element at a time by
observing the input signal one element at a time. Specifically, a state machine
StateMachine is a 5-tuple,

StateMachine = (States; Inputs; Outputs; update; initialState) (6)

where States; Inputs; Outputs are sets, update is a function, and initialState ∈
States. The meaning of these names is:
States is the state space,
Inputs is the input alphabet,
Outputs is the output alphabet,
initialState ∈ States is the initial state,
and update: States× Inputs → States×Outputs is the update function.

This five-tuple is called the sets and functions model of a state machine.
Inputs and Outputs are the sets of possible input and output values or symbols.
The set of input signals consists of all infinite sequences of input values,

InputSignals = [Naturals0 → Inputs] (7)

The set of output signals consists of all infinite sequences of output values,

OutputSignals = [Naturals0 → Outputs] (8)

Let x ∈ InputSignals be an input signal. A particular element in the signal
can be written x(n) for any n ∈ Naturals0. We write the entire input signal as
a sequence

x(0), x(1), x(2), . . . (9)



This sequence defines the function x in terms of elements x(n) ∈ Inputs,
which represent particular input values. We reiterate that the index n in x(n)
does not refer to time, but rather to the step number.

The interpretation of update is this. If s(n) ∈ States is the current state at
step n, and x(n) ∈ Inputs is the current input, then the current output and the
next state are given by

(s(n + 1); y(n)) = update(s(n); x(n)) (10)

Thus the update function makes it possible for the state machine to construct
the output signal step by step by observing the input signal step by step.

The state machine StateMachine of (6) defines a function

F : InputSignals → OutputSignals (11)

such that for any input signal x ∈ InputSignals the corresponding output
signal is y = F (x). However, it does much more than just define this function.
It also gives us a procedure for evaluating this function on a particular input
signal. The state response (s(0); s(1); . . . ) and output signal y are constructed
as follows:

s(0) = initialState; (12)
∀n ≥ 0; (s(n + 1); y(n)) = update(s(n); x(n)); (13)

Observe that if the initial state is changed, the function F will change, so
the initial state is an essential part of the definition of a state machine.

Each evaluation of (13) is called a reaction because it defines how the state
machine reacts to a particular input symbol. Note that exactly one output
symbol is produced for each input symbol. Thus, it is not necessary to have
access to the entire input sequence to start producing output symbols. This
feature proves extremely useful in practice, since it is usually impractical to
have access to the entire input sequence (it is infinite in size!). The procedure
summarized by (12, 13) is causal, in that the next state s(n+1) and current
and current output y(n) depend only on the initial state s(0) and current and
past inputs x(0);x(1); . . . ;x(n).

2.4 Hybrid automata

The formal definition of hybrid automata is not presented here. Informally, it
is a hybrid of the descriptions of a differential equation and a state-machine.

3 Specifications for state-space models

The formal specification of the desired behavior for a controlled system is
strongly dependant on the system’s description. Specifications for state-space
models typically concern problems of invariance, attainability, safety and per-
formance. The problem of invariance consists of keeping the state of the system



inside a subset of the state-space. The problem of attainability consists of driv-
ing the state of the system to enter a subset of the state-space. The problem
of safety consists of preventing the state of the system to enter a subset of the
state-space. The problem of performance involves of evaluating trajectories of
the system according to some cost function for problems of invariance, attain-
ability and safety. Depending on the time (or step) horizon, there may be finite
or infinite-time specifications. These may require different mathematical ma-
chinery. For example, properties like stability for continuous-time systems are
specified using limits when time tends to infinity; properties concerning fairness
for state-machines are specified using some logic.

In what follows we relate problems of invariance, attainability, safety and
performance to the system’s reach set. This is illustrated for continuous-time
systems.

4 Continuous-time systems

4.1 Model

Consider the following model of a system whose state x evolves in Rn:

ẋ(t) = f(t, x, u), u ∈ U(t) ⊂ Rp (14)

where f satisfies the conditions for existence and uniqueness of the ordinary
differential equation and u is our control.

When this system’s description is well “behaved” (f is Lipschitz in x and
continuous in u) there is an equivalent description:

ẋ(t) ∈ F (t, x(t)) ⊂ Rp (15)

where F (t, x) := {s : s = f(t, x, u), u ∈ U(t)}.
This is a differential inclusion. The set-valued map F maps (t,x) onto the

set of admissible velocities at (t,x). The local properties of the system depend
on the geometry of this set.

Exercise 1 (Geometry of differential inclusions) Consider the differential
inclusion ẋ ∈ F (x) ⊂ R2 (x = (x1, x2)) describing a well “behaved” system. Is
it feasible for the system to move in all directions in R2 when the origin is not
an interior point of F?



Remark 1 (Local controlability) The condition 0 ∈ Int(F ) is necessary for
local controlability.

Given an initial condition x(t0) = x0 it is natural to ask what is the set of
points that can be reached at time t > t0 starting from x0.

Exercise 2 (Reach set calculation) Consider the system:

ẋ(t) = u, u ∈ B1(0) ⊂ R2, x0 = (0, 0) (16)

where B1(0) denotes the unit ball centered at the origin.

1. Draw the set of all positions that can be reached in one time unit starting
at x0.

2. Consider the sets of all positions that can be reached in 1, 2, 3 and 4 time
units. Draw the evolution of these sets with respect to time (in R3).

Exercise 3 (Reach set calculation under state constraints) Consider the
system given by equation (16) and state constraint:

x1 ≤ 0

1. Draw the set of all positions that can be reached in one time unit starting
at x0 under this state constraint.

2. What is the relation between the trajectories of the system and the line
x1 = 0?



4.2 Reach sets

Informally, the reach set of a system described by a differential equation is the
set of all states that can be reached from an initial state within a given time
interval.

The knowledge of the reach set is quite important for control applications.
Consider, as examples, the following applications in vehicle control:

1. When will a car collide with an obstacle?

2. Where and when is it feasible for two vehicles to rendezvous?

3. What is the set of initial positions such that if a vehicle departs from this
set it will be able reach a target in a given time interval?

4. What is the set of initial positions such that the trajectories of the vehicle
will never leave a closed set S?

Exercise 4 (Reach sets and applications) Use the informal concept of reach
set to give a geometric interpretation to these vehicle control applications.

4.2.1 Forward reachability

Consider the system described by equation (3).

Definition 1 (Reach set starting at a given point) Suppose the initial po-
sition and time (x0, t0) are given. The reach set R[τ, t0, x0] of system (3) at time
τ ≥ x0, starting at position and time (x0, t0) is given by:

R[τ, t0, x0] =
⋃
{x(τ), u(s) ∈ U(s), s ∈ (t0, τ ]} (17)

Definition 2 (Reach set starting at a given set) The reach set at time τ >
t0 starting from set X0 is defined as:

R[τ, t0, X0] =
⋃
{R[τ, t0, x0]|x0 ∈ X0} (18)



Consider now the case of adversarial behavior:

ẋ(t) = f(x(t), u(t), v(t), t), u(t) ∈ U(t) ⊂ Ru, v(t) ∈ V (t) ⊂ Rv (19)

• u is our control.

• v is controlled by an adversary. We don’t know what the adversary will
do (you may assume the worse case scenario).

Exercise 5 (Reach set under adversarial behavior) Write the definition
of reach set for this system.

Consider the following type of state constraints:

φ(x, t) ≤ 1 (20)

Exercise 6 (Reach set under state constraints) Write the definition for
this case.

The reach set of a dynamic system is a complex ‘creature’.
See examples in the power point presentation



4.2.2 Backward reachability

Until now we have discussed the problem of ‘forward’ reachability – we integrate
the differential equation ‘forward’ in time. Now we briefly discuss ‘backward’
reach sets.

Exercise 7 Given a set Xf and the dynamic system (3) write the definition for
the ‘backward’ reach set. [Hint: integrate the differential equation backwards in
time.]

Analogously, we can write the definition for backward reach sets under state
constraints or adversarial behavior.

Exercise 8 Explain why the notion of ‘backward’ reach set is useful in some
control applications? [Hint: try to relate this notion to the problem where a
vehicle is trying to reach a target destination.]

4.2.3 Why are we interested in reach sets?

Reach sets of dynamic systems are pervasive in control. This is because the
reach set describes the motion capabilities of a dynamic system.



Consider a problem of control synthesis abstractly formulated as follows:
given a dynamic system and a specification synthesize a controller so that the
composition of system with the controller satisfies the specifications.

Consider a problem of verification abstractly formulated as follows: given a
dynamic system and a controller check if the composition of the two satisfies a
given property.

Consider a dynamic system and a closed set S. Examples of the properties
we are interested in are:

Invariance – the trajectories of the system do not leave S.

Attainability – the trajectories of the system will enter S.

Safety – the trajectories of the system do not enter S.

Checking for those properties amounts to solving reachability problems.

There are synthesis techniques which produce controllers with guaranteed
properties: this means it is not necessary to go through the verification phase
to check if the system and the controller satisfy a given property. This is the
case with some techniques from dynamic optimization which will be described
in this document.

Arguments involving reachability concepts are also used to prove results in
control theory.

4.3 Invariance

We are interested in understanding the geometry of reach sets and the relation-
ships between reach sets, control, and invariance.

Exercise 9 Consider:

• The linear system (B is the identity 2× 2 matrix), whose state x ∈ R2:

ẋ(t) = Bu(t), u(t) ∈ U = {(u1, u2) ∈ R2 : u1 ≥ 0, u2 = 0} (21)

• The closed unit ball in R2, centered at the origin, B1(0).

• The initial state x0 at time t0: x0 = (0, 1).

Consider the corresponding differential inclusion ẋ ∈ F (t, x). Is there any con-
trol u ∈ U that is able to drive the state of the system to the interior of B1(0)?
[Hint: draw the set of all velocities at that position.]



Exercise 10 Consider the same linear system with a different control constraint

U = {(u1, u2) ∈ R2 : u1 ≥ 0, u2 ∈ R}
Is there any control u ∈ U that is able to drive the state of the system into the
interior of B1(0)? [Hint: draw the set F of all velocities at that position.]

Exercise 11 Given a point at the boundary of a closed set S what is the con-
dition that F needs to satisfy for the trajectory of the system to penetrate S?

Exercise 12 Consider the differential inclusion F corresponding to the dynamic
system described by equation (3) and a closed set S.

1. What is a necessary condition for the existence of trajectories of the system
that will never leave the set? [Hint: use the geometrical interpretation for
the solution of the previous exercise.]

2. Assume that the previous condition is satisfied. Derive a controller which
ensures that the trajectories of the system will never leave the set S.

Consider a closed set S and a system described by the set-valued map F.



Definition 3 (Weak invariance) The pair (S,F) is weakly invariant if there
exist controls such that a trajectory starting inside S remains inside S.

Exercise 13 Same as previous exercise but with the universal quantifier.

Definition 4 (Strong invariance) The pair (S,F) is strongly invariant if the
trajectories starting inside S never leave S.

Ok, now you are an expert in invariance of controlled dynamic systems.
Invariance is also called viability (see [11], [12], [2], [1],[5]).

Exercise 14 Is there any relation between the notion of reach set and the notion
of invariance with respect to a set? [Hint: see what happens in terms of the
velocity vectors at the boundary of the reach set]

Let us pursue the geometric interpretation behind the design of controller
based on the invariance of the pair (F ; S).

Exercise 15 Consider the pair (S,F) from exercise 10, where S is the unit ball
centered at the origin. Consider the point x = (0, 1.5). Consider the distance
function between this point and the set S. Pick one control u ∈ U such that this
distance will decrease. What is the control u ∈ U which maximizes the rate at
which this distance decreases?



Remark 2 (Extremal aiming) This is the geometric interpretation behind
the derivation of the extremal aiming controller introduced by Krasovskii (see
[10] for details).

Remark 3 (Non-smooth analysis) The relationships between reach sets, con-
trol, and invariance provide the intuition for developments in non-smooth anal-
ysis and control. The notions of convexity, distance, and projection are essential
to extend the classical notions of derivative and gradient to families of functions
that lack smoothness but present some form of regularity (see [4, 20] for more
details).

4.4 Attainability

In its simplest version, the problem of attainability for continuous-time systems
involves a closed target set S and an initial state for the system. Some versions
of this problem may involve a target set evolving with time. There is also the
question of attainability in finite and infinite time.

In all of these formulations the question of interest consists of finding tra-
jectories of the system which intersect the target set after departing from the
initial state.

Consider the system described by equation (3). Let tf denote the first time
when the trajectory of the system hits the target set S.

tf = inf{t : x(t) ∈ S} (22)

Exercise 16 Why do we need the set S to be closed?



Exercise 17 Given a closed set S and the system described by equation (3)
derive the conditions for attainability in terms of the reach set of the system for
the following cases:

1. There are no time constraints.

2. The target must be reached during time interval [t1, t2]

4.5 Computation of reach sets

The computation of reach sets is not a trivial matter.

Q. Why?

A. Because the reach set inherits the behavior of a dynamic system. See the
behavior of some nonlinear systems.

Several techniques for reachability analysis of hybrid systems have been pro-
posed. They can be (roughly) classified into two kinds:

1. Purely symbolic methods based on (a) the existence of analytic solutions
to the differential equations and (b) the representation of the state space
in a decidable theory of the real numbers.



2. Methods that combine (a) numeric integration of the differential equations
and (b) symbolic representations of approximations of state space typically
using (unions of) polyhedra or ellipsoids.

These techniques provide the algorithmic foundations for the tools that are
available for computer-aided verification of hybrid systems ([24] [6] , [9], [22]).

The set-valued Lebesgue integral provides a conceptual tool for the direct
computation of the reach set.

In what follows we describe techniques from dynamic optimization which are
used to compute reach sets for dynamic systems.

4.6 Dynamic optimization for reach set computation

4.6.1 Introduction

The relation between dynamic optimization and reachability was first observed
in [18].

A typical problem of optimal control can be formulated as follows:

max
∫ tf

t0

c(t, x(t), u(t))dt + G(x(tf )) (23)

ẋ(t) = f(x, u, t), u ∈ U(t) ⊂ Rp (24)

There are two main techniques to solve this problem: 1) the maximum
principle; 2) dynamic programming. The maximum principle gives necessary
conditions of optimality. Dynamic programming may be used to derive sufficient
conditions of optimality.

A good reference on the maximum principle is [19]. A less known reference
with detailed geometric interpretations is [8]. A good reference on dynamic
programming is [3].

4.6.2 The maximum principle and reach sets for linear systems

Here we will develop the geometric intuition behind the maximum principle for
linear systems.

Exercise 18 Consider the open unit ball in R2. Given c = (c1, c2) ∈ R2 solve
the following optimization problem:

max
x∈B1(0)

(x · c) (25)



Exercise 19 Same as previous but with the closed unit ball.

Q. What can we conclude? [Hint: closed sets are important for the existence of
solution].

Given an optimization problem, such as the one in exercise 19, we define
argmax as the set of all solutions to the problem.

Exercise 20 Consider the closed unit ball in R2. Given c = (c1, c2) ∈ R2, for
example c = (1, 1), find :

arg max
x

∈ B1(0)(x · c) (26)

Exercise 21 Write the definition of a convex set.



Exercise 22 Write the definition of a convex function.

Definition 5 (Epigraph of a function) Given a function f(x) : Rn 7→ R the
epigraph of f, denoted by epi(f), is the set of all points in Rn+1 that lie above
the graph of the function:

epi(f) = {(x, y) ∈ Rn+1 : x ∈ dom(f), y ≥ f(x)}

dom(f) denotes the domain of f.

Exercise 23 Relate the two definitions of convexity. [Hint: Consider the epi-
graph of a function.]

Q. Conclusions?

Definition 6 (Support function to a closed convex set) Given a closed set
S in Rn, the support function in the direction l ∈ Rn to the set S, denoted ρ(l|S),
is defined as:

ρ(.|.) : {l|S} 7→ ρ(l|S) = max{(x · l)|x ∈ S} (27)



The support function satisfies the following property:

ρ(l|AS + b) = ρ(A′l|S) + (l · b) (28)

Exercise 24 Consider the support function of the closed unit ball (as in exercise
19). If ρ((1, 0)|B1(0)) = 1 what is the point in the closed unit ball where the
max occurs.

Exercise 25 Same as previous but consider the closed unit square instead of
the closed unit ball. What happens? [Hint: the argmax in the second case is a
compact set, while in the first case it is a singleton].

Q. Conclusions?

A. Strict convexity is crucial.

Exercise 26 Given a closed set what is the geometric meaning of the support
function calculated at a given vector? [Hint: find the argmax of the problem,
and draw the tangent planes to the set at all points in argmax].



The ‘fancy’ name for that plane is ‘Separating hyperplane’. We can also
define separating ellipsoids.

Q. Separate what from what?

Q. Imagine that we know that the reach set of linear system under bounded
controls is closed and strictly convex. Imagine that somebody gives us the
support function to the reach set at time t. Are we able to characterize the
reach set at that time?

Consider the linear system:

ẋ = Ax + Bu, u ∈ U (29)

Now imagine that we are able to solve the following optimal control problem.

max x(1) · c (30)

where

c ∈ B1(0) (31)
x(0) = x0 (32)

An equivalent formulation is:

max
x∈R[1,0,x0]

x · c (33)

Q. Can we relate the solution of this problem to the support function to the
reach set at the final time?

Q. Imagine we vary c. Are we able to determine approximations to the reach
set?

For more details on the relation between the maximum principle and reach
set computation see [23].

Assignment. Read [23].

For more details on ellipsoidal approximations and reach set computation
see [12].

A fundamental reference in convex and variational analysis is [20].



4.6.3 Dynamic programming

Dynamic programming (DP) is one of the techniques used to solve optimal con-
trol problems. This is done by embedding the original optimal control problem
into a family of optimization problems which depend on the state of the system.
DP introduces the value function to characterize this dependency.

In this section we introduce the concept of value function which is associ-
ated to optimal control problems and show how to derive the Hamilton-Jacobi-
Bellman equation (which is satisfied by the value function) from the Principle
of Optimality. This is done for a simple example of minimum-time optimal
control. For a thorough treatment of this problem see [3], pag. 239.

Consider the following model of a system whose state x evolves in <n:

ẋ(t) = f(x, u), u ∈ U ⊂ Rp (34)

where f satisfies the conditions for existence and uniqueness of the ordinary
differential equation and u is our control.

Assumption 1 In what follows we assume that the system (15) is locally con-
trollable.

Consider a bounded and closed set S with non-empty interior.
Let tf denote the first time when the trajectory of the system hits the target

set S.

tf = inf{t : x(t) ∈ S} (35)

Exercise 27 Why is the assumption on local controllability useful?

Consider the problem.

Problem 1 Let x(0) = x0. Find:

inf
u(.)

tf (36)

where u(.) : R→ Rp is an admissible control function.
Under the assumptions for system and for the target set the infimum is

attained at a time T ∈ R.
Introduce the value function T : Rn → R as

T (x) = inf
u(.)

tf (37)

Take an optimal trajectory departing from x(0) = x0. Consider a pair
(x∗, t∗) on this trajectory.



Exercise 28 Consider a new optimization problem when the trajectory of the
system departs from x(0) = x∗. Find:

inf
u(.)

tf (38)

What can you say about the solution of this problem?

Consider the pair (x∗, t) on a trajectory departing from (x0, 0). The principle
of optimality (PO) for problem (1) can be expressed as follows:

T (x0) ≤ t + T (x∗) (39)

Equality holds for optimal trajectories. The interpretation is quite simple.
If a point is on the optimal trajectory, it is optimal to stay on the optimal
trajectory.

Assumption 2 The value function T is differentiable.

The Hamilton-Jacobi-Bellman (HJB) equation for this problem can be in-
terpreted as an infinitesimal version of the principle of optimality. For this
purpose divide both terms of equation (39) by t and take limits when t → 0.
Keep in mind that we are taking the total derivative of T with respect to t.
This means that first we take the derivative with respect to x and multiply it
by the derivative of x with respect to time.

inf
u∈U

−∇T (x0) · f(x, u) = 1 (40)

This is a partial differential equation. The boundary condition is T (x) =
0, x ∈ S.

Exercise 29 Derive the HJB equation (40) for the time optimal control problem
(Problem 1). Hint: use an infinitesimal version of the PO.

4.6.4 Value functions for reach set computations

In this section we use the approach from [16] to formulate the problem of reach
set computation as an optimization problem (see [11], [12], [2], [1]). The key
observation is that the reach set is the level set of an appropriate value function
[16]. To illustrate this point consider the following value function:

V (τ, x) = min
u(.)

{d2(x(tf ),Xf )|x(τ) = x}

V (tf , x) = d2(x,Xf ) (41)



where u(.) is an admissible control function defined for [t0, τ ] and d(x(tf ),Xf )
is the Euclidean distance between the state of the system at time t0 and the
initial set X0 for a trajectory starting at (τ, x). Obviously, (τ, x) belongs to the
forward reach set if this distance is zero. But this also means that the forward
reach set is the zero level set of the value function V :

W [t0, τ,X0] = {x|V (τ, x) ≤ 0} (42)

Exercise 30 Consider the dynamic system (3) and X0. Given a point (x,t),
where t ≥ t0, can you devise a test to check if this point belongs to R[t, t0, X0]

The question now is how to compute the value function. This is not a trivial
matter. The idea is to transform this global problem into a local one. We do
this by transforming the global problem onto a partial differential equation.

In general, the value function V can be computed through the generalized
Hamilton-Jacobi-Bellman (HJB) equation. We can only do this if the value
function satisfies the principle of optimality.

Theorem 1 The value function V satisfies the principle of optimality:

V (τ, x|V (t0, .)) = V (τ, x|V (t, .|V (t0, .))), t0,≤ t ≤ τ (43)

Basically the principle of optimality states that the value function satisfies
a semi-group property. The value function inherits this property from the semi-
group property of the reach set.

An infinitesimal version of the principle of optimality leads to Hamilton-
Jacobi-Bellman equation:

Vt(t, x) + max
u∈U(t)

(Vx(t, x) · f(t, x, u)) = 0 (44)

V (t0, x) = 0, x ∈ X0

where Vt, Vx represent the corresponding sub-differentials. This results from the
fact that the value function is generally non-differentiable, and we have to use
generalized notions of derivatives.



Since V is non-differentiable the usual notion of solution of a partial differen-
tial equation does not apply. We consider generalized “viscosity”, or equivalent
concepts, of solutions for this equation (see [7, 10, 21, 3]).

Theorem 2 The value function V is the unique viscosity solution of (44).

Next we apply the same technique to the calculation of the forward reach set
with state constraints. The state constraints are expressed as before in equation
(20). Consider the following value function.

V (τ, x) = min
u(.)

max{ max
s∈[t0,τ ]

{φ(τ, x(s)), φ0(x(t0))}, x(τ) = x} (45)

where u(.) is a feasible control function (u(s) ∈ U(s), s ∈ [t0, τ ]).
The sub-level set of this value function given by the following equation:

R(τ, x) = {x : V (τ, x) ≤ 1} (46)

Using the techniques from [16] we can derive the HJB equation for this
problem. First we introduce some notation:

H(t, x, y, V, u) = Vt(t, x, y) + (Vx(t, x, y) · f(t, x, y, u)) (47)
The HJB for this problem is given by:

Vt(t, x) + max
u∈U(t)

(Vx(t, x) · f(t, x, u)) = 0 (48)

when V (t, x) 6= φ(t, x)

max
u∈U

{min(H(t, x, y, V, u),H(t, x, y, φ, u)), u ∈ U}
when V (t, x) 6= φ(t, x)

V (t0, x) = max(φ(t0, x), φ0(t0, x))

Exercise 31 Why is this approach to reach set computation so interesting?

In this approach we can phrase all of the problems of reach set computation in
terms of the solution of a Hamilton-Jacobi-Bellman (HJB) or Hamilton-Jacobi-
Bellman-Isaacs partial differential equation. See [13, 14, 15, 16] for a detailed
description of the application of HJB or of HJBI to reach set computation.



4.6.5 A direct method

Consider the following dynamic system with state x ∈ R controlled by two
adversary control inputs u and v:

ẋ = f(t, x, u, v), u ∈ P, v ∈ Q (49)

where the following hypotheses hold:

H1) f is continuous in all variables and t ∈ T = (−∞, θ].

H2) For any bounded region D in R × R, f satisfies the following Lipschitz
condition:

‖f(t, x1, u, v)− f(t, x2, u, v)‖ ≤ λ(D)‖x1 − x2‖

for any (t, xi) ∈ D, (u, v) ∈ P ×Q

H3) For any (t, x, u, v) ∈ T ×R× P ×Q the following inequality, where σ is a
constant, is valid:

xf(t, x, u, v) ≤ σ(1 + ‖x‖2)

H4) For any (t, x) ∈ T × R and s ∈ R the so-called ‘saddle point condition in
a small game’ is valid1:

min
u∈P

max
v∈Q

sf(t, x, u, v) = max
v∈Q

min
u∈P

sf(t, x, u, v)

Consider the target set M:

M = {(t, x) ∈ T × R : t = θ, l1 ≤ x ≤ l2}

Now consider a game with two players controlling u and v respectively. The
objective of u is to steer x to the target set M. The objective of v is exactly the
opposite. More formally, consider the following cost functional:

γ(x(t0, x0, U(.), V (.))) =
{

0 if x(.) intersects M
1 otherwise

where U(.) is a control function for the first player and V(.) is a control
function for the second player. Note that γ(x(t0, x0, U(.), V (.))) = 0 means
that the trajectory x(.) departing from (t0, x0) under controls U(.) and V (.)
enters the target set M at time θ.

The adversarial aspect of control is captured in an optimization problem
where u seeks to minimize γ and v seeks to maximize it. Under the hypotheses
(H1-4) this game has a value Vg(t0, x0). This means that:

1This condition holds, for example, for linear systems.



Vg(t0, x0) = inf
U(.)

sup
V (.)

γ(x(t0, x0, U(.), V (.))) =

sup
V (.)

inf
U(.)

γ(x(t0, x0, U(.), V (.))) (50)

Moreover, the game has a saddle point, i.e., there exist strategies U∗(.), V ∗(.)
such that for any feedback strategies U(.), V (.) the following holds:

γ(x(t0, x0, U
∗(.), V (.))) ≤ γ(x(t0, x0, U

∗(.), V ∗(.)))
≤ γ(x(t0, x0, U(.), V ∗(.))) (51)

This is summarized in the theorem on an ‘alternative’ from [10]:

Theorem 3 For any closed set M and for any initial position (t0, x0), one and
only one of the following assertions is valid: 1) The value of the game is 0
and any (U∗, V ) is a saddle point (V is any feedback strategy); 2) The value
of the game is 1. Furthermore, the optimal strategies U∗ and V ∗ are feedback
strategies.

The notion of u(v)-stable bridge is a very important one in the setting of [10].
Informally, a u(v)-stable bridge W0(W ) is the set of all points (t0, x0) such that
there exists an optimal strategy U∗(V ∗) that keeps the motion of the system
departing from (t0, x0) inside (outside) W0(W ) until M is reached (avoided).

In this problem setup it is possible to derive a closed form for the u-stable
bridge. First set:

f1(t, x) := max
u∈P

min
v∈Q

f(t, x, u, v) (52)

f2(t, x) := min
u∈P

max
v∈Q

f(t, x, u, v) (53)

Consider solutions w1 and w2 to the following ODEs:

ẇ1(t) = f1(t, w1(t)), w1(θ) = l1 (54)
ẇ2(t) = f1(t, w2(t)), w2(θ) = l2 (55)

The u-stable bridge is the set:

W0 := {(t, x) ∈ T × R : t ∈ T∗, x ∈ [w1(t), w2(t)]}

where T∗ = [τ∗, θ], τ∗ = sup{t ∈ T : w2(t) > w1(t)}.
This construction has a simple and appealing geometric interpretation. Keep

in mind that the state evolves in R. Equations (54,55) describe the evolution
(in reverse time) of the boundaries (l1, l2) of the target set M when both players
adopt optimal control strategies (given by the argmax and argmin in equations
(52,53)). Now, consider an initial state (t,x) in the relative interior of W0. Then,
apply any control strategy U until the state reaches the boundary of W0.



From this point onwards apply the optimal control strategies to both players.
Then, by construction of w1 and w2 the state slides along one of the boundaries
of W0 (w1 or w2) until it reaches l1 or l2, respectively, at time θ.

This construction can be extended to a MIMO problem when the target set
is a closed ball centered at the origin since this involves working with a norm
(1-dim function).
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