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Practical problem: rendezvous
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Practical problem: reaching a target
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Practical problem: avoiding obstacle
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Practical problem: staying inside a set
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Examples
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Reach set of a linear system

J. Almeida and F. Lobo Pereira, Reach set computation for linear systems
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8th order system reach set
Techniques
• Ellipsoidal calculus and HJB

8th order system reach set
• Projections on 2D spaces

• No disturbance

Exact reach set

Inner ellipsoidal approximation

Outer ellipsoidal approximation

A. Kurzhanskii and P. Varaiya,  Ellipsoidal techniques for reachability analysis, LNCS, 2000 
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Reach set under disturbances
Techniques
• Ellipsoidal calculus

Reach set computation under 
uncertainty

A. Kurzhanskii and P. Varaiya,  Ellipsoidal techniques for reachability analysis, LNCS, 2000 



Why are we interested in reach 
sets?
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Properties and reachability

Selected properties
• Safety: the system does not enter some set

• Attainability: the system enters some set

• Invariance: the system does not leave some set 

Checking those amounts to solving reachability 
problems

Hybrid systems in which a problem can be solved 
algorithmically in a finite number of steps are called 
decidable

The general problem of reachability for hybrid systems 
is undecidable. 

The knowledge of the reach set makes controller synthesis easier



How to compute reach sets?
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Reach set computation

Purely symbolic methods
1. based on the existence of analytic solutions to the 

differential equations 

2. the representation of the state space in a decidable theory 
of the real numbers.

Methods that combine
1. numeric integration of differential equations

2. symbolic representations of approximations of reach set 
typically using polyhedra or ellipsoids



Reach sets and the maximum 
principle
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Interpretation
R(X0,s,t0) Reach set at  time s 
starting from X0 at time t0

Maximum principle

P. Varaiya, Reach set computation using optimal control,

Proceedings of the KIT Workshop on Verification of hybrid systems, Grenoble, 1998

X0

Time = 0

x*(0)

l*(0)
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Time = s
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Optimal control problem
Max cx(T)
dx/dt(t) = A x(t) + u(t), t in [0,T]
u(t) belongs to U
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Evolution of the reach set

J. Almeida and F. Lobo Pereira, Reach set computation for linear systems



Reach sets and the value function
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System
• dx/dt(t) = f(t,x,u), u(t) in U(t)

• x(t0) = x0 in X0

Value function
• V(t,x) = minu{d2 (x(t0),X0) | x(t)=x}

Interpretation 
• R(X0,t,t0) = {x: V(t,x) <= 0}

A. Kurzhanskii and P. Varaiya,  Ellipsoidal techniques for reachability analysis, LNCS, 2000 

X0

x(t)=x
x(t0)

R(t, t0, X0)

d

Interpretation

The reach set is given by the level sets of this value function
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Value functions: applicable to the general reachability 
problem

• Under closed and open loop

• Under uncertainty

Solution
• Dynamic programming

• Hamilton-Jacobi-Bellman equation

Ellipsoidal approximations 

R(t,t0,X0)

Outer approximations

Inner approximations

Approximation

Main difficulty

A. Kurzhanskii and P. Varaiya, On reachability under uncertainty

To appear in Siam Journal of Control and Optimization



A constructive procedure
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Example

Informal specifications
• UAV1 is required to reach a ball of radius r centered at UAV2 

at time θ

• UAV1 does not know what UAV2 is doing

• No communications

• UAV1 knows the position of UAV2

Worst case scenario
• UAV2 tries to escape “capture”

Pursuit-evation game UAV2

UAV1

r
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2 D dynamics with acceleration inputs
• dx1/dt = A1x1+ B1u |u(t)| ≤ β1

• dx2/dt = A2x2+ B2 v |v(t)| ≤ β2

• x1 = [x11,x12,x13,x14] T

• x = [x1,x2]T  in R8 

• dx/dt(t) = Ax + Bu + Cv

Formal specifications
• Capture set

- M = {(θ,x): (x11-x21)2+ (x12-x22) 2 ≤ r}
• Time interval

- T = (0, θ]
• State space

- N = (0, θ] x R8

( )

( ) 12414

42

11313

31

muxx
xx

muxx
xx

+−=
=

+−=
=

α

α

&
&
&
&

UAV1

UAV1

UAV2

r



USTL – Underwater Systems and Technology Laboratory

Background (1-dim dynamics)

Simple example
• dx/dt(t) = r1(t)u(t) + r2(t)v(t), |u(t)| ≤ β1,|v(t)| ≤ β2, T = [0, θ]

Antagonistic players
• Consider

M = {(t,x): t = θ, |x| ≤ r}

• u wins if x reaches M

• v wins if x does not reach M

• No communication

• Each vehicle knows the position of the other one

Problem
• What is the set W of positions (t,x) such that there is a winning 

strategy for u (safe set for u)?

t

x

θ

r 

-r 0

v wins

u wins

M
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Differential games formulation

N.N. Krasovskii and A.I. Subbotin, Game-theoretical control problems, Springer-Verlag, 1988

jtasso
Sticky Note
errata: replace 0 by 1 and 1 by 0
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Solution methodology
(1-dim case)
• dx/dt(t) = r1(t)u(t) + r2(t)v(t), |u(t)| ≤ β1,|v(t)| ≤ β2, T = [0,θ]
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(1-dim case)
• dx/dt(t) = r1(t)u(t) + r2(t)v(t), |u(t)| ≤ β1,|v(t)| ≤ β2, T = [0,θ]

• M = {(t,x): t = θ, |x| ≤ r}

Define

• Symmetry in dx/dt

• Limit case: both u and v do their best

• ftss consider |r1(τ)| = r1 and |r2(τ)| = r2

W set of states from which v looses the game (u wins)
• W = {(t,x): t in T*, |x| <= ρ (t)} where

- T* = T if ρ (t) >=0, for all t in T 
- T* = [τ∗, θ] where τ∗ = sup {t in T: ρ (t) <0}

t

x

θ

r 

-r 0 W

Slope r1b1 -r2b2
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Transformation for n-dim case
)()()()()()()( **** tVCtuBtytCvtButAxtx +=⇒++= &&
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Example

Calculate profiles of ρ0 as a function of the 
parameters

r*=0, β2=24, α1=3.5, α2=1 (follower has more friction)

Plot ρ(t) for different values of β1 (= 24, 48, 96).

For β1 = 24, not possible.

For β1 = 48, possible for small set of IC.

For β1 = 96, possible for much larger set.
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Example

Maximal u-Stable Bridge Construction
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