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Abstract  
The paper describes the application of SDL-92[1] and OMT[2] to the design of a V5.x Access 
Network interface. While OMT is used to model the management aspects of the system, 
typically described as TMN objects, SDL-92 is used to describe the V5 signalling stack as 
well as all the distributed components. The resultant combined model is used to automatically 
produce an efficient C++ implementation. TTCN is the language used to evaluate the 
conformance of the V5 interface standards. However, complementar and service oriented 
testing is also required. Service provision correctness, service interaction avoidance and, 
particularly, quality of the services, need characterisation. For that, MSC and SDL combined 
languages complemented with time and probabilistic descriptions, are being used to specify 
test purposes, describe and verify test cases.  
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1. INTRODUCTION 

Normalisation is a key issue for the Open Network Provisioning concept (ONP). ONP 
devises a scenario of Telecom liberalisation where many companies compete and collaborate 
with each other in order to deliver cost effective telecommunication services. The Access 
Network is one of the segments where this specialisation is more likely to take place - a more 
distributed, clustered, flexible Access Network infrastructure deploying over its geographical 
domain a mixture of basic and advanced services. 



The European Telecommunication Standards Institute (ETSI) has promoted a set of 
standards aimed at the normalisation of the interface between the Access Network (AN) 
provider and the Switching infrastructure: the V5 interface [5,6]. V5.1 and V5.2 interfaces 
cover PSTN and narrow band ISDN deployment; broadband access will be addressed by the 
upcoming VB5 interface. The functional split between Access Network and Switching 
Equipment, introduces not only the need for a normalised interface, but also arouses the need 
for effective open Network Management - in ONP environments various companies jointly 
operate a heterogeneous assortment of multi-vendor equipment. 

MIB

ISDN  Digital 
Interfaces

System under developement

TETE

TETE

TE/NTTE/NT

TE/NTTE/NT
U

Z
G

.7
03

V5
 S

ig
na

lli
ng

ISDN User Port

ISDN User Port

PSTN User Port

PSTN User Port

M
I
B

PSTN analogue 
Interfaces

Access Network

V5 Interface

Local Exchanges

Management OperationsManagement Operations

 
Figure 1  Network Architecture Overview 

Overall the Access Network equipment must comply with a set of standards, which can be 
classified into three main groups: 
• Functional interface specifications [5,6]- define the signalling stacks, message sets and 

formats as seen across the physical interface, conceptual state machines along with the 
physical interface specification. 

• Q3 Management information model [7,8] - these standards define the ASN.1 MIB that 
models the AN from the management system perspective. It covers the OAMP aspects of 
the system involving configuration, fault and performance management. 

• Conformance Test Specifications TTCN [11,12]- System validation and testing. 

Although the Interface and Management standards use informal text to describe protocols, 
messages and MO behaviour, they provide useful informal SDL descriptions for the 
signalling, and formal ASN.1 object models for the management. Hence the standards 
provide the initial model that is captured into the OMT and SDL tools. In a second step the 
models are refined and system specific implementation options are introduced, eventually an 
implementation specification is reached from which C++ code is automatically produced. The 
development of the AN and Test Emulator signalling firmware involves two teams, each with 
4 to 5 engineers  using the described methodology. 

2. COMBINED OMT AND SDL MODEL. 

Rumbaugh Object Modelling Technique (OMT) is increasingly being used in combination 
with SDL-92. Leading commercial tools are offering, or promising, support for combined 
methodologies, while some researchers report experimental tools and results [3,4]. Most 
authors and companies advocate a waterfall model: analysis in OMT, followed by design in 



SDL-92 and automatic translation to the implementation language. While agreeing that it is 
possible to use only SDL-92 in the implementation of OMT models, this project explores the 
concurrent code generation from both models. 

In the analysis phase OMT is used to capture the implementation requirements. The 
“entity relationship” [10] diagrams of the management standards were effortlessly 
transformed into a preliminary OMT object model. In this OMT model one can find a number 
of active objects: user ports, transmission resources, packet routing definitions, maintenance 
tests, etc. In turn the functional standards provide informative SDL descriptions that define 
the behaviour of these entities as seen from the V5.x interface. 
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Figure 2  Example of OMT object model with aggregation of SDL92 process types. 

From the coalition of both specifications results a OMT object model that defines the object 
containment, inheritance and relationships. SDL-92 is used to specify the dynamic behaviour 
of certain objects, i.e. some OMT objects contain SDL processes. This approach is depicted 
on Figure 2, two overlapping descriptions, OMT and SDL92, are used to specify the V5.x 
signalling sub-system: 

• The OMT model instantiates all objects, including the aggregated SDL processes. These 
SDL processes receive the required process Identifier (PId) and configuration values by 
means of the formal parameter list. Other objects without SDL behaviour, are generated 
according to predefined C++ generation templates. 

• The SDL description defines the process types, the inherent protocol FSM behaviour, 
message (signal) set and static signal routing graph between the SDL process sets. This 
description uses normal SDL structuring concepts: system, packages, block types, 
packages, process types, routes, etc. The only deviation from a traditional SDL 
specification is the omission of the number of object instances, therefore from the SDL all 
process sets start with one initial instance and are unbounded. In the actual 
implementation, the creation and instance binding is performed by the constructors and 
destructors of some OMT objects.  

An OMT object that aggregates one or more SDL process types becomes very close to the 
SDL-92 block type concept. But unlike the SDL-92 block type, the OMT object permits 
associations, attributes and operations that are not necessarily visible by the SDL 
specification. Instead of “forcing” the whole information model into the SDL description, it 



was felt that the typical management operations are more efficiently implement by mapping 
some OMT objects directly to C++, without a intermediate SDL-92 step. For example, it is 
possible to maintain dynamic tables and lists of complex OMT objects instances, while SDL-
92 dynamics is restricted to process by process creation. 

2.1 OMT GENERATION TEMPLATES  

The fact that OMT lacks formal semantics, allows an infinite number of implementation 
mappings for each object or association. In the Verilog LOV OMT tool, the user defines 
Generation Templates to customise the implementation of objects and associations. The 
present system uses the following class generation templates: 

• SDLClass - The object has SDL behaviour and will be generated from a SDL 
specification, the formal parameter are given by the associations; 

• UnionClass - The object is a container upon which one of the aggregated objects can be 
constructed; 

• PackedClass - Used for objects that require a controlled memory layout, for example in 
device drivers or protocol messages; 

• AlarmMask - Special objects used to efficiently implement bit oriented alarms, from the 
SDL standpoint these objects are viewed as ADT with an operation for each controlled 
alarm. 

Besides these, the project defined G-Templates for pointer, reference, array, linked list and 
hash table associations. The next two sections provide an explanatory example of the 
SDLclass G-Template, which is the key OMT/SDL integration mechanism. 

2.1.1 Embedding SDL into the OMT objects 

Figure 3 presents a simplified view of the pstnUserPort MO implementation. For the 
purposes of this presentation it is assumed that, besides its own attributes and operations, the 
MO contains two SDL processes, A and B. These SDL processes implement user port 
signalling and communicate with process types C and D which are part of the common 
signalling stack. Since each process type is translated into a C++ class, the SDL process 
aggregation is translated to plain C++ membership:: 

class pstnUserport { 
  private: /* OMT object attributes */ 
    Type 1 Atribute1; 
    Type 2 Atribute2; 
  public: /* Two aggregated SDL process */ 
    A Process_A; 
    B Process_B; 
  .... 
}; 
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Figure 3  OMT object with two aggregated SDL processes. 

The only special property of members A and B is that these “Object/Process” are proclaimed 
to be SDL processes in the OMT model (SDLclass G-Template). Instead of generating C++ 
classes for B and A, the OMT code generation tool scans the roles of A and B and retrieves 
the SDL processes constructor signatures, in the example the SDL process formal parameters 
are: 

PROCESS A FPAR roleB, roleD PID; ... 
PROCESS B FPAR roleA, roleC PID; ... 

which in turn are converted to C++ class constructors: 
A::A(...,PId B,PId D); B::B(...,PId A,PId C); 

By now it is known that A and B implementations are generated from the SDL92 
specification and B needs a pointer to A and vice versa. It is also known that the 
pstnUserPort object requires pointers to instances of D and C, otherwise A and B can 
not be correctly  constructed. Since A needs a reference to B and vice versa, and the 
pstnUserPort object holds unique instances of both A and B the following code is 
automatically produced: 

pstnUserPort::pstnUserPort(PId Dr, PId Cr) : 
 Process_A(..., (PId) &Process_B, Dr) ,   
 Process_B(..., (PId) &Process_A, Cr) { .... };  

Using the described matching algorithm, the tool automatically generates constructors that 
initialises all SDL routes with both endpoints terminated within the container object. This is 
specially useful when creating complex objects that have a few internal processes connected 
by a number of SDL routes (OMT roles). Up to this point, the OMT model point of view has 
been assumed, the next section describes the OMT_object as viewed from the SDL process 
perspective. 

2.1.2 Referencing OMT Objects from SDL  

One SDL limitation often encountered by implementers, is the lack of shared variables 
between processes: VIEW and REVEAL constructs are discouraged and the EXPORT, 
IMPORT and remote procedure concepts rely upon SDL asynchronous signal exchange. In 
the described system it is necessary to periodically retrieve the status from a few hundred 
processes with minimum disturbance to the signalling activity. Conversely, the management 
interface should not be affected by delays associated to overloaded signalling queues. In other 



words, while retrieving the system status the management processes should not be blocked by 
pending signalling operations. In this scenario shared variables are essential to decouple 
management and signalling processes. 

The solution embraced is the use of a static configuration object tree shared by the 
management and signalling stacks. Each SDL process opens a “window” of shared variables 
into a part of the OMT object tree; therefore each SDL process has access to the attributes of 
the container object. In C++ this approach is readily realised by adding to some SDL 
processes a reference to the container object. This gives the following container object C++ 
constructor: 

pstnUserPort::PstnUserPort(PId Dr, PId Cr) : 
 Process_A((pstnUserPort &)(*this), (PId)&Process_B, Dr) , 
 Process_B((pstnUserPort &)(*this), (PID)&Process_A, Cr) 
      { .... };  

From the SDL perspective the shared “window” is a NEWTYPE structure that contains each 
attribute of the container object (father). Hence the SDL process formal parameters become: 

NEWTYPE pstnUserPort 
STRUCT  
 Atribute1 Type 1; 
 Atribute2 Type 2; 
 ...  

ENDNEWTYPE; 

PROCESS A FPAR  
  roleO pstnUserPort; 
  roleA, roleC PID; 
... 
PROCESS B FPAR  
  roleO ptsnUserPort; 
  roleB, roleD PID; 
... 

Where roleO is the name of the role from which the SDL process views the container object 
(owner). From the SDL perspective the configuration is a structure passed by value, but 
actually the C++ implementation passes the value by reference. This reality is totally 
transparent to the SDL-92 to C++ translator; the translator simply maps the SDL “!” operator 
into a C++ “.” member access. ADT operators are also employed to declare C++ member 
functions, the rule being that the leftmost operator specifies the object instance. 
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Figure 4: Referencing OMT configuration from SDL. 

2.2 C++ GENERATION TOOLSET 

When analysis and specification is based on two object oriented methodologies, it is natural 
to extend the O-O approach right through the implementation phase. In the field of embedded 
systems, C++ still has a undeserved reputation for run-time inefficiency; yet, with wise usage 



and a good C++ compiler it is possible attain efficiency levels that match, or even surpass C 
based SDL implementations. 

Commercial off the shelf tools are used to edit the OMT and SDL92 specifications 
(Verilog LOV and SDT3.02). However the SDT tool so far does not generate object oriented 
C++ code and the LOV support for SDL was found incipient. Therefore the project opted for 
a proprietary SDL-92 to C++ code generator and a “perl” script to generate the OMT C++ 
implementation. The complete translation tool chain is depicted in Figure 5. 
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Figure 5 - SDL/OMT to C++ tool chain. 

The OMT model is translated into a set of C++ implementation classes, this set contains all 
classes that are not declared as SDL processes. Only the object model is used, therefore the 
OMT model does not directly implement behaviour. Instead the tool produces type and object 
declarations and instances of hand coded C++ templates (lists, hash tables, arrays, etc.). 
Besides the C++ declaration the LOV post processor also generates SDL ADT declarations 
that are incorporated into the SDL to ensure semantic correctness. Furthermore these ADT 
provide a interface that permits the manipulation of configuration database by the 
management processes. For example, an SDL process can manipulate object lists by calling 
operators ADT operators upon ADT instances. It also possible to generate SDL process 
prototypes, but after these processes are refined in the SDL tool it is not possible to revert 
changes back to the OMT model. 

2.2.1 C++ SDL implementation 

The tool used to generate C++ code from SDL92 is an evolution of a previous SDL88 tool 
[9]. This tool generates an object oriented SDL implementation: each SDL92 process type is 
translated into a C++ “active” implementation class and each SDL abstract type into a 
“passive” C++ class.  

The SDL process data part is directly translated to C++ data members, along with formal 
parameters and timer objects. Each incoming SDL signal generates a homonymous member 
function with equivalent parameter signature. All signals with overloaded signatures call the 
same overloaded “output” function to encode the parameter and append the signal to the 
process queue. The state machine implementation function consumes the signals at the queue 



head. All signal input and output member functions are automatically generated by the tool 
and a minimal library completes the support for SDL execution (signal memory management, 
process dispatching and SDL and target specific timer handling). 

As can be seen in Figure 6, the SDL process implementation is a relatively self contained 
C++ class. Signal handling member functions define the external interface hiding the internal 
queuing and signal encoding details from the caller. From the process’s body it is possible to 
invoke other SDL process or classes that provide a compatible interface but whose internal 
behaviour is not an SDL EFSM. Such is the case of the devices drivers that interface the SDL 
description to the surrounding hardware and software environment. These are SDL processes 
that have a empty state transition graph, the translator just generates a class declaration and 
omits the process body generation that shall be hand coded and liked to the generated code. 

The use of empty driver processes appears to be more in line with O-O practice than the 
traditional SDL environment where all processes environmental signals are  bundled together 
in a unstructured common space. The interface between SDL processes and drivers is 
potentially asymmetric: nothing implies that a driver queues the received signals (member 
function calls), therefore the process to driver interface is typically synchronous while the 
process to driver interface remains asynchronous. 
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Figure 6 SDL process implementation overview. 

One of the key points of the translator tool, is the simplicity of the generated code, not only 
the interface is easily understood and handled by programmers not acquainted with SDL, but 
also the state machine implementation is effortlessly traced in the debug sessions. The 
efficiency is reasonable even when compared with typical hand coded implementations and 
while enjoying the benefits of O-O structuring most implementations are smaller that the 
SDT tool C implementation (about 70 % for the V5 Data Link process). 

3. SYSTEM TESTING 

The types of tests and methods used in the validation of this system are described below.  



3.1 SYSTEM UNDER TESTING 

The system considered for testing, as described in Figure 1, consists of a set of user ports that 
are mainly of two types: 1) analogue telephone, also known as PSTN; 2) ISDN basic rate 
access.  

All the system interfaces are standardised. Analogue Z and digital layer one U interfaces, 
for the user side, the three layered V5 interface, for the exchange side, and the TMN Q3 
standard, for management. Beside the remote control of user ports, V5 introduces also a 
digital and message oriented signalling protocol stack for the old telephone system calls. 
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Figure 7 - Testing view of the system 

From a pure functional and testing point of view, presented in Figure 7, each user port can be 
requested to provide services both to the telecom operator or to a customer. The operator can, 
for instance, block a user port. The customer, in this model, can request a call initiation or, for 
ISDN, a frame transmission. Services are always requested through a system interface and, 
often, can also be invoked by more than one interface type. Putting a port out of service, for 
instance, can be requested directly through the management or V5 interfaces. During the 
provision of a service more than one interface can be used. A phone call, for instance, 
involves interactions through Z and V5 interfaces.  

3.2 TYPES OF TESTS 

According to the model presented above, and from the protocols point of view, two major 
types of testing were identified as required: interface testing and service testing. 

3.2.1 Interface Testing 

The interface testing main purpose is the verification of the interface conformity with the 
relevant standards. Although this type of tests, alone, does not guarantee full interoperability 
with other Local Exchanges vendors, it is required because it is used as the basis for 



certification and it strongly limits the number of eventual mis-interactions of the system. 
Interoperability testing, assumed here as a field testing, is not discussed here.  

Being Z and U, electrical and logical interfaces, only the V5 interface is related to protocol 
conformance testing. V5, layers 2 and 3, have test suites standardised and described in 
TTCN.  

The conformance evaluation of each V5 state machine defines the usual types of 
conformance tests: 1) basic interconnection; 2) capability; 3) valid behaviour; 4) inopportune 
behaviour; 5) invalid behaviour; 6) timers and counters. 

No formal methods [13] are known to be used in this test suite derivation, neither formal 
concepts, such as conformance relation, are introduced in the standards. Nevertheless, about 
500 tests, for the AN side of the V5 interface, are specified on the main aspects of the 
protocol state machines. 

For this type of testing, the following method has been selected: using the ITEX TTCN 
tool, tests are selected and parametrised in TTCN mp format. After that, the test suite or 
particular test cases is compiled for a SIEMENS protocol tester, where the tests will be 
executed. Remote single layer test method is the recommended and used. 

3.2.2 Service testing  

Since the major functions or services of the system are to be provided through the system V5 
interface, conformance testing, in theory and if tests are well derived, indirectly checks the 
correctness of the main services provisioned. 

Another class of tests, the load tests, concerned with detection of unwanted service 
interactions and with the characterisation of the quality of the services, need however to be 
also applied.  

Service interaction tests [15] are intended to verify if  a well-provided service is not 
affected by the provision of another services or instances of the same service. Quality of 
services tests are used to characterise, from a user point of view, the performance of the 
system under real usage scenarios. Parameters, such as probability of premature call release 
or HDLC frame transfer delay require statistical characterisation. 

Unwanted interactions and quality characteristics usually deteriorate with increasing loads 
or service usage’s. It means that a service correct under low loads, can begin to become 
incorrectly provided or with unacceptable quality under high or over load conditions. 

The quality of the services, recommended by standardisation bodies for some network 
portions or elements, is defined by parameters that are rigorously associated with interfaces 
events, usually of layer three. 

Quality of service parameters are about time intervals and behaviour quantification. 
Examples of the first type are call setup delay,  call release delay, frame transfer delay and 
port blocking delay. Examples of the second type are misrouting and no tone. 

For the first set, maximum mean durations and maximum durations for 95% of the usage 
cases are defined. For a call release delay, a mean value less that 250 ms and a 95% 
probability of not exceeding 300ms is recommended. Values are defined for several load 
conditions, being a load condition statistically characterised service usage mix. Poisson and 
deterministic service usage models are usually referred. 



The second set of parameters is defined in terms of probabilities. As an example, the 
probability of a call attempt encountering no dial tone following the sending of a correct 
address shall be less than 0,0001. 

3.3 LOAD TESTING ARCHITECTURE 

Load tests require testing equipment that enables: i) the invocation of the most often used 
system services; ii) the invocation of these services by user selected sequences; iii) the 
statistical invocation of the services; iv) the characterisation of time intervals between events; 
v) the quantification of the behaviour; vi) high service usage rates. 

As this system interfaces at the user side are electrical, some emulation facility was 
required for the testing system. For the Exchange side, some protocol emulation was also 
required in order to minimise the V5 stack complexity. With this emulation, the initial system 
has been modelled as a set of three subsystems types, also known as emulation subsystems, as 
represented in Figure 7: i) ISDN-ISDN; ii) Phone-Phone; iii) Phone-LAPV5. For each user 
port provisioned one of these subsystems types will be selected. 

Each subsystem is modelled in SDL by three processes. Global real-time facilities are 
available within the overall testing system. 
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Figure 8  Possible initiateCall service interactions in the Phone-Phone subsystem 

3.4 TEST SPECIFICATION 

In order to integrate test derivation methods with the combined OMT-SDL methodology 
described above, current MSC-SDL test derivation methods [14,15,16,17] for system and 
conformance testing were considered and complemented with service usage related 
specifications [18]. 



3.4.1 Test Purpose  

Load test purposes are being specified in MSC. Two types of MSC were found required: i) 
usage MSC; ii) system MSC. 

An usage MSC describes the service usage main trace and it intends to describe the users 
main behaviour. One of the users is assumed to trigger the service invocation regularly and, 
during service provision, other users can be involved. 

For in order to allow the regular invocations, the usage MSC is complemented with the 
interServiceInvocation construct that characterises the time interval between successive 
service invocations by describing the statistical law to be followed, such as, Poisson, Uniform 
or Deterministic. MSC Timeouts can also be associated with statistical laws. 

A system MSC describes a property of the system that needs quantification. Although 
users and system instances are also represented in a system MSC, the stress is put on the 
sequence of (constrained) messages that is to be observed as sent or received by the 
subsystem.  

A system MSC can be complemented with the specification of a time interval needing to be 
quantified. Several system MSC can be associated with one usage MSC, as represented in 
Figure 9. 
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Figure 9  Usage and System MSCs 

3.4.2 Test case 

Load test cases are specified using the combined OMT-SDL methodology described above. 
The automation of the process is, at the moment, being carried out. 

From the usage MSC two SDL process types are derived, each one emulating  a user. 
Typically, each user has always the same behaviour and one of them  invokes the service 
according to the interServiceInvocation parameter. 

Each system MSC is interpreted as one automata, as described in Figures 10 and 11, that 
observes and counts the events exchanged between the subsystem and its users.  
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Figure 10  Automata representing a system MSC, for duration quantification. 
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Figure 11  Automata representing a system MSC, for behaviour quantification 

The full set of system MSC are implemented in a SDL driver, see Figure 12, that routes the 
messages between the subsystem and its users. Drivers, as described in Figure 6, are 
synchronous with the processes that output signals for them. 
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Figure 12  Architecture of a Load Test Case. 

Test Load Veredicts, unlike conformance testing, quantify the system by means of histograms 
data structures. Visual representation is presented in Figure 13. 
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Figure 13  Results of a load test case execution. 



3.5 TEST EXECUTION 

The test system needs to be configured before each test session execution is started. For this, 
each user port is instantiated with a SDL subsystem. Subsystems loaded with the same set of 
usage MSC and System MSCs can be grouped, thus emulating standard traffic/usage 
scenarios. For each group usage MSC and system MSC require parametrisation. 

Usage MSC parametrisation consists in attributing values to the interServiceInvocation 
parameter and Timeouts. 

System MSC parametrisation consists in selecting parameters for the duration histograms: 
numberIntervals, firstValue and lastValue.  

3.6 RESULT ANALYSIS 

Results of a load test session are mainly of two types: behaviour and time histograms. 
Behaviour histograms quantify the success of an observation. The number of times that a 

signal has been observed, in the sequence defined by the corresponding system MSC, is 
recorded for each signal. In Figure 13, for instance, only 73% of the offHooks received by the 
subsystem from the user that invokes the service, have been completed with the desired ring 
indication. On the other side, this user has dialled a correct number every time he got the 
dialTone indication from the subsystem. 

Time histograms, also shown in Figure 13, represent the distribution of the durations or 
delays requested in the corresponding system MSC. Mean delays and standard deviation 
values are obtained. Probabilities can be also evaluated from the histogram, since this graphic 
approximates a probability distribution function. 

Confidence intervals for both histograms can also be quantified from the number of 
service invocations. The confidence on the results increases with the number of service 
requests and, for large confidence intervals, transformation of a relationship such as the 73% 
of ring success into a probability is permitted. 

4. CONCLUSIONS 

The combined use of OMT and SDL-92 allowed a design that can be traced back to the base 
standards. Improved maintenance and easy comprehension of the implementation are the 
approach key benefits. The O-O nature of the generated SDL implementation allows easy 
integration of SDL objects into the MO data structures. Customised OMT generation 
templates, allow efficient implementation of the configuration database and alarm 
management components. 

Though OMT does not have defined semantics, and is often used exclusively in the 
analysis phase, it is also quite suitable for design as long as set of concrete mapping rules are 
established. This flexibility is the weakest and strongest point of OMT in design. It is weak 
because unlike SDL it is not possible to expect a well defined behaviour. On the contrary it is 
strong as it allows the implementation of functionality that falls outside the established SDL 
behaviour, such as: complex dynamic data structures, database access and specialised 
memory management. 



ADT declarations allow access to OMT objects from the SDL process graph. This leaves 
much of the system behaviour inside the SDL description, without constraining the whole 
system to the SDL execution model overheads. Therefore a compromise between design 
formalism and efficiency was reached. 

TTCN is the language used as the basis for conformance test. Automatic compilation and 
execution is achieved by means of commercially available tools.  

Load testing, that is of major importance for this type of systems, is carried out in specially 
developed equipment. For that, conformance testing and verification techniques based on the 
combination of MSC with SDL, have been reused, improved with statistical characteristics, 
and implemented in the OMT-SDL methodology presented.  

The definition of usage scenarios and parametrisation of test cases have also been shown. 
The validation of the system from the performance point of view, has also been addressed. 
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7. ABREVIATIONS 

ADT........Abstract Data Type. 
AN ..........Access Network. 
ASN.1.....Abstract Syntax Notation One. 
FSM........Finite State Machine. 
EFSM .....Extended Finite State 

Machine. 
ETSI .......European Telecommunication 

Standards Institute. 
HDLC.....High Level Data Link Control. 
LAPV5 ...Link Access Procedure for V5. 
ISDN.......Integrated Services Digital 

Network. 
MO .........Managed Object. 
MIB ........Management Information 

Base. 
MSC .......Message Sequence Chart. 
 

OAMP.... Operation Administration, 
Maintenance and Provisioning. 

OMT....... Object Modeling Technique. 
ONP........ Open Network Provisioning. 
O-O ........ Object Oriented. 
PId .......... Process Identifier. 
PSTN...... Public Switched Telephone Network. 
QOS........ Quality of Service. 
SDL........ Specification and Description 

Language. 
TMN....... Telecommunication Management 

Network. 
TTCN ..... Tree and Tabular combined Notation. 

 
 



 


