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Multicriteria Decision-Aid
basic concepts and definitions

Manuel Matos
INESC Porto & FEUP
Portugal

The role of the decision maker
Deterministic, single-criterion problems

The DM participates only in the problem formulation
The rest of the process is mainly technical, leading (hopefully) to the 
optimal solution
The decision is embedded in the problem formulation

Deterministic
Single-Criterion

Problem

Optimization 
Process

Optimal 
Solution Implementation Outcome

Decision 
Maker
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Trivial decision problems
Minimize Cost Maximize profit z max z = 2x1 + x2

suj:   x1 + x2 ≤ 4
x1 + 2x2 ≤ 6
x1 ≤ 3
x1 , x2 ≥ 0
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z

n Cost
1 65
2 58
3 72
4 72
5 60
6 65
7 71
8 51
9 67
10 90
11 67
12 86
13 66
14 52
15 76

The role of the decision maker
Deterministic, multicriteria problems

The DM participates in the problem formulation
The structure of preferences of the DM must be incorporated in the 
problem
The process leads to the preferred solution

Deterministic
Multicriteria

Problem

Decision-Aid 
Process

Preferred
Solution

Decision 
Maker

Implementation Outcome
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Multicriteria problems
Minimize Cost
Maximize Reliability

Maximize profit z1

Maximize export z2

max z1 = 2x1 + x2

max z2 = x2

suj:   x1 + x2 ≤ 4
x1 + 2x2 ≤ 6
x1 ≤ 3
x1 , x2 ≥ 0
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z1z2

n Cost Reliability
1 65 0.994586
2 58 0.993677
3 72 0.995333
4 72 0.995531
5 60 0.994064
6 65 0.994641
7 71 0.995954
8 51 0.992906
9 67 0.995111
10 90 0.998551
11 67 0.995425
12 86 0.997641
13 66 0.994653
14 52 0.992848
15 76 0.995913

Some definitions
Dominated (inferior) alternative

A solution is dominated iff there exists another one that is better in 
at least one criterion, without being worse in any of the remaining 
criteria

Efficient (nondominated, noninferior, Pareto optimal) 
alternative

A solution is efficient iff it is not dominated by any other feasible 
alternative

Ideal
(Non feasible) solution that joins up the individual optima
Defined only in the attributes’ space
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Example
E dominates D

E is strictly better than D in both 
criteria

B dominates C
B is strictly better than C in the 
Cost criterion
B is not worse than C in any 
criterion

C and D are dominated

A, B and E are efficient
They are not dominated by any 
other alternative

NB:
A possible rank: B, C, E, D, A

Two attribute plot
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Minimize Cost
Maximize Reliability

Maximize profit z1

Maximize export z2

max z1 = 2x1 + x2

max z2 = x2

suj:   x1 + x2 ≤ 4
x1 + 2x2 ≤ 6
x1 ≤ 3
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Examples
Minimize Cost
Maximize Reliability

n Cost Reliability
1 65 0.994586
2 58 0.993677
3 72 0.995333
4 72 0.995531
5 60 0.994064
6 65 0.994641
7 71 0.995954
8 51 0.992906
9 67 0.995111
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12 86 0.997641
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Decision space vs attribute’s space
Decision space
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The role of the decision maker
Single or multicriteria problems under uncertainty

The DM participates in the problem formulation and in the 
uncertainty characterization
The preferred solution results from the incorporation in the problem 
of the structure of preferences of the DM, including its risk attitude

Single or 
Multicriteria

Problem under 
Uncertainty

Decision-Aid 
Process

Preferred
Solution

Decision 
Maker

Implementation

Uncertainty

Outcome

Different types of uncertainty
Probabilistic - Different 
scenarios with probabilities

Fuzzy - Vague or 
imprecise constraints

max z = 2x1 + x2

suj:   x1 + x2
˜ ≤ 4

x1 + 2x2
˜ ≤ 6

x1
˜ ≤ 3

x1 , x2 ≥ 0
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Cost
n C1 (0.1) C2 (0.6) C3 (0.3)
1 59 65 75

2 50 58 71

3 68 72 60
4 69 72 62

5 53 60 63
6 51 59 65

7 68 71 77

8 56 57 75
9 62 58 80
10 62 55 70
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The role of the decision maker
Problems under uncertainty

Sometimes, the risk attitude of the DM is incorporated in the form of 
a pre-defined decision paradigm (expected value, regret, etc.)
This leads generally to an optimization process

Problem under 
Uncertainty Solution

Decision 
Maker

Implementation

Uncertainty

Outcome

Decision
Paradigm

Optimization 
Process

Use of decision paradigms (or rules)
Original problem

Dominated solutions shown
Min E(Cost) Minimax Cost

Cost
n C1 (0.3) C2 (0.6) C3 (0.1)
1 59 65 75

2 50 58 71

3 68 72 60
4 69 72 62

5 53 60 63
6 51 59 65

7 68 71 77

8 56 57 75
9 62 58 80
10 62 55 70

Expected
n Cost
1 64.2

2 56.9
3 69.6

4 70.1
5 58.2

6 57.2
7 70.7

8 58.5
9 61.4
10 58.6

Minimax
n Cost
1 75

2 71
3 72

4 72
5 63
6 65
7 77

8 75
9 80
10 70
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Modeling
Identification of

Agents (DM, regulators, competitors, consumers, etc)
Relevant criteria (how to compare the outcomes of two alternatives)
Main uncertainties
Alternatives

in the case of multiattribute problems

Formulation of
Decision variables
External variables and parameters
Coherent family of criteria
Attributes

How to measure the satisfaction in each criterion
(e.g. Criterion – Minimize environmental impact. Attribute - %CO2

Modeling
A coherent family of criteria must be:

Exhaustive – All important points of view must be included 
Consistent – If two alternatives A and B are equivalent except in 
criterion k, and Ak is better than Bk, then A must be at least as good 
as B
Non-redundant - Eliminating a criterion leads to the violation of one 
of the preceding axioms

Other desirable proprieties
Legibility - The number of criteria used must be relatively low
Operationality - The family of criteria must be accepted by the 
stakeholders and the decision makers
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Modeling
Impact

Outcome of each particular decision (e.g. objective functions)

Physical model
How to evaluate feasibility (e.g. mathematical constraints)

Forecasting and estimation
Traditional (expected consumptions, wind power, etc)
Agents’ behavior (demand curves, offer curves, criteria, etc)

Uncertainty
Probability distributions
Scenarios (with or without probabilities)
Possibility distributions (fuzzy sets)

Alternatives
Alternatives may be explicit (MA) or implicit (MO)
To be a candidate, an alternative must be feasible

or almost feasible

Decisions are made based on the attributes of each 
alternative

A deterministic value

probability distribution

scenarios' values

possibility distribution

feasibility check

Attributes
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Multiattribute problems

Main characteristics
The alternatives are completely defined and assumed feasible
Attributes may be determinist, probabilistic, fuzzy (or mixed)
The problem may be: choice, ranking or sorting
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Attributes
may be

real numbers, intervals,
probability distributions,
possibility distributions, 
qualitative labels

Multiobjective problems

Main characteristics
Alternatives are not known in advance
Optimization procedures are always needed
May have a big number of constraints and decision variables
May not be completely described by the mathematical formulation
Planning problems are generally combinatory

( )

( )
0x
0xh
0g(x)

xf

≥
≤
=st:

min
x vector of decision variables

(may include integer or binary variables)
f(x) vector of objective functions
g(x) set of equality constraints
h(x) set of inequality constraints
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Multicriteria analysis - main approaches
Ensure that the DM follows a 
“rational” behavior
(Normative option)

Give some advice based on 
reasonable (but not 
indisputable) rules

Find the preferred solution 
from partial decisions about 
decision hypothesis

Prepare decision sets

Value functions, Utility 
theory, distance to the Ideal

The French School

Interactive methods

Generation methods
Filtering of efficient solutions

Dear Sir,

In the affair of so much importance to you, wherein you ask my advice, I cannot, for want of sufficient 
premises, advise you what to determine, but if you please I will tell you how. When those difficult cases 
occur, they are difficult, chiefly because while we have them under consideration, all the reasons pro and 
con are not present to the mind at the same time; but sometimes one set present themselves, and at other 
times another, the first being out of sight. Hence the various purposes or informations that alternatively 
prevail, and the uncertainty that perplexes us. To get over this, my way is to divide half a sheet of paper by 
a line into two columns; writing over the one Pro, and over the other Con. Then, during three or four days 
consideration, I put down under the different heads short hints of the different motives, that at different 
times occur to me, for or against the measure. When I have thus got them all together in one view, I 
endeavor to estimate their respective weights; and where I find two one on each side, that seem equal. I 
strike them both out. If I find a reason pro equal to some two reasons con, I strike out the three. If I judge 
some two reasons con, equal to three reasons pro, I strike out the five; and thus proceeding I find at length 
where the balance lies; and if, after a day or two of further consideration, nothing new that is of importance 
occurs on either side, I come to a determination accordingly. And, though the weight of the reasons cannot 
be taken with the precision of algebraic quantities, yet when each is thus considered, separately and 
comparatively, and the whole lies before me, I think I can judge better, and am less liable to make a rash 
step, and in fact I have found great advantage from this kind of equation, and what might be called moral 
or prudential algebra.
Wishing sincerely that you may determine for the best, I am ever, my dear friend, yours most 
affectionately.

B. Franklin

Dear Sir,

In the affair of so much importance to you, wherein you ask my advice, I cannot, for want of sufficient 
premises, advise you what to determine, but if you please I will tell you how. When those difficult cases 
occur, they are difficult, chiefly because while we have them under consideration, all the reasons pro and 
con are not present to the mind at the same time; but sometimes one set present themselves, and at other 
times another, the first being out of sight. Hence the various purposes or informations that alternatively 
prevail, and the uncertainty that perplexes us. To get over this, my way is to divide half a sheet of paper by 
a line into two columns; writing over the one Pro, and over the other Con. Then, during three or four days 
consideration, I put down under the different heads short hints of the different motives, that at different 
times occur to me, for or against the measure. When I have thus got them all together in one view, I 
endeavor to estimate their respective weights; and where I find two one on each side, that seem equal. I 
strike them both out. If I find a reason pro equal to some two reasons con, I strike out the three. If I judge 
some two reasons con, equal to three reasons pro, I strike out the five; and thus proceeding I find at length 
where the balance lies; and if, after a day or two of further consideration, nothing new that is of importance 
occurs on either side, I come to a determination accordingly. And, though the weight of the reasons cannot 
be taken with the precision of algebraic quantities, yet when each is thus considered, separately and 
comparatively, and the whole lies before me, I think I can judge better, and am less liable to make a rash 
step, and in fact I have found great advantage from this kind of equation, and what might be called moral 
or prudential algebra.
Wishing sincerely that you may determine for the best, I am ever, my dear friend, yours most 
affectionately.

B. Franklin

from Benjamin Franklin to the President
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Multiobjective problems

Manuel Matos
INESC Porto & FEUP
Portugal

Multiobjective problems

Main characteristics
Alternatives are not known in advance
Optimization procedures are always needed
May have a big number of constraints and decision variables
May not be completely described by the mathematical formulation
Planning problems are generally combinatory
Sometimes interpreted as optimization problems with more than one 
objective function (vector optimization)

( )

( )
0x

0xh
0g(x)

xf

≥
≤
=st:

min
x vector of decision variables

(may include integer or binary variables)
f(x) vector of objective functions
g(x) set of equality constraints
h(x) set of inequality constraints



2

Attribute’s space

Decision space vs attribute’s space
Decision space
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suj:   x1 + x2 ≤ 4
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MO problems – basic strategies
Use of a value function

Transforms the problem into an optimization one

Interactive methods
Based on an implicit value function (never explicitly known!)

Geoffrion-Dyer-Feinberg, Surrogate Worth Trade-off, Zionts-Wallenius

Without special conditions
STEM, Trimap

Generation methods

Goal programming
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Multiobjective approaches
Two phase (or generation)

Aggregation

Interactive

Generation Decision-aid
methodologies

List of 
efficient 

decisions

Preferred 
Solution

YGeneration Preferred 
Solution

One 
efficient 
solution

Preferred 
?

Aggregation
of attributes

Constrained 
optimization 
procedure

Single 
objective 
problem

"Optimal" 
Solution

Some arguments
Strategy Pro Con 

Value 
Function 

Leads to optimization 

Induces a total order 

No further intervention of the DM 

Difficulties in building the VF 

Some arbitrariness 

Tendency to predefinitions and confusion 

between OF and VF 

Interactive Reduces information overload 

Easier calculations (in general) 

Induces learning 

Loss of holistic vision 

Produces only a final solution 

May need many judgments 

Generation Doesn’t have parameters 

Gives the global picture 

Doesn’t require the DM’s presence 

Doesn’t produce a solution or an order 

Risk of generating to many solutions 

Heavy calculations 

Goal Prog. Well established in OR 

Easy to apply 

Adequate to large dimension 

problems 

Only linear problems 

Needs goal definition 

Requires a lexicographic order of the 

criteria (no compensation) 
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Use of value functions
( )

( )
0x

0xh
0g(x)

xf

≥
≤
=st:

min
x vector of decision variables

(may include integer or binary variables)
f(x) vector of objective functions
g(x) set of equality constraints
h(x) set of inequality constraints

( )

( )
0x

0xh
0g(x)

x

≥
≤
=st:

vmax
( ) ( ) ( ) ( )[ ]xxxx nfffvv ,,, 21 K=

Interactive approaches
(typically, only for MO linear problems)

General procedure
1. Find an initial solution (efficient)
2. Ask the DM if he is satisfied if he is, this is the preferred solution. STOP
3. Ask the DM  which criteria he wants to improve and which criteria he accepts 

to worsen
4. Use the precedent information to find a new solution
5. Return to 2

Some classics
STEM

STRANGE
Zionts-Wallenius
Interval Criterion Weights
Pareto Race
Trimap
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Generation methods
Generate a set of efficient solutions

Parametric variation of λ>0 in

The optimal solution of this auxiliary problem is an efficient solution of 
the original multiobjective problem
The parameters λ are only instrumental (not judgments of the DM)

Constrained optimization
Define additional constraints in n-1 objective functions
Optimize the remaining objective function
Repeat for different RHS values of the additional constraints

Multiobjective simplex

( )∑
=

=
m

i
ii f)(fmin

1
λ xx

Parametric variation
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Parametric variation
In MO linear problems, post-optimization (parametric 
analysis) can be used to find all the efficient solutions

e.g. (previous problem)                         e.g. (tricriteria problem)

0       0.25    0.5              1    (λ1)
Each area corresponds to 
the same extreme efficient 
solution

Each line corresponds 
to the same efficient 
edge

Each intersection point 
corresponds to the same 

efficient face

Exposure

Cost

0

1

a

d

c

b

Robustness

a,b,c,d - Efficient solutions
c - “Convex dominated” but not dominated
a,b,c,d - Efficient solutions
c - “Convex dominated” but not dominated

Parametric variation 
Difficulties in discrete problems

Some efficient solutions are never selected
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Constrained optimization (ε - constraint)
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Compound and emergent strategies
Generation > Filtering

Use aspiration levels and elimination rules
Reduces the number of alternatives to consider
Still doesn’t produces a solution or order

Generation > Multiattribute method
Constitutes a complete approach
Opens the way to the use of less prescriptive methodologies

Meta-heuristics e multiobjective genetic algorithms
Adequate for MO problems with integer or binary variables
Explore the efficient zone (or part of it)
May include interactivity
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Multiattribute problems

Manuel Matos
INESC Porto & FEUP
Portugal

Multiattribute problems

Main characteristics
The alternatives are completely defined and assumed feasible
Attributes may be determinist, probabilistic, fuzzy (or mixed)
The problem may be: choice, ranking or sorting
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Attributes
may be

real numbers, intervals,
probability distributions,
possibility distributions, 
qualitative labels
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Example
Minimize Cost
Maximize Reliability

n Cost Reliability
1 65 0.994586
2 58 0.993677
3 72 0.995333
4 72 0.995531
5 60 0.994064
6 65 0.994641
7 71 0.995954
8 51 0.992906
9 67 0.995111
10 90 0.998551
11 67 0.995425
12 86 0.997641
13 66 0.994653
14 52 0.992848
15 76 0.995913
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Trade-off analysis
5 possible investment plans
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4000 €

1 MWh

0.625 €/kWh

4 €/kWh

Trade-off analysis
When comparing B to A (two efficient alternatives)

We gain something in one criterion 
We loose something in another criterion

If we have a reference value for the trade-off
We know immediately if we prefer A or B
It’s easy to select the preferred alternative
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Trade-off analysis
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Trade-off analysis
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Trade-off analysis
Each trade-off β defines a family of indifference lines

f(Cost, EENS) = Cost + β. EENS β in €/MWh
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Trade-off analysis
Conclusions:

Constant trade-offs lead to linear indifference curves
… and to linear value functions
… with constant weights

that have no special meaning as indicators of the relative importance of 
the criteria in general

Important issues
The process may be extended to more than two criteria
Trade-offs are not always constant

e.g. beyond a certain level, your willingness to pay for extra reliability 
decreases

… leading to non-linear indifference curves

Summarizing
Indifference curve (attribute space) 

Set of the alternatives that are valued the same way by the Decision 
Maker
The indifference curves completely describe the structure of 
preferences of the Decision Maker

Trade-off between two attributes X and Y
What you must lose in X to increase one unit in Y, without leaving 
the indifference curve (slope of the curve)

Weights
If and only if the trade-offs are constant, weights are constant
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Indifference curves
Indifference curves join all the points with the same global value
The DM is indifferent between two points in the same curve

V - V      = V - V V - V      = V - V x linear, y hyper
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Indifference curves
Other (additive) value functions...

Both quadratic
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Minimization in both criteria
Value scale (20f17.5, etc)
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Value functions
A formal way to address multiattribute problems

Sometimes also called deterministic utility functions

Requires
Verifying assumptions
Construction of the individual value functions
Indifference judgments to build the multiattribute value function

Difficulties
Building individual value functions

Problems
Tendency to use naïve weights asked directly to the DM

BIG 
MISTAKE!

Value functions - existence
If Z is a subset of Rm

i.e. if each alternative A is described by m attributes (A1, A2, ..., Am)

and
(A≥B and A≠B) ⇒ A f B for all A, B ∈ Z
For all A, B, C ∈ Z such that A f B f C, it exists exactly one λ∈(0, 1)  
such that B ~ [λ.A + (1-λ).C]
(Archimedean Condition)

Then, it exists a real value function v() such that:
AfB ⇔ v(A)>v(B)
A~B ⇔ v(A)=v(B)
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Independence and additivity (m>2)
Given a set of attributes K, a subset X of K is said to be preferentially 
independent (p.i.) from its complement Y=K-X iff, for a particular value 
PY

stands for all QY, A and B being arbitrary.

A set K is mutually preferentially independent (m.p.i.) if every subset X 
of K is p.i. from its complement K-X

For three or more criteria (m>2), this is a sufficient condition to 
additivity:

( ) ( ) ( ) ( )YXYXYXYX QBQAPBPA ,,,, ff ⇒

( ) ( ) ( ) ( )mmmm BvBvAvAvBA ++≥++⇒ KKf 1111

Additivity (m=2)
For two criteria, an additional condition is necessary for additivity

For instance, the Thomsen condition:

or the cancellation condition
also guaranties that K is m.p.i.

More weak conditions exist for difficult cases

( ) ( ) ( ) ( ) ( ) ( )212121212121 ,~,,~,,~,
,,

QQPPAQPAandQAAP
AQPallFor

⇒

( ) ( ) ( ) ( ) ( ) ( )212121212121 ,,,,,,
,,

QQPPAQPAandQAAP
AQPallFor

fff ⇒



10

Building value functions
Direct construction

Too complicated

Verify preferential independence conditions
Then:

Check for additivity conditions...
If they hold:

…or less restrictive conditions
That let you use (eg two normalized individual value functions)

( ) ( )( )mm Av,,Av)A(v K11Ψ=

( ) ( ) ( ) ( )mmm AvkAvkAvkAv +++= K222111

( ) ( ) ( ) ( ) ( )221112222111 Av.AvkAvkAvkAv ++=

Building individual value functions
Fix v(xmin)=1, v(xmax)=0
Find y such that

xmax → y or y → xmin
is indifferent to the DM

Then, v(y)=0.5
Repeat to find w (interval [y, xmax])

v(w)=0.25

and z (interval [xmin, y])
v(z)=0.75

… (trace the curve)

Verify! The DM should be indifferent between w → y and y → z

Value function

0

0.25

0.5

0.75

1

500 550 600 650 700 750 800
Costy wz
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MA value functions - parameters
Assess the parameters k1 and k2

Build “extreme” alternatives:

Ask for a judgment (eg: P f Q, that implies k1 ≥ k2)

Find M = (z, worst A2) ~ Q
Then: 

This is very different from asking directly for weights!

( ) ( ) ( )222111 AvkAvkAv +=

( ) 1

21

21

01

kPv

v,v

Aworst,Abest:P

=

==

( ) 2

21

21

10

kQv

v,v

Abest,Aworst:Q

=

==

( ) ( )

( ) 12
1

1

211

1
1

1 kk
zv

k

kzvk)Q(vMv

−=
+

=

=⇒=

1

111

21

21

21

=+

===

kk

v,v,v

Abest,Abest:Ideal

Example
Build “extreme” alternatives:

P=(9000, 11), Q=(20000, 2.5)

Search for an indifference
P or Q?

The DM says P f Q

P’=(11000, 11) or Q?
P’ f Q

P’’=(12000, 11) or Q?
Q f P’’

M=(11500, 11) ~ Q=(20000, 2.5)

vC(11500)=0.773

kC=0.564 kE=0.436

( ) ( )

( ) 12
1

1

211

1
1

1 kk
zv

k

kzvk)Q(vMv

−=
+

=

=⇒=

Cost (€) EENS (MWh)
9000 11

11000 9
13500 5
16000 3.5
20000 2.5

2.511
EENS11k

900020000
Cost20000kEENS)(Cost,v EC −

−
+

−
−

=

NB:
8500€ compensates 8.5 MWh
Trade-off = 1 €/kWh



12

Minimum distance to the Ideal
A possible decision paradigm for deterministic 
multiattribute problems

Induces an order in the set of the alternatives
May also be used in multiobjective problems

Ideal (Zeleny)
(Non feasible) solution, defined only in the attributes’ space, that 
joins up the individual optima

Distance to the Ideal
wk are scale factors
Choice of p is a decision problem!

( ) ( )

( )

( ) { }kkkk
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k
k

pm

k
kkkp

IdealAwIdealAd

IdealAwIdealAd

IdealAwIdealAd
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−=

−=

∞

=

=

∑

∑

.max,

.,

.,

1
1

1

AHP
Analytic Hierarchy Process

Thomas Saaty

Hierarchical organization of 
the criteria

Comparison matrices
Between sub-criteria, regarding 
the parent criterion
Between alternatives, regarding 
a level 1 criterion

Calculation of a final order of 
priorities

Ice Cream

PriceTaste Look

Vanilla Strawberry Chocolate
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AHP: input and calculations (1)
Input - Judgments about the relative preference of the 
alternatives, regarding each attribute

May be expressed by linguistic labels
Converted then to numbers (the Saaty scale)
Form a matrix of comparisons
Inconsistencies are allowed (to a certain degree)

Calculations – The priorities on an attribute correspond 
to the greatest eigen-vector of its matrix

May be approximated by the average of the normalized columns

AHP: example
Taste

Vanilla Strawberry Chocolate

Vanilla 1 3/2 5 0.540

Strawberry 2/3 1 3 0.348

Chocolate 1/5 1/3 1 0.112

Price

Vanilla Strawberry Chocolate

Vanilla 1 1/3 1 0.185

Strawberry 3 1 5 0.659

Chocolate 1 1/5 1 0.156

Look

Vanilla Strawberry Chocolate

Vanilla 1 1/5 1 0.149

Strawberry 5 1 4 0.691

Chocolate 1 1/4 1 0.160
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AHP: input and calculations (2)
The process is repeated with the relative importance 
of the attributes

Or the relative importance of sub-attribute of an attribute

Conclusion - global priorities of the alternatives

Taste Price Look

Taste 1 5 7 0.731

Price 1/5 1 3 0.188

Look 1/7 1/3 1 0.081

Ta s te Price Look

Va nilla 0.540 0.185 0.149 0.731 0.442

Stra wbe rry 0.348 0.659 0.691 X 0.188 = 0.434

Chocola te 0.112 0.156 0.160 0.081 0.124

AHP: a surprise...
Eliminating CHOCOLATE, but keeping the remaining 
judgments...

... The following new global priorities are obtained !

Taste Price Look

Vanilla 3/5 1/4 1/6

Strawberry 2/5 3/4 5/6

Vanilla 0.499

Strawberry 0.501
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AHP - comments
Strong points

Easy to use and understand
Accepts linguistic labels

Flexible - allow small inconsistencies
Judgments substitute unavailable information

The attributes’ values are not used in the calculations

Weak points
Uses value ratio evaluations instead of value difference evaluations

“How many times is alternative A preferred to B?”
Rank reversal problems
Most of the work and conclusions are specific of the problem in hand

Decision-aid methodologies
The French School of decision-aid proposes a number of methods 
that try to better model the structure of preferences of the DM,
without prescribing a total order

The methodologies include
indifference thresholds
hesitations between strict preference and indifference (weak preference)
veto thresholds
incomparability situations
the complementary concepts of concordance and discordance

Aggregation of preferences mainly by rules
as opposed to formulas

Members of the family
ELECTRE I, IS, II, III, IV, Tri, PROMETHEE, GAIA
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The French School
Extension of the classic paradigm (P, I) by considering 
two additional situations:

Q - weak preference              R – incomparability

Definition, in each criterion i, of indifference limits q(i) 
and preference limits p(i), used to define intervals of 
indifference, weak preference and strict preference

0

1

0 qi pi ai - bi

The method is based on pairwise comparisons 
between alternatives

In each criterion i, some thresholds are defined:
q - indifference threshold
p - strict preference threshold
v - veto threshold

We may have (alternatives a and b, maximization):

Electre IV - basic ideas

-q q p-p

aIibbPia aQibbQia aPib

ai-bi0

I - indifference
P - strict preference
Q - weak preference
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Electre IV - procedure
Aggregation rules

Comparison between alternatives a and b may lead to different types 
of dominance (quasi, canonic, pseudo, sub, veto) of a over b (or 
vice-versa), or to no dominance

Each alternative has a qualification (# situations where it dominates -
# situations where it is dominated) for each type of dominance

Distillation
Descending: begins with the alternatives with greater qualification
Ascending: begins with the alternatives with lesser qualification

In both cases, the effect of the selected alternatives is annulled on the 
remaining ones

Final preoder
Combination of the two distillations

Electre IV – binary relations
Quasi-dominance - The couple (b, a) verifies the relation of quasi-
dominance if and only if:

for every criterion, b is either preferred or indifferent to a,
and if the number of criterion for which the performance of a is better than 
the one of b (a staying indifferent to b) is strictly inferior to the number of 
criteria for which the performance of b is better than the one of a.

Canonic-dominance - The couple (b, a) verifies the relation of 
canonic-dominance if and only if:

for no criterion, a is strictly preferred to b,
and if the number of criteria for which a is weakly preferred to b is inferior or 
equal to the number of criteria for which b is strictly preferred to a,
and if the number of criteria for which the performance of a is better than the 
one of b is strictly inferior to the number of criteria for which the performance 
of b is better than the one of a.
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Electre IV – binary relations
Pseudo-dominance - The couple (b, a) verifies the relation of 
pseudo-dominance if and only if:

for no criterion, a is strictly preferred to b,
and if the number of criteria for which a is weakly preferred to b is inferior or 
equal to the number of criteria for which b is strictly or weakly preferred to a.

Sub-dominance - The couple (b, a) verifies the relation of sub-
dominance if and only if:

for no criterion, a is strictly preferred to b.

Veto-dominance - The couple (b, a) verifies the relation of veto-
dominance if and only if:

either for no criterion, a is strictly preferred to b,
or a is strictly preferred to b for only one criterion but this criterion not 
vetoing the outranking of a by b and furthermore, b is strictly preferred to a 
for at least half of the criteria.

Electre IV - illustration
A small distribution planning problem

1.0 - quasi
0.8 - canonic
0.6 - pseudo
0.4 - sub
0.2 - veto

alternative cost lambda U
A 1000 0.10 7
B 800 0.15 10
C 500 0.21 12
D 850 0.12 11
E 1200 0.30 4

threshold cost lambda U
q 50 0.05 0
p 150 0.1 2
v 500 6



19

Electre IV - illustration
Distillations and final preorder

Final remarks
In deterministic multiattribute problems, the main 
issue is preference modeling

Building correctly a value function may be a good 
approach, namely if automatic decisions are needed

Trade-off analysis is just a particular case

Decision-aid methods are an interesting alternative 
when the DM desires a more detailed representation of 
his preferences

Very adequate when a large number of criteria exist


