
FACULTY OF ENGINEERING OF THE UNIVERSITY OF PORTO

Interactive Decompilation

José Manuel Rios Fonseca

Graduated in Mechanical Engineering
by the Faculty of Engineering of the University of Porto

Ph.D. in Mechanical Engineering
by the University of Wales Swansea

Dissertation submitted in partial fulfillment of
the requirements for the degree of
Master of Informatics Engineering

Dissertation prepared under the supervision of
Dr. Ademar Manuel Teixeira de Aguiar

from the Department of Electrical and Computer Engineering
of the Faculty of Engineering of the University of Porto

and of
Dr. João Alexandre Baptista Vieira Saraiva

from the Department of Informatics
of the University of Minho

Porto, August 2006

Resumo

As técnicas de engenharia reversa em geral, e de descompilação de código máquina em par-
ticular, podem ser úteis para o desenvolvimento e manutenção de software. Este trabalho
debruça-se na incorporação da interactividade no processo de descompilação, assim alargando
a sua utilidade ao permitir a intervenção do utilizador aquando da descompilação para elimi-
nar ambiguidades semânticas do código, organizar-lo, e melhorar a sua legibilidade. É definido
um catálogo de refactorings de engenharia reversa para código C de baixo nível (quase As-
sembly), onde cada refactoring ajuda a tornar o código de baixo-nível incrementalmente mais
inteligível; deste modo a aplicação combinada e sucessiva destes refactorings permite efecti-
vamente transformar código de baixo nível em alto nível, preservando a sua semântica. Para
validar e testar a aplicabilidade da abordagem da descompilação interactiva através dos refac-
torings definidos, foi concebida uma ferramenta interactiva que automatiza a aplicação destes
refactorings – a ferramenta IDC.

Abstract

Reverse engineering techniques in general, and machine code decompilation in particular, can
be useful for software development and maintenance. This work focuses on the incorporation
of human interactivity in the decompilation process, increasing its usefulness by allowing an
user to provide the necessary input during decompilation to disambiguate code semantics,
organize code, and improve its readability. A catalog of reverse engineering refactorings for
low-level (near-Assembly) C code is defined, where each refactoring helps making the low-
level code incrementally more intelligible; so the combined and successive application of these
refactorings can effectively transform a low-level machine code to a higher-level code, while
preserving its semantics. To validate and test the applicability of the interactive decompilation
approach through the defined refactorings, an interactive tool to automate the application of
these was developed – the IDC tool.

Contents

1 Introduction 1
1.1 Problem . 1
1.2 Objective . 1
1.3 Proposed strategy . 1
1.4 Outline . 2

2 Background and review 3
2.1 Decompilation . 3

2.1.1 Definition . 3
2.1.2 Motivation . 3
2.1.3 Legal implications . 5
2.1.4 Feasibility . 5
2.1.5 State of existing reverse-engineering tools 7

2.2 Program Transformation . 10
2.2.1 Program Representation . 10
2.2.2 Transformation Paradigms . 12

2.3 Refactoring . 13
2.3.1 Definition . 13
2.3.2 Refactoring and decompiling . 13
2.3.3 State of existing interactive refactoring tools 13

2.4 Review of related work . 14

3 Catalog of low-level refactorings 15
3.1 Function prototyping . 18

3.1.1 Extract Function . 18
3.1.2 Set Function Return . 19
3.1.3 Add Function Argument . 20

3.2 Organizing data . 21
3.2.1 Extract Local Variable . 21
3.2.2 Inline Temp . 21
3.2.3 Split Temporary Variable . 22
3.2.4 Replace Magic Number with Symbolic Constant 23
3.2.5 Replace Data Values with Record . 23
3.2.6 Replace Type . 24
3.2.7 Dead Code Elimination . 24
3.2.8 Rename Symbol . 25

vii

viii CONTENTS

3.2.9 Simplify Expression . 25
3.3 Structuring control flow . 27

3.3.1 Structure If Statement . 27
3.3.2 Structure If-Else Statement . 27
3.3.3 Structure Do-While Statement . 28
3.3.4 Structure Infinite Loop . 28
3.3.5 Structure Continue Statement . 29
3.3.6 Structure Break Statement . 29
3.3.7 Structure While Statement – Form I 30
3.3.8 Structure While Statement – Form II 30
3.3.9 Structure While Statement – Form III 31
3.3.10 Inline Return Statement . 32
3.3.11 Consolidate Boolean And Expression 32

3.4 Example . 33

4 Design of the IDC tool 35
4.1 Requirements . 35
4.2 Design decisions . 36

4.2.1 Programming language . 36
4.2.2 Program representation and transformation 36
4.2.3 GUI toolkit . 39

4.3 Architecture . 39
4.3.1 Overall architecture . 39
4.3.2 Program representation . 40
4.3.3 Program transformation . 45
4.3.4 Machine instruction semantics . 52
4.3.5 Code pretty-printing . 53
4.3.6 Transforming ATerms into non-ATerms 55
4.3.7 Refactoring . 56
4.3.8 User interface . 58

5 The IDC tool 63
5.1 About . 63
5.2 Features . 63
5.3 Availability . 63
5.4 Tutorial . 63

5.4.1 Main window . 64
5.4.2 Extract function prototype . 64
5.4.3 Dead code elimination . 66
5.4.4 Control flow simplification . 70
5.4.5 Data flow simplification . 70
5.4.6 Variable renaming . 71
5.4.7 Variable renaming . 71

5.5 Current limitations . 71
5.6 Extending the tool with new refactorings . 75

CONTENTS ix

6 Conclusions 79
6.1 Contributions . 79
6.2 Directions for future work . 79

Bibliography 81

List of Figures

2.1 Compilation process . 3
2.2 Compilation example . 4
2.3 Decompilation process . 4
2.4 Binary translation . 6
2.5 dcc decompilation stages . 8

3.1 Decompilation as a sequence of refactorings 16

4.1 Main modules of the IDC tool . 36
4.2 IR decision tree . 37
4.3 Package dependency diagram of the interactive decompilation tool 41
4.4 Class diagram of the aterm package . 43
4.5 Transformation class diagram . 46
4.6 Transformation context class diagram . 47
4.7 Transformation combinators class diagram . 48
4.8 Example of transformation language . 51
4.9 Example of the Assembly loading and translation process 54
4.10 Example of code pretty-printing via Box representation 55
4.11 Refactoring class diagram . 56
4.12 Main activity diagram . 59
4.13 Model-View class diagram . 60
4.14 Path annotation for the pointing problem . 61

5.1 Tool main window . 64
5.2 Pretty-printed view of the Intermediate Representation 65
5.3 Context sensitive refactoring menu . 66
5.4 Control Flow Graph view . 67
5.5 Term Inspector view . 68
5.6 Code after applying the Extract Function refactoring 68
5.7 Specifying the return symbol for the Set Function Return refactoring 69
5.8 Code after applying the Set Function Return refactoring 69
5.9 Code after applying the Add Function Argument refactoring 70
5.10 Code after applying the Dead Code Elimination refactoring 71
5.11 CFG after applying the Dead Code Elimination refactoring 72
5.12 Code after applying the control structuring refactorings 73
5.13 Code after applying the Inline Temp refactoring 73
5.14 Code after applying the Simplify Expression refactoring 74

xi

xii LIST OF FIGURES

5.15 Final code after applying the Rename Symbol refactoring 74
5.16 Side-by-side comparison of the example source code 75

List of Tables

3.1 Refactoring catalog . 17

4.1 IR schema . 44
4.2 Transformation combinators . 47
4.3 Schema of the Box representation . 54

xiii

Listings

4.1 Making ATerms with the Python ATerm library 40
4.2 Matching ATerms with the Python ATerm library 42
4.3 Implementation (in Python) of the Not transformation combinator 48
4.4 Implementation (in Python) of the BottomUp transformation traverser 50
4.5 Python implementation of the FoldR transformation factory 51
4.6 Mixing the transformation language in Python code 52
4.7 SSL specification of the Intel IA-32 ADDL instruction 53
4.8 Excerpt of the compiled instruction lookup table for the Intel Pentium 53
4.9 ATerm walker example – Box language writer 57
5.1 Example input Assembly code (factorial.s) 65
5.2 Complete Rename Symbol refactoring example 77

xv

Acronyms

ASDL Abstract Syntax Description Language

AST Abstract Syntax Tree

ATerm Annotated Term

CFG Control Flow Graph

DAG Directed Acyclic Graph

DOM Document Object Model

GUI Graphical User Interface

IDC Interactive Decompiler

IDE Integrated Development Environment

IR Intermediate Representation

JIT Just In Time

OOP Object Oriented Programming

PDG Program Dependency Graph

SSA Static Single Assignment

SSL Semantics Specification Language

UI User Interface

XML Extensible Markup Language

XOR Exclusive Or

XSLT XSLT Transformations

xvii

Chapter 1

Introduction

Software development is a fast paced technology field where new computer hardware, pro-
gramming languages, and a myriad of associated technologies are developed every year. Com-
petition is fierce. Software development and hardware supplying companies can disappear as
quickly as they appeared. Once developed, software can easily be duplicated, leading com-
panies to protect their investment in development with patents and their know-how with
non-disclosure agreements. Software can also be a carrier of malicious code such as viruses
and Trojans.

Reverse engineering techniques can be of crucial importance in this aggressive software
development world. Reverse engineering can be employed to port to new programming lan-
guages or hardware architectures, to maintain software from a disappeared vendor, to attest
the violation of patents or business secrets, or to detect malicious code.

Decompilation is a particular reverse engineering technique that aims to produce code in
a high-level language from machine code, i.e., the reverse process of compilation.

1.1 Problem
Despite advances in decompilation techniques and tools, intrinsic characteristics of the com-
pilation process – ambiguity and information discard – limit the abstraction level and main-
tainability of code generated by automatic decompilation tools.

1.2 Objective
Human action can step in where automatic decompilation techniques falter, providing the
necessary input to disambiguate code semantics, organize code, and improve readability.

The objective of this thesis is to integrate human interaction in the decompilation process
in order to help improving the quality of the generated code.

1.3 Proposed strategy
The approach investigated in this work was:

• First, to define a set of transformations of low-level (near Assembly) code that aims
at improving its structure, readability, semantics without changing its behavior. Such

1

2 Chapter 1: Introduction

transformations are also called refactorings.

• Second, to develop an interactive decompilation tool that assists the user in the task
of reverse engineering Assembly code, by automating the application of the above men-
tioned transformations.

1.4 Outline
Chapter 2 introduces the main concepts behind decompilation, program transformation, and
refactoring and reviews the existing tools and technologies for each of these topics.

Chapter 3 presents a catalog of reverse engineering refactorings. For each refactoring is
described the motivation for usage, the application mechanics, and an illustrative example.

Chapter 4 details the design of the developed interactive decompilation tool – the IDC
tool. It lists the main requirements, justifies the main design decisions, and describes the
tool’s architecture.

Chapter 5 describes the usage of the IDC tool. It gives a brief tutorial on how to decompile
a simple example program, summarizes the current features and limitations, and explains how
to extend the tool with new refactorings.

Chapter 6 presents the main conclusions of this work together with some directions for
future work.

Chapter 2

Background and review

This chapter introduces concepts that are relevant to this work and reviews other related
work. The main notions behind decompilation, program transformation, and refactoring are
given; and the existing tools and technologies for each of these topics are reviewed.

2.1 Decompilation

2.1.1 Definition

Compilation is the process whereby source code written in a high-level language (such as C
or C++) is translated into a low-level language, typically the Assembly language, which is
near to the machine code (fig. 2.1 and 2.2).

Figure 2.1: Compilation process

Decompilation is the reverse process of compilation (fig. 2.3). It aims to translate machine
or Assembly code into a higher-level language [1].

Decompilation creates a representation of the input program at a higher level of abstrac-
tion. It is, therefore, a reverse engineering technique [2].

2.1.2 Motivation

The motivations for using reverse engineering techniques, such as decompilation, typically fall
into two categories: software maintenance and security [1, sec. 1.6].

As a comprehension aid, the decompilation of a program can be used to:

• revise the binary code, such as when:

– detecting vulnerabilities,
– detecting malicious code,
– or verifying that a machine code matches the supplied source code;

• learn an algorithm;

3

4 Chapter 2: Background and review

Original C source code
int factorial(int n)
{

register int f;
f = 1;
while(n)

f *= n--;
return f;

}

⇒

Output Assembly code
.file "factorial.c"
.text

.globl factorial
.type factorial, @function

factorial:
testl %eax, %eax
jne .L2
movl $1, %edx
jmp .L4

.L2:
movl $1, %edx

.L5:
imull %eax, %edx
decl %eax
jne .L5

.L4:
movl %edx, %eax
ret
.size factorial, .-

factorial
.ident "GCC: (GNU) 4.1.2

20060715 (prerelease) (
Debian 4.1.1-9)"

.section .note.GNU-
stack,"",@progbits

Figure 2.2: Compilation example

Figure 2.3: Decompilation process

2.1 Decompilation 5

• improve interoperability.

With little or no human intervention, decompilation can be also used to:

• optimize to a new platform, e.g., recompile old code for the Intel 80386 processor in
order to optimize it for the Pentium 4 processor;

• port to another platform where the same set of system libraries is available, e.g., recom-
pile a binary for the Intel version of Windows to the Alpha version.

With some human intervention and effort (to produce maintainable code), the decompi-
lation of a program can be used to:

• recover lost source code, either by accident or malevolence;

• correct errors;

• add new features.

Further reasons to employ decompilation are given in [3].

2.1.3 Legal implications
Like other technologies, not all uses of the decompilation techniques are legally accepted [4].
Indeed, computer programs are covered by Author Copyrights, which protect the expression
of an idea in the form of a program, forbidding duplication or creation of derivative products,
and thereby protecting the investment made by the programmer or company. Software is also
frequently bundled with user agreements that restrict its use in order to prevent decompilation
or disassembly of the program by the user.

Depending on the country, there are exceptions in the law that allow decompilation/dis-
assembly of programs for:

• interoperability with another software or hardware when the interface is not specified;

• correcting errors when the copyright holder is not available;

• and for determining whether parts of the program violate rights other than the authors’
(e.g., such as patents or business secrets).

2.1.4 Feasibility
Fully automated decompilation of executable machine code into the original source code is
not always possible:

• Ambiguity – there is an ambiguous correspondence between high-level language state-
ments and the respective machine code instructions. The same source code can be
compiled into different machine codes. That is the case, for example, when different
compiler optimization strategies are chosen. And vice-versa: different high-level con-
structs can be compiled into the same machine code. High-level languages, such as the
C language, offer to the programmer a rich choice of syntactical constructs for similar
ends: for vs. while loops, select vs. if-then-else conditionals, enum vs. int data types,
and data structures vs. pointer arithmetic.

6 Chapter 2: Background and review

• Information loss – much of the original information is discarded during the compila-
tion process. For example, variable names, function names, data structure definitions,
and code comments are not included in the final executable, unless debugging informa-
tion is explicitly required.

• Distinction between code and data – even the static disassembly of machine code
– a step that precedes the actual decompilation – is not a trivial task. The distinction
between data and code in an executable is often blurred. In the extreme it is possible to
encounter self-modifying code. That is the case of self-unpacking executables, executable
obfuscators, and viruses.

Nevertheless, some degree of success is possible if one or more of the above limitations are
somehow relaxed:

• Binary translation, used in Just In Time (JIT) compilers and emulators, is one of
those cases where decompilation techniques have been successfully applied [5]. During
binary translation the machine code of the source platform is decompiled to an inter-
mediate representation and then recompiled to machine code of the target platform
(fig. 2.4). The intermediate representation is at a lower level than the original source
code in order to allow fully automated decompilation, but still higher than the original
machine code. The higher the intermediate representation level is, more optimizations
are possible and more efficient the generated code will be.

Figure 2.4: Binary translation

• Byte-code compilation – another successful case is the decompilation of compiled
byte code of interpreted languages, such as Java, Python, and .NET languages. Because
the compiled byte code is meant to be interpreted by a virtual machine or compiled
to native machine code by a JIT compiler, it preserves much of the original syntactic
information. This allows to obtain high-level code similar to the original source code in
a fully automated fashion.

• Human intervention can step in where automatic decompilation techniques falter,
providing the necessary input to disambiguate code semantics, organize code, and im-
prove readability.

If the purpose is to obtain maintainable source code on a high level language, such as the
C language, starting from machine code, then the only possible relaxation to the requirements
is to allow human intervention. This is precisely the focus of this work.

2.1 Decompilation 7

2.1.5 State of existing reverse-engineering tools
This section reviews the existing machine code reverse engineering tools, including, but not
limited to, code decompilation tools.

The dcc decompiler

The dcc decompiler [6] was a pioneer program developed by Cristina Cifuentes [1] that de-
compiles EXE files from DOS into C programs.

The analysis performed by the dcc decompiler relies on traditional compilation optimiza-
tion techniques and graph theory. The former is used to eliminate register and intermediate
instructions in order to reconstruct higher level instructions; the latter is used to determine
the high-level control structures. The final program retains the Assembly code that cannot
be decompiled.

Decompilation stages The dcc decompilation analysis is divided in several stages (fig. 2.5),
similar to the stages in a compiler [1, p. 9].

During the loading stage the input executable is read, in the DOS EXE format.
Unlike compilers, there is no lexical analysis stage, as there is no mean to know whether

a byte belongs to the beginning, middle, or end of an instruction.
During the parsing stage the code is syntactically analyzed, and transformed in grammat-

ically equivalent expressions. For example, the Assembly instruction sub cx, 50 is trans-
formed in the expression cx = cx − 50. The major difficulty of this stage is separating code
from data, as both are mixed in the executable, and virtually any byte combination con-
stitutes a valid machine code instruction. To reduce the size and complexity of this task,
available auxiliary information (such as compiler signatures, library signatures, and library
prototypes) is taken in consideration, allowing to focus on the code unique to the executable.
After parsing it is possible to generate a disassembly as a decompilation side-product. To
facilitate subsequent analysis, the parse tree is transformed into an intermediate language.

Next, Control Flow Graphs (CFGs) are generated for each subroutine. These are necessary
for the recognition of high-level control structures.

During the semantic analysis, the semantic meaning of groups of instructions is verified,
type information is annotated and propagated through the subroutines. Idioms are identified
and transformed into semantically equivalent expressions. For example, if it is known that
the first argument of a subroutine is a long integer, then the instructions

asgn [bp+2], 0
asgn [bp+4], 14h

would be transformed into a single instruction
asgn [bp +2]:[bp+4], 14h

The data flow analysis simplifies the intermediate code by eliminating the use of temporary
registers and conditional flags. For example, the instruction sequence

asgn ax , [bp -0Eh]
asgn bx , [bp -0Ch]
asgn bx , bx * 2
asgn ax , ax + bx
asgn [bp -0Eh], ax

8 Chapter 2: Background and review

Figure 2.5: dcc decompilation stages

2.1 Decompilation 9

would be converted into a single instruction

asgn [bp -0Eh], [bp -0Eh] + [bp -0Ch] * 2

During the control flow analysis, high-level control structure patterns are recognized,
thereby transforming the spaghetti of goto statements into nested conditionals and loops.

The last stage is the generation of the high-level C code. Names are given to all subrou-
tines, arguments, local variables, and registers.

Limitations The dcc source code is available under an open-source license, but it has not
been updated ever since it was written in 1994, having several limitations. It is a proof of
concept program, which can only cope with simple academic examples, and it supports a
single processor/platform combination.

UQBT

UQBT [7] is a framework for the construction of generic recompilers aimed at the binary
translation between different processors. Its current implementation generates low level C
intermediate code that is then compiled and optimized to the target platform by an ordinary
C compiler [5].

Although UQBT’s main purpose is not the construction of decompilers, this framework
defines a new language for specifying the semantics of machine instructions – the Seman-
tics Specification Language (SSL) [8]. Such specifications can be reused for decompilation
purposes, and the UQBT source distribution includes the SSL specifications for several pro-
cessors.

IDA Pro

IDA Pro [9] is a popular commercial disassembler with support for multiple processors. Albeit
not a decompiler, IDA Pro employs several of dcc’s decompilation techniques to generate
richer Assembly code, namely the mapping and tracking of local variables in the stack and
the recognition of standard library function signatures.

Nevertheless, most of IDA Pro’s popularity stems from its user interactivity. It provides
a graphical interface to manually adjust several aspects of the Assembly code, such as to:

• mark code and data regions;

• delimit functions;

• define complex data structures;

• attribute semantic meaning to operand constants, making them as global pointers, stack
variable offsets, structure members offsets, etc.

The graphical interface also provides effective visualization of derived program informa-
tion, such as control flow graphs and data cross-reference tables, which assist the user in the
program understanding and navigation.

10 Chapter 2: Background and review

Boomerang

The Boomerang project [10] aims to develop a generic decompiler through the open-source
community. It is developed in the C++ language. It reuses the decompilation techniques de-
veloped for the dcc decompiler and the machine semantics specifications from UQBT frame-
work, and has been subject of research and experimentation of new decompilation techniques
[11].

Still, the Boomerang decompiler currently has some limitations, mostly derived from its
design. There are currently plans for a rewrite of the tool, and one of the main drives for
rewriting is to allow inclusion of interactive decompilation, with the same spirit of IDA Pro
[12].

CodeSurfer/x86

CodeSurfer [13] is a powerful tool for code analysis, understanding, and inspection. It is able
to:

• visualize the Program Dependency Graph (PDG) – a graph that, unlike the CFG, takes
into account both the data and control dependency [14, 15];

• perform program slicing – the discovery of all statements and predicates that might
affect the value of a given variable at a given point of a program [16, 17];

• perform program chopping – the discovery of the statements that transmit effects be-
tween two program points (an extension of the program slicing concept) [18].

CodeSurfer/x86 [19] is a prototype system that integrates CodeSurfer with IDA Pro for the
analysis of Intel x86 executables [20]. It employs Value Set Analysis (VSA) – an algorithm to
determine an over-approximation of the set of integer values (or memory addresses) that each
data object can hold at each program point [21] – to recover the data flow in the executable
without using a symbol-table or debugging information.

Other tools

An exhaustive list of known machine code decompilers is given in [22].

2.2 Program Transformation

The topic of program decompilation is part of a much larger field, which is the field of pro-
gram transformation. Examples of other program transformations are program compilation,
program optimization, program refactoring, and program obfuscation.

This section reviews the commonly used approaches for program transformation systems.

2.2.1 Program Representation

The choice for program representation directly impacts the kind of transformation systems
used. Visser [23] identified the most common program representations, which are described
below.

2.2 Program Transformation 11

Textual representation

Programmers normally write programs as text. It is not the most convenient representation for
complex program transformations. Usually programs are first parsed into abstract structured
representations by a parser and afterwards converted back into textual representation by an
unparser. Nevertheless, some systems work directly with text, most noticeably tools included
in interactive program editing and developing environments.

Parse Tree

A parse tree (or concrete syntax tree) represents the syntactic structure of the program
according to the rules of a grammar. A parse tree contains nodes and edges which do not
affect the semantics of the program, such as white-space, comments, and grouping parenthesis.
Nevertheless, it is used in some applications where it is necessary to restore that information
as much as possible, such as for program refactoring.

Abstract Syntax Tree

An Abstract Syntax Tree (AST) differs from a parse tree by omitting those nodes and edges
which do not affect the semantics of the program.

Direct Acyclic Graph

Direct Acyclic Graphs (DAGs) are often used instead of regular trees. A DAG allows subtree
sharing – multiple references to the same subtree in different nodes –, making tree copying a
constant time operation.

With maximal sharing only one copy of every subtree is kept in memory, achieving minimal
memory usage and making the equality comparison of two subtrees a constant time operation.

The downside of sharing is that updating a subtree cannot be allowed, because a subtree
can be shared in multiple points of the tree with a completely different context. Instead,
updating a subtree must be achieved by rebuilding all its ancestor nodes. Also, the tree
annotation of layout information, such as the originating file name and column, frequently
used for error reporting, is not practical, as it reduces the possibility of subtree sharing.

Term

In logical formalism, a term t is a constant (e.g., 1 or 0.1), a variable, or the result of acting
on other terms by function symbols (e.g. C(t1, t2, . . . , tn)). Terms can be used to describe
program ASTs, by corresponding the tree nodes labels to term constructors and the tree edges
to the subterms.

Full Fledged Graph

Programs can also be represented as fledged graphs, having for example back-links in the tree
to represent loops (such as control flow graphs) and variable declarations [23].

12 Chapter 2: Background and review

2.2.2 Transformation Paradigms

Term rewriting

A term rewrite rule has the form x → y, where both x and y are terms and every variable in
y also occurs in x. Term rewrite rules can be used to express basic program transformation
rules.

A set of rules defines no particular order of application. A rewriting strategy is an al-
gorithm for applying rules to achieve a certain goal, typically a term normalization [23].
Common normalizations are the innermost and outermost normalizations, which successively
apply the set of rules starting from the subterms or root term, respectively.

Normalization of terms with respect to a set of rewrite rules is applicable in areas such as
algebraic simplification of expressions and automated theorem proving [24, 25].

Nevertheless, the basic approach of normalizing a program tree with respect to a set of
transformation rules is not adequate for program transformation due to a number of reasons
given in [23]. This inadequacy motivated the development of many extensions and variations
of the basic rewriting paradigm for program transformation systems. The most noticeable of
these being the Stratego language [26] – an important reference for this work.

Tree parsing

In tree parsing rules are written as tree grammar rules. These are used to traverse the tree
with an applicable set of rules and execute corresponding actions.

Tree parsing is used in parser generators such as ANTLR, which can generate a tree walker
from a tree grammar [27, 28].

Attribute Grammars

Attribute grammars extend the context free grammar formalism with attributes and attribute
equations [29]. Attributes are associated to non-terminal symbols and attribute equation to
the productions of the grammar. The process of attribute evaluation consists of assigning
values to the attributes of tree nodes (that are instances of non-terminal symbols). Typically,
the attribute evaluation order is defined based on the dependencies induced by the attribute
equations.

Attribute grammars can be used to create language translation tools such as compilers.
Lrc [30] is a system for generating efficient incremental attribute grammar evaluators, and

can be used to generate language based editors and other advanced interactive environments
[31].

Other approaches

Most program transformation systems use one of the approaches above, or a variation. Other
program transformation systems can be found on the Program Transformation Wiki [32].

2.3 Refactoring 13

2.3 Refactoring

2.3.1 Definition

Opdyke [33] first defined refactoring as a behavior-preserving program transformation, usually
to make the program easier to understand and maintain. Fowler [34] subsequently presented
a refactoring catalog that is aimed at improving software design, and Kerievsky [35] later
proposed an high-level kind of refactorings to improve an existing design with design patterns.

2.3.2 Refactoring and decompiling

The decompilation of a program has both the same understanding and maintenance simpli-
fication aims and the same behavior-preserving property as does a refactoring. Thus decom-
pilation of a program could be carried out as the composition of basic refactorings.

Refactoring has been used for low-level code optimization [36] and for reverse engineering
design patterns [37], but no previous use of refactoring for decompilation was found.

2.3.3 State of existing interactive refactoring tools

A refactoring browser is an interactive tool that automatically applies refactorings to source
code. Refactoring browsers are particularly relevant to this work, as they involve both pro-
gram transformation and user interactivity.

This section reviews some of the existing tools for automated program refactoring. The
criteria used for the selection of the tools here presented was their relevance in terms of
associated publications or popularity.

The Smalltalk Refactoring Browser

The Smalltalk Refactoring Browser [38] is a tool that provides an interactive environment to
perform many refactorings automatically to Smalltalk programs [39, 40].

The Smalltalk Refactoring Browser plugs into the host development environment1 and
operates over its parse trees. Refactorings are implemented via a rewriting system using tree
pattern matching.

The Smalltalk Refactoring Browser also performs dynamic code analysis in order to carry
out analysis which are either difficult or impossible to perform via static code analysis only,
e.g., to determine the type of a particular variable (which is difficult due to Smalltalk dynamic
typing) and to determine cardinality relationships between objects. The dynamic analysis
relies upon Smalltalk reflective facilities.

HaRe – The Haskell Refactorer

HaRe – the Haskell Refactorer [41] – is a tool that provides support to refactor Haskell
programs from within a program editor2 [42, 43].

The refactorings operate on the AST and are implemented in Strafunski [44] – a Haskell
centered program transformation system based on the notion of a functional strategy [45, 46],
inspired on the Stratego language and the rewriting strategies paradigm.

1VisualWorks, VisualWorks/ENVY, or IBM Smalltalk
2VIM and Emacs

14 Chapter 2: Background and review

Refactorings preserve as much as possible the comments and white-space of the original
source code. This is accomplished by representing the program both as a token stream and
an AST, using the AST only as an auxiliary representation to guide the direct modification
of the token stream.

Eclipse

Eclipse [47] is a popular open-source Integrated Development Environment (IDE) for Java
and other languages with a strong refactoring ability.

Refactorings are carried out by operating on an AST and writing back changes to the
textual representation of the source code, therefore preserving user formatting and markers.

Other tools

More refactoring tools are mentioned at http://www.refactoring.com/tools.html.

2.4 Review of related work
Based on the work revised, the most important to this work are: [1], which provides the basic
methodology for machine code decompilation; [7, 8], which provides an extensive description
of processor semantics, necessary for decompiling; [34], which establishes a sound terminology
and notation for describing a refactoring and provides an extensive refactoring catalog; and
[48, 26, 49], which provides a system for complex program transformations, such as the ones
involved for machine code decompilation. [11] is not so import, at least not in an initial stage,
since most of its techniques are focused on automatic decompilation, where the decompilation
analysis is continuous and over all program being decompiled, rendering them inadequate for
interactive decompilation, where the analysis is short-lived, and over specific points of the
program.

http://www.refactoring.com/tools.html

Chapter 3

Catalog of low-level refactorings

The decompilation of a program can be carried out as the sequential application of basic pro-
gram transformations to that program, where every transformation increases the abstraction
level of the code while retaining its semantics. So each transformation can be considered
as a refactoring – a change made to the internal structure of software to make it easier to
understand and cheaper to modify without changing its observable behavior [34].

This chapter proposes a catalog of refactorings for low-level [near Assembly] code for re-
verse engineering purposes. The refactorings here listed help on making the low-level code
incrementally more intelligible. The combined and successive application of these refactor-
ings can effectively bring a low-level machine code to a higher-level code, while retaining its
semantics, as illustrated by fig. 3.1.

Some of the refactorings here listed are in all aspects identical to their higher-level lan-
guages counterparts, listed in [34]. Other refactorings are specific to the traits of Assembly
code. Table 3.1 lists all refactorings of this proposed catalog.

The catalog is presented using the standard format described in [34, p. 103]: a short syn-
opsis, an example, the motivations for its use, and the application mechanics. The examples
are written in almost syntactically correct C code, with some exceptions in order to faith-
fully represent near Assembly code. Namely, statements can also appear in the global scope,
besides of appearing in function bodies.

In section 5.4 it is presented the application of these refactorings to decompile a realistic
example.

15

16 Chapter 3: Catalog of low-level refactorings

Figure 3.1: Decompilation as a sequence of refactorings

17

Table 3.1: Refactoring catalog

Purpose Name Page

Function prototyping
Extract Function 18
Set Function Return 19
Add Function Argument 20

Organizing data

Extract Local Variable 21
Inline Temp 21
Split Temporary Variable 22
Replace Magic Number with Symbolic Constant 23
Replace Data Values with Record 23
Replace Type 24
Dead Code Elimination 24
Rename Symbol 25
Simplify Expression 25

Structuring control flow

Structure If Statement 27
Structure If-Else Statement 27
Structure Do-While Statement 28
Structure Infinite Loop 28
Structure Continue Statement 29
Structure Break Statement 29
Structure While Statement – Form I 30
Structure While Statement – Form II 30
Structure While Statement – Form III 31
Inline Return Statement 32
Consolidate Boolean And Expression 32

18 Chapter 3: Catalog of low-level refactorings

3.1 Function prototyping

As in most imperative languages, functions constitute the basic reusable unit of Assembly
code, and are usually generated from the higher-level source code on an one to one basis
during compilation. But the information about the function bodies, arguments, and local
variables is not properly retained by the Assembly code. The following refactorings allow to
incrementally lift the bodies, prototypes, and frames of functions.

3.1.1 Extract Function

You have a set of code fragments that constitutes an individual function.
Turn the fragments into a function.

...
loc100();
...

loc100:
...
return;

⇒

...
loc100();
...

void loc100() {
...
return;

}

Motivation

The Assembly functions generated by compilers are not always clearly delimited in machine
code. Moreover, the machine code corresponding to the function body may be interleaved
with auxiliary data, such as initialization constants and jump tables.

So the basic step in reverse engineering the code is to aggregate the scattered code frag-
ments in individual functions.

Mechanics

• Identify all code fragments belonging to a function.

• Shift all the code fragments together in order to make a single continuous code fragment.

• Wrap the fragment by a function enclosure.

• Scan the code for references for the function label and promote them to function calls.

3.1 Function prototyping 19

Example: noncontiguous code fragments

...
loc100();
...

loc100:
goto loc102;

loc101:
char var101[] = "Some data";

loc102:
eax = 0;
return;

⇒

...
loc100();
...

void loc100() {
goto loc102;

loc102:
eax = 0;
return;

}

loc101:
char var101[] = "Some data";

3.1.2 Set Function Return

A register or the stack is used to pass the function return value.
Define the function return type with the appropriate type, making explicit that such stack

position or register is the return value.

...
loc100();
...

void loc100() {
eax = 0;
return;

}

⇒

...
eax = loc100();
...

int loc100() {
eax = 0;
return eax;

}

Motivation

Most processors have no built-in support for returning values in function calls, i.e., native
function calls have no return type. It is a common function calling convention to use a
particular processor register to pass the function return value to the caller for simple types
and the processor stack for complex types. For example, in the Intel IA-32 architecture the
eax register is used to pass integers. This is a platform-specific low-level detail, and not one
of the source code, which should therefore be eliminated for proper code understanding.

Mechanics

• Change the function return type from void to the appropriate type.

• Post-assign all calls to the function to the specified register or stack position.

20 Chapter 3: Catalog of low-level refactorings

• Add the specified register or stack position to every return statement in the function
body.

3.1.3 Add Function Argument

The stack or a register is used to pass an argument to a function.
Define a new function argument with the appropriate type, making explicit that such stack

position or register is used to hold the argument.

...
eax = 1;
loc100();
...

void loc100() {
...
... = eax;
...
return;

}

⇒

...
eax = 1;
loc100(eax);
...

void loc100(int arg1) {
...
... = arg1;
...
return;

}

Motivation

In a similar fashion as the function return value, it is a common calling convention to pass
function arguments in particular registers, the stack, or both. This is platform-specific detail,
which should be eliminated for attaining proper code understanding.

Mechanics

• Add a new function argument with the appropriate type.

• Add the register or stack location as argument to all function calls.

• Replace all references to the register or stack location in the function body to the
argument name.

3.2 Organizing data 21

3.2 Organizing data
During compilation all the data flow is mapped to accesses from/to the processor registers,
stack, and global memory. The following refactorings incrementally transpose that data flow
in terms of local and global variables. They operate mostly on a function level.

3.2.1 Extract Local Variable

A register or the stack is used to hold the value of a local variable.
Define a new local variable with the appropriate type, and change all local references to that

stack location or register into a reference to that variable.

void loc100() {
...
eax = ...;
...
...
... = eax;
...

}

⇒

void loc100() {
int var1;
...
var1 = ...;
...
...
... = var1;
...

}

Motivation

During compilation, local variables are mapped into registers or stack positions. This trans-
formation must be reversed in order to improve code understanding.

Mechanics

• Declare a new variable in the function scope.

• Replace all references to the specified register or stack position by a reference to the
newly created variable.

3.2.2 Inline Temp

You have a temporary variable that is assigned and used just once or a few times.
Replace all references to that temporary value with the actual expression.

...
eax = 0xff;
ecx = ecx & eax;
edx = eax | edx;
...

⇒

...
ecx = ecx & 0xff;
edx = 0xff | edx;
...

22 Chapter 3: Catalog of low-level refactorings

Motivation

The expression depth of Assembly code is very shallow, as individual Assembly instructions
can only perform basic arithmetic operations. This leads to an excessive use of temporary
variables, as the compiler breaks down an expression into smaller sub-expressions. These
temporary variables should be inlined so that the full expression may be recovered and easily
understood.

Also, on many processor architectures a register access is quicker than storing an imme-
diate constant value, or it produces a smaller code footprint, therefore optimizing compilers
often allocate registers to hold frequently used constants (including addresses of frequently
used functions). But it is no advantage for the code comprehension having temporary vari-
ables used as aliases for constants or functions.

Mechanics

• Replace the variable by its expression in the statements the value is used.

• Remove the variable assignment.

• Remove the variable declaration if the variable is no longer used.

3.2.3 Split Temporary Variable

You have a temporary variable assigned to more than once, but is not a loop variable nor a
collecting temporary variable.

Make a separate temporary variable for each assignment.

eax = 1;
ecx = eax*2;
...
eax = 6;
func(eax);

⇒

eax1 = 1;
ecx = eax1*2;
...
eax2 = 6;
func(eax2);

Motivation

In compiled code, the registers are recurrently used as temporary variables, having more than
one responsibility in the code, which is confusing to the reader. A different temporary variable
should be used for each responsibility.

Mechanics

• Declare a new variable for each assignment of the specified variable.

• Rename the variable at and after each assignment, using one of the newly defined
variable names.

3.2 Organizing data 23

3.2.4 Replace Magic Number with Symbolic Constant

You have a literal number with a particular meaning.
Create a constant, name it after the meaning, and replace the number with it.

...
eax = 0x7fffffff;
...

⇒

const int MAXINT = 0x7fffffff;
...
eax = MAXINT;
...

Motivation

When compiling, all the semantic information concerning enumeration values, pre-processor
macro definitions, and constants is lost. So all the symbolic constants must be specified during
decompilation.

Mechanics

• Create a new constant with the number, named after the meaning.

• Replace the number with the newly created constant.

3.2.5 Replace Data Values with Record

You have a set of variables that altogether constitute a record.
Replace the variables by a single record and replace the variable references by references to

the record members.

int x;
int y;

x = ...;
y = ...;

⇒

struct point p;

p.x = ...;
p.y = ...;

Motivation

During the compilation the record unity is lost, as record members are replaced by mere
memory offsets. It is necessary to re-join the record members back in order to recover the
original records.

Mechanics

• Define a new record with the appropriate members, if one is not defined already.

• Replace the specified variables declarations by a single record declaration.

• Replace the variables by members of the newly declared record.

24 Chapter 3: Catalog of low-level refactorings

3.2.6 Replace Type

You are using integer variable to carry other kind of information.
Replace the integer type with the appropriate type, and propagate it across the expressions

the variable is used.

void function() {
int tmp;
tmp = ...
puts((char *)tmp);

}

⇒

void function() {
char *tmp;
tmp = ...
puts(tmp);

}

Motivation

Integer types and floating point types (on processors with a Floating Point Unit) are about
the only types natively supported by a common processor. Operations with all other high-
level types (enums, typedefs, structs, and unions) are translated into operations with these
native types. Pointers are translated to memory addresses, which are also indistinguishable
from regular integers in most architectures. This refactoring allows to recover the original
high level types by propagating the type information across the code.

Mechanism

• Define the new type, if not defined yet.

• Replace the variable type.

• Propagate type in the expressions it is used, adding or removing type casts as needed.

3.2.7 Dead Code Elimination

You have several variable assignments, whose value is not used.
Remove those variable assignments.

/* Original Assembly
instruction:

* addw %eax, %ebx
*/
tmp = ebx; // original value
ebx = ebx + eax;
zf = ebx == 0; // zero flag
nf = ebx < 0; // negative flag
of = ... // overflow flag
cf = ... // carry flag
pf = ... // parity flag

⇒

/* Original Assembly
instruction:

* addw %eax, %ebx
*/
ebx = ebx + eax;

3.2 Organizing data 25

Motivation

When compiling a program the compiler chooses the sequence of processor instructions that
best mimic the behavior specified by the source code. Most processor instructions, however,
have several hard-coded side-effects that are often unintended by the compiler. The best
example is given by the flag registers, which are modified after every arithmetic processor
instruction, but their value is typically only used on conditional jumps. Therefore a semantic
translation of an arithmetic processor instruction often results in several unused flag assign-
ments, which can and should be removed for better code understanding.

Mechanics

• Traverse the code in the inverse direction of the control flow, removing all unused
variable assignments.

3.2.8 Rename Symbol

You have a symbol with a meaningless machine generated name.
Rename that symbol into some meaningful.

void loc12345() {
...

}
⇒

void do_something() {
...

}

Motivation

During compilation and linking, if debugging information is stripped then most information
regarding symbol names is lost, with the sole exception of the exported symbols of dynamically
linked libraries. Disassemblers normally just create arbitrary symbols names (composed with
either a sequence number or the symbol memory address) whenever one is needed. To improve
code understanding these symbols should be renamed to a meaningful name, which reflects
the program semantics.

Mechanics

• Ensure there is no name conflict.

• Change all occurrences of the symbol in the code to the new symbol name.

3.2.9 Simplify Expression

You have a mathematical expression with unnecessary complexities.
Simplify that expression.

eax = eax ^ eax; ⇒ eax = 0;

26 Chapter 3: Catalog of low-level refactorings

Motivation

When generating machine code to evaluate mathematical expression the compiler frequently
resorts to equivalent expression that are more complex (from a human point of view) yet
evaluated faster by the targeted hardware. For example, if zeroing a register processor is
pretended, it is often faster to perform a XOR of the register against itself than to move
the immediate zero operand from the machine code into the register. These more complex
expressions are rarely the ones idealized by the programmer, and they should be simplified
in order to improve their understanding.

Mechanics

• Apply the appropriate mathematical simplification rules to the expression in order to
make it more simple.

Example: equality comparisons

Equality comparisons are normally translated into comparisons against zero, to make efficient
usage of the zero flag register, which exists in most processors.

if(eax - 2 == 0)
... ⇒

if(eax == 2)
...

Example: small (bitwise) integer constant multiplication

Integer multiplications of constants with a small number of non-zero bits are normally com-
piled as a sum of bitwise shifts, which take fewer processor cycles than a regular multiplication
instruction.

eax = (ecx << 3) + (ecx << 1); ⇒ eax = ecx * 10;

3.3 Structuring control flow 27

3.3 Structuring control flow

All high-level language control structures (if, while, and for statements) are translated into
jumps and conditional jumps on Assembly language. These refactorings incrementally recover
the high-level control structure that match the jumps control-flow graph.

3.3.1 Structure If Statement

You have a conditional jump over consecutive statements.
Negate the conditional expression and make statements the conditional clause.

if(cond)
goto skip;

/* cond is false */
...

skip:

⇒

if(!cond) {
/* cond is false */
...

}

Motivation

If-then statements are translated by the compiler as a conditional jump over the statements
that constitute the then clause. This refactoring recovers the original control structure.

Mechanics

• Negative the if statement condition.

• Replace the jump by the skipped statements.

• Remove the jump label, if not longer used.

3.3.2 Structure If-Else Statement

You have a conditional jump to two sets of consecutive statements.
Make each set of statements a clause of the conditional statement.

if(cond)
goto skip1;

/* cond is false */
...
goto skip2;

skip1:
/* cond is true */
...

skip2:

⇒

if(!cond) {
/* cond is false */
...

} else {
/* cond is true */
...

}

28 Chapter 3: Catalog of low-level refactorings

Motivation

If-then-else statements are translated by the compiler as a conditional jump to two sets of
consecutive statements. This refactoring recovers the original control structure.

Mechanics

• Negative the if statement condition.

• Make the first set of skipped statements the then clause.

• Make the second set of skipped statements the else clause.

• Remove any unused label.

3.3.3 Structure Do-While Statement

You have a conditional jump to a previous label.
Make the intermediate statements the body of a do-while loop.

next:
/* loop */
...
if(cond)

goto next;

⇒

do {
/* loop */
...

} while(cond);

Motivation

Do-while statements (and sometimes other kinds of loop statements) are translated as condi-
tional back jumps. This refactoring recovers those original control structures.

Mechanics

• Make the set of skipped statements the body of the do-while statement.

• Make the jump condition the condition of the while clause.

• Remove the label, if no longer used.

3.3.4 Structure Infinite Loop

You have a jump to a previous label.
Make the intermediate statements the body of an infinite loop.

next:
/* loop */
...
goto next;

⇒

while(1) {
/* loop */
...

}

3.3 Structuring control flow 29

Motivation

Infinite loops are not frequently used by programmers, nevertheless, compilers often use these
unconditional loops together with break and continue jumps to translate ordinary while and
for loops. This refactoring recovers those original control structures as an intermediate step.

Mechanics

• Make the set of skipped statements the body of the do-while statement.

• Remove the label, if no longer used.

3.3.5 Structure Continue Statement

You have a jump inside a loop to a label immediately preceding the loop.
Replace the jump by a continue statement.

next:
while(...) {

...
goto next;
...

}

⇒

while(...) {
...
continue;
...

}

Motivation

Continue statements are translated by compilers as simple jumps. This refactoring recovers
the original statement. It requires that the refactoring corresponding to the loop structure is
previously applied.

Mechanics

• Replace the jump by a continue statement.

• Remove the label, if no longer used.

3.3.6 Structure Break Statement

You have a jump inside a loop to a label immediately succeeding the loop.
Replace the jump by a break statement.

while(...) {
...
goto stop;
...

}
stop:

⇒

while(...) {
...
break;
...

}

30 Chapter 3: Catalog of low-level refactorings

Motivation

Break statements are also translated by compilers as simple jumps. This refactoring recovers
the original statement. It requires that the refactoring corresponding to the loop structure is
previously applied.

Mechanics

• Replace the jump by a break statement.

• Remove the label, if no longer used.

3.3.7 Structure While Statement – Form I

You have a do-while statement preceded by an unconditional jump to a label immediately
before the statement condition.

Make the do-while statement a while statement.

goto test;
do {

/* loop */
...

test:
} while(cond);

⇒

while(cond) {
/* loop */
...

}

Motivation

While statements are translated by compilers into one of the three following possible forms:
the condition succeeds the loop body, precedes it, or both. This refactoring recovers the
original control structures when the former form is used. It requires the Structure Do While
Statement refactoring to be applied first.

Mechanics

• Remove the jump.

• Change the do-while statement into a while statement.

• Remove the label, if no longer used.

3.3.8 Structure While Statement – Form II

The loop block of an infinite loop starts with a conditional break.
Make the infinite loop a regular while statement.

3.3 Structuring control flow 31

while(1) {
if(cond)

break;
/* rest */
...

}

⇒

while(cond) {
/* rest */
...

}

Motivation

As previously mentioned, While statements are translated by compilers into one of several
possible forms. This refactoring recovers the original control structures where the condition
precedes the loop body. It requires that the Structure Infinite Loop and Structure Break
Statement refactorings are applied first.

Mechanics

• Move the condition of the conditional jump into the while statement.

3.3.9 Structure While Statement – Form III

A do-while loop is nested inside an if statement with the same condition.
Make the loop a regular while statement.

if(cond) {
do {

/* loop */
...

} while(cond);
}

⇒

while(cond) {
/* loop */
...

}

Motivation

As previously mentioned, While statements are translated by compilers into one of several
possible forms. This refactoring recovers the original control structures where the condition
both precedes and succeeds the loop body. It requires that the Structure If Statement and
Structure Do-While Statement refactorings are applied first.

Mechanics

• Remove the if statement.

• Change the do-while statement into a while statement.

32 Chapter 3: Catalog of low-level refactorings

3.3.10 Inline Return Statement

You have an unconditional jump to a set of consecutive statements ending with a return
statement.

Inline those statements.

void function() {
/* frame setup code */
...

if(cond) {
...
goto leave;

}
...

leave:
/* frame clean-up code */
...
return;

}

⇒

void function() {
/* frame setup code */
...

if(cond) {
...
/* frame clean-up code */
...
return;

}
...

/* frame clean-up code */
...
return;

}

Motivation

When a function has multiple return statements the compiler unifies these statements in a
single return statement, to avoid unnecessary duplication of the clean-up code. A jump,
however, does not have the same semantic meaning of a return statement, being sometimes
preferable the latter for better code comprehension.

Mechanics

• Inline the statements between the label and the return statement instead of the jump.

• Remove the label, if no longer used.

3.3.11 Consolidate Boolean And Expression

You have two immediately nested if statements.
Merge both conditional expressions with the Boolean and operator.

3.4 Example 33

if(cond1) {
if(cond2) {

/* cond1 and cond2
are true */
...

}
}

⇒

if(cond1 && cond2) {
/* cond1 and cond2
are true */
...

}

Motivation

The Boolean expressions of control-flow statements are usually translated by compilers as the
composition of the simpler if statements, rather than being evaluated arithmetically. This
refactoring allows to recover the original Boolean expressions. Boolean or expressions are
translated via and expressions and negation.

Mechanics

• Merge both conditional expressions with the Boolean and operator.

3.4 Example
An example of the application of these refactorings to decompile machine code is given in the
interactive tool tutorial, in section 5.4.

Chapter 4

Design of the IDC tool

This chapter describes the design of the Interactive Decompilation (IDC) tool – the main
forces behind the development and the rationale of the main design decisions.

4.1 Requirements

The main requirements defined for the IDC tool are the following:

• Import Assembly code. The main input to the tool is a program (or a program
fragment) written in Assembly language. The generation of Assembly code from a
binary executable is already the purpose of many available tools and is, therefore, beyond
the scope of this work. At the moment the only targeted processors are those belonging
to the Intel IA32 family [50, 51], but others may (and should easily) be supported in
the future.

• Visualize and export quasi-C language code. The main output of the tool is the
C language. The standard C is already a versatile language – it is able to represent
code from low to high-level –, nevertheless, some small extensions to the standard C
language will be required in order to faithfully represent the initial highly unstructured
Assembly code.

• Provide a context-sensitive refactoring browser. The user interface should allow
the user to browse the refactoring catalog listed in chapter 3, and choose which one to
apply, and where. The list of shown refactorings should be context-sensitive, i.e., only
the refactorings applicable at the user-specified point of the current program should be
shown.

• Visualize auxiliary information. The user interface should also present to the user
the visualization of useful derivative information of the current program, which may aid
the user in his analysis of the underlying code and guide him through the decompilation
process. The most notorious examples of such derivative information are Control Flow
Graphs (CFGs), call graphs, and data cross-reference tables.

35

36 Chapter 4: Design of the IDC tool

4.2 Design decisions
This section provides the rationale behind the most important design decisions. In spite of
some of the decisions made being somewhat subjective, an honest attempt to justify them all
is made here. Fig. 4.1 shows the main modules of IDC.

Figure 4.1: Main modules of the IDC tool

4.2.1 Programming language
The chosen programming language for implementing the IDC tool was Python – a dynam-
ically typed, object-oriented language. Besides the object-oriented programming paradigm,
Python also has good support for other programming paradigms, such as the imperative1,
and functional2 programming paradigms. The Python language is easily embeddable and
extensible, allowing to progressively migrate the most time-crucial components into a more
efficient foreign language (such as C or C++) if needed. Python also has excellent intro-
spective abilities, which can be a huge code saver3. These characteristics, plus an extensive
library and supporting tools (such as, parser generators, GUI designers) make it an excellent
language for rapid application prototyping.

Another candidate language with similar characteristics would be the Ruby language. The
Java language would also be a strong candidate, especially because some relevant third-parties
libraries are available in the Java language, and because choosing Java would open the door to
write the tool as an Eclipse plug-in, allowing to reuse much of its code. Nevertheless, Python
was the language that the author was more comfortable and more confident to provide the
desired results within the available time frame.

4.2.2 Program representation and transformation
Between the input Assembly language code and the output C language code the program being
decompiled must be represented throughout all its intermediate stages. This representation

1Python does not require to every function to be a class method or every variable to be a class attribute –
it allows both regular functions and global variables.

2Python supports functional programming constructs such as map, filter, reduce, and list comprehensions.
3The use of Python introspective abilities within the interactive compilation tool was frequent, as is docu-

mented throughout this chapter.

4.2 Design decisions 37

will be referred as the Intermediate Representation (IR)4.
Different alternatives for representing the IR and its transformations were considered.

These alternatives are summarized as a decision tree in fig. 4.2.

Start

Program
Representation

Program
Transformation

Custom class
hierarchy

Use ATerms

Use XML
DOM

Write Python
bindings to

the C library

Native Python
implementation

Use Stratego
language

Custom
transformation

framework
XSLT

Generating a
standalone executable,

via a command pipe

Generating a C
library, with

Python bindings

Generating a Python
module, with a new

Python backend

Inspired

Figure 4.2: Decision tree for choosing the IR data type, and. The alternatives taken are
indicated by thick lines.

Choosing the appropriate data type for program representation

The most common representation of program is the Abstract Syntax Tree (AST). Two existing
tree-like data types were considered for storing the IR AST: the ATerm data-type and the
XML Document Object Model (DOM).

An ATerm (short for Annotated Term) is both an abstract data type designed for the rep-
resentation and manipulation of tree-like data structures and a set of formats for exchanging
this data between distributed applications [48]. An ATerm is immutable once created, and is
in general represented internally as a Direct Acyclic Graph (DAG), which saves both space
and time by avoiding unnecessary duplications. The primary implementation of the ATerm
library is in the C language, but there are implementations of the library in the Java and
Haskell languages also.

The ATerm library is used by the Stratego/XT transformation tools. Stratego is a lan-
guage for transformation of ASTs represented by terms, based on the paradigm of rewriting
strategies [52]. Stratego/XT bundles the Stratego language with tools for parsing and code
pretty-printing, among others.

XML is a format for tree-like data that has become ubiquitous in nowadays computing.
Representing a program as a XML document brings the advantages of begin able to use a

4Which is also the designation commonly used in compiler terminology.

38 Chapter 4: Design of the IDC tool

wide set of well-established libraries and tools. Among the XML-related technologies is the
XSLT language, which, in principle, could be used to describe program transformations.

Nevertheless, the generic-purpose XML and XSLT technologies have significant drawbacks
when compared to more specialized technologies such as ATerms and Stratego. The most
important drawback is that XML DOM elements are mutable and cannot be shared among
several documents. Since many program transformations are difficult or even impossible to
be applied in-place, the application of such transformations would imply making a modified
copy of the whole program tree, which is inefficient. With ATerms this does not happen,
being the reason why it was ultimately chosen for storing the IR.

Integrating the ATerm library

The amount of work required to write and maintain a Python binding to the ATerm C library
would likely be greater (or at least equiparable) to the amount of work required to write a
native Python implementation. Also, the C ATerm library makes extensive use of pointer
arithmetic, and is not very portable5. These reasons, plus the existence of implementations
of the ATerm library in other programming languages, suggested that a native Python port
of the ATerm library would be the best course of action.

Integrating the Stratego language with an interactive tool

After settling with ATerm as the IR data type, integrating Stratego/XT with the interactive
compilation tool was a promising possibility – the Stratego language provides the means to
quickly code program transformations, and the associated literature includes several examples
of how to accomplish (in Stratego) program transformations similar to some of the refactor-
ings described in chapter 3. However, all attempts to integrate Stratego encountered major
difficulties:

• Via a command pipe: The first difficulty is that Stratego/XT compiles transfor-
mations written in the Stratego language into programs written in C, which read an
ATerm from standard input and write the transformed ATerm into standard output.
But calling these Stratego generated executables from the interactive tool via a pipe
was not an option, because the computational effort required for the double ATerm for-
matting/parsing would make the user interaction with any non-trivial program sluggish.
Therefore an out-of-process integration with Stratego was out of question.

• Via a C library: The second difficulty is that Stratego/XT is designed to generate
standalone programs. The Stratego compiler does have an option to generate libraries,
but this option exists merely to support separate compilation – these libraries are meant
to be used with another Stratego compiled program, and not with third party code. And
modifying the Stratego C-backend to generate a standalone library (which would then
be wrapped by Python bindings) seemed unfeasible for someone without deep knowledge
of the Stratego C-backend internals.

• Via a Python backend: Although the C-backend is the most supported and complete
Stratego backend, there is currently a draft of a Stratego Java backend, which generates
Java classes (using the Java ATerm library) together with Java syntax definition and

5For example, the C ATerm library does not support 64-bit architectures at the moment.

4.3 Architecture 39

Java code pretty-printers. So the option of constructing a similar backend for Python
(using the Python ATerm library) was considered, but it was an endeavor exceedingly
ambitious to be undertaken in the available time frame. Writing a new backend is, by
itself, a big task, and writing a new backend for the Python language was aggravated
by the fact that Python is not a context-free language – code indentation is meaningful
– making its syntax specification for the Stratego/XT not a straightforward task.

From the previous points the choice of writing a custom (though Stratego inspired) pro-
gram transformation framework in Python was taken.

4.2.3 GUI toolkit
There is a wide range of GUI toolkits available for the Python language. Narrowing to
those that are cross-platform6 the strongest candidates are the Tk, wxWidgets and GTK
toolkits. The Tk toolkit, although part of the standard Python library, is neither a featureful
or visually pleasant toolkit, when compared with the wxWidgets and GTK toolkits; being
seldom used for writing graphical applications in Python. The wxWidgets and GTK toolkits
are roughly equivalent in features. In the end, the choice was for the GTK toolkit. An
important particularity of the GTK toolkit is its text-view widget, which allows to have
marks in the text – a feature that helped significantly to solve the pointing problem, which is
discussed in detail in section 4.3.8.

4.3 Architecture
This section describes the final architecture of the interactive decompilation tool.

4.3.1 Overall architecture
The main packages that compose the interactive tool, and their purpose are:

• aterm – library for representing a program AST (port of the ATerm library to Python);

• transf – library for creating program transformations (a loose reimplementation of
Stratego in Python);

• ir – IR supporting program transformations;

• refactoring – refactorings implementation package;

• box – program code pretty-printing via the Box language;

• dot – support for graph generation via the Dot language;

• asm – Assembly language parsing;

• ssl – parsing and translation of the Semantics Specification Language (SSL), a language
for describing the semantics of processors instructions;

• machine – machine (processor) abstraction;
6Including at least Windows, Linux, and Mac OS platforms.

40 Chapter 4: Design of the IDC tool

• ui – user interface.

Fig. 4.3 shows the package dependency diagram. These packages will be discussed in more
detail below.

4.3.2 Program representation
The aterm package is an adaptation of the ATerm library [48] into the Python language.

As previously mentioned, an ATerm (short for Annotated Term) is both an abstract data
type designed for the representation and manipulation of tree-like data structures (like pro-
gram ASTs) and a set of formats for exchanging of ATerms between distributed applications.

An ATerm, in its textual representation, can be:

• an integer literal, such as 1 and -28;

• a real literal, such as 1.414 and 1E+10;

• a string literal, such as "x" and "Hello World!";

• a list of zero or more ATerms, such as [1, 0.2, "a"] and [];

• or a function application, consisting of a capitalized name and zero or more argument
ATerms, such as Plus(Var("x"),Int(1)), and True;

• and can be optionally followed by one or more annotations ATerms, such as, Mult(1,4)
{Type(Int)}, or Sym("x"){Line(14),Col(5)}.

ATerm annotations are non-structural information that is transparent to most operations.
Annotations are kept in operations results but they do not affect the non-annotation part of
the results, unless explicitly required. Annotations can be used for information such as source
file name and line numbers, type checking, reference IDs, etc.

ATerms can also be matched against an ATerm pattern, or built from one. The syntax of
ATerm patterns is the ATerm syntax extended with wildcards (_) and variables (lower-case
names, such as a or x). Listings 4.1 and 4.2 illustrate how to use the Python ATerm library
to make ATerms from patterns and match ATerms against patterns.

Listing 4.1: Making ATerms with the Python ATerm library
from aterm.factory import factory

create a term using a pattern with wildcards
a = factory.make("Plus(_,_)", 1, 2)
print a # it will print Plus(1,2)

create a term using a pattern with variables
b = factory.make("Mult(x,y)", x=1, y=2)
print a # it will print Mult(1,2)

ATerms are immutable once created. From this it results that the manipulation of an
ATerm must always be carried out by creating a derivative copy, but also that all unmodified

4.3 Architecture 41

Program
transformation

Program
representation

Program
visualization

Machine
support

User interface

transf

aterm

refactoring

ir

box dot

asm ssl

machine

ui

Figure 4.3: Package dependency diagram of the interactive decompilation tool

42 Chapter 4: Design of the IDC tool

Listing 4.2: Matching ATerms with the Python ATerm library
from aterm.factory import factory

create a term
t = factory.parse("Plus(Var("x"), Int(1))")

match against a pattern with wildcards
x, y = t.rmatch("Plus(_,_)")
print x # it will print Var(x)
print y # it will print Int(1)

subterms can be reused in the resulting ATerm without copying them. This means that most
ATerm transformations can be carried out fast and with reduced memory overhead.

The Python implementation of the ATerm library is largely inspired on the Java imple-
mentation [53], which is the only other object-oriented implementation of the ATerm library
existing at the present. Nevertheless, it differs from it in a number of aspects:

• The pattern syntax is closer to the syntax used by the Stratego language (which will be
discussed later), namely by supporting variables rather than just wildcards.

• Term annotations are not just label–annotation pairs, but any term.

• Internally, the Visitor design pattern [54] is extensively used, namely for comparing,
matching, and making ATerms. This increases the code reuse and permits a richer set
of ATerm operations. The Java ATerm library uses the Visitor pattern only for writing
ATerms, while all other operations are implemented as virtual methods.

• There are no placeholder terms – an ATerm pattern is no longer an ATerm itself. Match-
ing an ATerm against a pattern is done by combining ATerm visitors, and building an
ATerm from a pattern is done by combining specialized ATerm factories. This yields a
leaner ATerm data type, and eases the transformations of ATerms since the possibility
of an ATerm being a placeholder during a transformation no longer exists.

• Subterm sharing is implemented, but maximal subterm sharing is not yet implemented.
Although useful for large programs, the added complexity of its implementation was
not justified for the simple academic examples planned for this work.

Fig. 4.4 shows the class diagram for an ATerm.

IR schema

The ATerm data type is agnostic in respect to the meaning of a particular application term.
It has no knowledge of what is the meaning of Int, or if the addition of 1 + 1 should be
represented as Add(1,1), Plus(1,1), Plus(Int(1), Int(1)), or Plus(One, One). That is
a convention entirely up to the library caller.

For the IR it was developed a schema that could represent the program, in all its stages
from near-Assembly language code to conventional C language code. Table 4.1 describes the

4.3 Architecture 43

Figure 4.4: Class diagram of the aterm package

44 Chapter 4: Design of the IDC tool

IR schema in the Abstract Syntax Description Language (ASDL)7. The ASDL is a domain
specific language for describing the abstract syntax of compiler intermediate representations
and other tree-like data structures [55], developed for the Zephyr8 project.

Table 4.1: Schema of the Intermediate Representation

module = Module(stmt*)

stmt = Asm(string opcode, expr* operands)
| Assign(type, optExpr dest, expr src)
| Label(string name)
| GoTo(expr addr)
| Break
| Continue
| Block(stmt*)
| If(expr cond, stmt, stmt)
| While(expr cond, stmt)
| DoWhile(expr cond, stmt)
| Ret(type, optExpr value)
| Var(type, string name, optExpr value)
| Function(type, string name, arg*, stmt* body)
| NoStmt

arg = Arg(type, name)

expr = Lit(type, object value)
| Sym(string name)
| Cast(type, expr)
| Unary(unOp, expr)
| Binary(binOp, expr, expr)
| Cond(expr cond, expr, expr)
| Call(expr func, expr* params)
| Addr(expr)
| Ref(expr)

optExpr = expr
| NoExpr

unOp = Not(type)
| Neg(type)

binOp = And(type)
| Or(type)

7The schema does not make use of ASDL optional arguments because there is no such thing as a null
ATerm – optional arguments need to be made explicit, such as the case with NoStmt and NoExpr.

8http://www.cs.virginia.edu/zephyr/

http://www.cs.virginia.edu/zephyr/

4.3 Architecture 45

Table 4.1: (continued)

| Xor(type)
| LShift(type)
| RShift(type)
| Plus(type)
| Minus(type)
| Mult(type)
| Div(type)
| Mod(type)
| Eq(type)
| NotEq(type)
| Lt(type)
| LtEq(type)
| Gt(type)
| GtEq(type)

type = Void
| Bool
| Int(int size, sign)
| Float(int size)
| Char(int size)
| Pointer(type)
| Array(type)
| Compound(type*)
| Union(type*)
| FuncPointer(type, type*)
| Blob(size)

sign = Signed
| Unsigned
| NoSign

This schema is similar to what a C language AST schema would look like, but with minor
modifications in order to be able to represent low-level Assembly code:

• A goto statement (GoTo) accepts an arbitrary address expression, rather just a label, in
order to represent Assembly instructions such as jump tables.

• There is a special asm statement (Asm) for inlining Assembly code directly in C code9,
in order to represent the code before the Assembly instruction translation.

4.3.3 Program transformation
Program decompilation and program refactoring are particular cases of program transforma-
tion. From the choice of using ATerms for the IR it follows that program transformations are

9Actually, most C compilers have a similar extension.

46 Chapter 4: Design of the IDC tool

indeed ATerm transformations.
The transf package is an object-oriented framework that allows to create complex term

transformations from simple blocks. It was inspired on the Stratego language, but adapted
to the object-oriented paradigm10.

The basic block is a transformation – an object that attempts to transform an term
within a specified context and returns the transformed term on success or raises an exception
on failure. Its class diagram is show in fig. 4.5. The most basic transformations are the
identity and failure transformations. The former always return the input term unmodified,
while the latter always raises a failure exception.

Figure 4.5: Transformation class diagram

A context is a nested, mutable dictionary-like object used to implement variable scopes,
mapping variable names to variable values. Its class diagram is show in fig. 4.6. During
variable lookup, variables not found in the local context scope are searched recursively in the
ancestor context scopes.

A transformation can modify its context. A transformation, however, should not have side-
effects other than context changes, e.g., given the same term and context a transformation
should always give the same result11. In practice, this implies that a transformation object
should be re-entrant and should hold no state. This constraint means that the information
that is visible to and modifiable by a transformation is easily predictable and controllable,
which is crucial to allow the bottom-up construction of huge and complex transformations
from simple transformations blocks.

The most important combinators are described in table 4.2, and their class diagram is
shown in fig. 4.7. The constructors for these combinator classes are protected12 – the combina-
tors are constructed by public functions that attempt simple optimizations before combining
the transformations, as shown in listing 4.3.

For term manipulation there are three set of transformations: term matching, term build-
ing, and congruent term transformation. Term matching transformations will either pass
terms with certain characteristics unmodified, and fail for other terms. Term building trans-
formations will always create a new term, regardless of the term they are applied to. For

10The Stratego compiler is implemented in the Stratego language itself.
11There is actually one exception to this rule, that is a small set of transformations that ask for user input,

used by refactorings.
12Note that in the Python language encapsulation is not enforced by the language, but by coding conventions

instead.

4.3 Architecture 47

Figure 4.6: Transformation context class diagram

Table 4.2: Transformation combinators

Name Description
Try(t) Attempt the operand transformation t return-

ing its result on success, or the unmodified in-
put term on failure.

Not(t) Return the unmodified input term if the
operand transformation t fails, or fails other-
wise.

Composition(t1, t2) Apply the operand transformation t2 to the
result obtained after applying t1.

Choice(t1, t2) Attempt to apply the operand transformation
t1, falling back to t2 if it fails.

GuardedChoice(t1, t2, t3) Apply the operand transformation t1; if it suc-
ceeds then t2 is applied, otherwise t3 is ap-
plied.

48 Chapter 4: Design of the IDC tool

Figure 4.7: Transformation combinators class diagram

Listing 4.3: Implementation (in Python) of the Not transformation combinator
class _Not(operate.Unary):

Not combinator class
def apply(self, trm, ctx):

try:
self.operand.apply(trm, ctx)

except exception.Failure:
return trm

else:
raise exception.Failure

def Not(operand):
Attempt to simplify the resulting transformation
if operand is base.ident:

return base.fail
if operand is base.fail:

return base.ident
if isinstance(operand, _Not):

return operand.operand
return _Not(operand)

4.3 Architecture 49

example:

• match.Int(7) will create a transformation that passes integer terms with value 7 un-
modified, failing for every other terms, i.e., that matches such terms;

• match.nil is the transformation that matches the empty list term;

• match.Appl("True", ()) will create a transformation that matches the True term
application with no arguments;

• build.Real(1.5) will create a transformation that always returns a real term with
value 1.5, regardless of the input term, i.e., that builds such term;

• build.Cons(build.Str("s"), build.nil) will create a transformation that builds
the ["s"] list term.

Congruent term transformations mix both the match and build behaviors, and exist for list
terms and application terms. For example:

• congruent.Cons(thead, ttail)) will create a transformation that matches a list con-
struction term, and applies thead and ttail to the head term and tail term, respec-
tively;

• congruent.Appl("Plus", (targ1, targ2)) will create a transformation that matches
Plus application terms, and applies targ1 and targ2 to the first and second argument
terms, respectively;

• congruent.ApplCons(tname, targs) will create a transformation that matches any
application terms, and applies tname and targs to the application name and the appli-
cation arguments term, respectively.

Note that congruent transformations also preserve the term annotations.
Term traversal transformations are built from three base transformations:

• All(t) will create a transformation that applies t to all immediate subterms of the
input term, failing if t ever fails;

• One(t) will create a transformation that applies t to the first immediate term it suc-
ceeds, returning immediately;

• Some(t) will create a transformation that applies t to as many immediate subterms as
possible, but at least one;

These transformations use internally the congruent transformations, in order to preserve the
annotations. Full tree traversals can be defined from these. For example, listing 4.4 shows
the implementation of the BottomUp and TopDown traversal transformation factories, which
create a transformation that applies an operand transformation to every subterm in a term,
from bottom-up and top-down orders, respectively. Many more traversals are defined in the
transf.traverse subpackage.

Another implicit concept is the transformation factory – any callable that takes a com-
bination of terms, transformations, and other transformations factories and returns a trans-
formation. Due to Python’s dynamic typing there is no need for transformation factories

50 Chapter 4: Design of the IDC tool

Listing 4.4: Implementation (in Python) of the BottomUp transformation traverser
def BottomUp(operand):

bottomup = util.Proxy()
bottomup.subject = combine.Composition(All(bottomup),operand)
return bottomup

def TopDown(operand):
topdown = util.Proxy()
topdown.subject = combine.Composition(operand, All(topdown))
return topdown

to derive a particular class. Therefore any transformation class or transformation yielding
functions can be used. To help distinguish between transformations and transformation fac-
tories, the names of transformations instances start with a lower-case letter, while the names
of transformations factories start with an upper-case letter.

There are higher-order transformations that take transformations factories as arguments.
One example is the Foldr transformation of the transf.unify subpackage, whose imple-
mentation is shown in listing 4.5. Foldr takes as argument Cons, which is a transformation
factory whose result will be recursively applied to every list construction term in a list. For
example,

unify.Foldr(build.Int(0), arith.Add, build.Int(1))

will create a transformation that counts the elements in a list: it will build the zero valued
integer term at the list tail, the one valued integer term at every element, and pass the
intermediate results to the arithmetic addition transformation factory, arith.Add, which
takes two integer yielding transformations as arguments.

Since manually writing transformations in Python code is exceedingly verbose, a parser for
a program transformation language quite similar to Stratego was implemented, which allows
to create transformations with less typing, as illustrated by fig. 4.8. Thanks to the extensive
Python introspective abilities (more specifically, the ability to access a caller’s global and local
namespace) it is possible to seemingly mix transformation definitions with regular Python, as
shown in listing 4.6. The function parse.Transfs parses the transformation definition given
in the string argument, and adds them to the caller’s local namespace. Having exactly the
same effect than defining in Python.

Despite being quite similar, the implemented transformation language does differ from
the Stratego language, mainly due to convenience and incompleteness. The main differences
are:

• There are no term tuples. Since Stratego language is implemented in Stratego itself,
it uses term tuples to pass more than one term as a transformation input; but pack-
ing and unpacking terms into term tuples would adversely impact overall performance.
Therefore the transformation library was designed to not use tuples at all, using trans-
formation factories instead. For example, while Stratego’s add strategy takes a term
tuple (x,y) as input and produces a term with its output, here it is supplied an Add
transformation factory that accepts two operand transformations, whose results will
then be added.

4.3 Architecture 51

Listing 4.5: Python implementation of the FoldR transformation factory
def Foldr(tail, Cons, operand=None):

if operand is None:
operand = base.ident

transformation proxy for allowing recursiveness
foldr = util.Proxy()
foldr.subject = combine.Choice(

apply the ’tail’ transformation at the empty list tail
combine.Composition(match.nil, tail),
or call the Cons transformation factory
Cons(

applying the operand to the list head
project.head * operand,
and apply itself recursively to the list tail
project.tail * foldr

)
)
return foldr

With the transformation language
simplifyPlus = parse.Rule("Plus(Int(x), Int(y)) -> Int(arith.Add(!x, !y))")

m

Without the transformation language
simplifyPlus = scope.Local(("x", "y"),

combine.Composition(
match.Appl("Plus", (

match.Appl("Int", match.Var("x")),
match.Appl("Int", match.Var("y"))

)),
build.Appl("Int", (

arith.Add(
build.Var("x"),
build.Var("y")

),
))

)
)

Figure 4.8: Example of transformation language

52 Chapter 4: Design of the IDC tool

Listing 4.6: Mixing the transformation language in Python code
def matchPair(x, y):

return match.Cons(x, match.Cons(y, match.nil))

matchPairOfLiterals symbol is not yet defined...
parse.Transfs(’’’
matchPairOfLiterals(x, y) = matchPair(?Lit(<x>), ?Lit(<y>))
’’’)
... but now it is!

matchPairOfZerosLiterals = matchPairOfLiterals(match.Int(0), match.Int(0))

• While Stratego’s switch-case statement allows the use of arbitrary transformations for
the cases, here it is required that the cases are regular terms. This allows for the switch-
case to be implemented as a single hash table lookup, instead of a linear walk over all
cases, substantially improving performance.

• Congruence transformations require a tilde (~) prefix. In Stratego, congruence trans-
formations are identified with an upper-case initial, however in the implemented trans-
formation language these are also needed for transformation factories, hence the need
to distinguish between them by another prefix.

• Stratego dynamic rules are not yet implemented – a term hash table is implemented,
which is sufficient for the current transformation needs.

4.3.4 Machine instruction semantics
In order to decompile Assembly code it is necessary to know the meaning of each instruc-
tion of the machine’s processor. A similar problem arises in machine emulation and binary-
translation, and it is usually addressed with machine description languages, such as Register
Transfer Lists (RTLs). The problem also arises in cross-platform compilers, but to a lesser
extent, since a full semantic description of a machine is not usually required for the Assembly
code emission.

Such machine description language is the Semantics Specification Language (SSL) [8],
originally designed for binary translation inside the UBQT project [7], but later reused for
decompilation in the Boomerang project [10]. The source distribution of either project in-
cludes the specifications of the several processors, among them the specification for Intel
Pentium-class processors. Listing 4.7 shows the specification of the Intel ADDL instruction
in SSL.

Integrating SSL within the tool consisted in: a) writing a SSL parser based on the existing
Flex++/Bison++ parser; and b) translating into IR term patterns. Since parsing a full
processor specification can be excessively time-consuming, doing so at run-time would create
unnecessarily long start-up times for the tool, therefore the parsed instructions semantics are
compiled into Python code, more specifically into an instruction lookup table that for each
instruction name it gives a tuple containing:

• the operand names,

4.3 Architecture 53

Listing 4.7: SSL specification of the Intel IA-32 ADDL instruction
ADDFLAGS32(op1, op2, result) {
1 %CF := ((op1@[31:31]) & (op2@[31:31]))

| (~(result@[31:31]) & ((op1@[31:31]) | (op2@[31:31])))
1 %OF := ((op1@[31:31]) & (op2@[31:31]) & ~(result@[31:31]))

| (~(op1@[31:31]) & ~(op2@[31:31]) & (result@[31:31]))
1 %NF := result@[31:31]
1 %ZF := [result = 0?1:0]

};

ADDL dst, src
32 tmp1 := dst
32 dst := dst + src
ADDFLAGS32(tmp1, src, dst);

• the used temporary variable names,

• an ATerm pattern with a list of the IR statements.

Listing 4.8 shows an excerpt of that table for the Intel MOV instructions.

Listing 4.8: Excerpt of the compiled instruction lookup table for the Intel Pentium
insn_table = {
...
’MOVB’: ([’dst’, ’src’], [], ’[Assign(Blob(8),dst,src)]’),
’MOVL’: ([’dst’, ’src’], [], ’[Assign(Blob(32),dst,src)]’),
’MOVW’: ([’dst’, ’src’], [], ’[Assign(Blob(16),dst,src)]’),
...

}

During Assembly translation, at run-time, each Asm statement term in the IR is looked
up in the table, and replaced accordingly. Fig. 4.9 illustrates the whole Assembly loading and
translating process.

4.3.5 Code pretty-printing

Code pretty-printing is done via the Box language [56], where the formatted code is repre-
sented as horizontal and vertical stacks of boxes, expressed in ATerms. The schema of the
Box language is given in table 4.3, and an illustration of the whole process is given in fig. 4.10.

The use of Box as an intermediate representation allows to easily support both many
input languages and output formats.

Some simplifications and additions were made to the original Box language:

• There is no spacing between boxes – all boxes are contiguous, as this is the most
frequently desired case. Spaces must be specified literally.

54 Chapter 4: Design of the IDC tool

Input Assembly code
.text

.globl main
main:

movl $1, %eax
ret

⇓

Low-level IR
Module([

Label("main"),
Asm("movl", [

Sym("eax"){Reg},
Lit(Int(32, Signed), 1)

]),
Asm("ret",[])

])

⇒

Pretty-print
main:

asm("movl", eax, 1);
asm("ret");

⇓

Translated IR
Module([

Label("main"),
Assign(

Blob(32),
Sym("eax"){Reg},
Lit(Int(32, Signed), 1)

),
Ret(Void,NoExpr)

])

⇒

Pretty-print
main:

eax = 1;
return;

Figure 4.9: Example of the Assembly loading and translation process

Table 4.3: Schema of the Box representation
box = string - - literal string

| H(box* boxes) - - horizontal composition
| V(box* boxes) - - vertical composition
| I(box) - - indent
| D(box) - - dedent
| T(string name, object value, box) - - tag

4.3 Architecture 55

ATerm representation of the AST
If(Sym("x"),

Assign(Int(32,Signed), Sym("x"), Lit(Int(32,Signed),0)),
NoStmt

)

⇓

ATerm representation of the formatting
V([

H([T("type", "keyword", "if"), "(", "x", ")"]),
I(

H(["x", " ", "=", " ", "0", ";"])
)

])

⇓

Textual representation
if(x)

x = 0;

Figure 4.10: Example of code pretty-printing via Box representation

• There is a dedent construct, used for reducing the code indentation, which is useful for
formatting C labels.

• There is a tag construct, used for tagging the output code with miscellaneous, transpar-
ent13 information, used for transmitting syntax highlight hints, and references to the
original code.

4.3.6 Transforming ATerms into non-ATerms

The transformation framework previously described addresses the problem of transforming
ATerms into ATerms, but there is frequently the need to convert ATerms into other kind of
data, such as writing them to a file stream, or converting into a concrete class hierarchy. The
Visitor design pattern can be used for that end, but is not flexible enough, since a visitor
provides the means to code a (single) generic function. The concept of a Tree Walker, widely
used in parsing tools such as ANTLR is more flexible.

An ATerm walker is a class aimed to transform an ATerm as it traverses the tree. Each
method of an ATerm walker behaves as a visitor, matching/transforming a subterm, while
calling other methods or itself recursively in the process.

The coding of an ATerm walker is greatly simplified by the use of Python’s introspective
abilities and descriptors. These are present in a dispatcher – a method that takes a method

13Transparent in the sense it can be safely ignored.

56 Chapter 4: Design of the IDC tool

prefix, and introspectively calls the walker method more adequate to handle a term, at run-
time. For example, if the prefix is "foo", and the term is Plus(1,1) it will attempt to call
the method "fooPlus"; if the term is "a text string", it will attempt to call the method
"foo_Str"; and so on.

Listing 4.9 shows an example of an ATerm walker – an excerpt of the writer for the Box
language mentioned before. There is one dispatcher for each grammar production, therefore
the Box language writer uses only one dispatcher. The walker for the transformation language
translation uses many more.

A dispatcher also uses internally a Visitor to accomplish its task of determining the ap-
propriate method to handle a term.

4.3.7 Refactoring
A refactoring has four responsibilities:

1. To identify itself via name, for use in UI menus.

2. To determine whether it can be applied to a given program, and to a particular point
of the program (the current user selection in the UI).

3. To ask the user more for auxiliary input (such as new symbol names).

4. And finally, to apply itself.

Fig. 4.11 shows the refactoring class diagram. The last three responsibilities are actually
implemented via ATerm transformations.

Figure 4.11: Refactoring class diagram

Input is separate from application, so that it is later possible to reproduce the refactoring
without further user intervention – useful for more advanced undo mechanisms14.

The Dead Code Elimination refactoring (section 3.2.7) was implemented in a fashion
similar to the example given in [26, sec. 7.2], by traversing the IR in the reverse direction

14Not yet implemented.

4.3 Architecture 57

Listing 4.9: ATerm walker example – Box language writer
class Writer(walker.Walker):

’’’Writes boxes through a formatter.’’’

def __init__(self, formatter):
walker.Walker.__init__(self)
self.formatter = formatter

dispatch the term to one of the "write*" methods
write = walker.Dispatch(’write’)

def writeV(self, boxes, mode):
if mode == HORIZ:

raise Warning(’vbox inside hbox’, boxes)
else:

mode = VERT
for box in boxes:

self.write(box, mode)

def writeH(self, boxes, mode):
if mode == VERT:

self.formatter.write_indent()
for box in boxes:

self.write(box, mode = HORIZ)
if mode == VERT:

self.formatter.write_eol()

def writeI(self, box, mode):
self.formatter.indent()
self.write(box, mode)
self.formatter.dedent()

def write_Str(self, s, mode):
if mode == VERT:

self.formatter.write_indent()
self.formatter.write(s)
if mode == VERT:

self.formatter.write_eol()
...

58 Chapter 4: Design of the IDC tool

of control flow while keeping track of the needed variables in a hash table. In order to cope
with goto statements, however, it was also necessary to keep a table of the needed variables
at each label, and perform multiple passes into the AST until the list of needed variables at
every label reaches a fixed point.

The Inline Temp refactoring (section 3.2.2) was implemented by removing the specified
assignment statement and traversing the IR in the control flow direction, while replacing the
specified variable until either its value is overridden or the last statement is reached. The
encounter of a branch in the traversal would require a further pass from the label position,
and so on, until the set of affected labels reaches a fixed point.

The refactorings for structuring control flow (section 3.3) were surprisingly simple to im-
plement, as their implementation consist mostly of term matching and term building trans-
formations.

4.3.8 User interface

The basic operation of the interactive decompilation is the successive transformation of a
low-level input program into a higher-level output program. The main activity diagram is
shown in fig. 4.12.

The user interface is designed around one model and multiple views (fig. 4.13). It is similar
to the Model-View-Controller architecture pattern [57] but where the controller responsibil-
ities are distributed by the model and the views. Each view (which graphically maps to a
window or a widget) handles its own events, and modifies the model. Also each view registers
itself with the model to receive notification signals of parts of the model that are relevant to
it (such as the IR ATerm, the current selection, etc.); and whenever the model is changed the
view updates itself.

Pointing problem

To allow the user to interact with the code, not only is necessary to visualize the code but also
know which part of the code is associated with an user generated event (such as mouse-click).

The approach taken to solve this problem was to annotate the IR subterms with their
respective path on the term tree, and channel this information to the Box formatter via tags.
During the code box rendering this information is used to create click-sensitive areas that are
cross-linked to the original terms which produced them (fig. 4.14).

Paths were chosen to identify terms because, besides uniquely identifying a term, it also
allows to know whether a subterm is an ancestor, a child, before or after the term pointed by
a given path, which can be helpful when implementing the refactorings.

Although this was not strictly necessary, it was chosen to annotate the subterms with their
paths, since keeping track of term paths as they are being transformed would be exceedingly
complex. The disadvantage is that annotating the subterms with their paths destroys the term
sharing. To reduce this undesired effect, only the necessary terms are annotated: statement,
expression, and type terms.

The same method was used to allow user interaction with the graphs generated by the
Dot tool – by channeling the paths via the URL attribute of the Dot language and reading it
back from the Dot generated image-maps.

4.3 Architecture 59

Figure 4.12: Main activity diagram

60 Chapter 4: Design of the IDC tool

Figure 4.13: Model-View class diagram

4.3 Architecture 61

Initial IR
If(

Sym("x"),
Assign(

Int(32, Signed),
Sym("x"),
Lit(Int(32, Signed),0)

),
NoStmt

)

⇓

Path annotated IR
If(

Sym("x"){Path([0])},
Assign(

Int(32, Signed){Path([0,1])},
Sym("x"){Path([1,1])},
Lit(Int(32, Signed), 0){Path([2,1])}

){Path([1])},
NoStmt{Path([2])}

){Path([])}

⇓

Path annotated Box representation
T("path", [],

V([
H([T("type", "keyword", "if"), "(", T("path", [0], "x"), ")"]),
I(

T("path", [1],
H([T("path", [1,1], "x"), " ", "=", " ", T("path", [2,1], "0"), ";"])

)
)

])
)

⇓
Click sensitive UI

if(x)

x = 0 ;

Figure 4.14: Path annotation for the pointing problem

62 Chapter 4: Design of the IDC tool

Undo

The limited time frame of this work only allowed to implement a simple undo mechanism,
whereby undo/redo is done by popping/pushing into a history stack of all intermediate ver-
sions of the IR, kept in memory.

Chapter 5

The IDC tool

This chapter now describes the resulting interactive decompilation (IDC) tool based on the
design decisions presented in chapter 4, and how to use it with the help of an example.

5.1 About
The IDC tool is an interactive decompiler, where the user starts with an almost literal trans-
lation of Assembly code in C language, which he progressively decompiles by the successive
application of low-level refactorings, ultimately leading to high-level C code.

5.2 Features
The current main features of IDC are:

• Import Intel IA32 Assembly code, in the AT&T syntax1.

• Visualize and export quasi-C language code.

• Provides a context-sensitive refactoring browser to the low-level refactorings listed in
chapter 3.

• Visualize and manipulate the Control Flow Graph (CFG) and the Abstract Syntax Tree
(AST) of the program.

5.3 Availability
The IDC tool source code, installation instructions, and examples are available from the IDC
website, at http://paginas.fe.up.pt/~mei04010/idc/.

5.4 Tutorial
This section gives a tutorial on how to use the interactive decompilation tool to decompile a
very simple Assembly program.

1The AT&T Assembly syntax is the one normally generated by the gcc compiler for the Intel IA32 archi-
tecture

63

http://paginas.fe.up.pt/~mei04010/idc/

64 Chapter 5: The IDC tool

5.4.1 Main window

The main program of the interactive compilation is the idc.py file. After starting it the
main window appears (fig. 5.1). The tool can load either Intel IA32 Assembly files (*.s), or
previously saved Intermediate Representation (IR) in textual ATerm format (*.aterm).

Figure 5.1: Tool main window

In the examples subdirectory of the source distribution are included sample Assembly
files generated from C sources via the gcc compiler. From the File menu, let’s open the
factorial.s Assembly file (listing 5.1). The Assembly file is parsed and translated into the
IR, and a pretty-printed view of the IR with syntax highlighting appears on the main window
(fig. 5.2).

Either from the Refactor top-level menu, or from right-clicking on the code, a context-
sensitive menu with a list of possible refactorings will appear (fig. 5.3).

Other views of the IR available from the View menu – at the moment, the Control Flow
Graph (CFG) view (fig. 5.4) and the internal term view are available (fig. 5.5). Both views
are linked with the main view, i.e., clicking in a CFG node or a term will select the respective
code in all views. It is also possible to right-click on a CFG and access the Refactor pop-up
menu from the CFG view.

5.4.2 Extract function prototype

The first step to reverse engineer factorial.s is to extract the function. Many refactorings
operate on a function scope, so it is imperative for the function signature to be reversed
engineered by then. This can be accomplished by right-clicking on the factorial: label and
choosing the Extract Function refactoring (p. 18). A function named factorial containing
the statements between the label and the return statement (fig. 5.6).

5.4 Tutorial 65

Listing 5.1: Example input Assembly code (factorial.s)
.file "factorial.c"
.text

.globl factorial
.type factorial, @function

factorial:
testl %eax, %eax
jne .L2
movl $1, %edx
jmp .L4

.L2:
movl $1, %edx

.L5:
imull %eax, %edx
decl %eax
jne .L5

.L4:
movl %edx, %eax
ret
.size factorial, .-factorial
.ident "GCC: (GNU) 4.1.2 20060715 (prerelease) (Debian 4.1.1-9)"
.section .note.GNU-stack,"",@progbits

Figure 5.2: Pretty-printed view of the Intermediate Representation

66 Chapter 5: The IDC tool

Figure 5.3: Context sensitive refactoring menu

The statement immediately before the return statement is an assignment to the eax
register – the eax register is being used to pass the function return value to the caller. This
is a common calling convention in code compiled for the Intel IA32 architecture. To make
this explicit, and update the function return type, apply the Set Function Return (p. 19),
specifying eax as the return symbol (fig. 5.7). eax will be added to the return statement, and
the function return type will change from void to signed int (fig. 5.8).

The first statement inside the factorial function reads the value of the eax register –
the eax is being used to pass an argument to the function. To make this explicit, and update
the function prototype, apply the Add Function Argument refactoring (p. 20), specifying the
eax register as the argument symbol.

Passing arguments in registers is not the most common calling convention in Intel IA32
code – usually function arguments are passed exclusively in the processor stack –, but some
compilers for the IA32 architecture (such as Microsoft, Borland, and Watcom C++ compilers)
have a fastcall option to use some registers to pass the first arguments of a function in
registers, as that usually yields faster code. Other compilers (such as the gcc compiler),
allow to completely customize the calling convention. This was intentionally the case for this
Assembly file, as the current implementation of the Add Function Argument refactoring in
the interactive decompilation tool does not yet support function arguments passed in the
stack.

5.4.3 Dead code elimination

At this point the function prototype is complete, and data flow analysis can be safely per-
formed. We can now apply the Dead Code Elimination refactoring (p. 24), to eliminate
all those assignments to unused flag registers and temporaries (fig. 5.10). The Dead Code

5.4 Tutorial 67

Figure 5.4: Control Flow Graph view

68 Chapter 5: The IDC tool

Figure 5.5: Term Inspector view

Figure 5.6: Code after applying the Extract Function refactoring

5.4 Tutorial 69

Figure 5.7: Specifying the return symbol for the Set Function Return refactoring

Figure 5.8: Code after applying the Set Function Return refactoring

70 Chapter 5: The IDC tool

Figure 5.9: Code after applying the Add Function Argument refactoring

Elimination could not have been applied sooner – applying before the Set Function Return
refactoring would eliminate important code, as the refactoring would assume that the function
had no return value, hence all assignments leading the final eax value would be erroneously
eliminated.

5.4.4 Control flow simplification

The code is now less denser and easier to follow, but the existence of goto statements is a
hindrance to the code flow understanding. The CFG view (fig. 5.11) helps to realize the
existence of an if-then-else statement in the first decision node (represented in the CFG by a
diamond), and a loop after the second decision node.

Right-clicking on the goto .L2 statement presents the choice of structuring a if-then
or a if-then-else statement. From the previous CFG inspection we will opt for the latter.
Right-clicking on the goto .L5 statement presents only the choice of structuring a do-while
statement. After structuring these control flow statements, no more goto statements will
remain (fig. 5.12).

5.4.5 Data flow simplification

Although the control flow is now evident, the data flow is still unnecessarily complex, with an
excessive use of temporary variables. These temporary variables can be eliminated with the
application of the Inline Temp refactoring (p. 21) on the respective assignments (fig. 5.13).

The expressions are now more condensed, but there are some expressions resulting from
compiler idiosyncrasies that can obviously be further simplified, such as the eax & eax into

5.5 Current limitations 71

Figure 5.10: Code after applying the Dead Code Elimination refactoring

simply eax, and !(eax == 0) into simply eax != 0. These simplifications can be per-
formed by applying the Simplify Expression refactoring (p. 25) on the respective expressions
(fig. 5.14).

5.4.6 Variable renaming

Now that both the control flow and data flow are clear it is easier to understand the role of
the variables, and name them. Even if the name of the function hasn’t hinted, it is clear now
that the purpose of this function is to compute the factorial of an integer. Using the Rename
Symbol refactoring (p. 25) let’s rename the argument eax into n, and the accumulator variable
edx into f (fig. 5.15).

5.4.7 Variable renaming

See the side-by-side comparison of the final code against the original C source from which
factorial.s was compiled, shown in fig. 5.16.

Unfortunately it is not possible to apply the Structure While Statement refactoring due
to the existence of the f = 1 statements inside the if statements. The compiler duplicated
this statement in both if branches, and it could be safely factored out, yielding the original
source code, however such refactoring is not yet devised nor implemented.

5.5 Current limitations

As the previous tutorial shows, the interactive tool is still in a proof of concept state. It is not
yet ready for the reverse engineering real life applications, suffering from some limitations:

• The current implementation of the Extract Function refactoring does not cope with
functions split in non-contiguous code fragments.

72 Chapter 5: The IDC tool

Figure 5.11: CFG after applying the Dead Code Elimination refactoring

5.5 Current limitations 73

Figure 5.12: Code after applying the Structure If Statement and Structure If-Else Statement
refactorings

Figure 5.13: Code after applying the Inline Temp refactoring to the temporary variable
assignments

74 Chapter 5: The IDC tool

Figure 5.14: Code after applying the Simplify Expression refactoring to the redundant ex-
pressions

Figure 5.15: Final code after applying the Rename Symbol refactoring

5.6 Extending the tool with new refactorings 75

Final Reverse Engineered Code
signed int factorial(signed int n)
{

if(n != 0)
{

f = 1;
do
{

f = f * n;
n = n - 1;

}
while(n != 0);

}
else

f = 1;
return f;

}

⇔

Original Source Code
int factorial(int n)
{

register int f;
f = 1;
while(n)

f *= n--;
return f;

}

Figure 5.16: Side-by-side comparison of the example source code

• The data flow analysis performed in the refactorings focus only on register variables.
This in turns means that:

– The recovery of function arguments, function return values, and local variables
from the processor stack is not yet supported by the current implementation of
the concerning refactorings. Such recovery requires a data flow analysis of the
stack and frame base pointer registers, which has not yet been coded. Therefore
only code using function arguments, function return values, and local variables as
registers is supported.

– Variable declarations are neither produced nor observed, as everything is consid-
ered a register.

– Global data in the input Assembly file is discarded.

• The implementation of several of the refactorings described in Chapter 3 is still missing
due to lack of time.

At any rate, these limitations resulted from the limited amount of time available for the
realization of this work, and never from the used methodology per se.

5.6 Extending the tool with new refactorings

This section explains how to add a new refactoring to the tool. As an example, we will create
a new refactoring to globally rename a symbol.

A refactoring is constituted by three transformations: applicable, input, and apply.

76 Chapter 5: The IDC tool

The applicable transformations will tell the tool whether this refactoring can be applied
or not, given the current selection and program. It should fail if it is not applicable – any other
result is interpreted as the refactoring being applicable. Some refactorings can be globally
applicable. For those, a simple identity transformation

applicable =
id # identity transformation

will suffice, here shown in the transformation language. For the symbol renaming example,
we will require that the current selection is a symbol, by projecting the current selection, and
matching against the Sym term application, as

applicable =
ir.path.projectSelection ; # project the current selection
?Sym(_) # is it a symbol?

The input transformation will ask the user for further information, and produce a list
term, with all necessary arguments for applying the refactoring. If no arguments are required,
a simple

input =
![] # build an empty list

will suffice. For the symbol renaming example, we will have the original and new symbol
names as refactoring arguments, as

input =
with src, dst in # declare some variables

get the original symbol name from the selection
ir.path.projectSelection ; ?Sym(src) ;
ask the new symbol name from the selection
lib.input.Str(!"Set Function Return", !"Return Symbol?") ; ?dst ;
build the argument list
![src, dst]

end

The apply refactoring does the actual job of applying the refactoring to the program. It
receives the original program as input, and the refactoring arguments in the args variable.
For the symbol renaming example, it will be

apply =
with src, dst in

extract the original argument list
Where(!args; ?[src, dst]) ;

top-down traversal of all program subterms
AllTD(

traverse symbol, matching its name against ’src’, and replacing it by
’dst’

~Sym(<?src; !dst>)
)

5.6 Extending the tool with new refactorings 77

end

Now it is just a matter of wrapping it up with some standard boiler plate code, and
putting it in a file inside the refactoring subdirectory. Listing 5.2 shows the complete
refactoring implementation in the Python language, with embedded transformations in the
transformation language.

Listing 5.2: Complete Rename Symbol refactoring example
import refactoring
from refactoring._common import CommonRefactoring
import transf as lib
import ir.path

lib.parse.Transfs(r’’’

applicable =
ir.path.projectSelection ;
?Sym(_)

input =
with src, dst in

ir.path.projectSelection ; ?Sym(src) ;
lib.input.Str(!"Set Function Return", !"Return Symbol?") ; ?dst ;
![src, dst]

end

apply =
with src, dst in

Where(!args; ?[src, dst]) ;
AllTD(

~Sym(<?src; !dst>)
)

end

’’’)

renameSymbol = CommonRefactoring(
"Rename Symbol",
applicable, input, apply

)

Chapter 6

Conclusions

As mentioned before, reverse engineering techniques in general (and machine code decompila-
tion in particular) can be useful for software development and maintenance. The main focus
of this work was to show how the incorporation of human interactivity – an aspect largely un-
derused in the decompilation domain – in the decompilation process can substantially increase
its usefulness.

6.1 Contributions

This work presented a novel and promising approach to program decompilation. By bring-
ing together human interaction and refactoring, this approach has the potential to make
decompilation a more useful and effective process.

A catalog of refactorings for low-level (near Assembly) C code was defined, where each
refactoring helps making the low-level code incrementally more intelligible. So the combined
and successive application of these refactorings can effectively bring a low-level machine code
to a higher-level code, while retaining its semantics.

An interactive decompilation tool was developed. It automates the application of the
low-level refactorings while providing an effective visualization of the program being decom-
piled. The use of the interactive decompilation tool and the low-level refactoring catalog was
illustrated on an example that, albeit being very simple, demonstrates how the combined and
successive application of the low-level refactorings can effectively recover high-level code from
low-level Assembly code.

As side product of this work, a Python version of the ATerm library was developed, as
well as program transformation system inspired on the Stratego language.

6.2 Directions for future work

Due to the limited time frame for the realization of this work, its deliverables are mostly a
proof of concept.

Future work may include:

• Implement the remaining refactorings, and overcome the other current limitations of
the interactive tool, described in 5.5.

79

80 Chapter 6: Conclusions

• Annotate the IR with its Static Single Assignment (SSA) form. In the SSA form each
variable is assigned exactly once. This property can simplify the implementation of
several refactorings that handle variables.

• Visualize the Program Dependency Graph (PDG). The CFG represents the control flow
relationships of a program, however, an undesirable property of a CFG is the fixed
sequencing of operations that needs not to hold. Unlike the CFG, the PDG makes
explicit both the data and the control dependencies for each operation in a program,
without the unnecessary sequencing between operations [14, 15].

• Visualize program slices. A program slice consists of all statements and predicates of
that program which might affect the value of a given variable at a given point of the
program [16]. Program slicing can help the programmer understand complicated code.

• Make the interactive tool a generic refactoring browser. The interactive decompilation
tool architecture is versatile enough that it can be easily adapted to become a generic
refactoring browser for languages than C and other purposes than just code compilation.
The missing pieces are parsers to those other languages, and to devise a way to keep
the code layout and comments after refactoring.

• Target the C++ language instead of plain C. By extending the low-level refactoring
catalog with refactorings to reverse engineer classes and methods it should be possible
to decompile programs written in the OOP paradigm rather than just program written
in the imperative paradigm.

• Improve the transformation library documentation, crystallize the transformation lan-
guage syntax, and make it available as a stand alone library. The library is already
generic and useful for program transformation tools other than decompilers or refactor-
ing browsers, but some rough edges must be trimmed before it is releasable to third-
parties.

• Improve the undo mechanism, allowing to undo a earlier refactoring without undoing
the intermediate ones, as suggested in [40].

Bibliography

[1] Cristina Cifuentes. Reverse Compilation Techniques. PhD thesis, Queensland University
of Technology, Department of Computer Science, July 1994. URL http://www.itee.uq.
edu.au/~cristina/dcc.html#thesis.

[2] Elliot J. Chikofsky and James H. Cross. Reverse engineering and design recovery: A
taxonomy. IEEE Software, 7(1):13–17, 1990.

[3] The Program Transformation Wiki contributors. The program transformation wiki: Why
decompilation?, 29 Apr 2005. URL http://www.program-transformation.org/Transform/
WhyDecompilation.

[4] The Program Transformation Wiki contributors. The program transformation wiki:
Legality of decompilation, 10 Nov 2005. URL http://www.program-transformation.org/
Transform/LegalityOfDecompilation.

[5] Cristina Cifuentes, Mike Van Emmerik, and Norman Ramsey. The design of a resource-
able and retargetable binary translator. In Proceedings of the Sixth Working Conference
on Reverse Engineering, pages 280–291, October 1999. URL http://www.itee.uq.edu.au/
~cristina/wcre99.ps.

[6] Cristina Cifuentes and Mike Van Emmerik. The dcc decompiler. http://www.itee.uq.edu.
au/~cristina/dcc.html.

[7] UQBT – a resourceable and retargetable binary translator. http://www.itee.uq.edu.au/
~cristina/uqbt.html.

[8] Cristina Cifuentes and Shane Sendall. Specifying the semantics of machine instructions.
Technical Report Technical Report 422, Department of Computer Science, The Univer-
sity of Queensland, December 1997. URL http://www.itee.uq.edu.au/~cristina/papers/
tr422.ps.

[9] IDA Pro Disassembler. http://www.datarescue.com/idabase/.

[10] Boomerang decompiler. http://boomerang.sourceforge.net/.

[11] Mike Van Emmerik and Trent Waddington. Using a decompiler for real-world source
recovery, 2004. URL http://www.itee.uq.edu.au/~emmerik/experience_long.pdf. This is
an extended version of a paper published at the 2004 Working Conference on Reverse
Engineering (WCRE 2004).

81

http://www.itee.uq.edu.au/~cristina/dcc.html#thesis
http://www.itee.uq.edu.au/~cristina/dcc.html#thesis
http://www.program-transformation.org/Transform/WhyDecompilation
http://www.program-transformation.org/Transform/WhyDecompilation
http://www.program-transformation.org/Transform/LegalityOfDecompilation
http://www.program-transformation.org/Transform/LegalityOfDecompilation
http://www.itee.uq.edu.au/~cristina/wcre99.ps
http://www.itee.uq.edu.au/~cristina/wcre99.ps
http://www.itee.uq.edu.au/~cristina/dcc.html
http://www.itee.uq.edu.au/~cristina/dcc.html
http://www.itee.uq.edu.au/~cristina/uqbt.html
http://www.itee.uq.edu.au/~cristina/uqbt.html
http://www.itee.uq.edu.au/~cristina/papers/tr422.ps
http://www.itee.uq.edu.au/~cristina/papers/tr422.ps
http://www.datarescue.com/idabase/
http://boomerang.sourceforge.net/
http://www.itee.uq.edu.au/~emmerik/experience_long.pdf

82 BIBLIOGRAPHY

[12] Boomerang: Still to be done. http://boomerang.sourceforge.net/tobedone.php, 22 Aug
2006.

[13] CodeSurfer. http://cayuga.grammatech.com/products/codesurfer/, 2006.

[14] Jeanne Ferrante, Karl J. Ottenstein, and Joe D. Warren. The program dependence graph
and its use in optimization. ACM Transactions on Programming Languages and Systems,
9(3):319–349, July 1987.

[15] Susan Horwitz and Thomas W. Reps. The use of program dependence graphs in software
engineering. In Proceedings of the Fourteenth International Conference on Software En-
gineering, pages 392–411, May 1992. URL http://www.cs.wisc.edu/wpis/papers/icse92.ps.

[16] Susan Horwitz, Thomas Reps, and David Binkley. Interprocedural slicing using depen-
dence graphs. ACM Transactions on Programming Languages and Systems, 12(1):26–60,
January 1990. URL http://www.cs.wisc.edu/wpis/papers/pldi88.retrospective.pdf.

[17] Thomas Reps, Susan Horwitz, Mooly Sagiv, and Genevieve Rosay. Speeding up slicing. In
Proceedings of the Second ACM SIGSOFT Symposium on the Foundations of Software
Engineering, volume 19, pages 11–20, December 1994. URL http://www.cs.wisc.edu/
wpis/papers/fse94.ps.

[18] Thomas Reps and Genevieve Rosay. Precise interprocedural chopping. In Proceedings
of the Third ACM SIGSOFT Symposium on the Foundations of Software Engineering,
volume 20, pages 41–52, 1995. URL http://www.cs.wisc.edu/wpis/papers/fse95b.pdf.

[19] CodeSurfer/x86. http://cayuga.grammatech.com/research/cs-x86/, 2006.

[20] Gogul Balakrishnan, Radu Gruian, Thomas Reps, and Tim Teitelbaum. CodeSurfer/x86
– a platform for analyzing x86 executables. In Proceedings of the International Confer-
ence on Compiler Construction, April 2005. URL http://www.cs.wisc.edu/wpis/papers/
cc05-tool-demo.pdf. (tool demonstration paper).

[21] Gogul Balakrishnan and Thomas Reps. Analyzing memory accesses in x86 executables.
In Proceedings of the International Conference on Compiler Construction, pages 5–23,
2004. URL http://www.cs.wisc.edu/wpis/papers/cc04.pdf.

[22] The Program Transformation Wiki contributors. The program transformation wiki:
Machine code decompilers, 4 Aug 2005. URL http://www.program-transformation.org/
Transform/MachineCodeDecompilers.

[23] Eelco Visser. A survey of strategies in rule-based program transformation systems. Jour-
nal of Symbolic Computation, 40(1):831–873, 2005. doi: 10.1016/j.jsc.2004.12.011. Spe-
cial issue on Reduction Strategies in Rewriting and Programming.

[24] Nachum Dershowitz and Jean-Pierre Jouannaud. Rewrite systems. In Handbook of
Theoretical Computer Science, Volume B: Formal Models and Semantics, pages 243–
320. J. van Leeuwen, ed., 1990.

[25] Sergio Antoy and John D. Gannon. Using term rewriting to verify software. Soft-
ware Engineering, 20(4):259–274, 1994. URL http://web.cecs.pdx.edu/~antoy/homepage/
publications/tse94/paper.pdf.

http://boomerang.sourceforge.net/tobedone.php
http://cayuga.grammatech.com/products/codesurfer/
http://www.cs.wisc.edu/wpis/papers/icse92.ps
http://www.cs.wisc.edu/wpis/papers/pldi88.retrospective.pdf
http://www.cs.wisc.edu/wpis/papers/fse94.ps
http://www.cs.wisc.edu/wpis/papers/fse94.ps
http://www.cs.wisc.edu/wpis/papers/fse95b.pdf
http://cayuga.grammatech.com/research/cs-x86/
http://www.cs.wisc.edu/wpis/papers/cc05-tool-demo.pdf
http://www.cs.wisc.edu/wpis/papers/cc05-tool-demo.pdf
http://www.cs.wisc.edu/wpis/papers/cc04.pdf
http://www.program-transformation.org/Transform/MachineCodeDecompilers
http://www.program-transformation.org/Transform/MachineCodeDecompilers
http://web.cecs.pdx.edu/~antoy/homepage/publications/tse94/paper.pdf
http://web.cecs.pdx.edu/~antoy/homepage/publications/tse94/paper.pdf

BIBLIOGRAPHY 83

[26] Martin Bravenboer, Arthur van Dam, Karina Olmos, and Eelco Visser. Program trans-
formation with scoped dynamic rewrite rules. Fundamenta Informaticae, 69:1–56, 2005.

[27] Terence J. Parr. An overview of SORCERER: A simple tree-parser generator, 1994. URL
http://www.antlr.org/papers/sorcerer.ps. Poster paper in the International Conference on
Compiler Construction 1994.

[28] Terence J. Parr and Russell W. Quong. ANTLR: A predicated-LL(k) parser generator.
Software Practice and Experience, 25(7):789–810, July 1995.

[29] D. E. Knuth. The genesis of attribute grammars. In Proceedings of the international
conference on Attribute grammars and their applications, pages 1–12, 1990.

[30] Matthĳs Kuiper, Doaitse Swierstra, Marteen Pennings, Harald Vogt, and João Saraiva.
Lrc: A purely functional, higher-order attribute grammar based system. http://www.di.
uminho.pt/~jas/Research/LRC/lrc.html.

[31] João Saraiva. Purely Functional Implementation of Attribute Grammars. PhD thesis,
Department of Computer Science, Utrecht University, The Netherlands, December 1999.
URL ftp://ftp.cs.uu.nl/pub/RUU/CS/phdtheses/Saraiva/thesis.pdf.

[32] The Program Transformation Wiki contributors. The program transformation wiki:
Transformation systems, 05 Jul 2005. URL http://www.program-transformation.org/
Transform/TransformationSystems.

[33] William F. Opdyke. Refactoring Object-Oriented Frameworks. PhD thesis, University
of Illinois, Urbana-Champaign, IL, USA, 1992. URL ftp://st.cs.uiuc.edu/pub/papers/
refactoring/opdyke-thesis.ps.Z.

[34] Martin Fowler. Refactoring: improving the design of existing code. Addison-Wesley,
2000.

[35] Joshua Kerievsky. Refactoring to Patterns. Pearson Higher Education, 2004. ISBN
0321213351.

[36] Eli Tilevich and Yannis Smaragdakis. Binary refactoring: improving code behind the
scenes. In ICSE ’05: Proceedings of the 27th international conference on Software engi-
neering, pages 264–273, New York, NY, USA, 2005. ACM Press. ISBN 1-59593-963-2. doi:
http://doi.acm.org/10.1145/1062455.1062511. URL http://www.cc.gatech.edu/~yannis/
binary-refactoring04.pdf.

[37] Kyle Brown. Design reverse-engineering and automated design-pattern detection in
Smalltalk. Master’s thesis, North Carolina State University at Raleigh, Raleigh, NC,
USA, 1996. Available from http://www.ncstrl.org/.

[38] Refactoring browser. http://st-www.cs.uiuc.edu/users/brant/Refactory/.

[39] Don Roberts, John Brant, and Ralph Johnson. A refactoring tool for Smalltalk. Theory
and Practice of Object Systems, 3(4):253–263, 1997. URL http://st-www.cs.uiuc.edu/
~droberts/tapos.pdf.

http://www.antlr.org/papers/sorcerer.ps
http://www.di.uminho.pt/~jas/Research/LRC/lrc.html
http://www.di.uminho.pt/~jas/Research/LRC/lrc.html
ftp://ftp.cs.uu.nl/pub/RUU/CS/phdtheses/Saraiva/thesis.pdf
http://www.program-transformation.org/Transform/TransformationSystems
http://www.program-transformation.org/Transform/TransformationSystems
ftp://st.cs.uiuc.edu/pub/papers/refactoring/opdyke-thesis.ps.Z
ftp://st.cs.uiuc.edu/pub/papers/refactoring/opdyke-thesis.ps.Z
http://www.cc.gatech.edu/~yannis/binary-refactoring04.pdf
http://www.cc.gatech.edu/~yannis/binary-refactoring04.pdf
http://www.ncstrl.org/
http://st-www.cs.uiuc.edu/users/brant/Refactory/
http://st-www.cs.uiuc.edu/~droberts/tapos.pdf
http://st-www.cs.uiuc.edu/~droberts/tapos.pdf

84 BIBLIOGRAPHY

[40] Donald Bradley Roberts. Practical Analysis for Refactoring. PhD thesis, University of
Illinois, Urbana-Champaign, IL, USA, 1999. URL http://st-www.cs.uiuc.edu/~droberts/
thesis.pdf.

[41] HaRe – the Haskell refactorer. http://www.cs.kent.ac.uk/projects/refactor-fp/hare.html.

[42] Huiqing Li, Claus Reinke, and Simon Thompson. Tool support for refactoring functional
programs. In Haskell ’03: Proceedings of the 2003 ACM SIGPLAN workshop on Haskell,
pages 27–38, New York, NY, USA, 2003. ACM Press. URL http://www.cs.kent.ac.uk/
projects/refactor-fp/publications/tool-support-for-rfp.pdf.

[43] Huiqing Li, Simon Thompson, and Claus Reinke. The Haskell Refactorer: HaRe, and
its API. In Proceedings of the 5th workshop on Language Descriptions, Tools and Ap-
plications (LDTA 2005), April 2005. URL http://www.cs.kent.ac.uk/projects/refactor-fp/
publications/HaRe-and-its-API.pdf.

[44] Ralf Lämmel and Joost Visser. http://www.cs.vu.nl/Strafunski/.

[45] R. Lämmel and J. Visser. Typed Combinators for Generic Traversal. In Proceedings of
the Practical Aspects of Declarative Programming PADL 2002, volume 2257 of LNCS,
pages 137–154. Springer-Verlag, January 2002. URL http://www.cwi.nl/~ralf/padl02.pdf.

[46] Ralf Lämmel and Joost Visser. Design Patterns for Functional Strategic Programming.
In Proceedings of the Third ACM SIGPLAN Workshop on Rule-Based Programming
RULE’02, Pittsburgh, USA, October5 2002. ACM Press. URL http://www.cwi.nl/~ralf/
dp-sf.pdf. 14 pages.

[47] Eclipse project. http://www.eclipse.org/eclipse/.

[48] M.G.J. van den Brand, H.A. de Jong, P. Klint, and P.A. Olivier. Efficient annotated
terms. Software, Practice and Experience, 30(3):259–291, 2000. URL http://www.cwi.
nl/projects/MetaEnv/aterm/doc/at.pdf.

[49] Martin Bravenboer, Karl Trygve Kalleberg, Rob Vermaas, and Eelco Visser. Stratego/XT
Tutorial, Examples, and Reference Manual (latest). Department of Information and
Computing Sciences, Universiteit Utrecht, Utrecht, The Netherlands, 2006. URL http:
//nix.cs.uu.nl/dist/stratego/strategoxt-manual-unstable-latest/manual/.

[50] IA-32 Intel Architecture Software Developer’s Manual, Volume 1: Basic Architecture.
Intel Corporation, 2001.

[51] IA-32 Intel Architecture Software Developer’s Manual, Volume 2: Instruction Set Refer-
ence. Intel Corporation, 2001.

[52] Eelco Visser. Program transformation with Stratego/XT: Rules, strategies, tools, and
systems in StrategoXT-0.9. In C. Lengauer et al., editors, Domain-Specific Program
Generation, volume 3016 of Lecture Notes in Computer Science, pages 216–238. Spinger-
Verlag, June 2004. URL http://www.cs.uu.nl/research/techreps/UU-CS-2004-011.html.

[53] H.A. de Jong and P.A. Olivier. Aterm java api. http://www.cwi.nl/projects/MetaEnv/
aterm/doc/aterm-javadoc/index.html, 2003.

http://st-www.cs.uiuc.edu/~droberts/thesis.pdf
http://st-www.cs.uiuc.edu/~droberts/thesis.pdf
http://www.cs.kent.ac.uk/projects/refactor-fp/hare.html
http://www.cs.kent.ac.uk/projects/refactor-fp/publications/tool-support-for-rfp.pdf
http://www.cs.kent.ac.uk/projects/refactor-fp/publications/tool-support-for-rfp.pdf
http://www.cs.kent.ac.uk/projects/refactor-fp/publications/HaRe-and-its-API.pdf
http://www.cs.kent.ac.uk/projects/refactor-fp/publications/HaRe-and-its-API.pdf
http://www.cs.vu.nl/Strafunski/
http://www.cwi.nl/~ralf/padl02.pdf
http://www.cwi.nl/~ralf/dp-sf.pdf
http://www.cwi.nl/~ralf/dp-sf.pdf
http://www.eclipse.org/eclipse/
http://www.cwi.nl/projects/MetaEnv/aterm/doc/at.pdf
http://www.cwi.nl/projects/MetaEnv/aterm/doc/at.pdf
http://nix.cs.uu.nl/dist/stratego/strategoxt-manual-unstable-latest/manual/
http://nix.cs.uu.nl/dist/stratego/strategoxt-manual-unstable-latest/manual/
http://www.cs.uu.nl/research/techreps/UU-CS-2004-011.html
http://www.cwi.nl/projects/MetaEnv/aterm/doc/aterm-javadoc/index.html
http://www.cwi.nl/projects/MetaEnv/aterm/doc/aterm-javadoc/index.html

BIBLIOGRAPHY 85

[54] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design patterns:
elements of reusable object-oriented software. Addison-Wesley Longman Publishing Co.,
Inc., Boston, MA, USA, 1995. ISBN 0-201-63361-2.

[55] Daniel C. Wang, Andrew W. Appel, Jeff L. Korn, and Christopher S. Serra. The Zephyr
abstract syntax description language. In Proceedings of the Conference on Domain-
Specific Languages, pages 213–227, Santa Barbara, October 1997. URL http://www.cs.
princeton.edu/~danwang/Papers/dsl97/dsl97-abstract.html.

[56] Mark G. J. van den Brand and Eelco Visser. Generation of formatters for context-
free languages. ACM Transactions on Software Engineering and Methodology, 5(1):1–41,
January 1996. URL http://www.cs.uu.nl/people/visser/ftp/BV96.ps.gz.

[57] G. Krasner and S. Pope. A description of the Model-View-Controller user interface
paradigm in the Smalltalk-80 system. Journal of Object Oriented Programming, 1(3):
26–49, 1988. URL http://www.create.ucsb.edu/~stp/PostScript/mvc.pdf.

[58] Cristina Cifuentes. Structuring decompiled graphs. In Proceedings of the International
Conference on Compiler Construction, pages 91–105, April 1996. URL http://www.itee.
uq.edu.au/~cristina/papers/cc96.ps.

[59] Agner Fog. Calling conventions for different c++ compilers and operating systems, July
2006. URL http://www.agner.org/optimize/calling_conventions.pdf.

[60] The Program Transformation Wiki contributors. The program transformation wiki:
Is decompilation possible?, 29 Dec 2005. URL http://www.program-transformation.org/
Transform/DecompilationPossible.

[61] Paul Morris, Ron Gray, and Robert Filman. GOTO removal based on regular expressions.
Journal of Software Maintenance, 9(1):47–662, 1997. URL http://ic.arc.nasa.gov/people/
filman/text/invision/nogo.pdf.

[62] H.A. de Jong and P.A. Olivier. Generation of abstract programming interfaces from
syntax definitions. Software Engineering (SEN) SEN-R0212, Centrum voor Wiskunde en
Informatica (CWI), July 2002. URL http://www.cwi.nl/ftp/CWIreports/SEN/SEN-R0212.
pdf.

http://www.cs.princeton.edu/~danwang/Papers/dsl97/dsl97-abstract.html
http://www.cs.princeton.edu/~danwang/Papers/dsl97/dsl97-abstract.html
http://www.cs.uu.nl/people/visser/ftp/BV96.ps.gz
http://www.create.ucsb.edu/~stp/PostScript/mvc.pdf
http://www.itee.uq.edu.au/~cristina/papers/cc96.ps
http://www.itee.uq.edu.au/~cristina/papers/cc96.ps
http://www.agner.org/optimize/calling_conventions.pdf
http://www.program-transformation.org/Transform/DecompilationPossible
http://www.program-transformation.org/Transform/DecompilationPossible
http://ic.arc.nasa.gov/people/filman/text/invision/nogo.pdf
http://ic.arc.nasa.gov/people/filman/text/invision/nogo.pdf
http://www.cwi.nl/ftp/CWIreports/SEN/SEN-R0212.pdf
http://www.cwi.nl/ftp/CWIreports/SEN/SEN-R0212.pdf

	Introduction
	Problem
	Objective
	Proposed strategy
	Outline

	Background and review
	Decompilation
	Definition
	Motivation
	Legal implications
	Feasibility
	State of existing reverse-engineering tools

	Program Transformation
	Program Representation
	Transformation Paradigms

	Refactoring
	Definition
	Refactoring and decompiling
	State of existing interactive refactoring tools

	Review of related work

	Catalog of low-level refactorings
	Function prototyping
	Extract Function
	Set Function Return
	Add Function Argument

	Organizing data
	Extract Local Variable
	Inline Temp
	Split Temporary Variable
	Replace Magic Number with Symbolic Constant
	Replace Data Values with Record
	Replace Type
	Dead Code Elimination
	Rename Symbol
	Simplify Expression

	Structuring control flow
	Structure If Statement
	Structure If-Else Statement
	Structure Do-While Statement
	Structure Infinite Loop
	Structure Continue Statement
	Structure Break Statement
	Structure While Statement -- Form I
	Structure While Statement -- Form II
	Structure While Statement -- Form III
	Inline Return Statement
	Consolidate Boolean And Expression

	Example

	Design of the IDC tool
	Requirements
	Design decisions
	Programming language
	Program representation and transformation
	GUI toolkit

	Architecture
	Overall architecture
	Program representation
	Program transformation
	Machine instruction semantics
	Code pretty-printing
	Transforming ATerms into non-ATerms
	Refactoring
	User interface

	The IDC tool
	About
	Features
	Availability
	Tutorial
	Main window
	Extract function prototype
	Dead code elimination
	Control flow simplification
	Data flow simplification
	Variable renaming
	Variable renaming

	Current limitations
	Extending the tool with new refactorings

	Conclusions
	Contributions
	Directions for future work

	Bibliography

