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Abstract.  In  this  paper,  a  complete  coverage  path  planning  problem  is 
discussed,  for  application  in  real  situations  in  the  areas  of  agriculture,  
autonomous  robotic  house  cleaning,  and  hydrographic  survey.  Since  the 
approach to this problem is currently being developed, only the work developed 
so far is presented. In this problem one aims to find the most efficient path or 
circuit that completely covers a closed region. For the time being, no algorithms 
with universal real application capable of solving every variant of this problem 
exist.  The proposed decomposition approach is  based on dividing the initial 
region into convex sub-regions (which are easier to manipulate), followed by 
computing the full sequence of sub-regions to be traversed, and, finally, finding 
the full path inside each sub-region. This approach does not return an optimal 
solution to the complete coverage path problems, but its implementation define 
the basic steps for creating a software library that can be used to solve many 
geometrical based problems, in which these are included. 

Keywords:  Complete Coverage Path Planning, Autonomous Vehicle Routing, 
Algorithm Design, Computational Geometry. 

1. Introduction

The Complete Coverage Path Planning problem (CCPPP) is a difficult problem to 
solve, where the main objective is to find the shortest path or circuit that covers an 
entire region. The degree of optimality of the solution has a direct effect on the energy 
consumption needed to completely cover a certain region, and also in the required 
amount of available time to do so. The resolution of these kind of problems have a 
broad range of real application situations, and can be widely used in tillage, planting, 
cultivating,  spraying,  among  others.  In  many  cases,  specially  in  the  agriculture 
applications [1], [2], the regions have forms bounded by natural obstacles like large 
stones, rivers, forests, and others. This reason causes the geometrical representation of 
the natural form to be an approximate of a complex geometric form, which can be 
considered irregular.  Some other  fields with some similarities with agriculture are 
autonomous robotic house cleaning [3], [4], [5], [6], in which a robot has to cover all 
the region of a surface with the goal of maximizing the cover but with the secondary 
objective of  minimizing the overlapping of  its  path or  circuit;  and in  the field of  
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hydrographic  surveying  [12],  in  which  the  vehicle  makes  the  mapping  of  the 
underwater terrain and searching irregularities in the ocean. The particularity of the 
hydrographic  survey  problem  is  that,  although  it  is  limited  by  the  same  set  of 
constraints, the area that is covered along its path is variable, since the visible area in 
the ocean floor depends on the field of view and distance to the same ocean floor, 
being greater with greater depths, smaller with lower depth, and the area monitored at 
one side of the path may be different from the area monitored on the other side when 
moving horizontally regarding a slope.
The  proposed  decomposition  approach  has  also  the  objective  of  testing  the 
capabilities, in performance as also in adaptability, of a geometric library focused in 
solving nesting problems, like two-dimensional irregular cutting-stock problems[13]. 
This library is being reconstructed to expand its functionality, performance and ease 
of use. Its development is progressed in a modular structure where each module has a 
specific  application.  With  this  kind  of  experiment,  we hope to  verify  the  current 
capability of the geometric library, to increase the diversification of its application 
areas and to further expand its functionality.
This paper is organized in 5 main sections. Starting with the Introduction, in Section 
1. After it, in Section 2, it is presented an overview of the problem to solve, a general  
description of how it is usually solved, and also what tools are used to solve it. In 
Section 3, a detailed description of our proposed solution approach to the problem is 
given,  with the methods and algorithms used,  the requirements and choices  made 
based on the constraints of the problem. Section 4 has the overview of the geometric 
library that is used as a tool to implement these algorithms, presenting some main 
functions used to  build these  algorithms,  and  its  current  state  of  development.  In 
Section 5 the final  comments and future work are presented. No results are given 
since this is a preliminary work, currently under development.

2. The Complete Coverage Path Planning Problem

The CCPPP includes many distinct cases of real application, in several distinct fields, 
one  of  them being  the  field  of  agriculture.  It  is  usually  represented  by  irregular 
geometrical forms, with a varied degree of complexity, which can include holes and 
curved segments. This complexity in its geometrical form causes some limitations in 
the possible ways that can be used to solve the CCPPP, so some approaches divide the 
initial geometrical form into more simpler forms to ease the problem resolution [1],  
[7]. Ideally, one would get the full path or circuit that would cover the entire region, 
without any kind of overlapping, with the minimum number of turns, if they represent 
and  additional  cost,  in  time or  distance.  Some methods divide the  initial  form in 
triangular,  trapezoidal,  rectangular,  and  other  polygonal  forms,  to  reduce  a  single 
complex problem into several simpler problems. After the division, the objective is to 
try  to  find  the  best  path  or  circuit  that  covers  all  of  the  polygons,  regarding  the 
restrictions that increase or decrease the total cost.
Another  methods  proposed  to  deal  with  the  CCPPP are  based  in  rectangular  cell 
decomposition  [7],  triangular  cell  decomposition [8],  neural  networks  [9],  genetic 
algorithms [10], but some of these methods have specific limitations. They need to 
have previous information about the area that they will have to go through, with the 



size and location of the obstacles. That information may not be initially available. One 
example of an application with an initially unknown environment is [7], which makes 
the mapping of the terrain in real time, and adjusts its defined path when needed. 
In the chosen solution, the approximate representation of the real form, for which is 
determined the maximum possible cover path or circuit with the minimum cost, is 
described  by  a set  of  regions  which  can  have  holes  and  disjoint  regions.  All  the 
representations will initially be made with linear segments, although curved segments, 
circles, ellipses and splines are supported in the library. One example of an region 
divided  into  individual  regions,  and  with  the  global  path  already  determined  is 
presented in the Fig.1.

Fig.1. Global path example.

3. Solution Approach

In this work, the chosen method of resolution uses a decomposition approach to tackle 
the CCPPP, which uses some functions developed in the library. This decomposition 
approach has the advantage of being easier to implement, and to return results faster 
than  other  approaches.  Other  necessary  functions  that  do  not  yet  exist  will  be 
developed and inserted into an independent module on the EaGLeNest library when 
necessary.
Two solutions to solve two variants of the CCPPP are presented. The first one has the  
main objective of minimizing the number of turns in the complete circuit, while the 
second one, the main objective is to minimize the maximum length of the circuit, also  
achievable by minimizing the overlapping of the circuit path with itself.  
Both solutions are divided in the same three phases. These three phases consist in  
decomposing the complex form into convex polygons, then finding the Hamiltonian 
circuit in the graph generated by connecting the centers of the convex polygons, and 
finally the computing of the complete cover path for all convex polygons. The two 



solutions only differ in the third phase.

3.1. Convex Decomposition
In the first phase, the first step is to make the transformation of the real area into an  
approximate representation by connected linear segments, with the obstacles being 
defined as holes, but with a sequence of linear segments connected in inverse order 
compared to the outer layer. When a polygon is separated from the others (without  
any edge that connects it to the other polygons) it is treated independently. If some 
connection between invalid areas is  allowed,  we need to specify the extra cost  to 
traverse  it  from one valid  area  to  another.  As  such,  as  a  first  step,  the holes  are 
removed, by dividing the polygon in several parts, sectioned by an horizontal line 
positioned at the half of each hole.
In  the  end,  we  will  get  several  parts  of  the  initial  form,  without  holes,  with  a 
maximum number equal to the number of holes plus one unit. Each of these elements 
will  be further divided into triangular  polygons. Each triangle is  made from three 
sequential vertexes in a polygon, if they create a convex polygon in the inside of the 
same polygon. The outer vertex is ignored on the next step, and the process repeats  
itself until only 3 vertexes remain. The triangularization algorithm does not guarantee 
that the minimum number of triangles will be generated for any single piece. We can 
see that in Fig.2.

Fig.2. Complete triangularization of a complete form.

After the triangularization, all triangles are represented in a single mesh. This mesh 
allows that the transformation algorithm of triangular polygons into convex polygons 
tries to maximize the size of the convex polygons that may be build from a vertex that 
belongs to the outer layer, minimizing the total number of convex polygons generated. 
This transformation algorithm works by choosing an outer layer segment that has not 
yet  been  selected,  and  proceeding  to  the  next  segment  that  does  not  breaks  the 
convexity criteria. In the event of not finding a next segment that complies with that  
restriction, it returns to the previously selected segment, marks the current segment as 



invalid,  and  continues  the  search  from  that  point.  In  the  worst  case,  the  convex 
polygon generated is the same triangle from where the algorithm started. The effect of 
this can be seen in Fig.3.

Fig.3. Convex polygons generated by the transformation algorithm.

3.2. Hamiltonian Circuit
The  second phase  starts  by  calculating  the  positions  of  the  center  of  the  convex 
polygons generated, and making the connections between them accordingly to shared 
segments between polygons. This step creates a graph with the connections between 
the center of each polygon  connected to the other centers of polygons that share a 
segment. If they share just a vertex, that is not enough to make a connection.

Fig.4. Equivalent graph generated from the center of the convex polygons and their contiguous 
polygons.

One needs to generate an unique complete circuit that reaches all the vertexes of the 
graph.  This  type  of  problem  can  be  described  as  an  equivalent  to  the  Traveling 



Salesman Problem, assuming that  all  the  vertexes  have  a  valid  path to  any  other 
vertex. Since we cannot guarantee that a viable path exists between a given pair of 
vertexes, we compute the connections between any directly unconnected pair, with 
the minor cost between them, that goes through other intermediate vertexes. These 
virtual  connections  are  added  to  the  main  graph,  making  the  full  Hamiltonian 
circuit[11] easy to compute,  but  however,  it  does not guarantee that the triangular 
inequality condition is satisfied.
To compute the full Hamiltonian circuit, we use a simple Traveling Salesman Problem 
heuristic, through a greedy algorithm that starts in any vertex, and proceeds to the 
next closest  vertex, until  it  completes the path.  At the end, it  just  connects to the 
starting vertex, and the full circuit is complete. Since all vertex have a connection to 
any other vertex, there is always a free connections to another vertex until all vertexes 
are included in the path. 
The determination of the Hamiltonian circuit has the advantage of allowing to know 
which will be the edges of each convex polygons that will act as entry and exit points. 
Through these edges we can optimize the way the internal  cover is made in each 
convex polygon, and also determine where the entry and exit point will be located in 
each entry and exit edge.

Fig.5. Hamiltonian Virtual Circuit in the graph.

The  Fig.5.  presents  the  virtual  full  Hamiltonian  circuit  that  was  computed  in  the 
graph. The connections represented by a single end arrow are normal connections. 
The double head arrows represent part of a virtual connection that is overlapping with 
the previously traversed path. The direction of navigation in the circuit of the graph is 
determined by the arrows. Since this circuit travels through the same vertexes more 
than  one  time,  we  cannot  say  that  this  is  an  Hamiltonian  circuit,  but  it  can  be  
considered  one if  we convert  the  returning paths  into alternative connections that 
connect only the end vertex of a real path, and a virtual free vertex that it returns to. 
The real circuit in the presented graphs starts in 0, proceeds to 1, goes to 2, returns to 
1, advances to 3 and then 4, returns to 3, goes to 5, turns back to 3 and then finally 
ends with 0. However, the  virtual Hamiltonian circuit does not return to previously 
traversed vertexes. The Hamiltonian circuit is 0, 1, 2, 3, 4, 5, 0.



3.3. Polygon Coverage
In the third phase, with the complete circuit already defined, and the entry and exit 
edges already selected, the complete circuit that covers the whole area can be built,  
with the goal of minimizing its cost, in two distinct ways, depending on the imposed 
conditions.  If  each  turn  implies  an  extended  cost,  a  solution  with  the  goal  of 
minimizing  the  total  number  of  turns  might  be  preferred,  even  considering  the 
increase of overlapping in the final circuit. In the opposite approach, if the turns do 
not add a significant cost, or if the cost of overlapping is minimal compared to it, the  
solution that minimizes the total overlapping is the favored resolution approach.
If  we  consider  the  option  of  minimizing  the  total  number  of  turns,  the  proposed 
heuristic is described in the following paragraphs.
Ignoring the positioning of the entry and exit segments in every convex polygon, the 
coverage path of each polygon is achieved in a perpendicular pattern to the segment 
that  connects  the  most  distant  pair  of  vertexes  for  every  convex  polygon.  This 
minimizes the number of turns in the convex polygon coverage path [1].
Unfortunately,  with this type of  coverage path,  the entry and exit  points  for  each 
convex polygons are going to be modified. The added cost is the cost of the path  
overlapping necessary to connect one exit point from one convex polygon to the entry 
point of the next one. Even so, this type of solution might have an advantage in some 
instances of this kind of problem. The time that the path takes to be traversed is not 
taken into account, and so it is not considered as an added cost, but usually traveling a 
certain distance in a straight line is faster than traveling a same distance in a path with 
many turns.     

Fig.6. Complete path generated by the turns minimization heuristic.

In the previous image, the dashed lines indicate that the convex polygon which they 
are contained will be covered in a perpendicular pattern to that same line. The arrows 
with double end show the additional overlapping cost of connecting the entry and exit 
points between convex polygons. The full circuit, based on  the solution from the 
previous step, follows the sequence defined in the image: 

0, 1, 2, 3, 4, 5, 6, 7, 5, 8, 9, 10, 11, 12, 13, 14, 15, 12, 16, 17, 18, 2, 0.
When we consider the option of minimizing the overlapping of the circuit, we use an 
heuristic like the one proposed in the following paragraphs.



Taking into consideration the entry and exit edges of each convex polygon, a few 
particular cases might need some adjustments, so that the algorithm can generate a 
path without any overlapping. 
When a convex polygon has several entry and exit points, to make a correct coverage 
the polygon needs to be divided accordingly to the number of the matched pairs of  
entry and exit points. This type of division divides a convex polygon with several  
entry and exit points, into several convex polygons with only a pair of entry and exit 
points, just like the example in Fig.7.

Fig.7. Convex polygon division into polygons with only one pair of entry and exit vertexes.

Still, another transformation might need to be done. We cannot always cover a convex 
polygon without any overlapping if we follow an exclusively perpendicular pattern to 
the  line  that  connects  the  entry  and  exit  vertexes,  even  when the  vertexes  are  in 
contiguous edges.

Fig.8. Invalid path coverage in a convex polygon.

As it is shown in Fig.8, the area marked by 1 cannot be covered if we follow the 
perpendicular pattern to the dashed line that connect the two most distant vertexes of 
the entry and exit segments.
As such, to solve this problem, the convex polygon is further divided, with a first 
division made from the common vertex, in the case of contiguous segments, or from 



the last of the in-between outer layer segments that connect the vertex in the exiting 
edge up to the most distant vertex from it, that preferentially does not belong to the 
entry edge. One exception to this case, in which no division is made, is when the 
convex polygon is a triangle. In this exception, we cover the polygon with a parallel 
pattern relative to the entry edge. If the edges are not contiguous, we need to make an  
alternative kind of division, to make sure that  the cover ends at  the exiting edge. 
When an edge is simultaneously an entry and exit edge, that edge will be divided, 
connecting to an opposite free vertex or edge, also dividing the polygon in which it is  
contained. We can see an example in Fig.9.

Fig.9. Main coverage lines after division.

This method allows to have a single path, without any overlaps, that minimizes the 
total distance traveled when comparing to the alternate solution. As a consequence, 
we now have a high number of turns, that can severely worsen the cost if they are 
taken into account, due to the further division of convex polygons, increasing their  
number,  and  creating  the  need  to  the  individual  coverage  of  every  independent 
component.

Fig.10. Coverage path created with the overlapping minimization heuristic.

The arrows in Fig.10 present the complete path without any overlapping, generated by 



the described heuristic. The coverage pattern is perpendicular to the correspondent 
line contained in each convex polygon.

4. Implementation

The implementation of these algorithms will rely in some existing functions from the 
EaGLeNest  geometric  library.  This  reassures  the  capabilities  of  this  library  to 
diversify  the range of  practical  application,  having the simultaneous advantage of 
testing and develop this tool to be applied in this kind of problems.
Some functions might need to be slightly modified, depending on the problem, but no 
heavy  modification  of  functions  will  occur,  since  it  is  preferred  to  develop  an 
independent function from scratch with a particular use in mind.
The data to any problem, be it vertexes, edges, polygons, and groups of polygons, and 
also algorithms to use in the resolution of the problem with their execution sequence, 
are contained in a XML file, which is the default file to use with the library. This 
format ensures backwards compatibility with the current version of the library, while 
also  allowing  the  ease  of  reading,  construction  and  manual  modification  of  the 
contents of the file by any person. The main data structures are based on simpler 
one's,  with  identifiers.  The  most  elementary  unit  is  the  vertex,  or  dot  (with 
identification). With two vertexes we build a linear segment and its identification, and 
with an array of segments we build a polygon, also with identification. The higher 
hierarchical structure available is designed by geometrical shape, which can contain 
several polygons that might not be contiguous with any other, not be defined as holes, 
nor contained in another polygon's hole. These structures are also designed to support  
curves, with Bezier representation, including also ellipses and circles (and arc if an 
angle  is  specified),  but  the  functions  used  to  manipulate  these  forms  are  not  yet 
implemented in the geometric library.
The  most  basic  functions  of  the  geometric  library  that  were  implemented  to  this 
moment are:
Reading  data  in  XML file  format,  and  loading  the  data  structures  accordingly; 
intersection  detection  between  segments,  that  return  the  intersection  points  (be  it 
linear segments or curved segments); computation of the minor angle between the 
intersection point generated with the intersection of two segments; the lesser distance 
of a vertex to a straight line; position of a vertex relative to a straight line segment (to  
the left, right or co-linear); the linear segment most to the left or to the right of a 
current selected segment; the nearest linear segment to the left or to the right of a 
current selected segment; determine if two vectors are oriented to the same quadrant; 
determination of the representation of a polygon (if it  is  a hole or an outer layer, 
according to the settings specified in the system); inversion of a polygon (transform a 
hole into an outer layer and vice-versa).
The functions composed by these basic functions of the geometrical library are:
Transformation  of  a  polygon  with  holes  into  several  polygons  without  holes; 
triangulation of irregular geometrical forms, construction of lists that contain every 
reachable vertex from a specified vertex (useful to determine which vertexes belong 
to a polygon); decomposition of a mesh into individual polygons; function that returns 
only the outer layer of a mesh and another that subtracts only the outer layer from a 



mesh;  computation  of  biggest  convex  polygons  in  a  mesh  (with  exclusion  for 
partition,  and  inclusion  for  coverage  of  polygons);  construction  of  an  adjacency 
matrix from a mesh; merging of geometrical forms, and finally the No-Fit Polygon 
construction from a pair of convex polygons.  
The functions used in the geometric library, that can be used in the resolution of the 
problem discussed in this paper, are mostly the elementary functions, including a few 
of  the  more  complex  functions  like  the  transformations  of  convex  polygons  in 
polygons without holes, the triangularization, and merging of polygons. The functions 
destined to the computation of the coverage path of the convex polygons are currently 
being implemented. The functions destined to the computation of Hamiltonian paths, 
and to the resolution of variants of Traveling Salesman Problems will be implemented 
later.

5. Final Comments

Since this is still a preliminary work, we cannot solve for every best solution possible  
with these heuristics, but we can use them to attempt to get solutions that achieve the 
minimum amount of turns or the minimum overlapping. 
The geometric  library has  only some basic  functionality,  but  already shows some 
good flexibility and support for generic applications, when considering usage of some 
of the implemented functions described in the previous section (4). It cannot be used 
extensively in any area, but can be used to start solving these problems in the fields of 
agriculture,  hydrographic  surveys,  autonomous  robotic  house  cleaning,  and  a  few 
others. 

As future work we expect to fully implement the modules presented in this work. We 
then proceed to collect the results from some variants of this proposed problem, and 
make  some  adjustments  to  improve  performance.  We  also  plan  to  improve  the 
algorithms used  in  this  paper,  and  continuously  improve the  geometric  library  to 
support more features. Most of the features have the possibility of being used in other 
kinds of problems that can have a representation based on geometrical forms.
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