
Faculdade de Engenharia da Universidade do
Porto

Automated Pattern-Based Testing of
Mobile Applications

Author:

Inês Coimbra Morgado

Supervisor:

Ana C. R. Paiva

Co-supervisor:

João Pascoal Faria

A thesis proposal submitted in fulfilment of the requirements

for the definitive enrolment in the Doctoral Program in Informatics Engineering

Doctor of Informatics Engineering

April 2014

Universidade do Porto

Abstract

Faculdade de Engenharia

Departmento de Engenharia Informática

Doctor of Informatics Engineering

Automated Pattern-Based Testing of Mobile Applications

by Inês Coimbra Morgado

In the last years the necessity to ensure the quality of mobile applications has increased

partly due to the exponential increase of critical applications, such as e-banking, and, as

for every other type of software, test automation is an important step towards this goal.

Testing the Graphical User Interface (GUI) of an application is equally important as it

is through it that the user is going to interact with the application. One useful technique

is model-based Graphical User Interface (GUI) testing as it automatically generates test

cases based on a model of the application’s GUI. However, the manual construction of

such model is a time consuming error prone task. Reverse engineering can be useful to

aid in the automatic generation of part of such model.

One of the goals of this research work is to develop reverse engineering techniques and

tools to obtain behavioral models of mobile applications’ GUIs. Even though event-

driven application, such as mobile ones, are a good target for dynamic exploration,

static analysis may also be useful for identifying the widgets that have event handlers

associated.

Since GUIs are usually designed based on common GUI patterns (combining structure

and behavior), the reverse engineering process will be directed towards finding instances

of such patterns. This work is part of The Pattern-Based GUI Testing project which has

proved that it is possible to detect patterns on a system in order to ease its modelling and

testing as it is possible to define the corresponding test strategy prior to the exploration.

As such, this work also intends to test the application on the fly whenever behaviour

patterns are identifying by running the corresponding test pattern on the application.

University Web Site URL Here (include http://)
Faculty Web Site URL Here (include http://)
Department or School Web Site URL Here (include http://)

Contents

Abstract i

Contents ii

List of Figures iv

List of Tables v

Abbreviations vi

1 Introduction 1

2 Related Work on Reverse Engineering 5

2.1 Ontology for Classifying Reverse Engineering Approaches 6

2.1.1 Goal . 7

2.1.2 Target . 8

2.1.3 Method . 9

2.1.4 Information . 11

2.1.5 Output . 12

2.1.6 Validation . 13

2.2 Software Reverse Engineering Approaches 14

2.3 Mobile Reverse Engineering Approaches 19

2.4 Conclusions . 22

3 Previous Work 23

3.1 GUI Reverse Engineering for Visual and Formal Models 23

3.2 Pattern-based GUI Reverse Engineering 26

3.3 Pattern-based GUI Testing . 29

3.4 Conclusions . 29

4 Approach and Methodology 30

4.1 Definitions . 30

4.2 Approach . 32

4.2.1 Validation . 33

4.3 Research Hypothesis/Thesis Statement . 33

4.4 Research Methodology . 33

4.5 Work Plan . 34

ii

Contents iii

5 Conclusions 36

A Final Paper Selection on Reverse Engineering 37

B Geographical Distribution of the Selected Papers on Reverse Engineer-
ing 39

Bibliography 44

List of Figures

1.1 Architecture of a reverse engineering process 3

3.1 Visual representation of a window graph 24

3.2 Visual representation of a navigation graph 24

3.3 Visual representation of a dependency graph 25

3.4 Architecture and outputs obtained in the RE process 25

3.5 Sample of the Spec# formal model generated 26

3.6 State machine in SMV . 27

3.7 Sample of the state machine with (a) and without (b) ambiguity 28

3.8 Architecture of the ILP approach . 28

4.1 Activity lifecycle of an Android Activity [1] 31

4.2 Gantt chart of the work plan . 35

iv

List of Tables

2.1 Classification of the approaches according to their goal 14

2.2 Classification of the approaches according to their target 15

2.3 Classification of the approaches according to the method aspect 16

2.4 Classification of the technique according to the context in which it is
applied and of the approaches according to the techniques they use 17

2.5 Classification of the approaches according to the techniques used in the
second phase of the reverse engineering process 18

2.6 Classification of the approaches according to the output produced 18

2.7 Classification of the approaches according to how they were validated . . 19

2.8 Classification of the mobile RE approaches according to the ontology . . . 20

A.1 Final papers selection on software RE and the venue where they were
published . 38

A.2 Final papers selection on mobile RE and the venue where they were pub-
lished . 38

B.1 Geographical distribution of the research on software RE 40

B.2 Geographical distribution of the research on mobile RE 43

v

Abbreviations

FSM Finite State Machine

GUI Graphical User Interface

MBGT Model Based GUI Testing

MBT Model Based Testing

PBGT Pattern Based GUI Testing

RE Reverse Engineering

SMV Symbolic Model Verification

UI User Interface

V&V Verification and Validation

vi

Chapter 1

Introduction

Since the release of the iPhone in 2007 [2] and of the first Android smart phone in 2008

[3], smart phones have started to greatly increase their mobile sales. In fact, in late

2013, smart-phones represented almost 60% of the mobile sales worldwide and, with

Android and iPhone representing over 85% of the smart-phone sales [4]. Moreover,

in mid-2013, Android’s Google Play reached one million available applications and the

number of downloads has crossed the fifty billion threshold [5] and in late 2013 Apple

announced their App Store had also reached one million available applications and sixty

billion downloads [6]. This market dimension makes it extremely important to ensure

the quality of an application as it generates a high level of competitiveness and thus for

one to get popular it must be as flawless as possible. Furthermore, there has also been

an increase of the critical mobile application, such as banking, which makes it even more

important to ensure its correctness.

Mobile applications have, as any other type of application, their own quirks regarding

testing, such as the high amount of different events that need to be tested, and, as every

other, companies want to spend as little resources as possible in the testing process. As

such, it is important to automate this process.

Android already presents a tool to ease testing, Exerciser Monkey [7]. This is a fuzzy

testing tool, i.e., it stress tests an Android application and its user interface (UI) by

sending a pseudo-random stream of user events into the system. However, this does not

ensure the full testing of the application and it does not provide any coverage statistics.

1

Chapter 1. Introduction 2

The academics have also been working on this, focusing mainly on Android applications

and less on iOS ones. The main reasons for this are the increase of popularity of Android

and the availability of open-source applications and frameworks.

The main focus of mobile testing is UI testing, more precisely Graphical UI (GUI)

testing, as this is the source of interaction with the user and where most errors occur.

There are two main focuses on mobile GUI testing in the literature: automatic test case

generation and automatic crawling. The former provides a set of test cases that can be

run on the application. The latter tries to exercise as many aspects of the application

as possible in order to find errors, such as crashes. One of the most popular techniques

for automatic test case generation is Model-based Testing (MBT) [8], i.e., it receives

a model of the application’s behaviour as input and outputs a test suite to be run on

it. The problem of this technique is that it requires a model of the application and

its manual construction is a time consuming and error prone task. As such, it is also

preferable to automate this step as much as possible. There are several approaches

focusing this. However they usually target Desktop [9–14] or web [15–17] applications.

Nevertheless, there are a few who apply Model Based GUI Testing (MBGT), i.e., MBT

applied to GUIs), to mobile applications [18–20]. Several of these approaches use reverse

engineering techniques to ease the extraction of information and its abstraction into a

model.

Reverse engineering (RE) was first defined in 1985 by Rekoff [21] as “the process of

developing a set of specifications for a complex hardware system by an orderly exami-

nation of specimens of that system”. Five years later, Chikofsky and Cross [22] adapted

this definition to software systems: “Reverse Engineering is the process of analysing a

subject system to (1) identify the system’s components and interrelationships and (2) to

create representations of the system in another form or at a higher level of abstraction”.

Figure 1.1 depicts their representation of a common reverse engineering process.

Even though nowadays reverse engineering is considered helpful in several areas [23], such

as testing, it initially surfaced associated with software maintenance as it eases system

comprehension. This was considered extremely important as over 50% of a system’s

development is occupied with maintenance tasks [24–26] and over 50% of maintenance

is dedicated to comprehending the system [27, 28].

Chapter 1. Introduction 3

Figure 1.1: Architecture of a reverse engineering process

Reverse engineering has also proved to be useful, for instance, in coping with the Y2K

problem, with the European currency conversion and with the migration of information

systems to the web and towards the electronic commerce [29]. With the exploration of

reverse engineering techniques, its usefulness grew from software maintenance to other

fields, such as verification and validation and security analysis.

Even though reverse engineering techniques can also be used with malicious intents [30],

such as removal of software protection and limitations or allowing unauthorised access

to systems/data, developers may also use the same techniques in order to improve the

software’s safety, e.g., auditing security and vulnerability.

There has been some studies on applying reverse engineering techniques to mobile ap-

plications. Hu et al. [31] identify bugs in the application, Amalfitano et al. extract an

event-flow graph of the application considering [20] or not [32] system events, Joorabchi

and Mesbah [33] and Yang et al. [34] extract a state machine relating the UI states with

user interactions.

None of these approaches, however, try to take advantage of the existence of behavioural

patterns in the application to facilitate their task. The pattern-based GUI testing

(PBGT) project1 aims at improving current MBGT methods and tools, contributing

to construct an effectively applicable testing approach in industry and to contribute to

the construction of higher quality GUIs and software systems. It is in the context of

the PBGT project that this work arises. It is believed that mobile applications present

behavioural patterns and that those ease the modelling and, thus, the testing task. As

such, the work proposed in this document aims at extracting the behavioural model of

a mobile application and at testing it by defining test strategies to be applied on the

1http://paginas.fe.up.pt/ apaiva/pbgtwiki/doku.php

Chapter 1. Introduction 4

fly as soon as a behavioural pattern is identified. During the exploration, whenever a

behavioural pattern is detected a pre-defined test strategy will be applied to test it.

Even though it is necessary to manually specify a catalogue of behavioural patterns and

the corresponding test strategies, the catalogue is common to every application.

The remaining of this document is structured as follows. Chapter 2 presents the state

of the art in reverse engineering classifying it according to an ontology also presented

in this chapter. Chapter 3 presents some work that has already been done and the

corresponding results. Chapter 4 defines some useful concepts, describes the approach

and the research methodology, states the research hypothesis and presents the work

plan. Chapter 5 draws some conclusions.

Chapter 2

Related Work on Reverse

Engineering

Two different analysis of related work were performed for this document. The aim of

the first one was to provide a general overview of the current state of the art on reverse

engineering, henceforth mentioned as software reverse engineering. Given the dimension

of this field of study, some restrictions for the selection of approaches were imposed. As

such, the selection followed these steps:

1. Selection of top conferences and journals on software engineering in the last six

years (2008 to October 2013), i.e., conferences classified as CORE A and Journals

classified as CORE A orA*1 (a total of thirteen venues)

2. Selection of additional venues specific to reverse engineering and program compre-

hension in the last six years (2008 to October 2013)

3. Selection of papers from the selected journals and conferences based on their titles

and abstracts: 104 papers initially selected

4. Refinement of the selection regarding the paper’s content: 74 papers selected

The second analysis regarded the state of the art on mobile reverse engineering. The

main differences from the software RE research methodology are: 1) only approaches

1 classification according to CORE’s (Computing Research and Education) ranking
(http://core.edu.au/)

5

Chapter 2. Related Work 6

targeting mobile applications were considered (approaches for mobile versions of web

applications were not taken into consideration); 2) an approach was considered regardless

of where it had been published; and 3) no time restriction was imposed. Regardless of

the latter, all the approaches are recent as iOS and Android smart phones are also recent:

the first iPhone was released in mid 2007 [2] and the first smart phone running Android

was released in late 2008 [3].

The final selection of papers for each venue is displayed in Tables A.1 and A.2 in Ap-

pendix A.

Tables B.1 and B.2 in Appendix B present the geographical distribution of software and

mobile reverse engineering research, respectively.

2.1 Ontology for Classifying Reverse Engineering Approaches

A careful analysis was performed to extract the most important aspects to classify the

selected approaches. In order to do so an ontology was defined. This ontology was based

in the one presented by Cornelissen et al. [35]. The final list of the aspects considered

for the classification consists on the following:

• goal : what is the main purpose of the approach?

• target : what is the target platform in which the approach works?

• method : what is the reverse engineering method used: static, dynamic, or hybrid?

• information: what type of information is extracted? (only for the mobile reverse

engineering approaches)

• output : how is the obtained information represented to the user?

• validation: how is the proposed approach validated?

In order to thoroughly classify all the different approaches, some aspects of the ontology

were refined for each of the selections (software and mobile reverse engineering): 1) the

goal, method, output and validation aspects are common to both classifications; 2) the

target aspect has different possible values (in software RE it only matters if the target

Chapter 2. Related Work 7

application is, for instance, web or mobile while in mobile RE it verifies if the application

is for the iOS or the Android system); 3) the information aspect is only present in the

mobile RE analysis as most approaches do not specify which specific information they

are interested in even though such was stated in the mobile RE ones.

For each of the mentioned aspects, there are different sub-classifications. The next

sections define each of these classifications.

2.1.1 Goal

Feature Location: A feature is usually any specific scenario of a system that is triggered

by an external user [36]. A feature location approach extracts information on which

methods and classes implement a certain feature. Most feature location approaches

distinguish between feature specific methods, i.e., methods that are only used by one

feature, and omnipresent methods, i.e., methods that are used by several features.

Pattern Identification: The concept of pattern was first defined by an architect, Christo-

pher Alexander [37], as a representation of the “current best guess as to what arrange-

ment of the physical environment will work to solve the problem presented”. In the soft-

ware engineering area, the definition of a pattern is conceptually the same but applied

to the context of software engineering. Usually, design patterns are the ones considered

[38]. Nevertheless, some approaches explore other types of patterns, such as behavioural

or communication ones.

Model Recovery: Model recovery intends to recover a model, i.e., a representation of

(part of) a system. There are usually three kinds of information represented in these

models: software architecture, business processes and system configuration. Neverthe-

less, it is possible to find other approaches extracting information such as layout or

behavioural dependencies. Every approach whose sole purpose is to recover (extract) a

model of a system without revealing any further purposes fits into this category.

Verification and Validation: Verification and Validation (V&V) processes are used to

determine whether the development products of a given activity conform to the require-

ments of that activity and whether the product satisfies its intended use and user needs.

Verification and Validation life cycle process requirements are specified for different in-

tegrity levels. Its scope encompasses systems, software, and hardware, and it includes

Chapter 2. Related Work 8

their interfaces [39]. In reverse engineering approaches, the two main sub-fields of V&V

focused are Testing, such as generating a test suite, and Security as in ensuring, for

instance, the application does not unwillingly access any user data.

Migration: Migration involves moving a set of instructions or programs from one platform

to another. It may be motivated by different reasons such as the obsolescence of a

technology, the pressure of users or the need to build a single coherent information

system when merging companies [40]. This is usually important when dealing with

legacy systems as it is often too costly to manually migrate the system or to build a new

one. This classification was given to approaches which stated it as such.

Maintenance: Software maintenance is the modification of a software product after de-

livery to correct faults or to improve performance or other attributes [41]. Although in

many cases the maintenance of a system may be the ultimate goal of a RE approach,

they were only classified as such if that was explicitly mentioned.

Program Comprehension: One can argue that every RE approach must involve program

comprehension (of part or of the complete system). Nevertheless, in this work only

the approaches which did not fall under any of the other categories were considered as

program comprehension, in particular, system’s re-documentation, behaviour prediction

(e.g., how the system behaves in a different environment) and all the others which

explicitly stated that is their goal.

2.1.2 Target

As mentioned, this aspect has different sub-classifications for software RE and for mo-

bile RE approaches. However, the sub-classifications of this aspect in the mobile RE

approaches (Android, iOS) are self explanatory and, as such, only the ones for the

software RE aspect are defined here.

Mobile: Targeting mobile applications is very recent in the history of reverse engineering

as it is itself a recent platform. Even though mobile phones have been around for the

last three decades, smart phones just became common around 2003. In 2013 Android

and iOS smart phones represented 90% of the global handset sales [42].

Chapter 2. Related Work 9

Web: On the other hand, web applications have been around for many years and are

often the subject of reverse engineering. In this category, all kinds of web systems are

acceptable, from simple web pages to Rich Internet Applications and web services.

Desktop: A desktop application is one that runs on the computer, i.e., it does not run

on mobiles nor on the web. However, they were only considered as such if they were not

considered a legacy system and the focus of the authors was not on Java applications as

in those cases they would be classified as such.

Other targets: There are some approaches which have specific targets that are not con-

sistent with any of the ones previously defined, such as software line products, object-

oriented systems and multi-threaded systems. These fall under the other category.

2.1.3 Method

The method aspect of the ontology classifies the approach according to its type of reverse

engineering. There are four types of reverse engineering: static [43], in which the infor-

mation is extracted from the source code or from the binary code; dynamic [44], in which

the information is extracted from the system under execution; hybrid, a combination

of both static and dynamic techniques; and historical [45], which obtains information

on the evolution of the system kept in version control systems, such as SVN2 or GIT3.

The historical reverse engineering approaches have characteristics that are very different

from the others and will not be subject of analysis in this document.

Static: Static reverse engineering is performed without actually executing the code us-

ing, for instance, parsers (usually returning a parse tree or an abstract syntax tree) or

symbolic execution (simulating the execution according to a model, for instance). One

of the advantages of using a static analysis approach is the possibility of extracting a

complete sequence diagram of the program, i.e., how processes and events of a system

operate with one another and in what order [46]. Obtaining this diagram can provide

100% recall, i.e., all the behaviour is extracted (no false negatives [47]), at the price of a

low precision, i.e., not all the extracted behaviour is real (high number of false positives

[47]) [48]. Without disregarding the importance of the information extracted by static

approaches, they are unable to extract information on the system’s real behaviour, i.e.,

2svn.apache.org
3git-scm.com

Chapter 2. Related Work 10

its behaviour during runtime, and the effort of statically analysing dynamic types of

object references is not conceivable for large programs [49, 50]. Moreover, conceptually

related code is usually scattered over different source artefacts, making it a handful task

to extract and analyse all the relevant information [51]. Another possible drawback

is the necessity of availability of the source code, which is not always possible (when

analysing grey-box components, for instance) [52].

Dynamic: Dynamic analysis consists in extracting information from the program in run

time, such as data-dependent execution and late binding. This provides better precision

and worst recall than static analysis as the number of false positives is reduced but the

number of false negatives increases [48]. Dynamic analysis is usually more complex than

static analysis. For instance, in one of the most recent works, Amalfitano et al. [32]

explain the difficulty involved in dynamically extracting a model of an Android appli-

cation, such as the unfamiliarity of the application’s developers with the development

framework due to its novelty (Activity, Service, Content Provider, etc.), with reports

stating that bugs frequently appear due to incorrect management of the the Activity

component [53]. Moreover, some of the challenges in automatically exploring an An-

droid application are common to the exploration of other GUIs, such as the order in

which the events are found and fired, preconditions of the application and of its running

environment, when events are fired, when to stop the exploration (for instance, when

a sufficient amount of the model is extracted) and how to represent the initial state of

the application. One of the most popular techniques used by dynamic approaches is

instrumentation, i.e., the ability to monitor or measure the level of a product’s perfor-

mance, to diagnose errors and to obtain trace information, implemented in the form of

code instructions that monitor specific components in a system [54]. These approaches

usually define scenarios to be executed resulting in execution traces, which can be anal-

ysed in order to extract the information relevant to the work at hands. Considering

this, it is not surprising that most dynamic approaches opt to represent information as

sequence diagrams, even if just as an internal and intermediate representation and thus

not considered in the output aspect.

Hybrid: Despite the advantages of the dynamic approaches over the static ones, dynamic

analyses do not provide the behaviour of the whole program [48], as they do not provide

100% recall, but only a high precision. Hybrid analysis improve the completeness, scope

and precision of the analysis [44] as they bring together the advantages of both static and

Chapter 2. Related Work 11

dynamic analysis. However, alike static approaches, they require access to the source or

byte code. The techniques used in hybrid approaches are the combination of the ones

used in both static (e.g., parsing) and dynamic (e.g., instrumentation) approaches as

well as concolic execution.

2.1.4 Information

Crashes: A crash is an unavoidable event in which an application ceases to function

properly. Part of testing an application is detecting these situations in order to enable

the developers to correct them.

Bugs: A bug is an error, flaw, failure or fault in a computer program or system that

causes it to produce an incorrect or unexpected result or to behave in unintended ways.

Most bugs arise from problems in the program’s source code implementation. There can

also be bugs related to the malfunction of frameworks or operating systems. However,

in this context the bugs are considered to be in the application itself.

Event Sequence: As the name itself indicates, an event sequence is a set of user actions

which, in a given order, provide testing or exercising of some features or functionalities

of the application under analysis.

Inputs: In order to properly explore an application it is sometimes necessary to use a

specific set of input values to enable a full coverage. These are values the user must use

in certain states of the application in order to access a specific functionality.

Malicious Functionalities: Some problems found in applications may be related not only

to behaviour wrongly implemented but also to functionalities with malicious intents,

such as access to user data without the actual content of the end user.

Runtime Behaviour: Bugs, crashes and malicious functionalities are all part of an ap-

plication’s runtime behaviour even though they are unwanted behaviour. However, the

information from and approach was classified as runtime behaviour if it simply intended

to extract the general behaviour without specifying further.

Chapter 2. Related Work 12

2.1.5 Output

Sequence Diagram: The main purpose of a sequence diagram is to describe the interac-

tions between objects and elements of a program or application in the sequential order

that those interactions occur. However, their initial purpose was to provide a transition

from requirements expressed as use cases to the next and more formal level of refinement.

Use cases are often refined into one or more sequence diagrams [46].

Event Flow Graph: A simple way of representing the flow of events of an application’s

component, i.e., in which order the events may occur, is an event-flow graph, which

represents all possible interactions among the events in that component [55].

Control Flow Graph: A control flow graph is, as defined by Francis E. Allen [56], a rep-

resentation of all paths that might be traversed through a program during its execution.

Finite State Machine: A finite state machine consists in a set of states and a transition

function that maps each state to another one. When using these to represent a program’s

behaviour, it usually represents how an event modifies the state of the application under

analysis, i.e., the transitions represents events on the application and the states represent

stages of the application.

Other Graphs: This classification was used when the output was a graph but not any of

the already described.

Test Suits: A test suit is a set of tests required to verify and/or validate an application.

This is the result of the approaches focusing on the automatic test cases generation,

which is an important aid to assure an application’s quality.

Report: Some approaches opt to output their information in the form of a report. This

is to be expected, for instance, in feature location and pattern identification approaches

or even when the clustering technique is used.

Other: This classification was used when no other sufficed, such as source code, in the

case of migration-oriented approaches, or business process modelling notation graphs

[57], in the case of business process recovery.

Chapter 2. Related Work 13

2.1.6 Validation

It is always important to validate any new approach, either by using case studies, quasi-

or controlled experiments or surveys, by comparing it with other tools or by evaluating

it according to accepted measures, such as precision, recall and code coverage.

Case Study: A case study consists in identifying key factors that affect the outcome and

document activity and in collecting data in work environment or real world situation.

In general, real life applications are used.

Quasi-Experiment: A quasi-experiment is an experimental design performed after the

data collection in which there is no random assignment of subjects to groups, inde-

pendent variables can not be fully controlled and values of key values are predefined

[58].

Controlled Experiment: A controlled experiment consists in identifying key factors and

manipulating them to test their effects on the outcomes. The subjects are randomly

assigned to groups and the data collected from subject performance [58].

Survey: The main purpose of a survey is to obtain feedback on the approach and its

results. This is obtained by questioning groups of people who are usually experts but

may also be end users, depending on the goal of the approach.

Evaluation: There are some validation metrics to sustain the quality of an approach,

such as precision, recall, performance or code coverage. This classification was assigned

whenever any of these metrics were used.

Comparison with other tools or approaches: In order to evaluate an approach it is also

useful to compare the results with others obtained by existing approaches or tools. If

the experiments are performed in conditions as similar as possible it is a good indicator

of which approach is better.

None: Even though it is rare, there may be cases when researchers do not validate their

approach in any way. This happens, for instance, when the sole purpose of a paper is to

present an approach but no implementation has been developed yet.

Chapter 2. Related Work 14

2.2 Software Reverse Engineering Approaches

This Section analyses the approaches on software reverse engineering, providing their

classification according to the ontology defined in Section 2.1.

Table 2.1 presents, for each goal, its subcategories, when they exist, their definition and

the papers related to each of them. Each approach is classified in only one goal.

Table 2.1: Classification of the approaches according to their goal

Goals Sub-goals Definition References

Feature
Location

general
purpose

identify the source code
fragments implementing a
particular feature

[59–69]

specific for
characteristics
of product
lines

a feature is a characteristic of the
product line of a system, e.g.,
performance or CPU frequency

[70–72]

Pattern
Identification

design
patterns

detect design patterns in the
system

[48, 73–77]

communication
patterns

identify communication patterns
in the system

[78]

Model
Recovery

Software
Architecture

recover a model representing the
architecture of a system

[36, 79–81]

Business
Process

recover a model representing the
business process of a system

[82]

Configuration recover a model representing the
configuration of a system

[83]

Other recover a model representing
something that is not
architecture, business processes
nor configuration of the system

[33, 84–90]

V&V
Security verify if there is no unwanted

access to information
[91–95]

Testing ensure the correct behaviour of
the application

[17, 32, 52, 96–
103]

Maintenance extract information relevant to
the maintenance of the system

[104, 105]

Migration migrate a system between
platforms or languages

[106–110]

Program
Comprehension

Normal extract information relevant to
the comprehension of a software
system

[51, 111–121]

Predictions predict how a system behaves
under certain conditions

[122, 123]

Re-
documentation

produce documentation of a
system

[124]

Chapter 2. Related Work 15

It is possible to state that in the set of papers aiming at pattern identification, only

Kienle et al. [78] did not focus on design patterns but on communication ones instead.

Moreover, no approach focused on behavioural patterns. The four goals in which the

researchers mostly focus are: feature location, model recovery, verification and validation

and program comprehension. It is interesting to note that even though maintenance was

the initial goal of reverse engineering, nowadays not many approaches present it as their

main purpose. Nevertheless, one must remember that in order to maintain a system

it is necessary to first comprehend it. Thus, it is likely that the results of some of the

approaches classified as program comprehension will be used in maintenance. Besides,

the information obtained in model recovery and feature location approaches may also

be useful for program comprehension.

Table 2.2 presents which approaches focus each type of target. Each approach has only

one target, with the exception of Madsen et al.’s [119], which targets both Web and

Desktop applications. However, they only target, in fact, JavaScript applications, which

includes Windows 8 standalone applications.

Table 2.2: Classification of the approaches according to their target

Target References

Mobile [32, 33, 89, 99, 101, 102]

Web [17, 66, 68, 82, 84, 85, 87, 90–92, 94, 97, 98, 103, 112, 117, 119, 121]

Desktop [59, 61, 119]

Other [36, 48, 51, 52, 60, 62–65, 67, 69–81, 83, 86, 88, 93, 95, 96, 100, 104–111, 113–
116, 118, 120, 122–124]

There is a clear tendency of researchers towards web applications, which is easily ex-

plained taking into consideration the amount of information available on the web and

the quantity of accesses there are daily. The migration of information from desktop

application to the cloud (web) explains the low number of approaches targeting this

type of applications. The mobile platform is still recent and, even though some of the

approaches already focus iOS and Android application it is expectable to see a growth

of this number in a near future.

Table 2.3 presents the classification of the approaches according to its method. An

approach applies only one method.

Each method of reverse engineering, being it static, dynamic or hybrid, has its own

advantages and disadvantages and enables the recovery of different types of information

Chapter 2. Related Work 16

Table 2.3: Classification of the approaches according to the method aspect

Method References

Static [63, 65, 68, 70, 72, 74, 75, 78–81, 83, 88, 90, 94, 96, 100, 103, 108–113,
115, 116, 119, 120, 123]

Dynamic [17, 32, 33, 48, 51, 52, 62, 66, 67, 82, 84, 85, 89, 95, 99, 102, 104, 105, 107,
114, 124]

Hybrid [36, 59–61, 64, 69, 73, 76, 77, 87, 91–93, 97, 98, 101, 105, 106, 112, 117,
118, 121, 122]

as stated in Section 2.1. Therefore, it is natural to verify that the numbers of approaches

that followed each of these methods is similar. Nevertheless, the higher number of static

approaches can be explained by the fact that it has existed for more time than the

others.

It is also important to identify the techniques used by each approach. In reverse engi-

neering a technique may be used in the context of static or dynamic analysis. Concolic

execution is an exception as it is a hybrid technique itself. Table 2.4 defines the most

common techniques and presents which approaches apply them. Each approach may

use several techniques.

Regarding static techniques there is a tremendous preference for parsing, which is part of

the foundations of static reverse engineering, as stated in Section 2.1. Instrumentation

and trace analysis go together in several approaches as one of the main goals of the

former is to provide execution traces for later analysis. The same goes for automatic

concrete execution and event handling, as when automatically executing an application,

it is usually necessary to detect when an event is fired.

It is worth mentioning that even though the approaches of Amalfirano et al. [84, 85]

and Machiry et al. [102] are classified as using instrumentation in Table 2.4 they apply

instrumentation to the environment (i.e., the browser (Amalfitano et al. [84, 85]) and

the Android SDK framework Machiry et al. [102]), and not to the actual system. Besides

these, only Rohatgi et al. [61] uses instrumentation on the environment but it provides

the option to also use instrumentation on the application itself.

As stated in Chapter 1, reverse engineering has two phases: the extraction of information

and the abstraction of this information in other forms of representation. The techniques

present in Table 2.4 are relevant for the first phase. Table 2.5 presents some techniques

for the second phase and which approaches use them. In this table, pattern identification

Chapter 2. Related Work 17

Table 2.4: Classification of the technique according to the context in which it is
applied and of the approaches according to the techniques they use

Context Technique Definition References

Static

parsing formal analysis by computer of a
sentence or other string of words
into its constituents, resulting in
a parse tree showing their
syntactic relation to each other

[60, 61, 63, 65, 68, 69,
72–80, 87, 88, 90, 92,
94, 96, 97, 100, 105,
109, 110, 112, 113, 115,
118, 119, 121, 123]

information
retrieval

obtain information resources
relevant to an information need
from a collection of information
resources by searching on meta-
data or on full-text (or other
content-based) indexing

[59, 60, 64, 70, 72, 81,
106, 120, 121]

grammar
transformation

define a set of rules that trans-
forms certain symbols into others

[68, 92, 108, 111, 113]

points-to
analysis

establish which pointers or heap
references can point to which
variables or storage locations

[83, 116, 119]

symbolic
execution

analyse a program to determine
what inputs cause each part of a
program to execute

[91, 93, 103, 121]

Dynamic

instrumentation ability to monitor or measure the
level of a product’s performance,
to diagnose errors and to write
trace information, implemented
in the form of code instructions
that monitor specific components
in a system

[36, 48, 51, 52, 61, 62,
64, 66, 67, 69, 73, 76,
82, 84, 85, 89, 91–93,
95, 97, 102, 104–107,
112, 117, 118, 122, 124]

automatic
concrete
execution

automatic execution of a
program/application

[17, 32, 87, 99, 102]

trace
analysis

analyse the information
contained in collected execution
traces

[36, 48, 51, 59–62, 64,
66, 67, 73, 76, 77, 82,
84, 85, 89, 91, 93, 95,
104–106, 112, 114, 118,
124]

event
handling

handle the system’s events as
they appear

[17, 32, 33, 82, 84, 85,
89, 98, 99, 101, 102,
104, 117, 118, 121, 124]

pattern
mining
(information
retrieval)

find existing patterns in data. In
this context patterns often mean
association rules

[66, 67]

Hybrid concolic
execution

uses both symbolic and concrete
execution to solve a constraint
path

[91, 101]

Chapter 2. Related Work 18

and feature location appear as techniques as some approaches use them as steps to

achieve their final goal and not as a goal in itself. For instance, Ceccato [106] uses

feature location in order to ease the migration task. Each approach may use several

techniques.

Table 2.5: Classification of the approaches according to the techniques used in the
second phase of the reverse engineering process

Techniques Definition References

Clustering group a set of objects so that objects in
the same group (called cluster) are more
similar to each other than to those in other
clusters

[36, 52, 71, 80–82, 95,
111, 112, 114, 116, 118]

Mapping associate attributes/characteristics within
a system

[48, 51, 67, 75, 83, 85, 91,
93, 105, 110, 124]

Program
proving

formally prove a program meets its
specifications, e.g., model checking
and theorem proving

[76, 86]

Formal
concept
analysis

principled way of deriving a concept
hierarchy or formal ontology from a
collection of objects and their properties

[67, 106]

Pattern
identification

use pattern identification as means to a
goal and not as end goal

[63, 65–67, 118]

Feature
location

use feature location as means
to a goal and not as end goal

[36, 81, 104, 106]

Machine
learning

branch of artificial intelligence which
concerns the construction and study
of systems that can learn from data

[81, 122]

Table 2.6 presents the different types of outputs and the approaches using them. Each

approach may have more than one type of output.

Table 2.6: Classification of the approaches according to the output produced

Output References

Sequence Diagram [101, 102, 114, 118]

Event Flow Graph [96, 97]

Finite State Machine [17, 33, 84, 85, 89, 90]

Control Flow Graph [123]

Other Graphs [52, 63, 67, 69, 87, 88, 91, 113, 117, 119]

Test Suit [32, 93, 98, 99]

Report [32, 36, 59–62, 64–66, 68–71, 73–78, 81, 93, 94, 99, 100, 103,
104, 107, 111, 116]

Other [32, 33, 48, 51, 72, 79, 80, 82, 83, 86, 92, 93, 98, 99, 105, 106,
108–110, 112, 115, 120–122, 124]

After analysing Table 2.6, it is possible to conclude that the most used form of output

is the report. This is to be expected, for instance, in feature location and pattern

Chapter 2. Related Work 19

identification approaches. Even though model recovery approaches are supposed to

extract the intended model, one of these approaches, Patel et al.’s [36], outputs a report

due to a clustering step. The output of some approaches is classified as other as they do

not fall under any other category, such as source code, in the case of migration-oriented

approaches like Trudel et al.’s [110], or business process modelling notation graph [57],

in the case of business process recovery approaches like Di Francescomarion et al.’s [82].

Table 2.7 presents the classification of the several approaches according to the validation

they use. Each approach may present more than one type of validation.

Table 2.7: Classification of the approaches according to how they were validated

Validation References

Case Study all except [62, 83, 96, 108, 111, 117]

Quasi-Experiment [116]

Controlled Experiment [90, 97, 106, 116]

Survey [117]

Evaluation [17, 36, 51, 59, 60, 64, 65, 70, 72–76, 79, 81, 83, 87, 95, 98,
100, 102, 105, 107, 110, 111, 117, 119, 123, 124]

Comparison with other
tools or approaches

[32, 68, 83, 87, 91, 93, 94, 102, 105, 123]

None [62, 88, 96, 108, 121]

Nearly all authors validate their approaches, even if just with a case study, which is, in

fact, the most popular validation method. Even when presenting a quasi- or controlled

experiment, a case study is usually also present. Moreover, almost half of the approaches

present some sort of self-validation such as calculations on performance, precision or

recall. However, only a minority compares their results with the ones obtained by other

approaches.

2.3 Mobile Reverse Engineering Approaches

From the launching of iPhone and the first Android phone in 2007 and 2008, respectively

[2, 3], there has not been many mobile reverse engineering approaches. In fact, the first

one is only from November 2010.

Table 2.8 presents the classification of the approaches here presented according to the

ontology defined in Section 2.1.

Chapter 2. Related Work 20

Table 2.8: Classification of the mobile RE approaches according to the ontology

Papers

Aspect Classification [125] [32] [20] [126] [101] [33] [34] [127] [31] [102]

Goal
V&V x x x x x x x x
Model
Recovery

x x

Target
Android x x x x x x x x x
iOS x

Method
Static x
Dynamic x x x x
Hybrid x x x x x

Technique

Crawling x x x x x
Ripping x
Instrumentation x x x x x x
Parsing x
Trace
analysis

x

Event
Handling

x x

Event
Simulation

x x x x x x x

Pattern
Identification

x x

Clustering x
Test
Generation

x x x x

Code
Injection

x

Code
Replacement

x x

Reflection x x
Comparison
of Interface

x x

Data
Mining

x

Concolic
Execution

x x

Crash
Detection

x x x

Output

Test Suit x x x
Sugestions x
Call Graph x x
FSM x x
Report x x x

Information

Crash Detection x x x
Bugs x x x
Event
Sequence

x x

Runtime
Behaviour

x x

Inputs x
Malicious
Functionalities

x

Validation
Case Study x x x x x x x x x x
Comparison
With Other
Approaches/Tools

x x x x x

Evaluation x x x x

Chapter 2. Related Work 21

In this set of approaches there is a clear inversion of the tendency depicted in software

RE approaches regarding the method aspect as only Batyuk et al. [126] follow a static

approach, targeting the problem of detecting and mitigating unwanted activities, i.e.,

they try to identify possible security vulnerabilities, such as unwanted access of user

data, and present a report with suggestions of improvement.

On the other hand, the tendency of using instrumentation is still present. All the dy-

namic approaches apply instrumentation, even if it is to the Android SDK framework

[128], like Machiry et al. [102], who generate valid testing input values for the ap-

plication, or to the virtual machine where the application is being run, like Hu et al.

[31], who aim at identifying bugs. Unlike their work in [84], in which Amalfitano et

al. targeted rich internet applications, in [32, 125] they apply instrumentation to the

application under analysis itself. Even in following a hybrid approach to generate event

sequences to test the application Anand et al. [127] apply instrumentation both to the

application under analysis and to the Android SDK framework. It is also verifiable that

most approaches, specially the most recent ones, opt for an hybrid approach in order to

benefit from both worlds.

Amalfitano et al.’s work in 2011 [125] aimed at automatically generating test cases and

detecting crashes by crawling the application. The instrumentation was used to obtain

analysable logs in order to detect the origin of a crash. In 2012 [32], with the same idea

in mind, they applied Memon’s GUI Ripper [55, 129] to Android applications, which

rips the application and then analyses each part separately simulating user events. The

main difference in the results was their new capability of detecting some bugs besides

crashes. In 2013 [20] they decided to add an analysis of the behaviour of the application

in the presence of system events. To do so they opted again to crawl the application

and replaced the Android Sensor framework with an ad hoc version to ease the task of

injecting this new type of events.

Alike Anand et al. [127], Jensen et al. [101] also attempt to obtain event sequences to

test the application with a hybrid approach. However, Anand et al. aim at obtaining

a set of event sequences with the higher coverage percentage possible and Jensen et

al.’s idea is to find a feasible path that enables the testing of a given code statement

that has not yet been reached by other testing techniques, i.e., Jensen et al.’s approach

complements other approaches which do not present 100% coverage.

Chapter 2. Related Work 22

Joorabchi et al. [33] and Yang et al. [34] are the only ones who claim their goal is

to obtain a model of the application’s UI. Naturally other approaches also have this

purpose, like Amalfitano et al.’s [32], but Joorabchi et al. and Yang et al. make no

effort of trying to test the application or to generate event sequences. Their main goal is

to obtain a finite state machine representing the behaviour of the application. According

to Yang et al. [34] the main difference between their approach and Joorabchi et al.’s

[33] is that the latter has no means of identifying which GUI elements are actionable

and which events these elements support.

Joorabchi et al. [33] are the only ones who target iOS applications.

All approaches do case studies with at least one application, half of them compare their

results with the ones from other approaches [34], existing tools [32, 102], with data

obtained by manual analysis [31, 102] or even their own previous work [20] and almost

half the approaches do some kind of evaluation, being it coverage percentage the most

popular.

2.4 Conclusions

There are two reverse engineering approaches dealing with patterns: Amalfitano et al.

[20] and Batyuk et al. [126]. Amalfitano et al. define a set of event sequences to test

situations like an incoming call. The term pattern is used because these event sequences

can be applied to any application. Batyuk et al. [126] apply pattern identification to

detect malicious intents of the application. However, none of these approaches try to

take advantage of the existence of behavioural patterns in the application to facilitate

their task, which is one of the goals of the approach described in this document. In fact,

none of the software reverse engineering approaches who aimed at pattern identification

focus on behavioural patterns neither.

Moreover, only Amalfitano et al. [20] and Machiry et al. [102] consider the effect of

system events. However, Amalfitano et al.’s goal is to generate a test suite and to detect

crashes and Machiry et al. attempt at recovering input data to enable testing, while the

approach in this document will output the behavioural model of the application as well

as a testing report.

Chapter 3

Previous Work

There is already some work produced and some experiments conducted in reverse engi-

neering and in pattern-based testing even though the platform in which these approaches

were applied were Desktop and Web, respectively. Nevertheless, they provide some in-

sight on the work to be produced. This Chapter describes these works.

3.1 GUI Reverse Engineering for Visual and Formal Mod-

els

Previous experiments with reverse engineering desktop applications have already pro-

vided some interesting results. In [135], a dynamic approach with a fully automatic

exploration was followed. It consisted in trying to obtain a model as complete as pos-

sible of the GUI of a desktop application, using the Microsoft Notepad application as a

case study. This outputted, apart from a tree representing the structure of the GUI, a

window graph, a navigation graph and a dependency graph. The window graph presents

the different windows opened during the exploration and from which windows it is pos-

sible to access other windows. An example of such graph obtained by an exploration of

the Notepad application’s GUI is depicted in Figure 3.1. The navigation graph compre-

hends the set of elements relevant to the navigation and the actions required to access

the different elements. An example of this graph for the same exploration is depicted in

Figure 3.2. The dependency graph relates the different elements according to dependen-

cies among them, such as the change of the enabled status due to an interaction with a

23

Chapter 4. Previous Work 24

different element. An example is in Figure 3.3. Apart from the structure tree, all these

graphs are defined in GraphML [136].

Figure 3.1: Visual representation of a window graph

Figure 3.2: Visual representation of a navigation graph

Figure 3.4 depicts the overall approach used for the exploration and for the abstraction

of the system under analysis.

This experiment enabled obtaining some preliminary results which were useful for the

comprehension of the system, for future automatic test generation and to provide some

Chapter 4. Previous Work 25

Figure 3.3: Visual representation of a dependency graph

Figure 3.4: Architecture and outputs obtained in the RE process

insight in the difficulties and capabilities of reverse engineering approaches. Still in [135],

a minimalist version of a Spec# model [137] built based on the extracted information

and graphs was also outputted. An example of this is depicted in Figure 3.5.

This model can be used for MBGT after being manually verified to ensure it is consis-

tent with the system’s specification. Furthermore, in [14] a formal verification of some

properties of the GUI of the Notepad application was performed using a symbolic model

verification (SMV) [138] model automatically derived from the graphs previously ex-

tracted. In [14] the model checking technique used was symbolic model checking [139]

with different properties expressed in Computation Tree Logic, a propositional temporal

Chapter 4. Previous Work 26

namespace WindowUntitled___Notepad;

var windowUntitled___Notepad = 1;

var menu_itemFile = 1;

var menu_itemSave = 3;

[Action] void Menu_itemFile ()

 requires menu_itemFile == 1;{

 menu_itemSave = 1;

 };

[Action] void Menu_itemSave()

 requires menu_itemSave == 1;{

 menu_itemSave = 3;

 WindowSave_As.windowSave_As = 1;

 };

namespace WindowSave_As;

var windowSave_As4 = 3;

var buttonClose = 3;

[Action] ButtonClose ()

 requires buttonClose == 1;{

 buttonClose = 3;

 WindowUntitled___Notepad.

windowUntitled___Notepad = 1;

 };

Figure 3.5: Sample of the Spec# formal model generated

logic, and modelling the system as a FSM. Properties verification can be useful in sev-

eral fields, such as usability analysis and improvement [140, 141]. In [14] the properties

verified were deadlock freeness, i.e., if regardless of the current state the system has

always a way of leaving it, possibility of returning to the initial state, i.e., if regardless

of the current state it is always possible to return to the initial state, the main window,

and if in x steps from the main window it was possible to reach a window. Part of the

SMV model obtained is depicted in Figure 3.6.

The works of Paiva et al. [12] and Grilo et al. [142] were the basis for the approach

presented in this section.

3.2 Pattern-based GUI Reverse Engineering

In [135] and [14] the nodes of the different graphs obtained (window, navigation and

dependency graphs) corresponded to GUI elements.

However, a different output could relate different states of the GUI with the events

which provoke a modification in that state. In [143] an experiment was conducted in

which a state represented a window and its enabled elements. This provided a different

perspective than the one from [135] and [14]. However, this may arise a problem of

ambiguity.

Chapter 4. Previous Work 27

MODULE main
 VAR
 state: 1..20;
 follow: getNextState(state);
 moreInfo: getInfo(state);

 ASSIGN
 init(state) := 1;
 next(state):=
 case
 state = 1: {2, 4, 6, 7, 9, 11, 13, 15, 17, 19};
 --from state 1, it is possible to go to states 2 (Open...),
 --4 (Save), 6 (Save As...), 7 (Page Setup), 9 (Print…),
 --11 (Replace...), 13 (Go To...), 15 (Font...),
 --17 (View Help), 19 (About Notepad)
 state = 2: 3; --goes to window Open
 state = 3: 1; --goes to the main window
 state = 4: 5; --goes to window Save As
 state = 5: 1; --goes to the main window
 state = 6: 5; --goes to window Save As
 state = 7: 8; --goes to window Page Setup
 state = 8: 1; --goes to the main window
 state = 9: 10; --goes to window Print
 state = 10: 1; --goes to the main window
 state = 11: 12; --goes to window Replace
 state = 12: 1; --goes to the main window
 state = 13: 14; --goes to window Go To Line
 state = 14: 1; --goes to the main window
 state = 15: 16; --goes to window Font
 state = 16: 1; --goes to the main window
 state = 17: 18; --goes to window Windows Help and Support
 state = 18: 1; --goes to the main window
 state = 19: 20; --goes to window About Notepad
 state = 20: 1; --goes to the main window
 esac;

Figure 3.6: State machine in SMV

For instance, if the result of a search differs mainly on the content of the text and of

the search text even though both come from the same window, the Find window, then

the same event (clicking on button Find, for instance) could provoke a transition to a

different state even though the source state was apparently the same, i.e., an ambiguity

in the model. In [143], a machine learning technique called Inductive Logic Programming

[144, 145] was used in order to solve these ambiguities. The main idea was to identify

ambiguities in the model and match them to previously defined patterns which indicate

how to solve that same ambiguity and would modify the model accordingly. Figure 3.7

depicts part of the FSM obtained from a sample application before (a) and after (b) the

ambiguity problem was resolved.

In order to apply ILP, all states, transitions and patterns were expressed in a declara-

tive language, Prolog [146]. Even though the prolog code representing the states and

the transitions can be automatically derived from the model, the patterns, alike every

pattern identification approach, have to be manually defined. Nevertheless, they are

reusable. The approach followed is summarised in Figure 3.8.

This approach was further explored in [16] by Nabuco et al. using execution traces

Chapter 4. Previous Work 28

Figure 3.7: Sample of the state machine with (a) and without (b) ambiguity

Figure 3.8: Architecture of the ILP approach

extracted from manually exploring the Amazon website1 using the Selenium IDE2 and

thus validating the approach with a real case study.

1http://www.amazon.co.uk/
2http://www.seleniumhq.org/

Chapter 4. Previous Work 29

3.3 Pattern-based GUI Testing

Regarding the test pattern definition, there is also some work already done. Moreira

et al. [147] defined a new domain specific language, PARADIGM, to gather applicable

domain abstractions (e.g., test patterns), to allow specifying relations between them

and also to provide a way to structure the models in different levels of abstraction to

cope with complexity. Monteiro and Paiva [148] presented a modelling environment,

PARADIGM-ME, to model UI patterns that can be found in web applications in the

PARADIGM language. The idea is to enable a previous modelling of the patterns so that

when identifying a certain pattern in the application under analysis, the corresponding

modelling is already known. The final model is useful for MBGT. These works are also

part of the PBGT project. A first experiment on behavioural patterns was proposed by

Cunha et al. [149] previous to the starting of this project.

3.4 Conclusions

The work in reverse engineering, even though applied in desktop applications and not on

mobile applications, enabled a first contact with reverse engineering techniques at the

same time as providing some insights on what kind of information can be extracted and

how reverse engineering can really be useful. Moreover, the experiments conducted raised

some of the difficulties one needs to deal with when dynamically reverse engineering an

application, namely the behaviour extracted depends on the order of the exploration

and the difficulties of dynamically identifying an element.

The work on patterns already proves that identifying patterns in an application may be

useful for understanding it. The exploration of ILP techniques proved its usefulness on

disambiguating models obtained with the reverse engineering process and the current

results on the PBGT project show the usefulness of the definition and application of

test patterns to test web applications and thus, it is reasonable to assume they can also

be useful in testing other types of applications such as mobile ones.

Chapter 4

Approach and Methodology

This Chapter presents the approach to be followed in the research work, the research

hypothesis, the research methodology and the work plan. However, before describing

the work at hands it is important to provide the definition of some concepts essential to

its good understanding.

4.1 Definitions

This section defines some useful concepts.

Lifecycle The life cycle refers to the process-related states of an activity, such as running

and paused, and the allowed transitions between these states [130]. An activity is “a

single, focused thing that the user can do” [1] and that usually has a view associated

so that the user can interact with it. It indicates the states of each activity and which

methods are responsible for the transition between them. Figure 4.1 depicts the life

cycle of an Android Activity.

Event An event in a mobile application can be of two types: an UI event, i.e., an event

provoked by an interaction of the user with the application, such as tapping a widget;

or a system event, i.e., an event provoked by something external to the application,

such as the detection of a new available network, an incoming call or message and the

modification of the orientation of the phone (from vertical to horizontal, for instance).

Each of these events may or may not have an impact on the application behaviour. For

30

Chapter 3. Approach and Methodology 31

Figure 4.1: Activity lifecycle of an Android Activity [1]

instance, an incoming call changes the currently running activity to the shut down state

and tapping a widget may modify the state of data of the currently running activity or

even close it to open a new one.

Pattern As stated in section 2.1.1, a pattern is a recurring solution for a recurring

problem in a certain context. A behavioural pattern reproduces a recurring behaviour

situation, for instance, login or master/detail.

Examples of behavioural patterns in Android applications are the contextual options

menu (which appears after long pressing an item or pressing the menu button), the

Action bar, which enables access to the navigation on the application, or the starting of

a new activity.

In 2009, Erik Nilsson [131] identified some recurring problems when developing an An-

droid application and the UI design patterns that could help solve them. If these patterns

Chapter 3. Approach and Methodology 32

have an associated behaviour then it is possible to identify the pattern by the automatic

detection of the behaviour.

In 2013, Sahami Shirazi et al. studied the layout of Android applications trying, among

other goals, to verify if these layouts presented any patterns. They concluded that 75.8%

of unique combinations of elements appeared only once in the application. Nevertheless,

this study was conducted taking into consideration a static analysis of the layout and

its elements while different combination of elements may represent the same behaviour

and, thus, the same pattern.

4.2 Approach

The approach here presented has two main goals: 1) to extract a behavioural model of a

mobile application through the application’s automatic exploration and 2) identify and

test behavioural patterns during the exploration.

This main steps of this approach consist in:

• defining a catalogue of mobile GUI patterns to identify and the corresponding test

strategy;

• applying a hybrid reverse engineering approach to automatically explore mobile

applications;

• identifying patterns on the fly and applying the predefined test;

• storing the information regarding all the explored behaviour;

• producing a behavioural model and a test report.

The reverse engineering process to be applied is based on Yang et al.’s approach [34],

i.e., static analysis will be used to identify which event handlers are associated with each

widget in order to dynamically exercise them. A deep study on which frameworks or

tools are best is still being undertaken. A possible static analysis tool is WALA [132],

which is the one used by Yang et al. [34] and extracts a call graph of the application, and

possible solutions for the dynamic exploration and exercising of widgets are Robotium

[133] and Monkey Runner [134].

Chapter 3. Approach and Methodology 33

Finally, after each step of the exploration in which a pattern (from the previously de-

fined catalogue) is identified, the corresponding test strategy is applied and a report is

produced. This follows the same concept of MBT or, more precisely, MBGT.

4.2.1 Validation

Any approach attempting at extracting information from a system should have some

way of evaluating how good the extraction was. In the presented approach this has two

meanings: 1) exploration code coverage, i.e., which percentage of code was explored and

2) test code coverage, i.e., which percentage of the source code was tested.

Moreover, the intention is also to compare the results obtained with other approaches,

such as the ones of Yang et al. [34] and Amalfitano et al. [20]. This comparison will

mainly be on the reverse engineering results.

In order to do so, a case study will be conducted preferably on applications also used to

validate other mobile reverse engineering approaches. Thus, the implementation of the

approach will focus Android applications.

4.3 Research Hypothesis/Thesis Statement

Mobile applications have generic recurrent behaviour, independent of their specific do-

main, that may be tested automatically by combining reverse engineering with testing

within an iterative process.

4.4 Research Methodology

Part of the research methodology is common to (almost) every other research work. The

steps corresponding to this are as follows:

• Constant search for new approaches. This search can be conducted on top venues,

like the research done for the state of the art on software reverse engineering or

considering all venues;

Chapter 3. Approach and Methodology 34

• Analysis of the works, classifying them according to the ontology defined in Section

(ontology) and identifying their main contributions;

• Perform a case study in order to study the feasibility of the approach and to

compare the results with the ones obtained from other approaches;

• Validate the results (as explained in Section 4.2;

• Identification of the main contributions, limitations and future work.

Part of the methodology is specific to the work at hand:

• Formalisation of the concepts involved, such as the patterns or the model;

• Identification of the advantages and disadvantages of Android exploration tools

and frameworks;

• Identification of the advantages and disadvantages of Android static analysis tools

and frameworks;

• Research of Behaviour Patterns, defining the corresponding test strategy;

• Definition of the test patterns in an adequate language.

4.5 Work Plan

This section describes the plan to be followed during this PhD, which is depicted in

Figure 4.2.

Initially, the focus will be on producing a catalogue of patterns, specially on the ones

specific to mobile applications. This will take about five months. Simultaneously, the

implementation of the whole process for one of the patterns will take place, for about

six months. This includes the exploration part of the reverse engineering process. At

the end, it will be possible to collect some results and to study the feasibility of the

approach. In the following eight months, the identification of the other patterns and the

application of the corresponding test strategy will be implemented.

In the end of this process it will be possible to do an assessment of the approach that

will take about six months and that will be based on code coverage techniques and on

Chapter 3. Approach and Methodology 35

Figure 4.2: Gantt chart of the work plan

the comparison of the results with the ones obtained in other approaches. Finally, the

last seven months are reserved for the writing of the dissertation.

It is important to state that all these steps will be accompanied by a publishable paper.

Chapter 5

Conclusions

This document presents the current state of the art on reverse engineering and, more

specifically, on mobile reverse engineering. Furthermore, it describes the approach to be

followed in this PhD work as well as the research methodology associated with it.

The final work intends to provide a behavioural model of the application by dynamically

exploring and partially testing the application. the testing process will be based on the

identification of behavioural patterns on its GUI.

In order to achieve this, a reverse engineering approach will be followed. The process will

be based on an automatic and dynamic exploration of the application’s GUI. However,

in order to ease this exploration, a static analysis will identify the widgets that can be

exercised and how they can be exercised, i.e., it identifies the widgets which have event

handlers associated. Furthermore, behavioural patterns are to be identified in order to

enable the testing of the corresponding behaviour on the fly.

In summary, the contributions of the work will be: 1) a reverse engineering approach

to extract a behavioural model of a mobile application, 2) the testing of part of the

application according to behavioural patterns found on its GUI.

36

Appendix A

Final Paper Selection on Reverse

Engineering

This Appendix presents the distribution of the selected papers amongst the different

venues.

Tables A.1 and A.1 present the distribution of the analysed papers in software reverse

engineering and in mobile reverse engineering, respectively.

37

Appendix A. Final Paper Selection 38

Table A.1: Final papers selection on software RE and the venue where they were
published

Venue Selected papers

European Conference on Software Maintenance and
Reengineering (CSMR)

[36, 63, 64, 68, 69, 71, 73,
74, 76, 79, 80, 82, 90, 92, 96,
106, 113, 123, 124]

International Conference on Automated Software
Engineering (ASE)

[32, 88, 108]

International Conference on Program Comprehension
(IPCP)

[51, 60, 61, 67, 81, 112, 114,
115, 120]

International Conference on Software Engineering
(ICSE)

[70, 77, 83, 100, 103]

International Conference on Software Maintenance
(ICSM)

[59, 65, 66, 75, 85, 87, 99,
104, 150]

International Symposium on Software Testing and
Analysis (ISSTA)

[91, 93, 94, 101]

Joint Meeting on Foundations of Software Engineering
(ESEC/FSE)

[17, 72, 102, 119, 121]

Working Conference on Reverse Engineering (WCRE) [33, 62, 84, 89, 105, 109, 110,
116–118]

IEEE Transactions on Software Engineering [52, 86, 95, 122]

Journal of Software Maintenance and Evolution:
Research and Practice

[48, 111]

Journal of Systems and Software [97, 98, 107]

Software Quality Journal [78]

Table A.2: Final papers selection on mobile RE and the venue where they were
published

Venue Selected papers

International Conference on Software Testing, Verifi-
cation, and Validation (ICSTW)

[20, 125]

International Conference on Software Maintenance
(ICSM)

[99]

IEEE/ACM International Conference on Automated
Software Engineering (ASE)

[32]

International Conference on Malicious and Unwanted
Software (MALWARE)

[126]

Working Conference on Reverse Engineering (WCRE) [33, 89]

International Symposium on Software Testing and
Analysis (ISSTA)

[101]

International Conference on Fundamental Approaches
to Software Engineering (FASE)

[34]

Joint Meeting on Foundations of Software Engineering
(ESEC/FSE)

[102, 127]

International Conference on Testing Software and Sys-
tems (ICTSS)

[31]

Appendix B

Geographical Distribution of the

Selected Papers on Reverse

Engineering

This Appendix presents the geographical distribution of the selected papers.

Tables B.1 and B.2 present the geographical distribution of the analysed papers in

software reverse engineering and in mobile reverse engineering, respectively.

39

Appendix B. Geographical Distribition of the Research 40

Table B.1: Geographical distribution of the research on software RE

Country Institution References

Belgium

Ghent University, INTEC [107]
Vrije Universiteit Brussel, PROG [107]
University of Antwerp, LORE [107]
Faculty of Computer Science, University of Namur [72]

Brazil
Federal University of São Carlos [115]
University of Salvador [115]
Computer Science Department, Federal University of
Uberlândia

[62]

Canada

Department de Génie Informatique et Génie Locgical,
École Polytechnique de Montréal

[48, 59, 60, 64]

Yann-Gaël Guéhéneuc Département d’Informatique et
Recherché Opérationnelle, Université de Montréal

[60]

Department of Computer Science, University of
Saskatchewan, SK

[104]

Department of Electrical and Computer Engineering,
Concordia University, Quebec

[36, 61]

Department of Computer Science and Software Engi-
neering, Concordia University, Quebec

[36, 61, 68]

MCMaster University, Hamilton, ON [66]
School of Computing, Queen’s University, Kingston,
Ontario

[92, 111]

Department of Computer Science, University of Al-
berta, Edmonton, AB

[68, 124]

University of Waterloo [70]
Enterprise Performance Engineering, Research in Mo-
tion, Waterloo, Ontario

[111]

University of Toronto [86]
University of Victoria [78]
University of British Columbia [33]

China
School of Software, Shanghai Jiao Tong University [121]
Department of Computer Science & Engineering,
Shanghai Jiao Tong University

[121]

Czech
Republic

Distributed Systems Research Group, Charles Univer-
sity in Prague

[80]

Denmark
IT University of Copenhagen [70]
Aarhus University [98, 101, 119]

France
LIP6, University of Pierre & Marie Curie, Paris [71]
University of Rennes 1 [72]
Triskell team, InriaIrisa [72]

Germany

Embbedded Software Laboratory, Aachen [89]
Software Engineering, FZI Research Center, Karlsruhe [80]
IVU Traffic Technologies AG, Aachen [89]
Professional Services Organization, Netviewer AG [79]
Institute for Program Structures and Data Organisa-
tion, Universität of Karlsruhue

[79]

University of Leipzig [70]

Appendix B. Geographical Distribition of the Research 41

Germany

Software Engineering Group, Department of
Computer Science, Heinz Nixford Institute Uni-
versity of Paderborn

[77]

Software Design and Quality, Karlsruhe Insti-
tute of Technology

[80, 122]

SAP AG [17]
Saarland University Saarbrücken [17]
Hasso Plattner Institute, University of Potsdam [120]

Hungary
Research Group on Artificial Intelligence, De-
partment of Software Engineering, University of
Szeged

[109, 123]

Szeged Software Zrt. [109]

India
Tata Research Development and Design Centre,
TCS innovation Labs - Software R & D, Pune

[105]

VMware, Bangalore [100]

Italy

Departimento di Informatica e Sistemistica,
Università di Napoli Federico II

[32, 84, 85, 99]

Consorzio Interuniversitario Nazionale per
l’Informatica, Napoli

[84]

Department of Engineering, University of San-
nio

[59, 64, 75]

Research Center on Software Technology [96]
Dipartimento di Matematica e Informatica, Uni-
versità de Salermo, Fisciano

[73, 76]

Fondazione Bruno Kessler - IRST, Trento [82, 106]
University of Milan Bicocca, Milan [52]

Japan

NTT Software Innovation Center, Midori-cho,
Tokyo

[67, 69]

Tokyo Institute of Technology, Ookayama,
Tokyo

[67, 69]

Osaka University [114]
National Institute of Informatics, The Univer-
sity of Tokyo

[90]

Waseda University, Tokyo [90]
Graduate School of Information Science, Nagoya
University, Nagoya, Aichi

[118]

Romania LOOSE Research Group, ”Politehnica” Univer-
sity of Timisoara, Romania

[63, 65, 74]

Singapore School of Electrical and Electronic Engineering,
Nanyang Technological University

[97]

Spain
Indra Systems, Madrid [71]
University of Murcia [108]

Sweden Mälardalen University [78]

Switzerland
Software Engineering, ETH Zurich [110]
Software Composition Group, University of
Bern

[51]

The Netherlands

Delft University of Technology, SERG [107, 117]
Solid Source BV, Eidhoven [113]
Institute for Mathematics and Computer Sci-
ence, University of Groningen

[113]

Johann Bernoulli Institute, University of
Groningen

[120]

Appendix B. Geographical Distribition of the Research 42

UK
Distributed Software Engineering Section, Department of
Computing, Imperial College of London

[86]

Department of Computer Science, University of York [110]

USA

IBM Research [94, 98]
IBM Software Group [94]
Information Technology Laboratory, National Institute of
Standards and Technology, Gaithersberg, MD

[87]

Department of Information Systems, University of Mary-
land, Baltimore County

[87]

Department of Computer Science, Columbia University, NY [60]
Department of Computer Science, Drexel University,
Philadelphia, PA

[112]

Department of Mathematics, George Mason University,
Fairfax, VA

[87]

DoCoMo USA Labs [91]
Department of Computer Science, University of Maryland [32]
Department of Computer Science and Engineering, Univer-
sity of Texas at Arlington

[87]

Department of Computer Science, Rensselaer Polytechnic
Institute, NY

[116]

Department of Computer Science, University of Kentuchy [59]
University of California, Irvine [81]
Electrical Engineering and Computer Science Department,
University of California, Berkeley

[83, 93]

University of California, Davis [91, 95]
School of Computing, DePaul University [72]
Fujitsu Laboratories of America [101]
Georgia Institute of Technology [102]
Microsoft Research [119]
Microsoft Corporation [119]
Electrical and Computer Engineering Department, Iowa
State University

[103]

Department of Computer Science, Cornell University [121]

Appendix B. Geographical Distribition of the Research 43

Table B.2: Geographical distribution of the research on mobile RE

Country Institution References

Canada University of British Columbia [33]

Denmark Aarhus University [101]

Germany
Technische Universität Berlin - DAI-Labor [126]
Embedded Software Laboratory, Aachen [89]
IVU Traffic Technologies AG, Aachen [89]

Italy Dipartimento di Informatica e Sistemistica, Università
di Napoli Federico II, Napoli

[20, 32, 99,
125]

USA

Department of Computer Science, University of Mary-
land

[32]

Fujitsu Laboratories of America, Sunnyvale, CA [34, 101]
Department of Computer Science, North Carolina
State University

[34]

Department of Computer Science and Engineering,
University of California, CA

[31]

Georgia Institute of Technology [102, 127]
University of Oxford [127]

Bibliography

[1] Google, Activity (Jan. 2014).

URL http://developer.android.com/reference/android/app/Activity.

html

[2] CrunchBase, iPhone (Jan. 2014).

URL http://www.crunchbase.com/product/iphone

[3] M. Wilson, T-Mobile G1: Full Details of the HTC Dream Android Phone (Jan.

2014).

URL http://goo.gl/6vqI4E

[4] J. Rivera, R. van der Meulen, Gartner Says Annual Smartphone Sales Surpassed

Sales of Feature Phones for the First Time in 2013 (Feb. 2013).

URL http://www.gartner.com/newsroom/id/2665715

[5] V. H., Android’s Google Play beats App Store with over 1 million apps, now

officially largest (Jul. 2013).

URL http://goo.gl/8y3KPw

[6] N. Ingraham, Apple announces 1 million apps in the App Store, more than 1 billion

songs played on iTunes radio (Dec. 2013).

URL http://goo.gl/z3RprB

[7] G. Android, UI/Application Exerciser Monkey (Jan. 2014).

URL http://developer.android.com/tools/help/monkey.html

[8] M. Utting, B. Legeard, Practical Model-Based Testing: A Tools Approach, Morgan

Kaufmann Publishers Inc., San Francisco, CA, USA, 2006.

URL http://dl.acm.org/citation.cfm?id=1200168

44

http://developer.android.com/reference/android/app/Activity.html
http://developer.android.com/reference/android/app/Activity.html
http://developer.android.com/reference/android/app/Activity.html
http://www.crunchbase.com/product/iphone
http://www.crunchbase.com/product/iphone
http://goo.gl/6vqI4E
http://goo.gl/6vqI4E
http://www.gartner.com/newsroom/id/2665715
http://www.gartner.com/newsroom/id/2665715
http://www.gartner.com/newsroom/id/2665715
http://goo.gl/8y3KPw
http://goo.gl/8y3KPw
http://goo.gl/8y3KPw
http://goo.gl/z3RprB
http://goo.gl/z3RprB
http://goo.gl/z3RprB
http://developer.android.com/tools/help/monkey.html
http://developer.android.com/tools/help/monkey.html
http://dl.acm.org/citation.cfm?id=1200168
http://dl.acm.org/citation.cfm?id=1200168

Bibliography 45

[9] A. C. R. Paiva, J. a. C. P. Faria, R. F. A. M. Vidal, Specification-based testing

of user interfaces, in: J. A. Jorge, N. J. Nunes, J. a. F. a. e. Cunha (Eds.),

10th International Workshop on Interactive Systems. Design, Specification, and

Verification (DSV-IS ’03), Funchal, Portugal, 2003, pp. 139—-153.

[10] A. Kervinen, M. Maunumaa, T. Pääkkönen, M. Katara, W. Grieskamp, C. Weise,

Model-Based Testing Through a GUI, in: W. Grieskamp, C. Weise (Eds.), 5th

International Workshop on Formal Approaches to Testing of Software (FATES

2005), Vol. 3997 of Lecture Notes in Computer Science, Springer Berlin Heidelberg,

Berlin, Heidelberg, 2006, pp. 16–31. doi:10.1007/11759744.

URL http://www.springerlink.com/content/a0r163864634k45j/

[11] A. M. Memon, An event-flow model of GUI-based applications for testing, in:

Software Testing, Verification and Reliability, Vol. 17, 2007, pp. 137–157. doi:

10.1002/stvr.364.

URL http://doi.wiley.com/10.1002/stvr.364

[12] A. C. R. Paiva, J. a. C. P. Faria, P. M. C. Mendes, Reverse engineered formal

models for GUI testing, in: The 12th international conference on Formal methods

for industrial critical systems, Springer-Verlag, Berlin, Germany, 2007, pp. 218–

233. doi:10.1007/978-3-540-79707-4_16.

URL http://dl.acm.org/citation.cfm?id=1793603.1793621

[13] T. Pajunen, T. Takala, M. Katara, Model-Based Testing with a General Purpose

Keyword-Driven Test Automation Framework, in: Software Testing, Verification

and Validation Workshops (ICSTW), 2011 IEEE Fourth International Conference

on, IEEE, 2011, pp. 242–251. doi:10.1109/ICSTW.2011.39.

URL http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5954415

[14] I. Coimbra Morgado, A. C. R. Paiva, J. a. Pascoal Faria, Dynamic Reverse Engi-

neering of Graphical User Interfaces, International Journal On Advances in Soft-

ware 5 (3 and 4) (2012) 224–236.

URL http://www.thinkmind.org/index.php?view=article&articleid=soft_

v5_n34_2012_7

[15] A. Mesbah, E. Bozdag, A. van Deursen, Crawling AJAX by Inferring User Inter-

face State Changes, in: 2008 Eighth International Conference on Web Engineering,

http://www.springerlink.com/content/a0r163864634k45j/
http://dx.doi.org/10.1007/11759744
http://www.springerlink.com/content/a0r163864634k45j/
http://doi.wiley.com/10.1002/stvr.364
http://dx.doi.org/10.1002/stvr.364
http://dx.doi.org/10.1002/stvr.364
http://doi.wiley.com/10.1002/stvr.364
http://dl.acm.org/citation.cfm?id=1793603.1793621
http://dl.acm.org/citation.cfm?id=1793603.1793621
http://dx.doi.org/10.1007/978-3-540-79707-4_16
http://dl.acm.org/citation.cfm?id=1793603.1793621
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5954415
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5954415
http://dx.doi.org/10.1109/ICSTW.2011.39
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5954415
http://www.thinkmind.org/index.php?view=article&articleid=soft_v5_n34_2012_7
http://www.thinkmind.org/index.php?view=article&articleid=soft_v5_n34_2012_7
http://www.thinkmind.org/index.php?view=article&articleid=soft_v5_n34_2012_7
http://www.thinkmind.org/index.php?view=article&articleid=soft_v5_n34_2012_7
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4577876
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4577876

Bibliography 46

IEEE, 2008, pp. 122–134. doi:10.1109/ICWE.2008.24.

URL http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=

4577876

[16] M. Nabuco, A. C. Paiva, R. Camacho, J. P. Faria, Inferring UI patterns with

Inductive Logic Programming, in: 8th Iberian Conference on Information Systems

and Technologies (CISTI ’13), Lisbon, Portugal, 2013, pp. 1–5.

[17] M. Schur, A. Roth, A. Zeller, Mining behavior models from enterprise web appli-

cations, in: Proceedings of the 2013 9th Joint Meeting on Foundations of Software

Engineering - ESEC/FSE 2013, ACM Press, New York, New York, USA, 2013, p.

422.

URL http://dl.acm.org/citation.cfm?id=2491411.2491426

[18] S. Methong, Model-based Automated GUI Testing For Android Web Application

Frameworks, in: 2nd International Conference on Biotechnology and Environment

Management (ICBEM ’12), IACSIT Press, Singapore, Phuket, Thailand, 2012, pp.

106–110. doi:10.7763/IPCBEE.2012.V42.20.

[19] S. R. Garzon, D. Hritsevskyy, Model-based generation of scenario-specific event

sequences for the simulation of recurrent user behavior within context-aware ap-

plications (WIP), in: 2012 Symposium on Theory of Modeling and Simulation -

DEVS Integrative M&S Symposium, Society for Computer Simulation Interna-

tional, 2012, p. 6.

URL http://dl.acm.org/citation.cfm?id=2346616.2346645

[20] D. Amalfitano, A. R. Fasolino, P. Tramontana, N. Amatucci, Considering Context

Events in Event-Based Testing of Mobile Applications, in: 2013 IEEE Sixth Inter-

national Conference on Software Testing, Verification and Validation Workshops,

IEEE, 2013, pp. 126–133. doi:10.1109/ICSTW.2013.22.

URL http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=

6571621

[21] M. Rekoff, On Reverse Engineering, IEEE Trans. Systems, Man, and Cybernet-

ics (March-April) (1985) 244 – 252.

URL http://www.citeulike.org/group/1374/article/3944848

http://dx.doi.org/10.1109/ICWE.2008.24
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4577876
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4577876
http://dl.acm.org/citation.cfm?id=2491411.2491426
http://dl.acm.org/citation.cfm?id=2491411.2491426
http://dl.acm.org/citation.cfm?id=2491411.2491426
http://dx.doi.org/10.7763/IPCBEE. 2012. V42. 20
http://dl.acm.org/citation.cfm?id=2346616.2346645
http://dl.acm.org/citation.cfm?id=2346616.2346645
http://dl.acm.org/citation.cfm?id=2346616.2346645
http://dl.acm.org/citation.cfm?id=2346616.2346645
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6571621
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6571621
http://dx.doi.org/10.1109/ICSTW.2013.22
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6571621
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6571621
http://www.citeulike.org/group/1374/article/3944848
http://www.citeulike.org/group/1374/article/3944848

Bibliography 47

[22] E. Chikofsky, J. Cross, Reverse Engineering and Design Recovery: a Taxonomy,

IEEE Software 7 (1) (1990) 13–17. doi:10.1109/52.43044.

URL http://dx.doi.org/10.1109/52.43044

[23] G. Canfora, M. Di Penta, New Frontiers of Reverse Engineering, in: Future of

Software Engineering, Minneapolis, 2007, pp. 326 – 341. doi:10.1109/FOSE.

2007.15.

[24] B. P. Lientz, E. B. Swanson, G. E. Tompkins, Characteristics of application soft-

ware maintenance, Communications of the ACM 21 (6) (1978) 466–471. doi:

10.1145/359511.359522.

URL http://dl.acm.org/citation.cfm?id=359511.359522

[25] I. Sommerville, Software Engineering, 5th Edition, Addison-Wesley, 1995.

[26] L. Erlikh, Leveraging legacy system dollars for e-business, IT Professional 2 (3)

(2000) 17–23. doi:10.1109/6294.846201.

URL http://dl.acm.org/citation.cfm?id=612986.613032

[27] T. A. Standish, An Essay on Software Reuse, IEEE Transactions on Software

Engineering SE-10 (5) (1984) 494–497. doi:10.1109/TSE.1984.5010272.

URL http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=5010272

[28] T. A. Corbi, Program understanding: Challenge for the 1990s, IBM Systems Jour-

nal 28 (2) (1989) 294–306. doi:10.1147/sj.282.0294.

URL http://dl.acm.org/citation.cfm?id=97118.97124

[29] H. A. Muller, J. H. Jahnke, D. B. Smith, M.-A. Storey, Reverse engineering: a

roadmap, in: Proceedings of the conference on The future of Software engineering

- ICSE ’00, ACM Press, New York, New York, USA, 2000, pp. 47–60. doi:

10.1145/336512.336526.

URL http://dl.acm.org/citation.cfm?id=336512.336526

[30] E. Eilam, Reversing: Secrets of Reverse Engineering, 1st Edition, Wiley, Indi-

anapolia, Indiana, 2005.

[31] C. Hu, I. Neamtiu, Automated GUI Testing on the Android Platform, in: The 22nd

International Conference on Testing Software and Systems (ICTSS ’10), ACM

http://dx.doi.org/10.1109/52.43044
http://dx.doi.org/10.1109/52.43044
http://dx.doi.org/10.1109/52.43044
http://dx.doi.org/10.1109/FOSE.2007.15
http://dx.doi.org/10.1109/FOSE.2007.15
http://dl.acm.org/citation.cfm?id=359511.359522
http://dl.acm.org/citation.cfm?id=359511.359522
http://dx.doi.org/10.1145/359511.359522
http://dx.doi.org/10.1145/359511.359522
http://dl.acm.org/citation.cfm?id=359511.359522
http://dl.acm.org/citation.cfm?id=612986.613032
http://dx.doi.org/10.1109/6294.846201
http://dl.acm.org/citation.cfm?id=612986.613032
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=5010272
http://dx.doi.org/10.1109/TSE.1984.5010272
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=5010272
http://dl.acm.org/citation.cfm?id=97118.97124
http://dx.doi.org/10.1147/sj.282.0294
http://dl.acm.org/citation.cfm?id=97118.97124
http://dl.acm.org/citation.cfm?id=336512.336526
http://dl.acm.org/citation.cfm?id=336512.336526
http://dx.doi.org/10.1145/336512.336526
http://dx.doi.org/10.1145/336512.336526
http://dl.acm.org/citation.cfm?id=336512.336526
http://dl.acm.org/citation.cfm?id=1982595.1982612

Bibliography 48

Press, Natal, Brazil, 2010, pp. 67–72. doi:10.1145/1982595.1982612.

URL http://dl.acm.org/citation.cfm?id=1982595.1982612

[32] D. Amalfitano, A. R. Fasolino, P. Tramontana, S. De Carmine, A. M. Memon,

Using GUI ripping for automated testing of Android applications, in: Proceedings

of the 27th IEEE/ACM International Conference on Automated Software Engi-

neering - ASE 2012, ACM Press, New York, New York, USA, 2012, pp. 258–261.

doi:10.1145/2351676.2351717.

URL http://dl.acm.org/citation.cfm?id=2351676.2351717

[33] M. E. Joorabchi, A. Mesbah, Reverse Engineering iOS Mobile Applications, in:

2012 19th Working Conference on Reverse Engineering, IEEE, 2012, pp. 177–186.

doi:10.1109/WCRE.2012.27.

URL http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=

6385113

[34] W. Yang, M. R. Prasad, T. Xie, A Grey-Box Approach for Automated GUI-

Model Generation of Mobile Applications, in: 16th International Conference on

Fundamental Approaches to Software Engineering (FASE’13), Rome, Italy, 2013,

pp. 250–265. doi:10.1007/978-3-642-37057-1_19.

URL http://link.springer.com/chapter/10.1007/978-3-642-37057-1_19

[35] B. Cornelissen, A. Zaidman, A. van Deursen, L. Moonen, R. Koschke, A System-

atic Survey of Program Comprehension through Dynamic Analysis, IEEE Transac-

tions on Software Engineering 35 (5) (2009) 684–702. doi:10.1109/TSE.2009.28.

URL http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=

4815280

[36] C. Patel, A. Hamou-Lhadj, J. Rilling, Software Clustering Using Dynamic Analysis

and Static Dependencies, in: 2009 13th European Conference on Software Main-

tenance and Reengineering, IEEE, 2009, pp. 27–36. doi:10.1109/CSMR.2009.62.

URL http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4812736

[37] C. Alexander, S. Ishikawa, M. Silverstein, A Pattern Language: Towns, Buildings,

Construction, Oxford University Press, Berkeley, CA, USA, 1977. doi:10.1002/

9780470478240.

http://dx.doi.org/10.1145/1982595.1982612
http://dl.acm.org/citation.cfm?id=1982595.1982612
http://dl.acm.org/citation.cfm?id=2351676.2351717
http://dx.doi.org/10.1145/2351676.2351717
http://dl.acm.org/citation.cfm?id=2351676.2351717
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=6385113
http://dx.doi.org/10.1109/WCRE.2012.27
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=6385113
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=6385113
http://link.springer.com/chapter/10.1007/978-3-642-37057-1_19
http://link.springer.com/chapter/10.1007/978-3-642-37057-1_19
http://dx.doi.org/10.1007/978-3-642-37057-1_19
http://link.springer.com/chapter/10.1007/978-3-642-37057-1_19
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4815280
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4815280
http://dx.doi.org/10.1109/TSE.2009.28
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4815280
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4815280
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4812736
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4812736
http://dx.doi.org/10.1109/CSMR.2009.62
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4812736
http://dx.doi.org/10.1002/9780470478240
http://dx.doi.org/10.1002/9780470478240

Bibliography 49

[38] E. Gamma, R. Helm, R. Johnson, J. Vlissides, Design Patterns: Elements of

Reusable Object-Oriented Software, Addison-Wesley Longman Publishing Co.,

Inc., Boston, MA, USA, 1995.

URL http://dl.acm.org/citation.cfm?id=186897

[39] IEEE Standard for System and Software Verification and Validation (May 2012).

doi:10.1109/IEEESTD.2012.6204026.

URL http://ieeexplore.ieee.org/articleDetails.jsp?arnumber=6204026

[40] G. Engels, B. Opdyke, D. C. Schmidt, F. Weil, Model Driven Engineering Lan-

guages and Systems, Vol. 4735 of Lecture Notes in Computer Science, Springer

Berlin Heidelberg, Berlin, Heidelberg, 2007.

URL http://www.springerlink.com/index/10.1007/978-3-540-75209-7

[41] I. O. for Standardization, ISO/IEC 14764:2006 Software Life Cycle Processes -

Maintenance (2006).

URL http://goo.gl/WBNgKt

[42] C. Arthur, Nokia revenues slide 24% but Lumia sales rise offers hope (Sep. 2013).

URL http://goo.gl/82PBlS

[43] D. Binkley, Source Code Analysis: A Road Map, in: Future of Software Engineer-

ing (FOSE ’07), IEEE, 2007, pp. 104–119. doi:10.1109/FOSE.2007.27.

URL http://dl.acm.org/citation.cfm?id=1253532.1254713

[44] T. Bell, The concept of dynamic analysis, ACM SIGSOFT Software Engineering

Notes 24 (6) (1999) 216–234. doi:10.1145/318774.318944.

URL http://dl.acm.org/citation.cfm?id=318774.318944

[45] H. Kagdi, M. L. Collard, J. I. Maletic, A survey and taxonomy of approaches

for mining software repositories in the context of software evolution, Journal of

Software Maintenance and Evolution: Research and Practice 19 (2) (2007) 77–131.

doi:10.1002/smr.344.

URL http://dl.acm.org/citation.cfm?id=1345056.1345057

[46] IBM, UML basics: The sequence diagram (Oct. 2013).

URL http://www.ibm.com/developerworks/rational/library/3101.html

[47] C. J. van Rijsbergen, Information Retrieval, Newton MA, U.S.A., 1979.

http://dl.acm.org/citation.cfm?id=186897
http://dl.acm.org/citation.cfm?id=186897
http://dl.acm.org/citation.cfm?id=186897
http://ieeexplore.ieee.org/articleDetails.jsp?arnumber=6204026
http://dx.doi.org/10.1109/IEEESTD.2012.6204026
http://ieeexplore.ieee.org/articleDetails.jsp?arnumber=6204026
http://www.springerlink.com/index/10.1007/978-3-540-75209-7
http://www.springerlink.com/index/10.1007/978-3-540-75209-7
http://www.springerlink.com/index/10.1007/978-3-540-75209-7
http://goo.gl/WBNgKt
http://goo.gl/WBNgKt
http://goo.gl/WBNgKt
http://goo.gl/82PBlS
http://goo.gl/82PBlS
http://dl.acm.org/citation.cfm?id=1253532.1254713
http://dx.doi.org/10.1109/FOSE.2007.27
http://dl.acm.org/citation.cfm?id=1253532.1254713
http://dl.acm.org/citation.cfm?id=318774.318944
http://dx.doi.org/10.1145/318774.318944
http://dl.acm.org/citation.cfm?id=318774.318944
http://dl.acm.org/citation.cfm?id=1345056.1345057
http://dl.acm.org/citation.cfm?id=1345056.1345057
http://dx.doi.org/10.1002/smr.344
http://dl.acm.org/citation.cfm?id=1345056.1345057
http://www.ibm.com/developerworks/rational/library/3101.html
http://www.ibm.com/developerworks/rational/library/3101.html

Bibliography 50

[48] J. K.-Y. Ng, Y.-G. Guéhéneuc, G. Antoniol, Identification of behavioural and

creational design motifs through dynamic analysis, Journal of Software Main-

tenance and Evolution: Research and Practice 22 (8) (2010) 597–627. doi:

10.1002/smr.421.

URL http://doi.wiley.com/10.1002/smr.421

[49] C. Ghezzi, M. Jazayeri, D. Mandrioli, Fundamentals of Software Engineering, 1st

Edition, Prentice-Hall, Inc, Upper Saddle River NJ, USA, 1991.

[50] L. Briand, The Experimental Paradigm in Reverse Engineering: Role, Challenges,

and Limitations, in: 2006 13th Working Conference on Reverse Engineering, IEEE,

2006, pp. 3–8. doi:10.1109/WCRE.2006.53.

URL http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=4023971

[51] D. Rothlisberger, O. Greevy, O. Nierstrasz, Exploiting Runtime Information in the

IDE, in: 2008 16th IEEE International Conference on Program Comprehension,

IEEE, 2008, pp. 63–72. doi:10.1109/ICPC.2008.32.

URL http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4556118

[52] L. Mariani, F. Pastore, M. Pezze, Dynamic Analysis for Diagnosing Integration

Faults, IEEE Transactions on Software Engineering 37 (4) (2011) 486–508. doi:

10.1109/TSE.2010.93.

URL http://goo.gl/0b9a1L

[53] C. Hu, I. Neamtiu, Automating gui testing for android applications, in: The 6th

International Workshop on Automation of software test (AST ’11), ACM Press,

New York, New York, USA, 2011, p. 7. doi:10.1145/1982595.1982612.

URL http://dl.acm.org/citation.cfm?id=1982595.1982612

[54] Microsoft, Introduction to Instrumentation and Tracing (Oct. 2013).

URL http://msdn.microsoft.com/en-us/library/aa983649(VS.71).aspx

[55] A. M. Memon, I. Banerjee, A. Nagarajan, GUI Ripping: Reverse Engineering

of Graphical User Interfaces for Testing, in: The 10th Working Conference on

Reverse Engineering (WCRE ’03), 2003.

URL http://www.cs.umd.edu/~atif/papers/MemonWCRE2003.pdf

http://doi.wiley.com/10.1002/smr.421
http://doi.wiley.com/10.1002/smr.421
http://dx.doi.org/10.1002/smr.421
http://dx.doi.org/10.1002/smr.421
http://doi.wiley.com/10.1002/smr.421
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=4023971
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=4023971
http://dx.doi.org/10.1109/WCRE.2006.53
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=4023971
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4556118
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4556118
http://dx.doi.org/10.1109/ICPC.2008.32
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4556118
http://goo.gl/0b9a1L
http://goo.gl/0b9a1L
http://dx.doi.org/10.1109/TSE.2010.93
http://dx.doi.org/10.1109/TSE.2010.93
http://goo.gl/0b9a1L
http://dl.acm.org/citation.cfm?id=1982595.1982612
http://dx.doi.org/10.1145/1982595.1982612
http://dl.acm.org/citation.cfm?id=1982595.1982612
http://msdn.microsoft.com/en-us/library/aa983649(VS.71).aspx
http://msdn.microsoft.com/en-us/library/aa983649(VS.71).aspx
http://www.cs.umd.edu/~atif/papers/MemonWCRE2003.pdf
http://www.cs.umd.edu/~atif/papers/MemonWCRE2003.pdf
http://www.cs.umd.edu/~atif/papers/MemonWCRE2003.pdf

Bibliography 51

[56] F. E. Allen, Control flow analysis, ACM SIGPLAN Notices 5 (7) (1970) 1–19.

doi:10.1145/390013.808479.

URL http://dl.acm.org/citation.cfm?id=390013.808479

[57] O. M. Group, Business Process Model and Notation (Aug. 2013).

URL http://www.bpmn.org/

[58] F. Brito e Abreu, Empirical Software Engineering: a short course, Personal Com-

munication.

[59] G. Antoniol, J. H. Hayes, Y.-G. Gueheneuc, M. di Penta, Reuse or rewrite: Com-

bining textual, static, and dynamic analyses to assess the cost of keeping a system

up-to-date, in: 2008 IEEE International Conference on Software Maintenance,

IEEE, 2008, pp. 147–156. doi:10.1109/ICSM.2008.4658063.

URL http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4658063

[60] M. Eaddy, A. Aho, G. Antoniol, Y.-G. Gueheneuc, CERBERUS: Tracing Re-

quirements to Source Code Using Information Retrieval, Dynamic Analysis and

Program Analysis, in: 2008 16th IEEE International Conference on Program Com-

prehension, IEEE, 2008, pp. 53–62. doi:10.1109/ICPC.2008.39.

URL http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4556117

[61] A. Rohatgi, A. Hamou-Lhadj, J. Rilling, An Approach for Mapping Features to

Code Based on Static and Dynamic Analysis, in: 2008 16th IEEE International

Conference on Program Comprehension, IEEE, 2008, pp. 236–241. doi:10.1109/

ICPC.2008.35.

URL http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=

4556137

[62] V. Sobreira, M. d. A. Maia, A Visual Trace Analysis Tool for Understanding

Feature Scattering, in: 2008 15th Working Conference on Reverse Engineering,

IEEE, 2008, pp. 337–338. doi:10.1109/WCRE.2008.40.

URL http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=

4656432

[63] D. C. Cosma, R. Marinescu, Understanding the Impact of Distribution in Object-

Oriented Distributed Systems Using Structural Program Dependencies, in: 2008

12th European Conference on Software Maintenance and Reengineering, IEEE,

http://dl.acm.org/citation.cfm?id=390013.808479
http://dx.doi.org/10.1145/390013.808479
http://dl.acm.org/citation.cfm?id=390013.808479
http://www.bpmn.org/
http://www.bpmn.org/
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4658063
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4658063
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4658063
http://dx.doi.org/10.1109/ICSM.2008.4658063
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4658063
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4556117
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4556117
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4556117
http://dx.doi.org/10.1109/ICPC.2008.39
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4556117
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=4556137
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=4556137
http://dx.doi.org/10.1109/ICPC.2008.35
http://dx.doi.org/10.1109/ICPC.2008.35
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=4556137
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=4556137
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=4656432
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=4656432
http://dx.doi.org/10.1109/WCRE.2008.40
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=4656432
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=4656432
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4493305
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4493305

Bibliography 52

2008, pp. 103–112. doi:10.1109/CSMR.2008.4493305.

URL http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4493305

[64] F. Asadi, M. Di Penta, G. Antoniol, Y.-G. Gueheneuc, A Heuristic-Based Ap-

proach to Identify Concepts in Execution Traces, in: 2010 14th European Con-

ference on Software Maintenance and Reengineering, IEEE, 2010, pp. 31–40.

doi:10.1109/CSMR.2010.17.

URL http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5714415

[65] D. C. Cosma, Reverse engineering object-oriented distributed systems, in: 2010

IEEE International Conference on Software Maintenance, IEEE, 2010, pp. 1–6.

doi:10.1109/ICSM.2010.5609716.

URL http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=

5609716

[66] A. Yousefi, K. Sartipi, Identifying distributed features in SOA by mining dynamic

call trees, in: 2011 27th IEEE International Conference on Software Maintenance

(ICSM), IEEE, 2011, pp. 73–82. doi:10.1109/ICSM.2011.6080774.

URL http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=

6080774

[67] H. Kazato, S. Hayashi, S. Okada, S. Miyata, T. Hoshino, M. Saeki, Toward struc-

tured location of features, in: 2012 20th IEEE International Conference on Pro-

gram Comprehension (ICPC), IEEE, 2012, pp. 255–256. doi:10.1109/ICPC.

2012.6240497.

URL http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6240497

[68] N. Negara, N. Tsantalis, E. Stroulia, Feature Detection in Ajax-Enabled Web

Applications, in: 2013 17th European Conference on Software Maintenance and

Reengineering, IEEE, 2013, pp. 154–163. doi:10.1109/CSMR.2013.25.

URL http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6498464

[69] H. Kazato, S. Hayashi, T. Kobayashi, T. Oshima, S. Okada, S. Miyata, T. Hoshino,

M. Saekii, Incremental Feature Location and Identification in Source Code, in:

2013 17th European Conference on Software Maintenance and Reengineering,

IEEE, 2013, pp. 371–374. doi:10.1109/CSMR.2013.52.

URL http://ieeexplore.ieee.org/articleDetails.jsp?arnumber=6498491

http://dx.doi.org/10.1109/CSMR.2008.4493305
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4493305
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5714415
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5714415
http://dx.doi.org/10.1109/CSMR.2010.17
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5714415
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=5609716
http://dx.doi.org/10.1109/ICSM.2010.5609716
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=5609716
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=5609716
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=6080774
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=6080774
http://dx.doi.org/10.1109/ICSM.2011.6080774
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=6080774
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=6080774
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6240497
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6240497
http://dx.doi.org/10.1109/ICPC.2012.6240497
http://dx.doi.org/10.1109/ICPC.2012.6240497
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6240497
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6498464
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6498464
http://dx.doi.org/10.1109/CSMR.2013.25
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6498464
http://ieeexplore.ieee.org/articleDetails.jsp?arnumber=6498491
http://dx.doi.org/10.1109/CSMR.2013.52
http://ieeexplore.ieee.org/articleDetails.jsp?arnumber=6498491

Bibliography 53

[70] S. She, R. Lotufo, T. Berger, A. Wasowski, K. Czarnecki, Reverse engineering

feature models, in: Proceeding of the 33rd international conference on Software

engineering - ICSE ’11, ACM Press, New York, New York, USA, 2011, p. 461.

doi:10.1145/1985793.1985856.

URL http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=

6032485&contentType=Conference+Publications&sortType=asc_p_

Sequence&filter=AND(p_IS_Number:6032438)&pageNumber=2

[71] T. Ziadi, L. Frias, M. A. A. da Silva, M. Ziane, Feature Identification from

the Source Code of Product Variants, in: 2012 16th European Conference

on Software Maintenance and Reengineering, IEEE, 2012, pp. 417–422.

doi:10.1109/CSMR.2012.52.

URL http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=

6178889

[72] J.-M. Davril, E. Delfosse, N. Hariri, M. Acher, J. Cleland-Huang, P. Heymans,

Feature model extraction from large collections of informal product descriptions,

in: Proceedings of the 2013 9th Joint Meeting on Foundations of Software En-

gineering - ESEC/FSE 2013, ACM Press, New York, New York, USA, 2013, pp.

290–300. doi:10.1145/2491411.2491455.

URL http://dl.acm.org/citation.cfm?id=2491411.2491455

[73] A. De Lucia, V. Deufemia, C. Gravino, M. Risi, Behavioral Pattern Identification

through Visual Language Parsing and Code Instrumentation, in: 2009 13th Eu-

ropean Conference on Software Maintenance and Reengineering, IEEE, 2009, pp.

99–108. doi:10.1109/CSMR.2009.29.

URL http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4812743

[74] P. F. Mihancea, R. Marinescu, Discovering Comprehension Pitfalls in Class Hier-

archies, in: 2009 13th European Conference on Software Maintenance and Reengi-

neering, IEEE, 2009, pp. 7–16. doi:10.1109/CSMR.2009.31.

URL http://ieeexplore.ieee.org/xpl/login.jsp?arnumber=4812734

[75] M. L. Bernardi, G. A. Di Lucca, Model-driven detection of Design Patterns, in:

2010 IEEE International Conference on Software Maintenance, IEEE, 2010, pp.

1–5. doi:10.1109/ICSM.2010.5609740.

http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=6032485&contentType=Conference+Publications&sortType=asc_p_Sequence&filter=AND(p_IS_Number:6032438)&pageNumber=2
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=6032485&contentType=Conference+Publications&sortType=asc_p_Sequence&filter=AND(p_IS_Number:6032438)&pageNumber=2
http://dx.doi.org/10.1145/1985793.1985856
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=6032485&contentType=Conference+Publications&sortType=asc_p_Sequence&filter=AND(p_IS_Number:6032438)&pageNumber=2
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=6032485&contentType=Conference+Publications&sortType=asc_p_Sequence&filter=AND(p_IS_Number:6032438)&pageNumber=2
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=6032485&contentType=Conference+Publications&sortType=asc_p_Sequence&filter=AND(p_IS_Number:6032438)&pageNumber=2
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6178889
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6178889
http://dx.doi.org/10.1109/CSMR.2012.52
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6178889
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6178889
http://dl.acm.org/citation.cfm?id=2491411.2491455
http://dx.doi.org/10.1145/2491411.2491455
http://dl.acm.org/citation.cfm?id=2491411.2491455
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4812743
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4812743
http://dx.doi.org/10.1109/CSMR.2009.29
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4812743
http://ieeexplore.ieee.org/xpl/login.jsp?arnumber=4812734
http://ieeexplore.ieee.org/xpl/login.jsp?arnumber=4812734
http://dx.doi.org/10.1109/CSMR.2009.31
http://ieeexplore.ieee.org/xpl/login.jsp?arnumber=4812734
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=5609740
http://dx.doi.org/10.1109/ICSM.2010.5609740

Bibliography 54

URL http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=

5609740

[76] A. De Lucia, V. Deufemia, C. Gravino, M. Risi, Improving Behavioral Design

Pattern Detection through Model Checking, in: 2010 14th European Conference

on Software Maintenance and Reengineering, IEEE, 2010, pp. 176–185. doi:

10.1109/CSMR.2010.16.

URL http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5714432

[77] M. von Detten, M. Meyer, D. Travkin, Reverse engineering with the reclipse

tool suite, in: Proceedings of the 32nd ACM/IEEE International Conference on

Software Engineering - ICSE ’10, Vol. 2, ACM Press, New York, New York, USA,

2010, p. 299. doi:10.1145/1810295.1810360.

URL http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=

6062184&contentType=Conference+Publications&sortType=asc_p_

Sequence&filter=AND(p_IS_Number:6062119)&pageNumber=3

[78] H. M. Kienle, J. Kraft, T. Nolte, System-specific static code analyses: a case study

in the complex embedded systems domain, Software Quality Journal 20 (2) (2011)

337–367. doi:10.1007/s11219-011-9138-7.

URL http://www.springerlink.com/index/10.1007/s11219-011-9138-7

[79] L. Chouambe, B. Klatt, K. Krogmann, Reverse Engineering Software-Models of

Component-Based Systems, in: 2008 12th European Conference on Software Main-

tenance and Reengineering, IEEE, 2008, pp. 93–102. doi:10.1109/CSMR.2008.

4493304.

URL http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4493304

[80] S. Becker, M. Hauck, M. Trifu, K. Krogmann, J. Kofron, Reverse Engineering

Component Models for Quality Predictions, in: 2010 14th European Conference

on Software Maintenance and Reengineering, IEEE, 2010, pp. 194–197. doi:

10.1109/CSMR.2010.34.

URL http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=

5714435

[81] H. Sajnani, Automatic software architecture recovery: A machine learning ap-

proach, in: 2012 20th IEEE International Conference on Program Comprehension

http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=5609740
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=5609740
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5714432
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5714432
http://dx.doi.org/10.1109/CSMR.2010.16
http://dx.doi.org/10.1109/CSMR.2010.16
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5714432
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=6062184&contentType=Conference+Publications&sortType=asc_p_Sequence&filter=AND(p_IS_Number:6062119)&pageNumber=3
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=6062184&contentType=Conference+Publications&sortType=asc_p_Sequence&filter=AND(p_IS_Number:6062119)&pageNumber=3
http://dx.doi.org/10.1145/1810295.1810360
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=6062184&contentType=Conference+Publications&sortType=asc_p_Sequence&filter=AND(p_IS_Number:6062119)&pageNumber=3
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=6062184&contentType=Conference+Publications&sortType=asc_p_Sequence&filter=AND(p_IS_Number:6062119)&pageNumber=3
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=6062184&contentType=Conference+Publications&sortType=asc_p_Sequence&filter=AND(p_IS_Number:6062119)&pageNumber=3
http://www.springerlink.com/index/10.1007/s11219-011-9138-7
http://www.springerlink.com/index/10.1007/s11219-011-9138-7
http://dx.doi.org/10.1007/s11219-011-9138-7
http://www.springerlink.com/index/10.1007/s11219-011-9138-7
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4493304
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4493304
http://dx.doi.org/10.1109/CSMR.2008.4493304
http://dx.doi.org/10.1109/CSMR.2008.4493304
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4493304
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=5714435
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=5714435
http://dx.doi.org/10.1109/CSMR.2010.34
http://dx.doi.org/10.1109/CSMR.2010.34
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=5714435
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=5714435
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=6240501&contentType=Conference+Publications&queryText=icpc+2012
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=6240501&contentType=Conference+Publications&queryText=icpc+2012

Bibliography 55

(ICPC), IEEE, 2012, pp. 265–268.

URL http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=

6240501&contentType=Conference+Publications&queryText=icpc+2012

[82] C. Di Francescomarino, A. Marchetto, P. Tonella, Reverse Engineering of Business

Processes exposed as Web Applications, in: 2009 13th European Conference on

Software Maintenance and Reengineering, IEEE, 2009, pp. 139–148. doi:10.

1109/CSMR.2009.26.

URL http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=4812747

[83] A. Rabkin, R. Katz, Static extraction of program configuration options,

in: Proceeding of the 33rd international conference on Software engineer-

ing - ICSE ’11, ACM Press, New York, New York, USA, 2011, p. 131.

doi:10.1145/1985793.1985812.

URL http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=

6032452&contentType=Conference+Publications&sortType=asc_p_

Sequence&filter=AND(p_IS_Number:6032438)

[84] D. Amalfitano, A. R. Fasolino, P. Tramontana, Reverse Engineering Finite State

Machines from Rich Internet Applications, in: The 15th Working Conference on

Reverse Engineering (WCRE ’08), IEEE, 2008, pp. 69–73. doi:10.1109/WCRE.

2008.17.

URL http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=

4656395

[85] D. Amalfitano, A. R. Fasolino, P. Tramontana, Experimenting a reverse engineer-

ing technique for modelling the behaviour of rich internet applications, in: 2009

IEEE International Conference on Software Maintenance, IEEE, 2009, pp. 571–

574. doi:10.1109/ICSM.2009.5306391.

URL http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5306391

[86] S. Uchitel, G. Brunet, M. Chechik, Synthesis of Partial Behavior Models from

Properties and Scenarios, IEEE Transactions on Software Engineering 35 (3)

(2009) 384–406.

URL http://www.computer.org/csdl/trans/ts/2009/03/

tts2009030384-abs.html

http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=6240501&contentType=Conference+Publications&queryText=icpc+2012
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=6240501&contentType=Conference+Publications&queryText=icpc+2012
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=4812747
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=4812747
http://dx.doi.org/10.1109/CSMR.2009.26
http://dx.doi.org/10.1109/CSMR.2009.26
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=4812747
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=6032452&contentType=Conference+Publications&sortType=asc_p_Sequence&filter=AND(p_IS_Number:6032438)
http://dx.doi.org/10.1145/1985793.1985812
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=6032452&contentType=Conference+Publications&sortType=asc_p_Sequence&filter=AND(p_IS_Number:6032438)
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=6032452&contentType=Conference+Publications&sortType=asc_p_Sequence&filter=AND(p_IS_Number:6032438)
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=6032452&contentType=Conference+Publications&sortType=asc_p_Sequence&filter=AND(p_IS_Number:6032438)
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4656395
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4656395
http://dx.doi.org/10.1109/WCRE.2008.17
http://dx.doi.org/10.1109/WCRE.2008.17
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4656395
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4656395
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5306391
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5306391
http://dx.doi.org/10.1109/ICSM.2009.5306391
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5306391
http://www.computer.org/csdl/trans/ts/2009/03/tts2009030384-abs.html
http://www.computer.org/csdl/trans/ts/2009/03/tts2009030384-abs.html
http://www.computer.org/csdl/trans/ts/2009/03/tts2009030384-abs.html
http://www.computer.org/csdl/trans/ts/2009/03/tts2009030384-abs.html

Bibliography 56

[87] W. Wang, Y. Lei, S. Sampath, R. Kacker, R. Kuhn, J. Lawrence, A combinatorial

approach to building navigation graphs for dynamic web applications, in: 2009

IEEE International Conference on Software Maintenance, IEEE, 2009, pp. 211–

220. doi:10.1109/ICSM.2009.5306321.

URL http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=

5306321

[88] H. Bruneliere, J. Cabot, F. Jouault, F. Madiot, MoDisco: a generic and ex-

tensible framework for model driven reverse engineering, in: Proceedings of

the IEEE/ACM international conference on Automated software engineering -

ASE ’10, ACM Press, New York, New York, USA, 2010, pp. 173–174. doi:

10.1145/1858996.1859032.

URL http://dl.acm.org/citation.cfm?id=1858996.1859032

[89] D. Franke, C. Elsemann, S. Kowalewski, C. Weise, Reverse Engineering of Mo-

bile Application Lifecycles, in: 18th Working Conference on Reverse Engineering

(WCRE ’11), IEEE, 2011, pp. 283–292. doi:10.1109/WCRE.2011.42.

URL http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=

6079853

[90] Y. Maezawa, H. Washizaki, S. Honiden, Extracting Interaction-Based Stateful

Behavior in Rich Internet Applications, in: 2012 16th European Confer-

ence on Software Maintenance and Reengineering, IEEE, 2012, pp. 423–428.

doi:10.1109/CSMR.2012.53.

URL http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=

6178915

[91] G. Wassermann, D. Yu, A. Chander, D. Dhurjati, H. Inamura, Z. Su, Dynamic test

input generation for web applications, in: Proceedings of the 2008 international

symposium on Software testing and analysis - ISSTA ’08, ACM Press, New York,

New York, USA, 2008, pp. 249–259. doi:10.1145/1390630.1390661.

URL http://dl.acm.org/citation.cfm?id=1390661

[92] M. H. Alalfi, J. R. Cordy, T. R. Dean, Automating Coverage Metrics for Dynamic

Web Applications, in: 2010 14th European Conference on Software Maintenance

and Reengineering, IEEE, 2010, pp. 51–60.

URL http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=

http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=5306321
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=5306321
http://dx.doi.org/10.1109/ICSM.2009.5306321
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=5306321
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=5306321
http://dl.acm.org/citation.cfm?id=1858996.1859032
http://dl.acm.org/citation.cfm?id=1858996.1859032
http://dx.doi.org/10.1145/1858996.1859032
http://dx.doi.org/10.1145/1858996.1859032
http://dl.acm.org/citation.cfm?id=1858996.1859032
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6079853
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6079853
http://dx.doi.org/10.1109/WCRE.2011.42
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6079853
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6079853
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6178915
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6178915
http://dx.doi.org/10.1109/CSMR.2012.53
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6178915
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6178915
http://dl.acm.org/citation.cfm?id=1390661
http://dl.acm.org/citation.cfm?id=1390661
http://dx.doi.org/10.1145/1390630.1390661
http://dl.acm.org/citation.cfm?id=1390661
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=5714417&contentType=Conference+Publications&sortType=asc_p_Sequence&filter=AND(p_IS_Number:5714411)
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=5714417&contentType=Conference+Publications&sortType=asc_p_Sequence&filter=AND(p_IS_Number:5714411)
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=5714417&contentType=Conference+Publications&sortType=asc_p_Sequence&filter=AND(p_IS_Number:5714411)
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=5714417&contentType=Conference+Publications&sortType=asc_p_Sequence&filter=AND(p_IS_Number:5714411)

Bibliography 57

5714417&contentType=Conference+Publications&sortType=asc_p_

Sequence&filter=AND(p_IS_Number:5714411)

[93] D. Babić, L. Martignoni, S. McCamant, D. Song, Statically-directed dynamic au-

tomated test generation, in: Proceedings of the 2011 International Symposium on

Software Testing and Analysis - ISSTA ’11, ACM Press, New York, New York,

USA, 2011, pp. 12–22. doi:10.1145/2001420.2001423.

URL http://dl.acm.org/citation.cfm?id=2001420.2001423

[94] S. Guarnieri, M. Pistoia, O. Tripp, J. Dolby, S. Teilhet, R. Berg, Saving the world

wide web from vulnerable JavaScript, in: Proceedings of the 2011 International

Symposium on Software Testing and Analysis - ISSTA ’11, ACM Press, New York,

New York, USA, 2011, pp. 177–187. doi:10.1145/2001420.2001442.

URL http://dl.acm.org/citation.cfm?id=2001420.2001442

[95] T. Kwon, Z. Su, Automatic Detection of Unsafe Dynamic Component Loadings,

IEEE Transactions on Software Engineering 38 (2) (2012) 293–313. doi:10.1109/

TSE.2011.108.

URL http://goo.gl/PJmNOj

[96] M. L. Bernardi, Reverse Engineering of Aspect Oriented Systems to Support

their Comprehension, Evolution, Testing and Assessment, in: 2008 12th Euro-

pean Conference on Software Maintenance and Reengineering, IEEE, 2008, pp.

290–293. doi:10.1109/CSMR.2008.4493329.

URL http://ieeexplore.ieee.org/xpl/articleDetails.jsp?reload=

true&arnumber=4493329

[97] H. Liu, H. B. Kuan Tan, Testing input validation in Web applications through

automated model recovery, Journal of Systems and Software 81 (2) (2008) 222–

233. doi:10.1016/j.jss.2007.05.007.

URL http://dx.doi.org/10.1016/j.jss.2007.05.007

[98] S. Artzi, J. Dolby, S. H. Jensen, A. Mø ller, F. Tip, A framework for automated

testing of javascript web applications, in: Proceeding of the 33rd international

conference on Software engineering - ICSE ’11, ACM Press, New York, New York,

USA, 2011, p. 571.

URL http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=

http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=5714417&contentType=Conference+Publications&sortType=asc_p_Sequence&filter=AND(p_IS_Number:5714411)
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=5714417&contentType=Conference+Publications&sortType=asc_p_Sequence&filter=AND(p_IS_Number:5714411)
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=5714417&contentType=Conference+Publications&sortType=asc_p_Sequence&filter=AND(p_IS_Number:5714411)
http://dl.acm.org/citation.cfm?id=2001420.2001423
http://dl.acm.org/citation.cfm?id=2001420.2001423
http://dx.doi.org/10.1145/2001420.2001423
http://dl.acm.org/citation.cfm?id=2001420.2001423
http://dl.acm.org/citation.cfm?id=2001420.2001442
http://dl.acm.org/citation.cfm?id=2001420.2001442
http://dx.doi.org/10.1145/2001420.2001442
http://dl.acm.org/citation.cfm?id=2001420.2001442
http://goo.gl/PJmNOj
http://dx.doi.org/10.1109/TSE.2011.108
http://dx.doi.org/10.1109/TSE.2011.108
http://goo.gl/PJmNOj
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?reload=true&arnumber=4493329
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?reload=true&arnumber=4493329
http://dx.doi.org/10.1109/CSMR.2008.4493329
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?reload=true&arnumber=4493329
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?reload=true&arnumber=4493329
http://dx.doi.org/10.1016/j.jss.2007.05.007
http://dx.doi.org/10.1016/j.jss.2007.05.007
http://dx.doi.org/10.1016/j.jss.2007.05.007
http://dx.doi.org/10.1016/j.jss.2007.05.007
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=6032496&contentType=Conference+Publications&sortType=asc_p_Sequence&filter=AND(p_IS_Number:6032438)&pageNumber=3
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=6032496&contentType=Conference+Publications&sortType=asc_p_Sequence&filter=AND(p_IS_Number:6032438)&pageNumber=3
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=6032496&contentType=Conference+Publications&sortType=asc_p_Sequence&filter=AND(p_IS_Number:6032438)&pageNumber=3
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=6032496&contentType=Conference+Publications&sortType=asc_p_Sequence&filter=AND(p_IS_Number:6032438)&pageNumber=3

Bibliography 58

6032496&contentType=Conference+Publications&sortType=asc_p_

Sequence&filter=AND(p_IS_Number:6032438)&pageNumber=3

[99] D. Amalfitano, A. R. Fasolino, P. Tramontana, S. De Carmine, G. Imparato, A

toolset for GUI testing of Android applications, in: 2012 28th IEEE Interna-

tional Conference on Software Maintenance (ICSM), IEEE, 2012, pp. 650–653.

doi:10.1109/ICSM.2012.6405345.

URL http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=

6405345

[100] V. Balachandran, Reducing human effort and improving quality in peer code re-

views using automatic static analysis and reviewer recommendation, in: 2013 35th

International Conference on Software Engineering (ICSE), IEEE, 2013, pp. 931–

940. doi:10.1109/ICSE.2013.6606642.

URL http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=

6606642

[101] C. S. Jensen, M. R. Prasad, A. Mø ller, Automated testing with targeted event

sequence generation, in: Proceedings of the 2013 International Symposium on

Software Testing and Analysis - ISSTA 2013, ACM Press, New York, New York,

USA, 2013, pp. 67–77.

URL http://dl.acm.org/citation.cfm?id=2483760.2483777

[102] A. Machiry, R. Tahiliani, M. Naik, Dynodroid: an input generation system for

Android apps, in: Proceedings of the 2013 9th Joint Meeting on Foundations of

Software Engineering - ESEC/FSE 2013, ACM Press, New York, New York, USA,

2013, p. 224. doi:10.1145/2491411.2491450.

URL http://dl.acm.org/citation.cfm?id=2491411.2491450

[103] H. V. Nguyen, H. A. Nguyen, T. T. Nguyen, T. N. Nguyen, DRC: A detection

tool for dangling references in PHP-based web applications, in: 2013 35th Inter-

national Conference on Software Engineering (ICSE), IEEE, 2013, pp. 1299–1302.

doi:10.1109/ICSE.2013.6606702.

URL http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=

6606702

http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=6032496&contentType=Conference+Publications&sortType=asc_p_Sequence&filter=AND(p_IS_Number:6032438)&pageNumber=3
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=6032496&contentType=Conference+Publications&sortType=asc_p_Sequence&filter=AND(p_IS_Number:6032438)&pageNumber=3
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=6032496&contentType=Conference+Publications&sortType=asc_p_Sequence&filter=AND(p_IS_Number:6032438)&pageNumber=3
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6405345
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6405345
http://dx.doi.org/10.1109/ICSM.2012.6405345
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6405345
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6405345
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6606642
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6606642
http://dx.doi.org/10.1109/ICSE.2013.6606642
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6606642
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6606642
http://dl.acm.org/citation.cfm?id=2483760.2483777
http://dl.acm.org/citation.cfm?id=2483760.2483777
http://dl.acm.org/citation.cfm?id=2483760.2483777
http://dl.acm.org/citation.cfm?id=2491411.2491450
http://dl.acm.org/citation.cfm?id=2491411.2491450
http://dx.doi.org/10.1145/2491411.2491450
http://dl.acm.org/citation.cfm?id=2491411.2491450
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6606702
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6606702
http://dx.doi.org/10.1109/ICSE.2013.6606702
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6606702
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6606702

Bibliography 59

[104] A. Sutherland, K. Schneider, UI traces: Supporting the maintenance of interactive

software, in: 2009 IEEE International Conference on Software Maintenance, IEEE,

2009, pp. 563–566. doi:10.1109/ICSM.2009.5306389.

URL http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5306389

[105] A. Jana, R. Naik, Precise Detection of Uninitialized Variables Using Dynamic

Analysis - Extending to Aggregate and Vector Types, in: 2012 19th Working

Conference on Reverse Engineering, IEEE, 2012, pp. 197–201. doi:10.1109/

WCRE.2012.29.

URL http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6385115

[106] M. Ceccato, Automatic Support for the Migration Towards Aspects, in: 2008 12th

European Conference on Software Maintenance and Reengineering, IEEE, 2008,

pp. 298–301. doi:10.1109/CSMR.2008.4493331.

URL http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4493331

[107] B. Adams, K. De Schutter, A. Zaidman, S. Demeyer, H. Tromp, W. De Meuter,

Using aspect orientation in legacy environments for reverse engineering using dy-

namic analysis—An industrial experience report, Journal of Systems and Software

82 (4) (2009) 668–684. doi:10.1016/j.jss.2008.09.031.

URL http://dx.doi.org/10.1016/j.jss.2008.09.031

[108] O. Sánchez Ramón, J. Sánchez Cuadrado, J. Garćıa Molina, Model-driven reverse

engineering of legacy graphical user interfaces, in: Proceedings of the IEEE/ACM

international conference on Automated software engineering - ASE ’10, ACM

Press, New York, New York, USA, 2010, pp. 147–150. doi:10.1145/1858996.

1859023.

URL http://dl.acm.org/citation.cfm?id=1858996.1859023

[109] C. Nagy, L. Vidacs, R. Ferenc, T. Gyimothy, F. Kocsis, I. Kovacs, Solutions for Re-

verse Engineering 4GL Applications, Recovering the Design of a Logistical Whole-

sale System, in: 2011 15th European Conference on Software Maintenance and

Reengineering, IEEE, 2011, pp. 343–346.

URL http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5741335

[110] M. Trudel, C. A. Furia, M. Nordio, B. Meyer, M. Oriol, C to O-O Translation:

Beyond the Easy Stuff, in: 2012 19th Working Conference on Reverse Engineering,

http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5306389
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5306389
http://dx.doi.org/10.1109/ICSM.2009.5306389
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5306389
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6385115
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6385115
http://dx.doi.org/10.1109/WCRE.2012.29
http://dx.doi.org/10.1109/WCRE.2012.29
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6385115
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4493331
http://dx.doi.org/10.1109/CSMR.2008.4493331
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4493331
http://dx.doi.org/10.1016/j.jss.2008.09.031
http://dx.doi.org/10.1016/j.jss.2008.09.031
http://dx.doi.org/10.1016/j.jss.2008.09.031
http://dx.doi.org/10.1016/j.jss.2008.09.031
http://dl.acm.org/citation.cfm?id=1858996.1859023
http://dl.acm.org/citation.cfm?id=1858996.1859023
http://dx.doi.org/10.1145/1858996.1859023
http://dx.doi.org/10.1145/1858996.1859023
http://dl.acm.org/citation.cfm?id=1858996.1859023
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5741335
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5741335
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5741335
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5741335
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6385098
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6385098

Bibliography 60

IEEE, 2012, pp. 19–28. doi:10.1109/WCRE.2012.12.

URL http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6385098

[111] Z. M. Jiang, A. E. Hassan, G. Hamann, P. Flora, An automated approach for

abstracting execution logs to execution events, Journal of Software Maintenance

and Evolution: Research and Practice 20 (4) (2008) 249–267. doi:10.1002/smr.

374.

URL http://doi.wiley.com/10.1002/smr.374

[112] W. Mongan, M. Shevertalov, S. Mancoridis, Re-Engineering a Reverse Engineering

Portal to a Distributed SOA, in: 2008 16th IEEE International Conference on

Program Comprehension, IEEE, 2008, pp. 218–223. doi:10.1109/ICPC.2008.17.

URL http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=

4556134

[113] A. Telea, L. Voinea, SOLIDFX: An Integrated Reverse Engineering Environ-

ment for C++, in: 2008 12th European Conference on Software Maintenance

and Reengineering, IEEE, 2008, pp. 320–322. doi:10.1109/CSMR.2008.4493339.

URL http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4493339

[114] S. Munakata, T. Ishio, K. Inoue, OGAN: Visualizing object interaction scenarios

based on dynamic interaction context, in: 2009 IEEE 17th International Confer-

ence on Program Comprehension, IEEE, 2009, pp. 283–284. doi:10.1109/ICPC.

2009.5090059.

URL http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=5090059

[115] D. Porto, M. Mendonca, S. Fabbri, CRISTA: A tool to support code comprehension

based on visualization and reading technique, in: 2009 IEEE 17th International

Conference on Program Comprehension, IEEE, 2009, pp. 285–286. doi:10.1109/

ICPC.2009.5090060.

URL http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5090060

[116] A. Milanova, Y. Liu, Static Analysis for Understanding Shared Objects in Open

Concurrent Java Programs, in: 2010 17th Working Conference on Reverse Engi-

neering, IEEE, 2010, pp. 45–54. doi:10.1109/WCRE.2010.14.

URL http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=

5645483

http://dx.doi.org/10.1109/WCRE.2012.12
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6385098
http://doi.wiley.com/10.1002/smr.374
http://doi.wiley.com/10.1002/smr.374
http://dx.doi.org/10.1002/smr.374
http://dx.doi.org/10.1002/smr.374
http://doi.wiley.com/10.1002/smr.374
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=4556134
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=4556134
http://dx.doi.org/10.1109/ICPC.2008.17
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=4556134
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=4556134
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4493339
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4493339
http://dx.doi.org/10.1109/CSMR.2008.4493339
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4493339
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=5090059
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=5090059
http://dx.doi.org/10.1109/ICPC.2009.5090059
http://dx.doi.org/10.1109/ICPC.2009.5090059
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=5090059
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5090060
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5090060
http://dx.doi.org/10.1109/ICPC.2009.5090060
http://dx.doi.org/10.1109/ICPC.2009.5090060
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5090060
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=5645483
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=5645483
http://dx.doi.org/10.1109/WCRE.2010.14
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=5645483
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=5645483

Bibliography 61

[117] T. Espinha, A. Zaidman, H.-G. Gross, Understanding the Runtime Topology of

Service-Oriented Systems, in: 2012 19th Working Conference on Reverse Engi-

neering, IEEE, 2012, pp. 187–196. doi:10.1109/WCRE.2012.28.

URL http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6385114

[118] K. Noda, T. Kobayashi, K. Agusa, Execution Trace Abstraction Based on Meta

Patterns Usage, in: 2012 19th Working Conference on Reverse Engineering, IEEE,

2012, pp. 167–176. doi:10.1109/WCRE.2012.26.

URL http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=6385112

[119] M. Madsen, B. Livshits, M. Fanning, Practical static analysis of JavaScript appli-

cations in the presence of frameworks and libraries, in: Proceedings of the 2013 9th

Joint Meeting on Foundations of Software Engineering - ESEC/FSE 2013, ACM

Press, New York, New York, USA, 2013, p. 499.

URL http://dl.acm.org/citation.cfm?id=2491411.2491417

[120] J. Trumper, J. Dollner, A. Telea, Multiscale visual comparison of execution traces,

in: 2013 21st International Conference on Program Comprehension (ICPC), IEEE,

2013, pp. 53–62. doi:10.1109/ICPC.2013.6613833.

URL http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=

6613833

[121] Q. Wang, J. Zhou, Y. Chen, Y. Zhang, J. Zhao, Extracting URLs from JavaScript

via program analysis, in: Proceedings of the 2013 9th Joint Meeting on Founda-

tions of Software Engineering - ESEC/FSE 2013, ACM Press, New York, New

York, USA, 2013, p. 627.

URL http://dl.acm.org/citation.cfm?id=2491411.2494583

[122] K. Krogmann, M. Kuperberg, R. Reussner, Using Genetic Search for Reverse

Engineering of Parametric Behavior Models for Performance Prediction, IEEE

Transactions on Software Engineering 36 (6) (2010) 865–877. doi:10.1109/TSE.

2010.69.

URL http://goo.gl/hnR0lr

[123] J. Jász, L. Schrettner, A. Beszédes, C. Osztrogonác, T. Gyimóthy, Impact

Analysis Using Static Execute After in WebKit, in: 2012 16th European Con-

ference on Software Maintenance and Reengineering, IEEE, 2012, pp. 95–104.

http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6385114
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6385114
http://dx.doi.org/10.1109/WCRE.2012.28
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6385114
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=6385112
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=6385112
http://dx.doi.org/10.1109/WCRE.2012.26
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=6385112
http://dl.acm.org/citation.cfm?id=2491411.2491417
http://dl.acm.org/citation.cfm?id=2491411.2491417
http://dl.acm.org/citation.cfm?id=2491411.2491417
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6613833
http://dx.doi.org/10.1109/ICPC.2013.6613833
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6613833
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6613833
http://dl.acm.org/citation.cfm?id=2491411.2494583
http://dl.acm.org/citation.cfm?id=2491411.2494583
http://dl.acm.org/citation.cfm?id=2491411.2494583
http://goo.gl/hnR0lr
http://goo.gl/hnR0lr
http://dx.doi.org/10.1109/TSE.2010.69
http://dx.doi.org/10.1109/TSE.2010.69
http://goo.gl/hnR0lr
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?reload=true&arnumber=6178857
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?reload=true&arnumber=6178857

Bibliography 62

doi:10.1109/CSMR.2012.20.

URL http://ieeexplore.ieee.org/xpl/articleDetails.jsp?reload=

true&arnumber=6178857

[124] M. Smit, E. Stroulia, K. Wong, Use Case Redocumentation from GUI Event

Traces, in: 2008 12th European Conference on Software Maintenance and Reengi-

neering, IEEE, 2008, pp. 263–268. doi:10.1109/CSMR.2008.4493323.

URL http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4493323

[125] D. Amalfitano, A. Fasolino, P. Tramontana, A GUI Crawling-Based Technique

for Android Mobile Application Testing, in: Software Testing, Verification and

Validation Workshops (ICSTW), 2011 IEEE Fourth International Conference on,

IEEE, 2011, pp. 252–261. doi:10.1109/ICSTW.2011.77.

URL http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5954416

[126] L. Batyuk, M. Herpich, S. A. Camtepe, K. Raddatz, A.-D. Schmidt, S. Al-

bayrak, Using static analysis for automatic assessment and mitigation of un-

wanted and malicious activities within Android applications, in: 2011 6th Inter-

national Conference on Malicious and Unwanted Software, IEEE, 2011, pp. 66–72.

doi:10.1109/MALWARE.2011.6112328.

URL http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=

6112328

[127] S. Anand, M. Naik, M. J. Harrold, H. Yang, Automated concolic testing of smart-

phone apps, in: Proceedings of the ACM SIGSOFT 20th International Symposium

on the Foundations of Software Engineering - FSE ’12, ACM Press, New York,

New York, USA, 2012, p. 1. doi:10.1145/2393596.2393666.

URL http://dl.acm.org/citation.cfm?id=2393596.2393666

[128] G. Android, Get the Android SDK (2014).

URL http://developer.android.com/sdk/index.html

[129] D. R. Hackner, A. M. Memon, Test case generator for GUITAR, in: Companion

of the 13th international conference on Software engineering (ICSE Companion

’08), ICSE Companion ’08, ACM Press, New York, New York, USA, 2008, p. 959.

doi:10.1145/1370175.1370207.

http://dx.doi.org/10.1109/CSMR.2012.20
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?reload=true&arnumber=6178857
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?reload=true&arnumber=6178857
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4493323
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4493323
http://dx.doi.org/10.1109/CSMR.2008.4493323
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4493323
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5954416
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5954416
http://dx.doi.org/10.1109/ICSTW.2011.77
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5954416
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6112328
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6112328
http://dx.doi.org/10.1109/MALWARE.2011.6112328
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6112328
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6112328
http://dl.acm.org/citation.cfm?id=2393596.2393666
http://dl.acm.org/citation.cfm?id=2393596.2393666
http://dx.doi.org/10.1145/2393596.2393666
http://dl.acm.org/citation.cfm?id=2393596.2393666
http://developer.android.com/sdk/index.html
http://developer.android.com/sdk/index.html
http://dl.acm.org/citation.cfm?id=1370175.1370207 http://doi.acm.org/10.1145/1370175.1370207
http://dx.doi.org/10.1145/1370175.1370207

Bibliography 63

URL http://dl.acm.org/citation.cfm?id=1370175.1370207http:

//doi.acm.org/10.1145/1370175.1370207

[130] D. Franke, C. Elsemann, S. Kowalewski, Reverse Engineering and Testing Ser-

vice Life Cycles of Mobile Platforms, in: 2012 23rd International Workshop

on Database and Expert Systems Applications, IEEE, 2012, pp. 16–20. doi:

10.1109/DEXA.2012.40.

URL http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=

6327397

[131] E. G. Nilsson, Design patterns for user interface for mobile applica-

tions, Advances in Engineering Software 40 (12) (2009) 1318–1328.

doi:10.1016/j.advengsoft.2009.01.017.

URL http://www.sciencedirect.com/science/article/pii/

S0965997809000428

[132] T. J. Watsoon, Wala (Jan. 2014).

URL http://wala.sourceforge.net/wiki/index.php/Main_Page

[133] Google, robotium (Jan. 2014).

URL https://code.google.com/p/robotium/

[134] G. Android, Monkey Runner (Jan. 2014).

URL http://developer.android.com/tools/help/monkeyrunner_concepts.

html

[135] I. Coimbra Morgado, A. C. R. Paiva, J. a. Pascoal Faria, Reverse Engineering

of Graphical User Interfaces, in: The Sixth International Conference on Software

Engineering Advances (ICSEA ’11), no. c, Barcelona, 2011, pp. 293–298.

[136] U. Brandes, M. Eiglsperger, J. Lerner, GraphML Primer (2007).

[137] M. Barnett, K. R. M. Leino, W. Schulte, The Spec\# Programming System:

An Overview, in: International Conference in Construction and Analysis of Safe,

Secure and Interoperable Smart Devices (CASSIS ’04), Springer, Marseille, France,

2004, pp. 49–69. doi:10.1.1.11.2133.

URL http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.11.2133

http://dl.acm.org/citation.cfm?id=1370175.1370207 http://doi.acm.org/10.1145/1370175.1370207
http://dl.acm.org/citation.cfm?id=1370175.1370207 http://doi.acm.org/10.1145/1370175.1370207
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6327397
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6327397
http://dx.doi.org/10.1109/DEXA.2012.40
http://dx.doi.org/10.1109/DEXA.2012.40
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6327397
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6327397
http://www.sciencedirect.com/science/article/pii/S0965997809000428
http://www.sciencedirect.com/science/article/pii/S0965997809000428
http://dx.doi.org/10.1016/j.advengsoft.2009.01.017
http://www.sciencedirect.com/science/article/pii/S0965997809000428
http://www.sciencedirect.com/science/article/pii/S0965997809000428
http://wala.sourceforge.net/wiki/index.php/Main_Page
http://wala.sourceforge.net/wiki/index.php/Main_Page
https://code.google.com/p/robotium/
https://code.google.com/p/robotium/
http://developer.android.com/tools/help/monkeyrunner_concepts.html
http://developer.android.com/tools/help/monkeyrunner_concepts.html
http://developer.android.com/tools/help/monkeyrunner_concepts.html
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.11.2133
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.11.2133
http://dx.doi.org/10.1.1.11.2133
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.11.2133

Bibliography 64

[138] K. L. McMillan, Getting Started with SMV, Cadence Berkley Labs, 2001 Addison

St., Berkley, CA, USA, 1999.

URL http://www.cs.indiana.edu/classes/p415/readings/smv/

McMillan-tutorial.pdf

[139] E. Clarke, K. McMillan, S. Campos, V. Hartonas-Garmhausen, Symbolic model

checking, in: R. Alur, T. Henzinger (Eds.), Computer Aided Verification, Vol.

1102 of Lecture Notes in Computer Science, Springer Berlin / Heidelberg, 1996,

pp. 419–422.

URL http://dx.doi.org/10.1007/3-540-61474-5_93

[140] F. Paternò, C. Santoro, Integrating Model Checking and HCI Tools to Help Design-

ers Verify User Interface Properties, in: 7th International Workshop on Interactive

Systems Design, Specification and Verification, Limmerick, Ireland, 2001.

URL http://www.springerlink.com/content/jvv88l4wfp912ja8/

[141] N. Kamel, S. A. Selouani, H. Hamam, A Model-Checking Approach for the Verifi-

cation of CARE Usability Properties for Multimodal User Interfaces, International

Review on Computers & Software 4 (1) (2009) 152—-160.

URL http://goo.gl/fk8v88

[142] A. Grilo, A. Paiva, J. Faria, Reverse engineering of GUI models for testing, in:

The 5th Iberian Conference on Information Systems and Technologies (CISTI ’10),

no. July, IEEE, 2010, pp. 1–6.

URL http://goo.gl/bXcIy

[143] I. Coimbra Morgado, A. C. R. Paiva, J. Pascoal Faria, R. Camacho, GUI Reverse

Engineering with Machine Learning, in: Workshop on Realizing Artificial Intelli-

gence Synergies in Software Engineering (RAISE’12), Zurich, Switzerland, 2012,

pp. 27–31.

[144] S. Muggleton, Inductive logic programming, in: Proceedings of the 1st Conference

on Algorithmic Learning Theory, 1990, pp. 43–62.

[145] S. H. Muggleton, L. D. Raedt, Inductive Logic Programming: Theory and Meth-

ods, Journal of Logic Programming 19,20 (1994) 629–679.

[146] W. F. Clocksin, C. S. Mellish, Programming in Prolog, 4th Edition, Springer-

Verlag New York Berlin Heidelberg, Berlin, Germany, 2003.

http://www.cs.indiana.edu/classes/p415/readings/smv/McMillan-tutorial.pdf
http://www.cs.indiana.edu/classes/p415/readings/smv/McMillan-tutorial.pdf
http://www.cs.indiana.edu/classes/p415/readings/smv/McMillan-tutorial.pdf
http://dx.doi.org/10.1007/3-540-61474-5_93
http://dx.doi.org/10.1007/3-540-61474-5_93
http://dx.doi.org/10.1007/3-540-61474-5_93
http://www.springerlink.com/content/jvv88l4wfp912ja8/
http://www.springerlink.com/content/jvv88l4wfp912ja8/
http://www.springerlink.com/content/jvv88l4wfp912ja8/
http://goo.gl/fk8v88
http://goo.gl/fk8v88
http://goo.gl/fk8v88
http://goo.gl/bXcIy
http://goo.gl/bXcIy

Bibliography 65

[147] R. M. L. M. Moreira, A. C. R. Paiva, A. Memon, A pattern-based approach

for GUI modeling and testing, in: 2013 IEEE 24th International Symposium

on Software Reliability Engineering (ISSRE), IEEE, 2013, pp. 288–297. doi:

10.1109/ISSRE.2013.6698881.

URL http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=

6698881

[148] T. Monteiro, A. C. Paiva, Pattern Based GUI Testing Modeling Environment, in:

2013 IEEE Sixth International Conference on Software Testing, Verification and

Validation Workshops, IEEE, 2013, pp. 140–143. doi:10.1109/ICSTW.2013.24.

URL http://ieeexplore.ieee.org/articleDetails.jsp?arnumber=6571623

[149] M. Cunha, A. C. R. Paiva, H. S. Ferreira, R. Abreu, PETTool: A pattern-based

GUI testing tool, in: Software Technology and Engineering (ICSTE), 2010 2nd

International Conference on, Vol. 1, IEEE, San Juan, PR, 2010, pp. V1–202 –

VI–206. doi:10.1109/ICSTE.2010.5608882.

URL http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5608882

[150] B. Burgstaller, A. Egyed, Understanding where requirements are implemented, in:

2010 IEEE International Conference on Software Maintenance, IEEE, 2010, pp.

1–5. doi:10.1109/ICSM.2010.5609699.

URL http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=

5609699

http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6698881
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6698881
http://dx.doi.org/10.1109/ISSRE.2013.6698881
http://dx.doi.org/10.1109/ISSRE.2013.6698881
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6698881
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6698881
http://ieeexplore.ieee.org/articleDetails.jsp?arnumber=6571623
http://dx.doi.org/10.1109/ICSTW.2013.24
http://ieeexplore.ieee.org/articleDetails.jsp?arnumber=6571623
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5608882
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5608882
http://dx.doi.org/10.1109/ICSTE.2010.5608882
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5608882
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=5609699
http://dx.doi.org/10.1109/ICSM.2010.5609699
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=5609699
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=5609699

	Abstract
	Contents
	List of Figures
	List of Tables
	Abbreviations
	1 Introduction
	2 Related Work on Reverse Engineering
	2.1 Ontology for Classifying Reverse Engineering Approaches
	2.1.1 Goal
	2.1.2 Target
	2.1.3 Method
	2.1.4 Information
	2.1.5 Output
	2.1.6 Validation

	2.2 Software Reverse Engineering Approaches
	2.3 Mobile Reverse Engineering Approaches
	2.4 Conclusions

	3 Previous Work
	3.1 GUI Reverse Engineering for Visual and Formal Models
	3.2 Pattern-based GUI Reverse Engineering
	3.3 Pattern-based GUI Testing
	3.4 Conclusions

	4 Approach and Methodology
	4.1 Definitions
	4.2 Approach
	4.2.1 Validation

	4.3 Research Hypothesis/Thesis Statement
	4.4 Research Methodology
	4.5 Work Plan

	5 Conclusions
	A Final Paper Selection on Reverse Engineering
	B Geographical Distribution of the Selected Papers on Reverse Engineering
	Bibliography

