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Abstract 

The self-bending process of steady-state bright spatial solitons in biased photorefractive media is investigated by taking into 
account diffusion effects. By integrating numerically the nonlinear propagation equation, it is found that the soliton beam 
evolution is approximately adiabatic. The self-deflection process is further studied using perturbation analysis, which predicts 
that the center of the optical beam moves on a parabolic trajectory and, moreover, that the central spatial frequency component 
shifts linearly with the propagation distance. Relevant examples are provided. 

Since their first experimental observation [ I], opti- 

cal spatial solitons in photorefractive (PR) media have 

been the focus of considerable attention [ 2-71. Self- 

trapped optical beams of this sort are possible when the 

process of diffraction is exactly balanced by light- 
induced PR waveguiding. In the particular case where 

the PR crystal is externally biased, both bright and dark 

as well as gray solitary wave domains have been pre- 

dicted under steady-state conditions [ 891. These opti- 

cal solitons are associated with a nonuniform screening 

of the external electric field and, as a result, they are 
also known as screening solitons [8]. Thus far, the 

theory of these steady-state soliton domains has pro- 

ceeded by entirely neglecting diffusion effects [ IO- 
121. More specifically, under strong bias conditions, it 

has been implicitly assumed [ 8,9] that the drift process 

dominates the transport picture and, thus, one can 

ignore any effects arising from diffusion. As previously 
pointed out however [ 8,9], the diffusion process intro- 
duces an asymmetric tilt in the light-induced PR 
waveguide, which in turn is expected to affect the prop- 

agation characteristics of PR solitons. 
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In this Communication we investigate the self- 

deflection of steady-state bright PR solitons by taking 

into account diffusion effects. By employing numerical 

procedures, we find that the shape of these optical 

beams remains approximately invariant during propa- 
gation. The self-bending process is further studied 

using perturbation methods which involve the conser- 

vation laws of the nonlinear wave equation. Our anal- 

ysis indicates that the beam center shifts quadratically 

with the propagation distance, whereas the angle 

between the central wavevector and the propagation 

axis varies linearly. These results are in good agreement 
with those obtained using numerical techniques. 

To analyze the self-deflection process of a planar 

bright soliton, let us first consider an optical beam that 

propagates in a PR crystal along the z-axis and is 

allowed to diffract only along the x-direction. The PR 
crystal is taken here to be strontium barium niobate 
[ 131 (SBN) with its optical c-axis oriented along the 

x-coordinate. Moreover, let us assume that the optical 

beam is linearly polarized along x and that the external 
bias electric field is applied in the same direction. Under 
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these conditions, the perturbed extraordinary refractive 
index is given by [ 141 nL* = nz - n$-,,E,, where rx3 is 

the electro-optic coefficient invoIved, n, is the unper- 
turbed extraordinary index of refraction and E,,= 

E,,_t? is the induced space-charge field. In typical PR 

media and for relatively broad beam configurations, the 
value of the space-charge electric field can be obtained 

from the Kukhtarev-Vinetskii model [ 151 and it is 

approximately given by [ 9 I 

4’ K,T cY/dx 
E,,=E,- - -- 

I+& e I+&’ 

where Z=Z(n, z) is the power density of the optical 

beam and it is related to the slowly-varying envelope 
C#J through Poynting’s vector, i.e. Z= (n,/2q,) 141’. In 
Eq. ( 1), Zd is the so-called “dark irradiance” which 
phenomenologically accounts for the thermal genera- 

tion of electrons in the conduction band and E, is the 
value of the space-charge electric field in the dark 
regions of the crystal. If the spatial extent of the optical 
wave is much less than the x-width W of the PR crystal, 

then under a constant voltage bias V, E, is approxi- 
mately given by f V/W [ 91. 

In turn, the envelope propagation equation can be 
obtained by substituting the expression for the per- 

turbed refractive index (induced by the space-charge 
field) into the paraxial wave equation. After appropri- 
ate normalization, the envelope U is then found to obey 

the following dynamical evolution equation: 

u 
i.!J,+$lJ,,-/I- 

I+]u]z + y 
w12w =O 

l+]u]* ’ 
(2) 

where U= (n,/2q,Zd)“*& i.e. the power density is 
normalized with respect to the dark irradiance, and 
U,= aUla[, etc. The dimensionless transverse coor- 
dinate s is given by s=x/x,, where x0 is an arbitrary 
spatial scale, and the normalized coordinate 5 is related 
to the actual propagation distance z through {=z/ 
kon,& where &, = 27r/A, is the free-space wavevector 
of the lightwave employed. The dimensionless quan- 
tities /3 and y are associated with the processes of drift 
and diffusion respectively, and are given by p= (k,/ 
xo)2(n~r33/2)Eo and y= (K,T/2e) (k&,&r,,). For 
the purpose of simplicity, loss effects have been omit- 
ted in Eq. (2). 

Under strong bias conditions, E. is expected to reach 
appreciable values and, as a result, the drift component 

of the current dominates. Thus, by neglecting the proc- 
ess of diffusion, i.e. y= 0, Eq. (2) takes the form of a 

nonlinear S&r&linger equation with a higher-order 
nonlinearity. In this case, the bright solitary wave solu- 

tions of Eq. (2) can be readily obtained by expressing 

as usual the beam envelope as U = r”*y< s) exp( ipt). 
p represents a nonlinear shift of the propagation con- 

stant and y(s) is a normalized real function bounded 

between 0 <y(s) G 1. The positive quantity r is defined 
as r = &_/Id where Imax is the maximum power density 

of the solitary beam. Substitution of this latter form of 
U in Eq. (2) (with y=O) and posterior integration 

yields 

dr 2 0 ds = T[ln(l-ry*)-y’ln(l+r)]. 

In obtaining Eq. (3)) we have employed the y-bound- 

ary conditions, that is y( 0) = 1, y( s + f w) = 0 and 
dy/ds = 0 at s = 0. Moreover, a close inspection of Eq. 

(3) reveals that bright planar PR spatial solitons are 
only possible when p or E. are positive quantities [ 93. 

The functional form y(s) of these self-trapped waves 
can then be determined by numerically integrating Eq. 

(3). As previously shown [ 8,9], the intensity full- 
width half-maximum (fwhm) of these solitary beams 

depends only on two variables, namely E. and r. 

In order to investigate the effects of diffusion on the 
propagation of these PR soliton states, Eq. (2) is solved 

numerically using a beam propagation method 

[ 16,171. The solitary states of Eq. (2) are used as the 

input beam profiles. As an example, let us assume that 

the SBN crystal is used at he = 0.5 pm. Its parameters 

are taken to be n, = 2.35 and r,, = 224 X lo- ‘* m/V 
and the external field strength E, is assumed to be 

40 X 1 O3 V/m. The arbitrary scale x0 is 40 pm. For this 
set of values, /3 and y are found to be p= 34.5 and 
y=O.56. Fig. 1 illustrates the self-bending action of 
the diffusion process on such a bright PR soliton 

obtained at r = 10 and /3 = 34.5. On the other hand, Fig. 
2 depicts the evolution of the angular power spectrum 
of this domain under the same conditions. Moreover, 
Fig. 1 indicates that this optical soliton tends to evolve 
in an adiabatic fashion, i.e. its beam intensity profile 
remains approximately invariant during propagation. 
A close examination of Figs. 1 and 2 also reveals that 

the center of the beam moves approximately on a par- 
abolic trajectory, whereas the central wavevector of the 
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Fig. I. Intensity profile evolution of an r= 10 soliton for p=34.5. 

when the diffusion parameter is y=O.56. 

Fig. 2. Evolution of the angular power spectrum of an r= 10 soliton, 

for p= 34.5 and y=O.56. k, is the spatial frequency with respect to 

the normalized coordinate S. 
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Fig. 3. Dependence of the K function on r. 

angular power spectrum shifts linearly with the prop- 
agation distance. 

This self-bending effect can be further studied using 
perturbative procedures. It is interesting to note that 

similar methods have been previously employed within 

the context of nonlinear fiber optics [ 18,191. Keeping 
in mind that the beam evolution under the action of 
diffusion is approximately adiabatic, we make the fol- 
lowing ansatz for the solution of Fq. (2) : 

xexp(i{~~+u(~)[s+v(nl +o(t)l) 9 (4) 

where U( 5; s) = r”*y(s) exp( ips) is the steady-state 
bright PR soliton of Eq. (2) (when y= 0). In Eq. (4)) 
v(# represents a shift in the position of the beam 
center, w( 5) is associated with the angle between the 
central wavevector of this beam and the propagation 

axis, and a(0 is a phase factor which is allowed to 
vary during propagation. The equations of motion of 
these real variables can then be obtained by substituting 
Eq. (4) into the two complex conservation laws of Eq. 
(2) [ 18,191. These are established by multiplying Eq. 

(2) with U* and ilJ,* and integrating over the coordi- 
nate S. A straightforward calculation yields the follow- 
ing results: dv/dc= -w, da/de= 0*/2 and dwl 

d.$= 4pyK( r), where the dimensionless function K(r) 
is given by 

K(r) = I ds W2(s> 
1+ JY2(s> 

-cc 

X {y*(s) ln( 1 + r) -In [l+v*w 11 

(5) 

Since no closed-form solutions are available for the 
beam profile y(s), except in the low-amplitude case 

which will be considered next, the K(r) function is 
evaluated numerically. The dependence of this function 
on the parameter r is depicted in Fig. 3. The equations 
of motion for w, v and (Y can then be integrated, in 
which case we obtain 

w( 5) = 4PyK( r) 5 7 (6) 

40 = -WyK(r)5*, (7) 

a(~=8[/3~K(r)]*~‘/3. (8) 

As expected, Eqs. (6)-(8) demonstrate that in the 
absence of diffusion, i.e. when y=O, the variables 
w= v = a=O. On the other hand, be taking diffusion 
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~ Numerical 

Fig. 4. Evolution of the normalized spatial shift, As, for the numerical 

solution (solid line) and model E!q. ( 7) (dashed line). 

effects into account, Eq. (7) clearly shows that the 
beam center follows a parabolic trajectory, whereas Eq. 

(6) implies that the central spatial frequency compo- 
nent shifts linearly with the propagation distance. These 
results are found to be in good agreement with those 
previously obtained numerically. From these latter 
results, one quickly finds that the beam has suffered a 
lateral displacement given by X, = 2/3-yK( r)z*/k$&: 
or 

x,= (n,3r33ko)2(KBT12e)E&(r)z2. (9) 

where z is the actual propagation distance. Moreover, 
at this point, the angular deflection, i.e. the angle 
between the central wavevector of this solitary beam 
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-6 

Fig. 5. Evolution of the normalized angular frequency shift, Ak,, for 

the numerical solution (solid line) and model F,q. (6) (dashed line). 

and the z-axis, can be evaluated from Eq. (6) and is 

given by 0, = 4/3yK(r)zlkZfi$ or, more explicitly, by 

&= (n~r39ko)2(K,TIe)E~(r)z. (10) 

Both the spatial deflection x, and the angular deviation 

0, are proportional to the quantities p, y and K(r) For 
a given physical system and a fixed soliton parameter 
r, Eqs. (9) and ( 10) indicate that the beam self-bend- 
ing effect, i.e. X, and #,, vary linearly with respect to 
the external bias field E,. Since large values of & also 
imply narrower planar PR solitons, this effect is 

expected to be more pronounced in this regime. On the 
other hand, for a constant value of E,, the self-deflection 
effect depends on the parameter r through the function 
K(r) . As shown in Fig. 3, this function reaches a max- 

imum close to r = 10. This behavior should have been 
anticipated since the intensity FWHM of these optical 
PR solitons attains a minimum in this region of r values 

]9J. 
Figs. 4 and 5 compare the normalized spatial and 

angular frequency shifts predicted by our model, i.e. 
As = - v and h k, = w, with those found by numerically 
solving Eq. (2). These are obtained for three different 

values of r and for the same system parameters previ- 
ously considered. As one can see, the results from the 
two approaches are in good agreement. The small dif- 
ference between the numerical results and those 

obtained from the analytical model can be attributed to 
the fact that the evolution of bright PR solitons under 
the action of diffusion is not entirely adiabatic, as is 
clearly seen in Fig. 1. 

The low-amplitude case, that is r(< 1 or 1 VI ’ -+c 1, 
also deserves special attention. As previously shown 
[ 91, in this limit Eq. (2) takes the form 

iV,=bV,-pV+plVl’U+y( )U)2),rU=0, (11) 

which is a modified version of the so-called nonlinear 
Schriidinger equation. The fundamental bright soliton 
solution of this equation (in the absence of diffusion, 

y = 0) can be readily obtained and it is given by U = 
r ’ ‘* sech [ ( pr) “‘~1 exp [ i/3( r/2 - 1) 51. The action 
of diffusion on the behavior of these Kerr-like bright 
PR solitons [9] can then be investigated by substi- 
tuting the low-amplitude beam profile y(s) = 
sech[ (/3r)“*s] in Eq. (5), in which case one obtains 
K(r) = -2?/ 15. In this same limit, the quantities w, 
v and LY can be explicitly evaluated and they are given 

by 
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w(5) = -8py?5/15, (12) 

Y(C) =4py?52/15, (13) 

cu( 5) = 2(4Py?/ 15)253/3 . (14) 

Moreover, in this regime, the lateral and angular deflec- 
tion X, and (3, can be obtained similarly from Eqs. 
(12)-( 14). In particular, n,= - (n$&)2(KaT/ 
15e)E0?z2 and &= -2(n~r33ko)2(KBTl15e)~~~z. 
Furthermore, it is noteworthy pointing out that the low- 
intensity behavior of K(r), i.e. K(r) = - 22115, is in 
agreement with the results of Fig. 3. 

In summary, the self-deflection of steady-state bright 
PR solitons arising from diffusion effects has been sys- 
tematically investigated. By employing numerical 
techniques we have found that the self-bending of these 
solitary optical beams is approximately adiabatic. This 
process was further studied using a perturbative model. 
We have found that the center of the solitary beam 
moves on a parabolic trajectory, whereas its central 
spatial frequency component shifts linearly with the 
propagation distance. Moreover, the dependence of 
these lateral and angular deflections on the value of the 
external electric field, E,, and on the parameter I, where 
r = Imaxlld, was also considered in detail. 

This work was supported in part by JNICT of 
Portugal. M.I.C. is also with the Centro de Optoelec- 
tronica, INESC, R. Jose Falcao 110, 4000 Porto, 
Portugal. 
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Erratum 

Self-deflection of steady-state bright spatial solitons 
in biased photorefractive crystals 

( Optics Comm. 120 ( 1995) 3 11) * 

M-1. Carvalho, S.R. Singh, D.N. Christodoulides 

Department of Electrical Engineering and Computer Science, Lehigh University, Bethlehem, PA 18015, USA 

On p. 312, the quantity /3 should be 

P= (kI%)2(~:%/2)E,. 

On p. 312, Eq. (3) should correctly read as follows: 

=T[ln(l +ry2)-y2 ln(1 +,)I. 

On p. 313, Eq. (4) should be 

U( C$, S) = 11’2 y[s+y(Ol exp(i{~S+W(5)[S+Y(5)1 +a(E)}). 

On p. 314, Eq. (1 I) should correctly read as follows: 

iU,++U,,-pU+p IU12Ufy(IU12),U=0. 
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