Mobile Communications Networks

Wireless Transmission

Manuel P. Ricardo

Faculdade de Engenharia da Universidade do Porto

- How is a signal affected when it propagates in a wireless link?
- *How are bits transported by a carrier?*
- What is the maximum bitrate transportable by a wireless link?
- Why do characteristics such as bitrate vary along the time?
- What will future radio functions look like?

Distance from source ("L")

Electromagnetic Waves – Generation and Propagation

consist of electrical and magnetic forces that move in consistent wave-like patterns at right angles to each other for far-field propagation, but at varying angles in the near-field.

Frequencies for Radio Transmission

• Frequency bands as defined by the ITU-R *Radio Regulations*

 $band_i \in [0.3 \times 10^i Hz, 3 \times 10^i Hz].$

Band Number	Symbol	Frequency Range
4	VLF	3-30 kHz
5	\mathbf{LF}	30-300 kHz
6	MF	3000-3000 kHz
7	$_{\mathrm{HF}}$	3-30 MHz
8	VHF	30-300 MHz
9	UHF	300-3000 MHz
10	SHF	3-30 GHz
11	EHF	30-300 GHz
12		300-3000 GHz

 $\lambda = c/f$

 λ – wave length

 $c = 3 \times 10^8 \ m/s$ represents the speed of the light

 $f_c = 3 GHz \Rightarrow \lambda = 10 cm$

Wireless Systems in Europe

- In Portugal ANACOM attributes the frequencies http://www.anacom.pt
- FWA Fixed Wireless Access
- ISM Industrial, Scientific and Medical

Wireless Systems in Europe	Frequency Range
<i>v</i> 1	47-68 MHz
Broadcast TV	$174-216 \; \mathrm{MHz}$
	470-582 MHz
	582-862 MHz
	890-914 MHz
2G PLMN (GSM)	935-959 MHz
× ,	1710-1785 MHz
	1805-1880 MHz
	1900-1980 MHz
3G PLMN (UMTS)	2010-2025 MHz
	2110-2170 MHz
	3400-3600 MHz
FWA	3600-4200 MHz
	$24.5-26.5 \ { m GHz}$
	$27.5-29.5 \ { m GHz}$
	13553-13567 kHz
	26957-27283 kHz
ISM	40.66-40.70 MHz
	$2400-2500 \mathrm{~MHz}$
	$5725-5875 \ MHz$
	24-24.25 GHz

To Think About

- What factors may affect the power of the signal received by a mobile phone?
- How does the power of a received signal depend on the
 - » distance?
 - » wavelength (λ)?

Signal Propagation and Wireless channels

Power of the signal received depends on 3 factors

– Path loss

Dissipation of radiated power; depends on the distance

- Shadowing

- caused by the obstacles between the transmitter and the receiver
- attenuates the signal **{** absorption, reflection, scattering, diffraction

– Multipath

constructive and destructive addition of multiple signal components

$$W, dBW, dBm, dB, Gain$$

$$P_{r_{w}}, \left(power = \frac{energy}{time}\right), 1W = \frac{1J}{1s}$$

$$P_{r_{dBW}} = 10.\log\left(\frac{P_{r_{w}}}{1W}\right) = 10.\log P_{r_{w}}$$

$$P_{r_{dBm}} = 10 * \log\left(\frac{P_{w}}{1W}\right)$$

$$Gain_{dB} = 10.\log\left(P_{r_{w}} / P_{s_{w}}\right) = 10.\log P_{r_{w}} - 10.\log P_{s_{w}} = P_{r_{dBW}} - P_{s_{dBW}} = P_{r_{dBm}} - P_{s_{dBm}}$$

$$Loss_{dB} = Atenuation_{dB} = -Gain_{dB} = P_{s_{dBW}} - P_{r_{dBW}} = P_{r_{dBm}} - P_{r_{dBm}}$$

Path Loss – Free Space Model

$$PL_{dB} = -PG_{dB} = P_{s_{dB}} - P_{r_{dB}}$$

$$PL_{dB} = -10 \log \frac{\lambda^2 G_l}{(4\pi d)^2}$$

$$PG_{dB} = 10 \ log(Pr/Ps)$$

 $\Lambda \sqrt{G_l}$

 $4\pi\epsilon$

 $P_r/P_s =$

$$PG_{dB} = 20.\log\left(\frac{\lambda\sqrt{G_l}}{4\pi}\right) - 20.\log(d) = b - 20x$$

Signal Propagation and Wireless Channels

 $PG_{dB} = 10 \ log(Pr/Ps)$

 P_L increases 20 db per logd

Assume a receiver needs to receive, at least, 0.1 $\mu W \Rightarrow P_r = 0.1 \ \mu W$

$$P_{r_{dBW}} = 10 \, \log\left(\frac{P_{r_W}}{1 \, W}\right) = 10 \, \log\left(\frac{10^{-7} \, W}{1 \, W}\right) = -70 \, dBW$$

$$P_{r_{dBm}} = 10 \log\left(\frac{P_{r_W}}{1 \ mW}\right) = 10 \ \log\left(\frac{10^{-7} \ W}{10^{-3} \ W}\right) = -40 \ dBm$$

f_c	λ	d	PL_{dB}	$P_{s_{dBm}}$	P_s
	$\left(\frac{c}{f_c}\right)$		$\left(-10\ log \frac{\lambda^2 G_l}{(4\pi d)^2}\right)$	$\left(P_{r_{dBm}}+PL_{dB}\right)$	$\left(10^{\frac{P_{s_{dBm}}}{10}-3}\right)$
(MHz)	(cm)	(m)	(dB)	(dBm)	(W)
900	33	10 100	$51.5 \\ 71.5$	$\frac{11.5}{31.5}$	$0.014 \\ 1.42$
		1000	91.5	51.5	142
2000	10	10	62	22	0.158
3000	10	100	$\frac{82}{102}$	$\frac{42}{62}$	$15.8 \\ 1579$

Simplified model

$$\begin{split} P_{r_{dBm}} &= P_{s_{dBm}} + K_{dB} - 10 \ \gamma \ log \left[\frac{d}{d_0} \right] \\ K_{dB} &= 10 \ log \left[\frac{\lambda}{4\pi d_0} \right]^2 \\ d_0 \approx 10 \lambda \end{split}$$

Environment	γ
Urban macrocells	3.7 - 6.5
Urban microcells	2.7 - 3.5
Office building	1.6 - 3.5
Store	1.8 - 2.2
Factory	1.6 - 3.3
Home	3

Path Loss – Indoor Factors

- Walls, floors, layout of rooms, location and type of objects
 - » Impact on the path loss
 - » The losses introduced **must be added** to the free space losses

Partition	Loss (dB)
hollow brick	8
$\operatorname{concrete}$ wall	13
aluminum siding	20
window	6
floor	10

Shadowing

- Signal traversing wireless channel \rightarrow suffers <u>*random*</u> attenuation
- Random attenuation
 - » described as a statistical process
 - » having a log-normal distribution
- If the simplified path loss model is used, then

$$\left(\frac{P_r}{P_s}\right)_{dB} = 10 \ \log K - 10\gamma \ \log \frac{d}{d_0} - \psi_{dB}$$

where ψ_{dB} is a Gaussian distributed random variable

characterized by $\mu_{\psi_{dB}}=0$ and $\sigma_{\psi_{dB}}$

Multipath

- Multipath \rightarrow multiple rays
 - » multiple delays from transmitter to receiver $\rightarrow \tau_i$
 - » time delay spread $T_m = max_n |\tau_n \tau_0|$
- The time-varying nature of the multipath channel
 - » caused by the transmitter / receiver movements
 - » location of reflectors which originate the multipath

Multipath – Narrowband Channel

• For a narrowband channel

 $T_m << B^{-1}$

low B \rightarrow low symbol rate (symbol/s) \rightarrow large time/symbol

 \rightarrow multipath components arrive in the time period of their symbol

The <u>power</u> received has an exponential probability density function

 f_c

Multipath – Wideband Channel

• Multipath components

- » may arrive at the receiver within the time period of the next symbol
- » causing Inter-Symbol Interference (ISI).

- Techniques used to mitigate ISI
 - » multicarrier modulation
 - » spread spectrum

Capacity of an Wireless Channel

Assuming Additive White Gaussion Noise (AWGN)

» Given by Shannon's law

$$C = B \log_2(1+\gamma)$$
 (bit/s)

 $\gamma = P_r / (N_0 B)$

 N_0 – power spectral density of the Noise

Capacity in a fading channel (shadowing + multipath)
 <u>usually smaller</u> than the capacity of an AWGN channel

Capacity of an Wireless Channel

$$P_r(d) = (d_0/d)^3 P_l$$
, for $d_0 = 10m$.

d	$\gamma = P_r(d)/(N_0B)$	$SNR = \gamma_{dB} = 10 \log \gamma$	$C = B \log_2(1+\gamma)$	Efficiency
(m)		(dB)	(kbit/s)	(bit/s/Hz)
50	267	24	242	8
100	33	15	153	5.1
500	0.27	-6	10	0.3
1000	0.033	-15	1.4	0.05

Table 2.6: Shannon capacities for wireless channels. The limiting capacities of wireless channels depend on the channel bandwidth and on the power received. The capacity C of the channel and its efficiency are given for a transmitted power $P_s = 1 W$, $d_0 = 10 m$, a narrow bandwidth of 30 kHz and a noise power spectral density $N_0 = 10^{-9} W/Hz$. The capacity decreases significantly as the distance between the sender and the receiver increases

To Think About

• How can we transmit bits using a continuous carrier?

Digital Modulation

- Digital modulation
 - » maps information bits into an analogue signal (carrier)

Receiver

» determines the original bit sequence based on the signal received

• Two categories of digital modulation

- » amplitude/phase modulation
- » frequency modulation

M=8, K=3

Amplitude and Phase modulation

- $K = log_2 M$ bits sent over a time symbol interval
- Amplitude/phase modulation can be:
 - 000 001 011 010 110 111 101 100 » Pulse Amplitude Modulation (MPAM) information coded in amplitude M=8, K=3 MPAM - $s_i(t) = Re\left\{A_i \ g(t)e^{j2\pi f_c t}\right\}$ Phase Shift Keying (MPSK), **»** information coded in phase 101 MPSK - $s_i(t) = Re \left\{ A g(t) e^{j\theta_i} e^{j2\pi f_c t} \right\}$ » Quadrature Amplitude Modulation (MQAM) information coded both in amplitude and phase MQAM - $s_i(t) = Re\left\{A_i \ e^{j\theta_i}g(t)e^{j2\pi f_c t}\right\}$

● - 4QAM ■ - 16QAM

Differential Modulation

• Bits associated to a symbol depend on the bits transmitted over prior symbol times

• Differential BPSK (DPSK)

- » $0 \rightarrow$ no change phase
- » 1 \rightarrow change phase by π
- Diferential 4PSK (DQPSK) the bit
 - » $00 \rightarrow$ change phase by 0
 - » 01 \rightarrow change phase by $\pi/2$
 - » 10 → change phase by $-\pi/2$
 - » 11 \rightarrow change phase by π

Frequency Modulation, Minimum Shift Keying (MSK)

- Frequency modulation
 - » encodes information bits into the frequency of the carrier

 $s_i(t) = Acos(2\pi f_i t + \phi_i)$

Minimum Shift Keying

$$s_i(t) = A\cos[2\pi f_c t + 2\pi\alpha_i \Delta f_c t + \phi_i], \ 0 \le t < T_s,$$

Coding for Wireless Channels

- Coding enables bit errors to be either detected or corrected by receiver
- Codes designed for AWGN channels
 - » do not work well on fading channels
 - » cannot correct the long error bursts that occur in fading
- Codes for fading channels are normally
 - » based on an AWGN channel code
 - » combined with interleaving
 - » objective \rightarrow spread error bursts over multiple codewords

To Think About

- Why does your WLAN interface change dynamically its working bitrate?
- What happens, from the modulation and coding points of view, when the WLAN interface changes from 54 Mbit/s to 6 Mbit/s?

802.11a – Rate Dependent Parameters

Data rate (Mbits/s)	Modulation	Coding rate (R)	Coded bits per subcarrier (N _{BPSC})	Coded bits per OFDM symbol (N _{CBPS})	Data bits per OFDM symbol (N _{DBPS})
6	BPSK	1/2	1	48	24
9	BPSK	3/4	1	48	36
12	QPSK	1/2	2	96	48
18	QPSK	3/4	2	96	72
24	16-QAM	1/2	4	192	96
36	16-QAM	3/4	4	192	144
48	64-QAM	2/3	6	288	192
54	64-QAM	3/4	6	288	216

% of useful information

Adaptive Modulation/Coding

- Adaptive transmission techniques
 - » aim at maintaining the quality \rightarrow low/stable BER
 - » works by varying: data rate, power transmitted, codes
- Adapting the data rate
 - » symbol rate is kept constant
 - » modulation schemes / constellation sizes depend on $\gamma \rightarrow$ multiple data rates
- Adapting the transmit power
 - » compensate $\gamma = P_r / N_0 B$ variation due to fading
 - » maintain a constant received γ
- Adapting the codes
 - » γ large \rightarrow weaker or no codes
 - » γ small \rightarrow stronger code may be used

 $\gamma = P_r / (N_0 B)$ $C = B \log_2(1 + \gamma)$

Spread Spectrum

- Spread spectrum techniques
 - » hide the information signal below the noise floor
 - » mitigate inter-symbol interferences
 - » combine multipath components
- The spread spectrum techniques
 - » multiply the information signal by a spreading code

Multicarrier Modulation

- Multicarrier modulation (e.g. OFDM) consists
 - » dividing a bitstream into multiple low rate sub-streams
 - » sending sub-streams simultaneously over sub-channels
- Subchannel
 - » has bandwidth $B_N = B/N$
 - » provides a data rate $R_N \approx R/N$
 - » For N large, $B_N = B/N \ll 1/T_m$
 - → flat fading (narrowband like effects) on each sub-channel, no ISI
- Orthogonal sub-carriers
 - » space between carriers \rightarrow minimised
 - » system capacity \rightarrow maximised

Multiple Antennas and Space-Time Communications

- Multiple Input Multiple Output combines
 - » signals generated by multiple transmit antennas
 - » signals received by multiple receive antennas
- MIMO used to improve data rate (bits/s) or quality (BER)

Ultra Wide Band

- » UWB transmits very short duration pulses
 - individual pulse \rightarrow much shorter than a single bit
 - very large bandwidth
 - very low transmission power \rightarrow low interference

Software Defined Radio

• Software Defined Radio

aims at implementing the radio functions in software

 Digital Signal Processors being integrated with microcontroller better integration of radio and communications functions (e.g. de-coding, de-framing, error detection, MAC, mobility management)

Cognitive Radio

- Cognitive radio
 - » fills unused bands
 - » avoids interferences
 - » increases spectral efficiency
- Paves the way to
 - » dynamic spectrum licensing
 - » secondary markets in spectrum usage
- SDR is the mean required by cognitive radio