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Ingredients of the Optimal Control Problem

o Objective functional - Criterium to quantify the performance of the system.

o Systems dynamics - The state variable characterizes the evolution of the system
overtime. Physically, the attribute “dynamic” is due to the existence of energy
storages which affect the behavior of the system.

Once specified a control strategy and the initial state, this equation fully determines
the time evolution of the state variable.

o Control Constraints - The control variable represents the possibility of intervening
in order to change the behavior of the system so that its performance is optimized.

o Constraints on the state variable - The satisfaction of these constraints affect the
evolution of the system, and restricts the admissible controls.
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Applications

Useful for optimization problems with inter-temporal constraints.

o Management of renewable and non-renewable resources

o Investment strategies,

o Management of financial resources,

o Resources allocation,

o Planning and control of productive systems (manufacturing, chemical processes,..),

o Planning and control of populations (cells, species),

o Definition of therapy protocols,

o Motion planning and control in autonomous mobile robotics

o Aerospace Navigation,

o Synthesis in decision support systems,

o Etc . . .
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The General Problem

(P ) Minimize g(x(1))

by choosing (x, u) : [0, 1] → IRn × IRm

satisfying : ẋ(t) = f (t, x(t), u(t)), [0, 1] L-a.e., (1)

x(0) = x0, (2)

u(t) ∈ Ω(t), [0, 1] L-a.e.. (3)

(P ′) Minimize {g(z) : z ∈ A(1; (x0, 0))}
A(1; (x0, 0)) - the set in IRn that can be reached at time 1 from x0 at time 0.
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General definitions

Dynamic System - System whose state variable conveys its past history. Its future
evolution depends not only on the future (“inputs”) but also on the current value of
the state variable.

Trajectory - Solution of the differential equation (1) with the boundary condition
(2) and for a given controlo function satisfying (3).

Admissible Control Process - A (x, u) satisfying the constraints (1,2,3).

Attainable set - A(1; (x0, 0)) is the set of state space points that can be reached
from x0 with admissible control strategies

A(1; (x0, 0)) := {x(1) : for all admissible control processes (x, u)}
Boundary process - Control process whose trajectory (or a given function of it)
remains in the boundary of the attainable set (or a given function of it).

Local/global minimum - Point for which the value of the objective function is lower
than that associated with any other/other within a neighborhood feasible point.
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Types of Problems

o Bolza - g(x(1)) +

∫ 1

0

L(s, x(s), u(s))ds.

o Lagrange -

∫ 1

0

L(s, x(s), u(s))ds.

o Mayer - g(x(1)).

Other types of constraints besides the above:

o Mixed constraints - g(t, x(t), u(t)) ≤ 0, ∀t ∈ [0, 1].

o Isoperimetric constraints,

∫ 1

0

h(s, x(s), u(s))ds = a.

o Endpoints and intermediate state constraints, y(1) ∈ S.

o State constraints, hi(t, x(t)) ≤ 0 para todo o t ∈ [0, 1], i = 1, . . . , s.
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Overview of Main Issues - Necessary Conditions of Optimality

Let x∗ be an optimal trajectory for (P ). Then, ∃ a.c. p : [0, 1] → IRn, satisfying

−ṗT (t) = pT (t)Dxf (t, x∗(t), u∗(t)), [0, 1] L-a.e., (4)

−pT (1) = ∇xg(x∗(1)). (5)

where u∗ : [0, 1] → IRm is a control strategy s.t. u∗(t) maximizes

v → pT (t)f (t, x∗(t), v) in Ω(t), [0, 1] L-a.e.. (6)

(6) eliminates the control as it defines implicitly

u∗(t) = ū(x∗(t), p(t)).

Then, solving (P ) amounts to solve

−ṗT (t) = pT (t)Dxf (t, x∗(t), ū(x∗(t), p(t))), p(1) = −∇xg(x∗(1)),

ẋ∗(t) = f (t, x∗(t), ū(x∗(t), p(t))), x(0) = x0.
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Algorithms

Step 1 − Select an initial control strategy u.

Step 2 − Compute a pair (x, p), by using (1, 2, 4, 5).

Step 3 − Check if u(t) ssatisfies (6).

If positive, the algorithm terminates.

Otherwise, proceed to Step 4.

Step 4 − Update the control in order to lower the cost function.

Step 5 − Prepare the new iteration and goto Step 2.
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Overview of Main Issues - Existence of Solution
Necessary for the consistency of the optimality conditions.

o Let N ∈ IN be the largest natural number, then N ≥ n, ∀n ∈ IN .

o In particular, the inequality should hold for n = N2.

o Dividing both sides of N2 ≤ N by N, one gets N ≤ 1.

Existence conditions: Lower semi-continuity of the objective function and the
corresponding compactness of the attainable set.

H0 g is lower semi continuous.

H1 Ω(t) is compact ∀t ∈ [0, 1] and t → Ω(t) is Borel mensurable.

H2 f is continuous in all its arguments.

H3 |f (t, x, u)− f (t, y, u)| ≤ Kf‖x− y‖.
H4 ∃K > 0 : |x · f (t, x, u)| ≤ K(1 + ‖x‖2) for all the values of (t, u).

H5 f (t, x, Ω(t)) is convex ∀x ∈ IRn e ∀t ∈ [0, 1].
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Overview of Main Issues - Sufficient Conditions of Optimality

Let V : [0, 1]× IRn → IR be a smooth function s.t. in the neighborhood of (t, x∗(t)),

V (1, z) = g(z),

V (0, x0) ≥ g(x∗(1)),

Vt(t, x
∗(t))− sup{Vx(t, x

∗(t))f (t, x∗(t), u) : u ∈ Ω(t)} = 0, [0, 1] L-a.e., (7)

where x∗ is solution to (1) with u = u∗ and x∗(0) = x0, then the control process
(x∗, u∗) is optimal for (P ).

V - solution to Hamilton-Jacobi-Bellman equation (7) - is the verification function
which under certain conditions coincides with the value function.

Although these conditions have a local character, there are results giving conditions of
global nature.

New types of solutions - Viscosity, Proximal, Dini, ... - generalizing the classic concept.
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An exercise on the separation principle applied to the following problems:

• Linear cost and affine dynamics.

• The above with affine endpoint state constraints.

• Minimum time with affine dynamics.

• Linear dynamics and quadratic cost.
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The Basic Linear Problem

(P1) Minimize −cTx(1)

by choosing (x, u) : [0, 1] → IRn × IRm s.t.:

ẋ(t) = A(t)x(t) + B(t)u(t), [0, 1] L-a.e.,

x(0) = x0 ∈ IRn,

u(t) ∈ Ω(t), [0, 1] L-a.e.,

being A ∈ IRn×n, B ∈ IRn×m, and c ∈ IRn.

Example of control constraint set: Ω(t) :=

m∏

k=1

[αk, βk].

Given x0 and u : [0, 1] → IRm, and, being Φ(b, a) := e
∫ b
a A(s)ds, we have:

x(t) = Φ(t, t0)x0 +

∫ t

t0

Φ(t, s)B(s)u(s)ds.
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Maximum Principle

The control strategy u∗ is optimal for (P1) if and only if u∗(t) maximizes

v → pT (t)B(t)v, in Ω(t), [0, 1] L-a.e.,

where p : [0, 1] → IRn is an a.c. function s.t.:

−ṗT (t) = pT (t)A(t), [0, 1] L-a.e.

p(1) = c.

For this problem, the Maximum Principle is a necessary and sufficient condition.

Geometric Interpretation:

o Existence of a boundary control process associated with the optimal trajectory.

o The adjoint variable vector is perpendicular to the attainable set at the optimal
state value for all times.
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Geometric Interpretation

Xo

X2

X1

t

t1

A(t1,0,x0)

p(t1 )

X*(t1)

A(t2 ,t1,x*(t1))

p(t2 )

t2
X*(t2)

x*(t)

Fig. 2. Relation between the adjoint variable and the attainable set (inspired in [17])

Proposition

Let cTx∗(1) ≥ cTz, ∀z ∈ A(1; (x0, 0)) and c 6= 0, i.e.,

−pT (1) = c is perpendicular to A(1; (x0, 0)) at x∗(1) ∈ ∂A(1; (x0, 0)).

Then, ∀t ∈ [0, 1),

o x∗(t) ∈ ∂A(t; (x0, 0)),

o −pT (t) is perpendicular to A(t; (x0, 0)) at x∗(t).
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Analytic Interpretation

It consists in showing that the switching function

σ : [0, 1] → IRm := −pT (t)B(t)

is the gradient of the objective functional J(u) := −cTx(1) relatively to the value of
the control function at time t, u(t).

By computing the directional derivative and using the time response formula for the
dynamic linear system, we have:

J ′(u; w) =

∫ 1

0

σ(t)w(t)dt =< ∇uJ(u), w > .

Here, ∇uJ(u) : [0, 1] → IRm is the gradient of the cost functional w.r.t. to control,
and < ·, · > is the inner product, in the functional space.
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Deduction of the Maximum Principle

Exercise

o Express the optimality conditions as a function of the state variable at the final
time.

Check that {x∗(1)} and A(1; (x0, 0)) fulfill the conditions to apply a Separation
Theorem.

After showing the equivalence between the trajectory optimality and the fact of
being a boundary process

Observe that (cTx∗(1), x∗(1)) ∈ ∂{(z, y) : z ≥ cTy, y ∈ A(1; (x0, 0))}
write the condition of perpendicularity of the vector c to A(1; (x0, 0)).

o Express the conditions obtained above in terms of the control variable at each
instant in the given time interval by using the time response formula.

In this step, the control maximum condition, the o.d.e. and the boundary
conditions satisfied by the adjoint variable are jointly obtained.
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Example

Let t ∈ [0, 1], u(t) ∈ [−1, 1], A =




0 1 0
0 0 1
6 −11 6


, B =




0
0
1


, e C =

[
1 0 0

]
.

By writing eAτ = α0(τ )I + α1(τ )A + α2(τ )A2, where τ = 1− t, we get

σ(t) := pT (t)B = Ce(A(1−t))B = α2(1− t).

The eigenvalues of A - roots of the characteristic polynomial de A,
p(λ) = det(λI − A) = 0. By Cayley-Hamilton theorem,

α0(τ ) + α1(τ ) + α2(τ ) = eτ

α0(τ ) + 2α1(τ ) + 4α2(τ ) = e2τ

α0(τ ) + 3α1(τ ) + 9α2(τ ) = e3τ .

Thus,

α2(τ ) =
e3τ − 2e2τ + eτ

2
.

Since σ(t) > 0, ∀t ∈ [0, 1], we have u∗(t) = 1, ∀t ∈ [0, 1].
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The Linear problem with Affine Endpoint State Constraints

(P2) Minimize − cTx(1)

by choosing (x, u) : [0, 1] → IRn × IRm s.t.:

ẋ(t) = A(t)x(t) + B(t)u(t), [0, 1] L-a.e.,

x(0) ∈ X0 ⊂ IRn,

x(1) ∈ X1 ⊂ IRn,

u(t) ∈ Ω(t), [0, 1] L-a.e.,

being Xi, i = 0, 1, given by Xi := {z ∈ IRn : Diz = ei}.
The pair (x∗(0), u∗) is optimal for (P2) if

(x∗(0), x∗(1)) ∈ X0 ×X1, u∗(t) ∈ Ω(t) [0, 1] L-a.e., and

cTx∗(1) ≥ cTz ∀ z ∈ A(1; (X0, 0)) ∩X1,

being A(1; (X0, 0)) :=
⋃

a∈X0

A(1; (a, 0)).
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Maximum Principle

These conditions are necessary and sufficient.

Let (x∗, u∗) be an admissible control process for (P2), i.e., s.t. x∗(0) ∈ X0,
u∗(t) ∈ Ω(t) and x∗(1) ∈ X1. Then:

A) Necessity

If (x∗(0), u∗) is optimal, then, ∃p : [0, 1] → IRn e λ ≥ 0, s.t.:

λ + ‖p(t)‖ 6= 0, (8)

−ṗT (t) = pT (t)A(t), [0, 1] L-a.e., (9)

p(1)− λc is perpendicular to X1 at x∗(1), (10)

p(0) is perpendicular to X0 at x∗(0), (11)

u∗(t) maximizes the map v → pT (t)B(t)v on Ω(t), [0, 1] L-a.e.. (12)

B) Sufficiency

If (8)-(12) hold with λ > 0, then (x∗(0), u∗) is optimal.
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Geometric Interpretation

X 1

A(1;0 ,X0)

X1

x*(1)

cTx *(1 )

S a

cTx

S b

Fig. 2. Separation of the optimal state at the final time subject to affine constraints (inspired from [17]).
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Proof Sketch of the Necessity

The optimality conditions applied at (x∗(0), u∗) imply ∃λ ≥ 0 and q ∈ IRn s.t.:

λ + ‖q‖ 6= 0 (13)

q is perpendicular to X1 at x∗(1). (14)

(λc + q)Tx∗(1) ≥ (λc + q)Tx∀ x ∈ A(1; (X0, 0)). (15)

Φ(1, 0)T (λc + q) is perpendicular to X0 at x∗(0). (16)

Let (λ, q) be a vector defining the hyperplane separating the sets
Sa := {sa = (ra, xa) : ra > cTx∗(1), xa ∈ X1},
Sb := {sb = (rb, xb) : rb = cTxb, xb ∈ A(1; (X0, 0))}.

λra + qTxa ≥ (λc + q)Txb, ∀xb ∈ A(1; (X0, 0)), ∀xa ∈ X1, ∀ra > cTx∗(1).

o (13) ⇐= non-triviality of the separator, ra arbitrary and xa = x∗(1).

o (15) ⇐= choice of xa = x∗(1) and the arbitrary approximation of ra a cTx∗(1).

o (14) ⇐= ra arbitrarily close to cTx∗(1), xa arbitrary in X1 and xb = x∗(1).

o (16) ⇐= (15) with {Φ(1, 0)[z − x∗(0)] + x∗(1) : z ∈ X0} ⊂ A(1; (X0, 0)).
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Proof Sketch of the Sufficiency

For all x ∈ A(1; (X0, 0)), we have, ∀z ∈ X0, ∀v ∈ A(1; (0, 0)):

(λc + q)Tx = pT (1)x

= pT (1)[Φ(1, 0)z + v]

= pT (1)Φ(1, 0)[z − x∗(0)] + pT (1)Φ(1, 0)x∗(0) + pT (1)v

= pT (0)[z − x∗(0)] + pT (1)[Φ(1, 0)x∗(0) + v],

Note that the first parcel is null and that the second one is in
A(1; (x∗(0), 0)) ⊂ A(1; (X0, 0)).
Thus, (λc + q)Tx ≤ pT (1)x∗(1) = (λc + q)Tx∗(1).

Since x ∈ A(1; (X0, 0)) ∩X1, q is perpendicular to X1 at x∗(1).
Hence, the sufficiency.
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Example - Formulation

Minimize cTx(1) + α0

∫ 1

0

u(t)dt

where ẋ(t) = Ax(t) + Bu(t), [0, 1] L-a.e.

x1(0) + x2(0) = 0

x1(1) + 3x2(1) = 1

u(t) ∈ [0, 1], [0, 1] L-a.e.,

being α0 > 0, A =

[
0 1
−2 3

]
, B =

[
0
1

]
, c =

[
1
1

]
.

a) Determine the values of α0 for which there exist optimal control switches within the
time interval [0, 1].

b) Determine the switching function as a function of α0.
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Example - solution clues

For a given λ ∈ {0, 1}, the system of equations p̄ = p(1)− λc is perpendicular to X1,
p(0) is perpendicular to X0, and pT (0) = pT (1)eA fully determine the adjoint variable.

Let λ = 1. Thus, we have

eAt =

[
2et − e2t e2t − et

−2(e2t − et) 2e2t − et

]
, and p(1) =

[
1 + 1

3p1

1 + p1

]
e p(0) =

[
p0

p0

]
.

Note that these last two relations determine p0 e p1.

To put the problem in the canonical form, add a component to the state variable, and
the maximum condition becomes:

u∗(t) maximizes, in [0, 1], the map v → [pT (1)eA(1−t)B − α0]v.

There exists an interval of values of α0 for which the switching point is in (0, 1).
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The Minimum Time Problem

(P3) Minimize T

by choosing (x, u) : [0, T ] → IRn × IRm such that:

ẋ(t) = A(t)x(t) + B(t)u(t), [0, T ] L-a.e.,

x(0) = x0 ∈ IRn,

x(T ) ∈ O(T ) ⊂ IRn,

u(t) ∈ Ω(t), [0, T ] L-a.e.,

being T the final time and the multifunction O : [0, T ] ↪→ P(IRn) define the target to
be attained in minimum time, being P(IRn) the set of subsets in IRn.

Typically, this multi-function is continuous and takes compact sets as values. For
example, O(t) = {z(t)}, being z : [0, 1] → IRn a continuous function.

Generalization: Objective function defined by g(t0, x(t0), t1, x(t1)); Terminal
Constraints given by (t0, x(t0), t1, x(t1)) ∈ O ⊂ IR2(n+1).
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Geometric Interpretation

t

x0

x* (t*)=z(t*)

z(t )

0

x 2

x 1

t 1

t*
x* (t)

A (t1; 0,x 0)
A (t*;0 ,x 0)

x *(t1)

Fig. 3. Determination of minimum time for problem (P3) (inspired on [17]).

The optimal state at t∗ is the intersection of sets O(t∗) and A(t∗; (x0, 0)), and, thus,
necessarily in the boundary of both sets.
Time t∗ is given by

inf{ t > 0 : O(t) ∩ A(t; (x0, 0)) = {x∗(t)}}.
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Maximum Principle

Let (t∗, u∗) be optimal.
Then, there exists h ∈ IRn e p : [0, t∗] → IRn a.c. s.t.

‖p(t)‖ 6= 0, (17)

−ṗT (t) = pT (t)A(t), [0, t∗] L-a.e., (18)

p(t∗) = q. (19)

u∗(t) maximizes v → pT (t)B(t)v em Ω(t), [0, t∗] L-a.e., (20)

x∗(t∗) minimizes z → hTz in O(t∗). (21)

Deduction: By geometric considerations, ∃h ∈ IRn, h 6= 0, simultaneously
perpendicular to A(t∗; (x0, 0)) and to O(t∗) em x∗(t∗), i.e., ∀z ∈ O(t∗) and
∀x ∈ A(t∗; (x0, 0)),

hTz ≤ hTx∗(t∗) ≤ hTx.

From here, we have (21) and, by writing x and x∗(t∗), as the state at t∗ as response of
the system, respectively, to arbitrary admissible control and the optimal control, (20),
we obtain the optimality conditions.
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The Linear Quadratic Regulator Problem

(P4) Minimize
1

2
xT (1)Sx(1) +

1

2

∫ 1

0

[
xT (t)Q(t)x(t) + uT (t)R(t)u(t)

]
dt,

by choosing (x, u) : [0, 1] → IRn × IRm such that:

ẋ(t) = A(t)x(t) + B(t)u(t), [0, 1] L-a.e.,

x(0) = x0 ∈ IRn.

S ∈ IRn×n and Q(t) ∈ IRn×n are positive semi-definite, ∀t ∈ [0, 1], and
R(t) ∈ IRm×m is positive definite, ∀t ∈ [0, 1].
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Optimality Conditions.

The solution to (P4) is given by

u∗(t) = −R−1(t)BT (t)S(t)x∗(t)

where S(·) is solution to the Riccati equation:

−Ṡ(t) = AT (t)S(t) + S(t)A(t)− S(t)B(t)R−1(t)BT (t)S(t) + Q(t), ∀t ∈ [0, 1], (22)

S(1) = S. (23)

Observations:
(a) The optimal control is defined as a linear state feedback law.
(b) The Kalman gain, K(t) := R−1(t)BT (t)S(t), can be computed a priori.

Exercise: Given ‖a‖P = aTPa, show that the cost function on [t, 1] is:

1

2
xT (t)S(t)x(t) +

1

2

∫ 1

t

‖R−1(s)BT (s)S(s)x(s) + u(s)‖2
Rds.

Obviously that, for u∗, the above integrand becomes zero, and the optimal cost on

[0, 1] is equal to
1

2
xT

0 S(0)x0.
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Sketch of the Proof
Consider the pseudo-Hamiltonian (or Pontryagin function) to be optimized by the
optimal control value

H(t, x, p, u) := pT [Ax + Bu] +
1

2
[xTQ(t)x + uTR(t)u],

where p is the adjoint variable s.t.

−ṗ(t) = ∇xH(t, x∗(t), p(t), u∗(t)) = AT (t)p(t) + QT (t)x∗(t), [0, 1] L-a.e.,

p(1) = Sx∗(1).

Thus, from ∇uH(t, x∗(t), p(t), u)|u=u∗(t) = 0, we have u∗(t) = −R−1(t)BT (t)p(t), and
this enables the elimination of the control from the dynamics and the adjoint equation.

We have a system of linear differential equations in x and p. This, with p(1) = Sx(1),
implies the linear dependence of p in x, ∀t, i.e.,

∃S : [0, 1] → IRn×n s.t. p(t) = S(t)x(t).

After some simple algebraic operations, we conclude that S(·) satisfies (22) with the
boundary condition. (23).
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Example - Formulation

Let us consider the following dynamic system:

ẋ(t) = Ax(t) + Bu(t), [0, 1] L-a.e.,

x(0) = x0,

y(t) = Cx(t),

with the following objective function

1

2
xT (T )Sx(T ) +

1

2

∫ T

0

[‖y(t)− yr(t)‖2 + u(t)TR(t)u(t)
]
dt,

where S and R(t) are symmetric, positive definite matrices.

a) Write down the maximum principle conditions for this problem.

b) Derive the optimal control in a state feedback form when yr(t) = Cxr(t),
xr(0) = x0 and ẋr(t) = Arxr(t).
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Example - Solution

a) Let

H(t, x(t), u(t), p(t)) := pT (t) [Ax(t) + Bu(t)] +
[‖y(t)− yr(t)‖2 + uT (t)R(t)u(t)

]

where p : [0, 1] → IRn satisfies:

p(T ) = Sx∗(T ),

−ṗ(t) = AT (t)p(t) + CTC[x∗(t)− xr(t)].

The optimal control u∗ maximizes the map

v → pT (t)Bv + vTR(t)v, ∀t ∈ [0, T ].

From here, we conclude that

u∗(t) = −R−1(t)BTp(t).
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Example - Solution (cont.)
b) By considering

z :=

[
x
xr

]
, Ā :=

[
A 0
0 Ar

]
, B̄ :=

[
B 0
0 0

]
, S̄ :=

[
S 0
0 0

]
, Q̄ :=

[
CTC −CTC
−CTC CTC

]
,

we obtain the following auxiliary problem:

Minimize
1

2
zT (T )S̄z(T ) +

1

2

∫ T

0

[
zT (t)Q̄z(t) + uT (t)R(t)u(t)

]
dt,

such that z(0) =

[
x0

x0

]
, and ż(t) = Āz(t) + B̄u(t), [0, T ] L-a.e. .

From the optimality conditions, we have u∗(t) = −K1(t)x
∗(t)−K2(t)x

r(t), where

K1(t) = R−1(t)BTS1(t), K2(t) = R−1(t)BTS2(t),

and S1(·) e S2(·) satisfy, respectively,

−Ṡ1(t)=ATS1(t) + S1(t)A− S1(t)BR−1(t)BTS1(t) + CTC and

−Ṡ2(t)=ATS2(t) + S2(t)A− S1(t)BR−1(t)BTS2(t)− CTC

in the interval [0, T ], with S1(T ) = S and S2(T ) = 0.
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