

Combined Application of SDL-92, OMT, MSC and TTCN

Eurico Inocêncio,
INESC
Praça da Republica 93 R/C
4000 Porto, Portugal
TEL: +351-2-2094224,
FAX: +351-2-2084172,
email: emi@jaguar.inescn.pt

Hitoshi Sato,
NEC Corporation, Overseas Transmission
Division
1753 Shimonumabe, NAKAHARA-KU,
KAWASAKI, KANAGAWA 211, Japan
TEL: +81-44-435-5572, FAX: +81-44-435-5676
email: satohh@otd.trd.tmg.nec.co.jp

Manuel Ricardo,
FEUP, INESC
Praça da Republica 93 R/C
4000 Porto, Portugal
TEL: +351-2-2094225,
FAX: +351-2-2084172
email: mricardo@inescn.pt

Toshimitsu Kashima,
NEC Telecom Systems, Ltd. 2nd System Division
1753 Shimonumabe, NAKAHARA-KU,
KAWASAKI, KANAGAWA 211, Japan
TEL: +81-44-435-1172, FAX: +81-44-435-1169
email: kashima@ntes.nec.co.jp

Abstract
The paper describes the application of SDL-92[1] and OMT[2] to the design of a V5.x Access
Network interface. While OMT is used to model the management aspects of the system,
typically described as TMN objects, SDL-92 is used to describe the V5 signalling stack as
well as all the distributed components. The resultant combined model is used to automatically
produce an efficient C++ implementation. TTCN is the language used to evaluate the
conformance of the V5 interface standards. However, complementar and service oriented
testing is also required. Service provision correctness, service interaction avoidance and,
particularly, quality of the services, need characterisation. For that, MSC and SDL combined
languages complemented with time and probabilistic descriptions, are being used to specify
test purposes, describe and verify test cases.

Keywords
V5 interface, testing, automata, QOS, SDL, OMT, MSC, TTCN.

1. INTRODUCTION

Normalisation is a key issue for the Open Network Provisioning concept (ONP). ONP
devises a scenario of Telecom liberalisation where many companies compete and collaborate
with each other in order to deliver cost effective telecommunication services. The Access
Network is one of the segments where this specialisation is more likely to take place - a more
distributed, clustered, flexible Access Network infrastructure deploying over its geographical
domain a mixture of basic and advanced services.

The European Telecommunication Standards Institute (ETSI) has promoted a set of
standards aimed at the normalisation of the interface between the Access Network (AN)
provider and the Switching infrastructure: the V5 interface [5,6]. V5.1 and V5.2 interfaces
cover PSTN and narrow band ISDN deployment; broadband access will be addressed by the
upcoming VB5 interface. The functional split between Access Network and Switching
Equipment, introduces not only the need for a normalised interface, but also arouses the need
for effective open Network Management - in ONP environments various companies jointly
operate a heterogeneous assortment of multi-vendor equipment.

MIB

ISDN Digital
Interfaces

System under developement

TETE

TETE

TE/NTTE/NT

TE/NTTE/NT
U

Z
G

.7
03

V5
 S

ig
na

lli
ng

ISDN User Port

ISDN User Port

PSTN User Port

PSTN User Port

M
I
B

PSTN analogue
Interfaces

Access Network

V5 Interface

Local Exchanges

Management OperationsManagement Operations

Figure 1 Network Architecture Overview

Overall the Access Network equipment must comply with a set of standards, which can be
classified into three main groups:
• Functional interface specifications [5,6]- define the signalling stacks, message sets and

formats as seen across the physical interface, conceptual state machines along with the
physical interface specification.

• Q3 Management information model [7,8] - these standards define the ASN.1 MIB that
models the AN from the management system perspective. It covers the OAMP aspects of
the system involving configuration, fault and performance management.

• Conformance Test Specifications TTCN [11,12]- System validation and testing.

Although the Interface and Management standards use informal text to describe protocols,
messages and MO behaviour, they provide useful informal SDL descriptions for the
signalling, and formal ASN.1 object models for the management. Hence the standards
provide the initial model that is captured into the OMT and SDL tools. In a second step the
models are refined and system specific implementation options are introduced, eventually an
implementation specification is reached from which C++ code is automatically produced. The
development of the AN and Test Emulator signalling firmware involves two teams, each with
4 to 5 engineers using the described methodology.

2. COMBINED OMT AND SDL MODEL.

Rumbaugh Object Modelling Technique (OMT) is increasingly being used in combination
with SDL-92. Leading commercial tools are offering, or promising, support for combined
methodologies, while some researchers report experimental tools and results [3,4]. Most
authors and companies advocate a waterfall model: analysis in OMT, followed by design in

SDL-92 and automatic translation to the implementation language. While agreeing that it is
possible to use only SDL-92 in the implementation of OMT models, this project explores the
concurrent code generation from both models.

In the analysis phase OMT is used to capture the implementation requirements. The
“entity relationship” [10] diagrams of the management standards were effortlessly
transformed into a preliminary OMT object model. In this OMT model one can find a number
of active objects: user ports, transmission resources, packet routing definitions, maintenance
tests, etc. In turn the functional standards provide informative SDL descriptions that define
the behaviour of these entities as seen from the V5.x interface.

Managed ElementManaged Element

Signaling Protocol design in SDL92Signaling Protocol design in SDL92

OMT Object Model Derived from the ETSI MIBOMT Object Model Derived from the ETSI MIB

Attributes
Operations

ProcessProcess

Attributes
Operations

v5Interface

ProcessProcess ProcessProcess

Attributes

Operations

pstnUserPort

Attributes

Operations
ProcessProcess ProcessProcess

ProcessProcess

Attributes
Operations

Management Config

Config

Index

Table

Figure 2 Example of OMT object model with aggregation of SDL92 process types.

From the coalition of both specifications results a OMT object model that defines the object
containment, inheritance and relationships. SDL-92 is used to specify the dynamic behaviour
of certain objects, i.e. some OMT objects contain SDL processes. This approach is depicted
on Figure 2, two overlapping descriptions, OMT and SDL92, are used to specify the V5.x
signalling sub-system:

• The OMT model instantiates all objects, including the aggregated SDL processes. These
SDL processes receive the required process Identifier (PId) and configuration values by
means of the formal parameter list. Other objects without SDL behaviour, are generated
according to predefined C++ generation templates.

• The SDL description defines the process types, the inherent protocol FSM behaviour,
message (signal) set and static signal routing graph between the SDL process sets. This
description uses normal SDL structuring concepts: system, packages, block types,
packages, process types, routes, etc. The only deviation from a traditional SDL
specification is the omission of the number of object instances, therefore from the SDL all
process sets start with one initial instance and are unbounded. In the actual
implementation, the creation and instance binding is performed by the constructors and
destructors of some OMT objects.

An OMT object that aggregates one or more SDL process types becomes very close to the
SDL-92 block type concept. But unlike the SDL-92 block type, the OMT object permits
associations, attributes and operations that are not necessarily visible by the SDL
specification. Instead of “forcing” the whole information model into the SDL description, it

was felt that the typical management operations are more efficiently implement by mapping
some OMT objects directly to C++, without a intermediate SDL-92 step. For example, it is
possible to maintain dynamic tables and lists of complex OMT objects instances, while SDL-
92 dynamics is restricted to process by process creation.

2.1 OMT GENERATION TEMPLATES

The fact that OMT lacks formal semantics, allows an infinite number of implementation
mappings for each object or association. In the Verilog LOV OMT tool, the user defines
Generation Templates to customise the implementation of objects and associations. The
present system uses the following class generation templates:

• SDLClass - The object has SDL behaviour and will be generated from a SDL
specification, the formal parameter are given by the associations;

• UnionClass - The object is a container upon which one of the aggregated objects can be
constructed;

• PackedClass - Used for objects that require a controlled memory layout, for example in
device drivers or protocol messages;

• AlarmMask - Special objects used to efficiently implement bit oriented alarms, from the
SDL standpoint these objects are viewed as ADT with an operation for each controlled
alarm.

Besides these, the project defined G-Templates for pointer, reference, array, linked list and
hash table associations. The next two sections provide an explanatory example of the
SDLclass G-Template, which is the key OMT/SDL integration mechanism.

2.1.1 Embedding SDL into the OMT objects

Figure 3 presents a simplified view of the pstnUserPort MO implementation. For the
purposes of this presentation it is assumed that, besides its own attributes and operations, the
MO contains two SDL processes, A and B. These SDL processes implement user port
signalling and communicate with process types C and D which are part of the common
signalling stack. Since each process type is translated into a C++ class, the SDL process
aggregation is translated to plain C++ membership::

class pstnUserport {
 private: /* OMT object attributes */
 Type 1 Atribute1;
 Type 2 Atribute2;
 public: /* Two aggregated SDL process */
 A Process_A;
 B Process_B;

};

OMT Object
Attributes

OMT Object
Attributes

OMT modelOMT model

SDL Block TypeSDL Block Type Instance of AInstance of A

Instance of BInstance of B

Instance of DInstance of D

C++ Class Layout

A: Process_AA: Process_A

ProcessDProcessD

B: Process_BB: Process_BroleAroleA roleBroleB

roleCroleC
ProcessCProcessC

roleDroleD

AA BB

Attributes
Operations

pstnUserPort

Instance of CInstance of C

roleCroleC

roleBroleB

roleAroleA

roleDroleD

Process_A Process_B

Figure 3 OMT object with two aggregated SDL processes.

The only special property of members A and B is that these “Object/Process” are proclaimed
to be SDL processes in the OMT model (SDLclass G-Template). Instead of generating C++
classes for B and A, the OMT code generation tool scans the roles of A and B and retrieves
the SDL processes constructor signatures, in the example the SDL process formal parameters
are:

PROCESS A FPAR roleB, roleD PID; ...
PROCESS B FPAR roleA, roleC PID; ...

which in turn are converted to C++ class constructors:
A::A(...,PId B,PId D); B::B(...,PId A,PId C);

By now it is known that A and B implementations are generated from the SDL92
specification and B needs a pointer to A and vice versa. It is also known that the
pstnUserPort object requires pointers to instances of D and C, otherwise A and B can
not be correctly constructed. Since A needs a reference to B and vice versa, and the
pstnUserPort object holds unique instances of both A and B the following code is
automatically produced:

pstnUserPort::pstnUserPort(PId Dr, PId Cr) :
 Process_A(..., (PId) &Process_B, Dr) ,
 Process_B(..., (PId) &Process_A, Cr) { };

Using the described matching algorithm, the tool automatically generates constructors that
initialises all SDL routes with both endpoints terminated within the container object. This is
specially useful when creating complex objects that have a few internal processes connected
by a number of SDL routes (OMT roles). Up to this point, the OMT model point of view has
been assumed, the next section describes the OMT_object as viewed from the SDL process
perspective.

2.1.2 Referencing OMT Objects from SDL

One SDL limitation often encountered by implementers, is the lack of shared variables
between processes: VIEW and REVEAL constructs are discouraged and the EXPORT,
IMPORT and remote procedure concepts rely upon SDL asynchronous signal exchange. In
the described system it is necessary to periodically retrieve the status from a few hundred
processes with minimum disturbance to the signalling activity. Conversely, the management
interface should not be affected by delays associated to overloaded signalling queues. In other

words, while retrieving the system status the management processes should not be blocked by
pending signalling operations. In this scenario shared variables are essential to decouple
management and signalling processes.

The solution embraced is the use of a static configuration object tree shared by the
management and signalling stacks. Each SDL process opens a “window” of shared variables
into a part of the OMT object tree; therefore each SDL process has access to the attributes of
the container object. In C++ this approach is readily realised by adding to some SDL
processes a reference to the container object. This gives the following container object C++
constructor:

pstnUserPort::PstnUserPort(PId Dr, PId Cr) :
 Process_A((pstnUserPort &)(*this), (PId)&Process_B, Dr) ,
 Process_B((pstnUserPort &)(*this), (PID)&Process_A, Cr)
 { };

From the SDL perspective the shared “window” is a NEWTYPE structure that contains each
attribute of the container object (father). Hence the SDL process formal parameters become:

NEWTYPE pstnUserPort
STRUCT
 Atribute1 Type 1;
 Atribute2 Type 2;
 ...

ENDNEWTYPE;

PROCESS A FPAR
 roleO pstnUserPort;
 roleA, roleC PID;
...
PROCESS B FPAR
 roleO ptsnUserPort;
 roleB, roleD PID;
...

Where roleO is the name of the role from which the SDL process views the container object
(owner). From the SDL perspective the configuration is a structure passed by value, but
actually the C++ implementation passes the value by reference. This reality is totally
transparent to the SDL-92 to C++ translator; the translator simply maps the SDL “!” operator
into a C++ “.” member access. ADT operators are also employed to declare C++ member
functions, the rule being that the leftmost operator specifies the object instance.

OMT Object
Attributes

OMT Object
Attributes

OMT modelOMT model

Instance of AInstance of A

Instance of BInstance of B

C++ Class Layout

ProcessA: AProcessA: A ProcessB: BProcessB: B
roleOroleO

roleOroleO
ProcessAProcessA ProcessBProcessB

Attributes
Operations

pstnUserPort

roleOroleO roleOroleO

NEWTYPE
pstnUserPort

Figure 4: Referencing OMT configuration from SDL.

2.2 C++ GENERATION TOOLSET

When analysis and specification is based on two object oriented methodologies, it is natural
to extend the O-O approach right through the implementation phase. In the field of embedded
systems, C++ still has a undeserved reputation for run-time inefficiency; yet, with wise usage

and a good C++ compiler it is possible attain efficiency levels that match, or even surpass C
based SDL implementations.

Commercial off the shelf tools are used to edit the OMT and SDL92 specifications
(Verilog LOV and SDT3.02). However the SDT tool so far does not generate object oriented
C++ code and the LOV support for SDL was found incipient. Therefore the project opted for
a proprietary SDL-92 to C++ code generator and a “perl” script to generate the OMT C++
implementation. The complete translation tool chain is depicted in Figure 5.

GraphicalGraphical
Edition inEdition in

SDT 3.0 ToolSDT 3.0 Tool

LOV OMTLOV OMT
Object EditorObject Editor

ADT declaration

o

o

LOV Post
Processor

SDLSDL
 PR PR

C++ Classes

HeaderHeader o

o

SDL92 to C++
Translator

ADT
 Implementation

Driver Templates

C++ Process
ImplementationC++C++

process prototypes

Figure 5 - SDL/OMT to C++ tool chain.

The OMT model is translated into a set of C++ implementation classes, this set contains all
classes that are not declared as SDL processes. Only the object model is used, therefore the
OMT model does not directly implement behaviour. Instead the tool produces type and object
declarations and instances of hand coded C++ templates (lists, hash tables, arrays, etc.).
Besides the C++ declaration the LOV post processor also generates SDL ADT declarations
that are incorporated into the SDL to ensure semantic correctness. Furthermore these ADT
provide a interface that permits the manipulation of configuration database by the
management processes. For example, an SDL process can manipulate object lists by calling
operators ADT operators upon ADT instances. It also possible to generate SDL process
prototypes, but after these processes are refined in the SDL tool it is not possible to revert
changes back to the OMT model.

2.2.1 C++ SDL implementation

The tool used to generate C++ code from SDL92 is an evolution of a previous SDL88 tool
[9]. This tool generates an object oriented SDL implementation: each SDL92 process type is
translated into a C++ “active” implementation class and each SDL abstract type into a
“passive” C++ class.

The SDL process data part is directly translated to C++ data members, along with formal
parameters and timer objects. Each incoming SDL signal generates a homonymous member
function with equivalent parameter signature. All signals with overloaded signatures call the
same overloaded “output” function to encode the parameter and append the signal to the
process queue. The state machine implementation function consumes the signals at the queue

head. All signal input and output member functions are automatically generated by the tool
and a minimal library completes the support for SDL execution (signal memory management,
process dispatching and SDL and target specific timer handling).

As can be seen in Figure 6, the SDL process implementation is a relatively self contained
C++ class. Signal handling member functions define the external interface hiding the internal
queuing and signal encoding details from the caller. From the process’s body it is possible to
invoke other SDL process or classes that provide a compatible interface but whose internal
behaviour is not an SDL EFSM. Such is the case of the devices drivers that interface the SDL
description to the surrounding hardware and software environment. These are SDL processes
that have a empty state transition graph, the translator just generates a class declaration and
omits the process body generation that shall be hand coded and liked to the generated code.

The use of empty driver processes appears to be more in line with O-O practice than the
traditional SDL environment where all processes environmental signals are bundled together
in a unstructured common space. The interface between SDL processes and drivers is
potentially asymmetric: nothing implies that a driver queues the received signals (member
function calls), therefore the process to driver interface is typically synchronous while the
process to driver interface remains asynchronous.

SDL State Machine ImplementationSDL State Machine Implementation

output(signature 1)output(signature 1)
Signal1Signal1

output(signature 2)output(signature 2) output(signature n)output(signature n)
Signal2Signal2 Signal3Signal3 SignalM

input(signature 1)input(signature 1) input(signature 2)input(signature 2) input(signature n)input(signature n)

Variables
Timers

SignalNSignalN

SIGNAL Queue

Signal1 Signal2 Signaln

Member Function CallMember Function Call

Member Function CallMember Function Call

SDL Process / Driver ClassSDL Process / Driver Class

SDL ProcessSDL Process

Figure 6 SDL process implementation overview.

One of the key points of the translator tool, is the simplicity of the generated code, not only
the interface is easily understood and handled by programmers not acquainted with SDL, but
also the state machine implementation is effortlessly traced in the debug sessions. The
efficiency is reasonable even when compared with typical hand coded implementations and
while enjoying the benefits of O-O structuring most implementations are smaller that the
SDT tool C implementation (about 70 % for the V5 Data Link process).

3. SYSTEM TESTING

The types of tests and methods used in the validation of this system are described below.

3.1 SYSTEM UNDER TESTING

The system considered for testing, as described in Figure 1, consists of a set of user ports that
are mainly of two types: 1) analogue telephone, also known as PSTN; 2) ISDN basic rate
access.

All the system interfaces are standardised. Analogue Z and digital layer one U interfaces,
for the user side, the three layered V5 interface, for the exchange side, and the TMN Q3
standard, for management. Beside the remote control of user ports, V5 introduces also a
digital and message oriented signalling protocol stack for the old telephone system calls.

Isdn - Isdn SubsystemIsdn - Isdn Subsystem

SystemSystem

block
unblock
inService
outService
activate
deactivate
sendFrame

ISDN Port

1+

TelephonePort

1+

Phone - Phone SubsystemPhone - Phone Subsystem Phone - LapV5 SubsystemPhone - LapV5 Subsystem

block
unblock
inService
outService
initiateCall

Figure 7 - Testing view of the system

From a pure functional and testing point of view, presented in Figure 7, each user port can be
requested to provide services both to the telecom operator or to a customer. The operator can,
for instance, block a user port. The customer, in this model, can request a call initiation or, for
ISDN, a frame transmission. Services are always requested through a system interface and,
often, can also be invoked by more than one interface type. Putting a port out of service, for
instance, can be requested directly through the management or V5 interfaces. During the
provision of a service more than one interface can be used. A phone call, for instance,
involves interactions through Z and V5 interfaces.

3.2 TYPES OF TESTS

According to the model presented above, and from the protocols point of view, two major
types of testing were identified as required: interface testing and service testing.

3.2.1 Interface Testing

The interface testing main purpose is the verification of the interface conformity with the
relevant standards. Although this type of tests, alone, does not guarantee full interoperability
with other Local Exchanges vendors, it is required because it is used as the basis for

certification and it strongly limits the number of eventual mis-interactions of the system.
Interoperability testing, assumed here as a field testing, is not discussed here.

Being Z and U, electrical and logical interfaces, only the V5 interface is related to protocol
conformance testing. V5, layers 2 and 3, have test suites standardised and described in
TTCN.

The conformance evaluation of each V5 state machine defines the usual types of
conformance tests: 1) basic interconnection; 2) capability; 3) valid behaviour; 4) inopportune
behaviour; 5) invalid behaviour; 6) timers and counters.

No formal methods [13] are known to be used in this test suite derivation, neither formal
concepts, such as conformance relation, are introduced in the standards. Nevertheless, about
500 tests, for the AN side of the V5 interface, are specified on the main aspects of the
protocol state machines.

For this type of testing, the following method has been selected: using the ITEX TTCN
tool, tests are selected and parametrised in TTCN mp format. After that, the test suite or
particular test cases is compiled for a SIEMENS protocol tester, where the tests will be
executed. Remote single layer test method is the recommended and used.

3.2.2 Service testing

Since the major functions or services of the system are to be provided through the system V5
interface, conformance testing, in theory and if tests are well derived, indirectly checks the
correctness of the main services provisioned.

Another class of tests, the load tests, concerned with detection of unwanted service
interactions and with the characterisation of the quality of the services, need however to be
also applied.

Service interaction tests [15] are intended to verify if a well-provided service is not
affected by the provision of another services or instances of the same service. Quality of
services tests are used to characterise, from a user point of view, the performance of the
system under real usage scenarios. Parameters, such as probability of premature call release
or HDLC frame transfer delay require statistical characterisation.

Unwanted interactions and quality characteristics usually deteriorate with increasing loads
or service usage’s. It means that a service correct under low loads, can begin to become
incorrectly provided or with unacceptable quality under high or over load conditions.

The quality of the services, recommended by standardisation bodies for some network
portions or elements, is defined by parameters that are rigorously associated with interfaces
events, usually of layer three.

Quality of service parameters are about time intervals and behaviour quantification.
Examples of the first type are call setup delay, call release delay, frame transfer delay and
port blocking delay. Examples of the second type are misrouting and no tone.

For the first set, maximum mean durations and maximum durations for 95% of the usage
cases are defined. For a call release delay, a mean value less that 250 ms and a 95%
probability of not exceeding 300ms is recommended. Values are defined for several load
conditions, being a load condition statistically characterised service usage mix. Poisson and
deterministic service usage models are usually referred.

The second set of parameters is defined in terms of probabilities. As an example, the
probability of a call attempt encountering no dial tone following the sending of a correct
address shall be less than 0,0001.

3.3 LOAD TESTING ARCHITECTURE

Load tests require testing equipment that enables: i) the invocation of the most often used
system services; ii) the invocation of these services by user selected sequences; iii) the
statistical invocation of the services; iv) the characterisation of time intervals between events;
v) the quantification of the behaviour; vi) high service usage rates.

As this system interfaces at the user side are electrical, some emulation facility was
required for the testing system. For the Exchange side, some protocol emulation was also
required in order to minimise the V5 stack complexity. With this emulation, the initial system
has been modelled as a set of three subsystems types, also known as emulation subsystems, as
represented in Figure 7: i) ISDN-ISDN; ii) Phone-Phone; iii) Phone-LAPV5. For each user
port provisioned one of these subsystems types will be selected.

Each subsystem is modelled in SDL by three processes. Global real-time facilities are
available within the overall testing system.

Z

MANAGEMENT CONSOLEMANAGEMENT CONSOLE

User

Subsystem

ringoffHook
offHook

voicevoice

MIB

G
.7

03

V5
 S

ig
na

lli
ng

ISDN User Port

ISDN User Port

PSTN User Port

M
I
B

Testing System

V5

PSTN User Port

User

G
.7

03

V5
 S

ig
na

lli
ng

Emulator

Emulator

Emulator

Emulator

User

User

UserUser TE/NT

User TE/NT

User TE/NT

User TE/NT

U

UserUser

Figure 8 Possible initiateCall service interactions in the Phone-Phone subsystem

3.4 TEST SPECIFICATION

In order to integrate test derivation methods with the combined OMT-SDL methodology
described above, current MSC-SDL test derivation methods [14,15,16,17] for system and
conformance testing were considered and complemented with service usage related
specifications [18].

3.4.1 Test Purpose

Load test purposes are being specified in MSC. Two types of MSC were found required: i)
usage MSC; ii) system MSC.

An usage MSC describes the service usage main trace and it intends to describe the users
main behaviour. One of the users is assumed to trigger the service invocation regularly and,
during service provision, other users can be involved.

For in order to allow the regular invocations, the usage MSC is complemented with the
interServiceInvocation construct that characterises the time interval between successive
service invocations by describing the statistical law to be followed, such as, Poisson, Uniform
or Deterministic. MSC Timeouts can also be associated with statistical laws.

A system MSC describes a property of the system that needs quantification. Although
users and system instances are also represented in a system MSC, the stress is put on the
sequence of (constrained) messages that is to be observed as sent or received by the
subsystem.

A system MSC can be complemented with the specification of a time interval needing to be
quantified. Several system MSC can be associated with one usage MSC, as represented in
Figure 9.

Phone Phone
subSystem

offHook

dialTone

dial(115)

ring

voice

voice

onHook
callCleared

Le User Te User

Usage MSC

offHook

offHook

InterServiceInvocation Poisson

pathDuration uniform

Phone Phone
subSystem

dialTone

Le User Te User

System MSC

endDuration

duration
onHook

Phone Phone
subSystem

dialTone

Le User Te User

onHook

callingTone

dial

ring

System MSC

callingTone

Figure 9 Usage and System MSCs

3.4.2 Test case

Load test cases are specified using the combined OMT-SDL methodology described above.
The automation of the process is, at the moment, being carried out.

From the usage MSC two SDL process types are derived, each one emulating a user.
Typically, each user has always the same behaviour and one of them invokes the service
according to the interServiceInvocation parameter.

Each system MSC is interpreted as one automata, as described in Figures 10 and 11, that
observes and counts the events exchanged between the subsystem and its users.

Phone Phone
subSystem

dialTone

Le User Te User

endDuration

duration
onHook ?onHook

!dialTone

timeout

start=now

Duration=now- start

?onHook
start=now

Figure 10 Automata representing a system MSC, for duration quantification.

Phone Phone
subSystem

dialTone

Le User Te User

onHook

callingTone

dial

ring

System MSC

?onHook !dialtone ?dial

!callingTone

!callingTone

!ring

!ring

timeout,
!dialTone
?dial,
!callingTone,
!ring

?onHook

timeout,
!dialTone
!callingTone,
!ring

?onHook

timeout,
!dialTone
?dial

?onHook

timeout,
!dialTone
?dial,
!callingTone,

timeout,
!dialTone
?dial,
!ring

?onHook

?onHook

Figure 11 Automata representing a system MSC, for behaviour quantification

The full set of system MSC are implemented in a SDL driver, see Figure 12, that routes the
messages between the subsystem and its users. Drivers, as described in Figure 6, are
synchronous with the processes that output signals for them.

SubSystem Driver ProcessProcess

LeUser TeUser
Figure 12 Architecture of a Load Test Case.

Test Load Veredicts, unlike conformance testing, quantify the system by means of histograms
data structures. Visual representation is presented in Figure 13.

Duration (ms)50

Ev
en

ts

100 150 200 250

Mean = 220 ms
Std = 120 ms
MinValue = 15 ms
MaximumValue = 427 ms
NumberDurations = 8343

Results

NumberIntervals = 4
FirstValue = 50 ms
LastValue = 250 ms

Parametrisation

Signals

Ev
en

ts

Success = 73 %

Results

?o
nH

oo
k

!d
ia

lT
on

e

?d
ia

l

!c
al

lin
To

ne

!r
in

g

Figure 13 Results of a load test case execution.

3.5 TEST EXECUTION

The test system needs to be configured before each test session execution is started. For this,
each user port is instantiated with a SDL subsystem. Subsystems loaded with the same set of
usage MSC and System MSCs can be grouped, thus emulating standard traffic/usage
scenarios. For each group usage MSC and system MSC require parametrisation.

Usage MSC parametrisation consists in attributing values to the interServiceInvocation
parameter and Timeouts.

System MSC parametrisation consists in selecting parameters for the duration histograms:
numberIntervals, firstValue and lastValue.

3.6 RESULT ANALYSIS

Results of a load test session are mainly of two types: behaviour and time histograms.
Behaviour histograms quantify the success of an observation. The number of times that a

signal has been observed, in the sequence defined by the corresponding system MSC, is
recorded for each signal. In Figure 13, for instance, only 73% of the offHooks received by the
subsystem from the user that invokes the service, have been completed with the desired ring
indication. On the other side, this user has dialled a correct number every time he got the
dialTone indication from the subsystem.

Time histograms, also shown in Figure 13, represent the distribution of the durations or
delays requested in the corresponding system MSC. Mean delays and standard deviation
values are obtained. Probabilities can be also evaluated from the histogram, since this graphic
approximates a probability distribution function.

Confidence intervals for both histograms can also be quantified from the number of
service invocations. The confidence on the results increases with the number of service
requests and, for large confidence intervals, transformation of a relationship such as the 73%
of ring success into a probability is permitted.

4. CONCLUSIONS

The combined use of OMT and SDL-92 allowed a design that can be traced back to the base
standards. Improved maintenance and easy comprehension of the implementation are the
approach key benefits. The O-O nature of the generated SDL implementation allows easy
integration of SDL objects into the MO data structures. Customised OMT generation
templates, allow efficient implementation of the configuration database and alarm
management components.

Though OMT does not have defined semantics, and is often used exclusively in the
analysis phase, it is also quite suitable for design as long as set of concrete mapping rules are
established. This flexibility is the weakest and strongest point of OMT in design. It is weak
because unlike SDL it is not possible to expect a well defined behaviour. On the contrary it is
strong as it allows the implementation of functionality that falls outside the established SDL
behaviour, such as: complex dynamic data structures, database access and specialised
memory management.

ADT declarations allow access to OMT objects from the SDL process graph. This leaves
much of the system behaviour inside the SDL description, without constraining the whole
system to the SDL execution model overheads. Therefore a compromise between design
formalism and efficiency was reached.

TTCN is the language used as the basis for conformance test. Automatic compilation and
execution is achieved by means of commercially available tools.

Load testing, that is of major importance for this type of systems, is carried out in specially
developed equipment. For that, conformance testing and verification techniques based on the
combination of MSC with SDL, have been reused, improved with statistical characteristics,
and implemented in the OMT-SDL methodology presented.

The definition of usage scenarios and parametrisation of test cases have also been shown.
The validation of the system from the performance point of view, has also been addressed.

5. ACKNOWLEDGEMENTS

The authors would like to thank NEC corporation and INESC management for the permission
to publish this work. The work of INESC personnel was in part funded by scholarships from
JNICT. At last we would like to thank our work colleagues for they review and helpful
suggestions.

6. REFERENCES

[1] ITU: Z.100 (1993): CCITT Specification and Description Language (SDL). ITU-T Jun.
1994.

[2] Rumbaugh, M. Blaha, W. Premerlani, F. Eddy, and W.Lorensen: Object Oriented
Modeling and Design. Prentice Hall, International Editions (1991).

[3] Witaszekm E. Holz, M. Wasowski, Stefanie Lau, J. Fisher, A development Method for
SDL-92 Specifications Based on OMT, in SDL´95: with MSC in CASE, R. Braek and A.
Sarma (eds), Elseiver Science Publ, (1995) pp. 103-113.

[4] F. Guo, T. MacKenzie Translation of OMT to SDL-92 in SDL´95: with MSC in CASE,
R. Braek and A. Sarma (eds), Elseiver Science Publ, (1995) pp. 115-125.

[5] ETSI: ETS 300-324-1 Signalling Protocols and Switching (SPS); V interfaces at the
digital Local Exchange (LE), V5.1 interface for the support of Access Network (AN),
Part 1: V5.1 interface specification, ETSI (1994).

[6] ETSI: ETS 300-347-1 Signalling Protocols and Switching (SPS); V interfaces at the
digital Local Exchange (LE), V5.2 interface for the support of Access Network (AN),
Part 1: V5.2 interface specification, ETSI (1994).

[7] ETSI: ETS 300-376-1 Signalling Protocols and Switching (SPS); Q3 interface at the
Access Network (AN) for configuration management of V5 interfaces and associated
user ports, Part 1: Q3 interface specification, ETSI (1994).

[8] ETSI: ETS 300-378-1 Signalling Protocols and Switching (SPS); Q3 interface at the
Access Network (AN) for fault and performance management of V5 interfaces and
associated user ports, Part 1: Q3 interface specification, ETSI (1994).

[9] E. Inocêncio, M. Fonseca, SDL to C++ translator for ISDN Basic Rate Terminal
Signalling, in SDL’93: Using Objects, O. Faergemand and A. Sarma (eds), Elseiver
Science Publ, (1993) pp. 353-360.

[10] A. Gillespie, Simon Rees, Access Network Management Modelling, IEEE
Communication Magazine, March 1996 Vol 34 No 3 (1996).

[11] ETSI: ETS 300-324, Parts 2 to 8, V5.1 Conformance Test Specifications, ETSI (1994).
[12] ETSI: ETS 300-347, Parts 2 to 8, V5.2 Conformance Test Specifications, ETSI (1994).
[13] D. Hogrefe, Status Report on the FMCT Project, in Proceedings of the 7th International

Workshop on Protocol Test Systems, Tokyo, 1994, pp. 165-180
[14] B. Algayres, Y. Lejeune and F. Hugonnet, GOAL: Observing SDL behaviours with

Geode in SDL´95: with MSC in CASE, R. Braek and A. Sarma (eds), Elseiver Science
Publ, (1995) pp. 223-230.

[15] P.Combes, S. Pickin, B. Renard, F. Olsen, MSCs to express Service Requirements as
properties on a SDL model: Application to Service Interaction Detection in SDL´95: with
MSC in CASE, R. Braek and A. Sarma (eds), Elseiver Science Publ, (1995) pp. 243-255.

[16] J. Grabowski, S. Hogrefe, I. Nussbaumer, A. Spichiger, Test Case Specification Based
on MSC and ASN.1 in SDL´95: with MSC in CASE, R. Braek and A. Sarma (eds),
Elseiver Science Publ, (1995) pp. 307-322.

[17] S. Leue, Specifying Real-Time Requirements for SDL Specifications - a Temporal
Logic Based Approach, in Proceedings of the 15th International Symposium on Protocol
Specification, Testing and Verification, Warsaw, 1995, pp. 19-34.

[18] P. Gunningberg et all, Application Protocols and Performance Benchmarks, IEEE
Communications Magazine, June 1989.

7. ABREVIATIONS

ADT........Abstract Data Type.
ANAccess Network.
ASN.1.....Abstract Syntax Notation One.
FSM........Finite State Machine.
EFSMExtended Finite State

Machine.
ETSIEuropean Telecommunication

Standards Institute.
HDLC.....High Level Data Link Control.
LAPV5 ...Link Access Procedure for V5.
ISDN.......Integrated Services Digital

Network.
MOManaged Object.
MIBManagement Information

Base.
MSCMessage Sequence Chart.

OAMP.... Operation Administration,
Maintenance and Provisioning.

OMT....... Object Modeling Technique.
ONP........ Open Network Provisioning.
O-O Object Oriented.
PId Process Identifier.
PSTN...... Public Switched Telephone Network.
QOS........ Quality of Service.
SDL........ Specification and Description

Language.
TMN....... Telecommunication Management

Network.
TTCN Tree and Tabular combined Notation.

