

FEUP>MIEIC>Mobile Communications

Jaime Dias <jaime.dias@fe.up.pt>

Symmetric cryptography

• Ex: RC4, AES

Digest (hash) Cryptography

- Input: variable length message
- Output: a fixed-length bit string
- High performance
- Used for message integrity and identification
- Ideal function
 - One-way: impossible to know the message from the digest
 - Every message has a different digest
- Ex: MD-5, SHA-1

Public Key Cryptography Confidenciality

Public Key Distribution Problem

Ataque MIM:

SSL/TLS

- SSL (Secure Socket Layer)
 - Developed by Netscape
 - Versions 2 e 3
- TLS 1.0 (Transport Layer Security)
 - IETF
- Transparent to application protocols
- Allows both server and client to be authenticated through certificates
- Tipically, due to certificate costs
 - Only servers are authenticated
 - Clients are authenticated at the application layer (ex: passwords)

802.11 Security

- "Minimum" security WEP (Wired Equivalent Privacy)
- Station authentication
 - Open mode \pounds no authentication
 - Shared Mode
 - Challenge: AP sends challenge Ł station returns the challenge encrypted with the WEP key
- Confidentiality \pounds frames are encrypted with RC4
- Integrity Ł CRC32

WEP Vulnerabilities

- Same IV and WEP key same keystream
 - IV too short (24 bits)
 - No mechanism for WEP key update
- Same keystream:
 - **SDU2** \oplus SDU1 = cryptogram1 \oplus cryptogram2
 - If SDU1 is known (ICMP, TCP ack, ...) then
 - **SDU2** = cryptogram1 \oplus cryptogram2 \oplus SDU1

WEP Vulnerabilities (2)

- RC4 key = IV (3 bytes) + WEP key (5 or 13 bytes)
- Weak IVs help breaking the WEP key
 - Weak IVs: i:ff:X
- Ex: Weak IVs for WEP keys of 40 bits
 - 3:ff:X, 4:ff:X, 5:ff:X, 6:ff:X, 7:ff:X

WEP Vulnerabilities (3)

- Integrity Check Value based on CRC32 (linear)
- WEP does not authenticate nor check the integrity of the frame header
 - Station can change the MAC address
- AP is not authenticated
 - Rogue AP
- WEP does not control the frame sequence
 - Replay attacks
- Same key for every station
 - Traffic can be eavesdropped or even changed by any station knowing the WEP key

WEP Vulnerabilities (4)

- Manufacturers have put some additional barriers
 - Authentication by SSID
 - Station only need to monitor the medium and wait for another station to associate to see the SSID
 - Access control by MAC address
 - Station only need to see the MAC address of allowed stations and clone their address

802.1X with Radius

Dynamic WEP

- Uses 802.1X
- User authentication
 - Support of multiple authentication methods
 - Centralized data base with users' credentials, independent of APs
- Authentication of the AP
- Authenticaton keys \neq encryption keys
- Periodic update of WEP keys

802.11i

- WEP failure IEEE 802.11i
- Uses the 802.1X
- Authentication/Access Control
 - Pre-shared key (PSK)
 - With Authentication Server 802.1X
- Key Management
 - Temporary Keys
 - Authentication keys \neq Encryption keys
- Data protection
 - CCMP (Counter mode Cipher block Chaining MAC protocol)
 - Based on the AES cipher algorithm
 - TKIP (Temporal Key Integrity Protocol)
 - Based on the RC4 cipher algorithm (same as WEP)
- Infraestructured and ad-hoc modes

Wi-Fi Protected Access

• WPA

- Based on Draft 3.0 of 802.11i (2002)
- Short term solution for legacy equipments
- No support for CCMP nor the ad-hoc mode
- TKIP reuses the WEP HW (RC4 cipher algorithm)
 - Firmware upgrade
- WPA2
 - Supports 802.11i
 - Long term solution

Authentication methods (802.1X)

- Requires Authentication Server
- Most popular Wi-Fi authentication methods
 - EAP-TLS
 - EAP-TTLS
 - PEAP

EAP-TLS

- Uses TLS to authenticate both server and user through certificates
- Mandatory in WPA
- Cons:
 - Certificates are expensive
 - User identity goes in clear in the user's certificate

Tunneled authentication

- Two phase authentication
 - TLS tunnel authenticates the Authentication Server
 - User autenticated over the TLS tunel
 - Support of weaker methods for user's authentication
 - Certificates are optional
 - User's identity goes encrypted

• EAP-TTLS, PEAP

EAP-TTLS

• EAP- Tunneled TLS

PEAP

- Protected Extensible Authentication Protocol
- v0 Microsoft, v1 Cisco
- PEAPv0/EAP-MSCHAPv2 the most popular

Key Management

- 1. Master Key (MK) generated from the authentication
- 2. Pairwise Master Key (PMK) generated from the MK
- 3. PMK sent to the AP through the AAA protocol (RADIUS)
- 4. Generation of the Pairwise Transient Key (PTK) through the 4-way handshake
- 5. Group key handshake (GTK) generated by the AP and sent though the Group key handshake

Key Management (2)

TKIP Key Encryption generation

Data frames – WEP, TKIP, and CCMP

