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Chapter 1

Introduction

About DRI. The Direct Rendering Infrastructure (DRI) is a framework for allowing di-
rect access to graphics hardware under the X Window System in a safe and efficient
manner, in order to create fast OpenGL implementations.

In the X Window System rendering is traditionally done via the X Server – a sepa-
rate process with sole access to the graphics hardware. The application is linked with X
client libraries which communicates to the X via a socket (Fig. 1.1a). This layered archi-
tecture allows for flexibility and encapsulation. The X application and X server not only
run in a different process, but can be on two machine remotely connected by a network
– X applications (or nowadays, X graphical toolkits) are designed to avoid round-trips to
the X server to the maximum extent possible in order to keep user interactivity snappy
in those scenarios. The X protocol is easily extensible, so 3D primitives can be en-
coded by the OpenGL API, transmitted to the X server by the X client libraries, and
then rendered to the graphics hardware (Fig. 1.1b). Nevertheless the average band-
width requirement of 3D rendering is much larger than 2D. The need of passing large
amounts vertex and texture data to the hardware severely impacts the latency and inter-
activity of the 3D application. This is were DRI steps in the picture. DRI main goal is to
provide a high-bandwidth low-latency communication channel between the application
and the graphics hardware (Fig. 1.1c), allowing the OpenGL implementation to drive the
hardware to its full potential.

About this document. This document aims to describe and analyze the DRI archi-
tecture at multiple levels of detail.

Chapter 2 describes the design requirements, the overall architecture and the roles
of the components. In chapter 3 it is described the use, context and implementation
of some relevant software patterns. Finally some ideas for future enhancements to the
architecture are given in chapter 4.
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1.1a: 2D rendering 1.1b: Indirect 3D rendering

1.1c: Direct 3D rendering

Figure 1.1: X Window System rendering overview
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Chapter 2

Architecture

2.1 Design goals

Table 2.1 describes the main goals, their rationale and the implications in DRI design.

Table 2.1: Design goals

Goal Rationale Implications
• Allow high performance
utilization of graphics hard-
ware.

• Maximize the hardware
communication bandwidth.

• Support of a variety of
different graphics hardware
designs.

• Functionality present in
graphics hardware can vary
from the simple triangle
rasterization present in
first-generation devices, to
the interpretation of vertex
and fragment shader pro-
grams present in the new
generation devices. The
hardware programming and
communication varies not
only across hardware gen-
erations, but also across the
different hardware vendors,
from the straightforward
three vertex PIO triangle
setup, to intricate nested1

DMA transfers.

• DRI must not assume a
particular design or family
of designs. It needs to
smoothly provide software
fallbacks for functionality
not present in the graphics
hardware, and flexible DMA
buffering.

1Whereby a DMA transfer spawns child DMA transfers
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Table 2.1: (continuation)

Goal Rationale Implications
• Support of multiple, simul-
taneous rendering by many
client programs.

• A OpenGL program
can have multiple render-
ing contexts (rendering
windows).

• The simplifications of as-
suming a single full-screen
window are not possible.

• Security to prevent mali-
cious misuse of the system.

• Current graphics hard-
ware bus mastering abili-
ties often allow to read/write
to anywhere in the system
memory.

• When present, such func-
tionality must not be ex-
posed to avoid root exploits.

• Reliability to prevent hard-
ware lockups or system
deadlocks.
• Portability to allow imple-
mentations on other operat-
ing systems and system ar-
chitectures.

• OS-specific code should
be minimized by reducing it
to a portability layer.

• Compliance with the
OpenGL and GLX specifi-
cations.
• Integration with the
XFree86 project.
• Open-source implementa-
tion.

2.2 Main components

DRI main components are dictated by the different spaces were control and data flow.
These spaces are the client application, the X server, and the OS kernel. They have
distinct scope and characteristics, which are summarized in Table 2.2. The possible
communication channels between the spaces are illustrated in 2.1[4].

The main DRI components work as plug-ins in each of these spaces. For every
space there is a part of the plugin which is shared for all DRI drivers (frozen spot) and a
part which varies for each driver (hot spot). These are listed in table 2.3. The boundary
between the hot and frozen spots is not always clearly cut. Although some in cases the
separation is done by using different binaries binaries, in other separation is visible only
in the source code.
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Table 2.2: Spaces features
Space Forces
Client

+ where vertex and texture data is first generated and is more
easily accessible

+ MMIO and DMA allowed

- multiple and concurrent instances

- virtual address space accessible to malicious clients

- no root privileges

- PIO not allowed

- requires polling for DMA completion or VSYNC events

X Server

+ where graphics hardware is detected and initialized

+ root privileges

+ PIO, MMIO and DMA allowed

+ highly portable code

- imposes an indirection layer for vertex and texture data flow

- requires polling for DMA completion or VSYNC events

OS Kernel

+ physical memory access

+ PIO, MMIO and DMA allowed

+ allows the use IRQ handlers for DMA completion or VSYNC
events

+ establishing of memory maps

- very low portability across different OS’s

- use of floating point operations highly unrecommended
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Figure 2.1: Spaces communication pathways

Table 2.3: Infrastructure extensibility spots
Space Frozen spots Hot spots
Client libGL libGL driver (also known as DRI 3D

driver)
X Server DRI X extension DDX driver
OS Kernel Direct Rendering Manager (DRM)

core module
DRM module
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Figure 2.2: Main components
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Table 2.4: Responsibilities

Component Responsibilities
libGL

• Present a OpenGL compatible API to the client application

• Implement the GLX API (the glue between OpenGL and X)

• Find and load the appropriate 3D driver

• Dispatch the received OpenGL API calls to the 3D driver, or
fallback to the X server if no 3D driver was found

3D driver

• Implement the OpenGL API

• Transform the received vertex and texture data into the hard-
ware native format

• Keep a backup of the graphics hardware state which is rele-
vant to its drawing context

• If DMA is supported by the hardware, fill in DMA buffers with
the vertex and texture data and signal the DRM module to
dispatch it to the hardware

• Provide software fallbacks for all operations not supported in
hardware

DRI extension

• Context/window setup

8



Table 2.4: (continuation)

2D driver

• Detect and initialize hardware

• Reserve on-board memory for 3D operations

• Synchronize 2D operations with 3D ones

• Identify which 3D driver and DRM module to load

• Communicate the current cliprect list

• Authorize client access to the DRM module

DRM core module

• Thin OS kernel abstraction layer for portability

DRM module

• Graphical hardware lock

• Allocate a pool of DMA buffers (in the AGP aperture if pos-
sible)

• Memory map the DMA buffers to client virtual address space

• Dispatch the DMA buffers written by the clients

SAREA

• Store dirty hardware specific state

• Store cliprects

The distribution of the responsibilities to the several components was done accord-
ing to the forces present in each space and the goals. Table 2.4 lists this distribution.
In summary, we shift the most of OpenGL implementation load to the libGL driver in
the client space, leaving to the DDX and DRM the low level task such as setup and
communication.

Figure 2.3 and 2.4 respectively show the action and sequence diagram of a typical
operation.
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Figure 2.3: Operation action diagram
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Figure 2.4: Operation sequence diagram
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Chapter 3

Design patterns

Although code is written in C, the OOP paradigm is more or less present em several
sub-components (most notably on Mesa, where objects and inheritance are used to
model drivers, textures, and contexts).

3.1 Inheritance

There are two C idioms used to implement inheritance – by structure reference and by
aggregation. They mostly differ in the order of initialization and memory allocation.

3.1.1 Inheritance by reference

In the inheritance by reference idiom, the base class data structure has an extra attribute
which is a pointer to the subclass data structure.

Listing 3.1 and 3.2 respectively describe the implementation of the base and derived
classes shown in 3.1. Virtual methods are implemented as function pointers. If the
destructor needs to be virtual (quite often the case) then it is implemented like the virtual
aMethod() shown.

Listing 3.1: Inheritance by reference base class implementation
struct BaseClass
{

int an_attribute;
(*aMethod)();
void *pderived;

};

struct BaseClass *BaseClass_create()
{

struct BaseClass *pbase;
if ((pbase = malloc( sizeof ( struct BaseClass))) == NULL)

return NULL;

12



Figure 3.1: Inheritance example.

memset(pbase, 0, sizeof ( struct BaseClass));
pbase->aMethod = BaseClass_aMethod;
return pbase;

}

void BaseClass_destroy( struct BaseClass *pbase)
{

if (pbase->pderived)
free(pbase->pderived);

free(pbase)
}

BaseClass_aMethod( struct BaseClass *pbase, ...)
{

...
}

Listing 3.2: Inheritance by reference derived class implementation
struct DerivedClass
{

int another_attribute;
};

int DerivedClass_create( struct BaseClass *pbase)
{

struct DerivedClass *pderived;
if ((pderived = malloc( sizeof ( struct DerivedClass))) == NULL)

return 0;

memset(pderived, 0, sizeof ( struct DerivedClass));
pbase->aMethod = DerivedClass_aMethod;
pbase->pderived = pderived;
return 1;
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}

DerivedClass_aMethod( struct BaseClass *pbase, ...)
{

struct DerivedClass *pderived = ( struct DerivedClass *)pbase->pderived;
...
pderived->another_attribute = ...
...

}

This idiom allows for the initialization of the derived class to be deferred. It can be
useful when the base class is not abstract, and no method is overridden by the derived
class – only new attributes are added – avoiding the need to use patterns such as
Abstract Factory or Factory Method.

This idiom results in more memory allocations, and an additional indirection is re-
quired to obtain the derived class pointer from the base class.

3.1.2 Inheritance by aggregation

In the inheritance by aggregation idiom, the derived class data structure contains the
base class data structure as its first attribute.

Again, virtual methods are implemented as function pointers.
Listing 3.3 and 3.4 show the implementation of the base and derived classes respec-

tively.

Listing 3.3: Inheritance by reference base class implementation
struct BaseClass
{

int an_attribute;
(*aMethod)();

};

int BaseClass_init( struct BaseClass *pbase)
{

memset(pbase, 0, sizeof ( struct BaseClass));
pbase->aMethod = DerivedClass_aMethod;
return 1;

}

void BaseClass_deinit( struct BaseClass *pbase)
{

...
}

BaseClass_aMethod( struct BaseClass *pbase, ...)
{

...
}

14



Listing 3.4: Inheritance by reference derived class implementation
struct DerivedClass
{

struct BaseClass base;
int another_attribute;

};

struct DerivedClass * DerivedClass_create( struct BaseClass *pbase)
{

struct DerivedClass *pderived;
if ((pderived = malloc( sizeof ( struct DerivedClass))) == NULL)

return NULL;

memset(pderived, 0, sizeof ( struct DerivedClass));
if (!BaseClass_init(&pderived.base))
{

free(pbase);
return NULL;

}
pbase->aMethod = DerivedClass_aMethod;
return pderived;

}

void DerivedClass_destroy( struct DerivedClass *pderived)
{

DerivedClass_destroy
free(pderived);

}

DerivedClass_aMethod( struct BaseClass *pbase, ...)
{

struct DerivedClass *pderived = ( struct DerivedClass *)pbase;
...
pderived->another_attribute = ...
...

}

With this idiom the base and derived classes are allocated simultaneously and share
the same base pointer.

3.2 Abstract Factory and Factory Method

The Abstract Factory pattern is used to instantiate the driver, such as the case of the
DriverAPI class in the fig. 3.2.

The Factory Method is also often used, e.g., when creating textures objects in order
to allow the driver create an specialized object.
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Figure 3.2: Driver class diagram.
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3.3 Template

Many graphical algorithms have a common skeleton, but slight variations in some of the
steps – the main force for using the Template pattern.

See for instance the interpolation example in listing 3.5, which varies according which
vertices components (colors, textures coordinates, . . . ) are to be interpolated. Here the
variations are implemented with if -statements, but hooks and callbacks could be used
instead. Regardless of which one, both impose a runtime overhead for this flexibility.
This is unacceptable as, depending on the OpenGL context, some of these functions
can be the performance bottleneck.

Listing 3.5: Vertex interpolation function
extern int color_enabled;
extern int textures_enabled;

void interpolate( float k, vertex_t *v1, vertex_t *v2, vertex_t *vr) {
float omk = 1.0 - k;
vr->x = k*v1->x + omk*v2->x;
vr->y = k*v1->y + omk*v2->y;
vr->z = k*v1->z + omk*v2->z;
if (color_enabled) {

vr->r = k*v1->r + omk*v2->r;
vr->g = k*v1->g + omk*v2->g;
vr->b = k*v1->b + omk*v2->b;

}
if (textures_enabled) {

vr->u = k*v1->u + omk*v2->u;
vr->z = k*v1->v + omk*v2->v;

}
...

}

The solution found to this problem was shifting the variability from runtime to compile-
time by (ab)using the CPP (C Pre-Processor). The generic template is written in a
separate header and variability achieved using CPP directives and macros, as shown
for the example above in listing 3.6. All the variations are instantiated in a separate C
file by repeatedly including the template header, as shown in listing 3.7. At runtime the
appropriate variation of the function is chosen only when the GL context changes.

Listing 3.6: interpolate tmp.h – vertex interpolation function template
void TAG(interpolate)( float k, vertex_t *v1, vertex_t *v2, vertex_t *vr) {

float omk = 1.0 - k;
#if HAS_XYZ

vr->x = k*v1->x + omk*v2->x;
vr->y = k*v1->y + omk*v2->y;
vr->z = k*v1->z + omk*v2->z;

#endif
#if HAS_COLOR
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vr->r = k*v1->r + omk*v2->r;
vr->g = k*v1->g + omk*v2->g;
vr->b = k*v1->b + omk*v2->b;

#endif
#if HAS_TEXTURE

vr->x = k*v1->x + omk*v2->x;
vr->y = k*v1->y + omk*v2->y;
vr->z = k*v1->z + omk*v2->z;

#endif
...

}

#undef TAG
#undef HAS_XYZ
#undef HAS_COLOR
#undef HAS_TEXTURE

Listing 3.7: Instantiation of the vertex interpolation template
#define TAG(x) x##_xyz
#define HAS_XYZ
#include "interpolate_tmp.h"

#define TAG(x) x##_xyzuv
#define HAS_XYZ
#define HAS_TEXTURE
#include "interpolate_tmp.h"

...

void (*interpolate)( float k, vertex_t *v1, vertex_t *v2, vertex_t *vr);

void glEnable(GLenum cap)
if (cap == GL_TEXTURE_2D)

interpolate = interpolate_xyzuv;
elif ...

...
else

interpolate = interpolate_xyz;
}

Although the variability in this example was controlled by using yes/no macros,
macros containing code which is expanded in the template, can be and are used in
other more complex situations.

18



Chapter 4

Possible enhancements

Roughly around 30% to 50% of driver code is similar to other drivers, apart from small
modifications. To develop a 3D open-source driver takes around 2 men-year. So there
is a strong motivation for code reuse, but also much inertia due to the code size and
lack of refactoring tools.

More code reuse could be achieved by incrementally:

• bringing the infrastructure closer the OOP paradigm (more inheritance and inclu-
sion of objects);

• using/developing better tools for automatic code generation (such as a smarter
template engine);

specially in the driver code.
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Appendix A

Data transfer modes

A.1 Programmed Input/Output (PIO)

Programmed Input/Output (PIO) is a data transfer to/from a I/O address (usually a reg-
ister) a byte/word at a time using a dedicated processor instruction (such as Intel in
and out instructions).

Listing A.1 shows an example of using PIO to program the drawing of a triangle on
a hypothetical hardware.

Listing A.1: PIO example
void draw_triangle( int x1, int y1, int z1,

int x2, int y2, int z2,
int x3, int y3, int z3)

{
while (!(intw(REG_TRI_STATUS) & MASK_TRI_IDLE))

usleep(1); // wait for idle
outw(x1, REG_TRI_X1);
outw(y1, REG_TRI_Y1);
outw(z1, REG_TRI_Z1);
outw(x2, REG_TRI_X2);
outw(y2, REG_TRI_Y2);
outw(z2, REG_TRI_Z2);
outw(x3, REG_TRI_X3);
outw(y3, REG_TRI_Y3);
outw(z3, REG_TRI_Z3);
outw(inw(REG_TRI_STATUS) | MASK_TRI_DRAW, REG_TRI_STATUS);

}

A.2 Memory Mapped Input/Output (MMIO)

Memory Mapped Input/Output (MMIO) is a data transfer to/from a range of I/O ad-
dresses (such the graphics card memory, or register) which has been memory-mapped
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into the virtual address space using regular memory access instructions (such as Intel
mov instructions).

Listing A.2 shows the same example using MMIO.

Listing A.2: MMIO example
extern int * pmmio; // pointer to MMIO region

void draw_triangle( int x1, int y1, int z1,
int x2, int y2, int z2,
int x3, int y3, int z3)

{
while (!(pmmio[REG_TRI_STATUS] & MASK_TRI_IDLE))

usleep(1); // wait for idle
pmmio[REG_TRI_X1] = x1;
pmmio[REG_TRI_Y1] = y1;
pmmio[REG_TRI_Z1] = z1;
pmmio[REG_TRI_X2] = x2;
pmmio[REG_TRI_Y2] = y2;
pmmio[REG_TRI_Z2] = z2;
pmmio[REG_TRI_X3] = x3;
pmmio[REG_TRI_Y3] = y3;
pmmio[REG_TRI_Z3] = z3;
pmmio[REG_TRI_STATUS] |= MASK_TRI_DRAW;

}

A.3 Direct Memory Access (DMA)

Direct Memory Access (DMA) is a bulk data transfer between the system memory and
peripheral device without the processor intervention.

Listing A.3 shows the same example using DMA.

Listing A.3: DMA example
extern unsigned long bufaddr; // physical address (multiple of 4K)
extern int * buf; // virtual address
extern unsigned bufsiz, buflen;

void draw_triangle( int x1, int y1, int z1,
int x2, int y2, int z2,
int x3, int y3, int z3)

{
int *p;
if (buflen + 10 > bufsize) {

while (!(intw(REG_DMA_STATUS) & MASK_DMA_IDLE))
usleep(1); // wait for idle

outw(bufaddr >> 12, REG_DMA_BUFADDR);
outw(buflen, REG_DMA_BUFLEN);
outw(inw(REG_DMA_STATUS) | MASK_DMA_START, REG_DMA_STATUS);
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buflen = 0;
}
p = buf + buflen;
*p++ = COMMAND_TRI_DRAW;
*p++ = x1; *p++ = y1; *p++ = z1;
*p++ = x2; *p++ = y2; *p++ = z2;
*p++ = x3; *p++ = y3; *p++ = z3;
buflen += 10

}

Ring buffer. To avoid having the CPU to waiting for the graphics engine completion
of a previous buffer before processing one, many graphics hardware possess a ring
buffer – a circular DMA buffer where pointers to regular DMA buffers are queued –, as
illustrated by figure A.1.

Processed buffers are collected back into the buffer pool either via an IRQ handler or
by stamping. When stamping each buffer is associated with an unique and increasing
number which is written to a scratch register as the buffer last command as the card
processes it. A buffer can be easily determined as processing or pending by comparing
its stamp with the value presently in the scratch register.
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Figure A.1: DMA via a ring buffer
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