
A Decomposition Approach for the Complete Coverage
Path Planning Problem*

Pedro Rocha, A.Miguel Gomes,

INESCPorto, Faculdade de Engenharia, Universidade do Porto,
Rua Dr. Roberto Frias s/n, 4200 – 465 Porto, Portugal

{pro10015, agomes}@fe.up.pt,

Abstract. In this paper, a complete coverage path planning problem is
discussed, for application in real situations in the areas of agriculture,
autonomous robotic house cleaning, and hydrographic survey. Since the
approach to this problem is currently being developed, only the work developed
so far is presented. In this problem one aims to find the most efficient path or
circuit that completely covers a closed region. For the time being, no algorithms
with universal real application capable of solving every variant of this problem
exist. The proposed decomposition approach is based on dividing the initial
region into convex sub-regions (which are easier to manipulate), followed by
computing the full sequence of sub-regions to be traversed, and, finally, finding
the full path inside each sub-region. This approach does not return an optimal
solution to the complete coverage path problems, but its implementation define
the basic steps for creating a software library that can be used to solve many
geometrical based problems, in which these are included.

Keywords: Complete Coverage Path Planning, Autonomous Vehicle Routing,
Algorithm Design, Computational Geometry.

1. Introduction

The Complete Coverage Path Planning problem (CCPPP) is a difficult problem to
solve, where the main objective is to find the shortest path or circuit that covers an
entire region. The degree of optimality of the solution has a direct effect on the energy
consumption needed to completely cover a certain region, and also in the required
amount of available time to do so. The resolution of these kind of problems have a
broad range of real application situations, and can be widely used in tillage, planting,
cultivating, spraying, among others. In many cases, specially in the agriculture
applications [1], [2], the regions have forms bounded by natural obstacles like large
stones, rivers, forests, and others. This reason causes the geometrical representation of
the natural form to be an approximate of a complex geometric form, which can be
considered irregular. Some other fields with some similarities with agriculture are
autonomous robotic house cleaning [3], [4], [5], [6], in which a robot has to cover all
the region of a surface with the goal of maximizing the cover but with the secondary
objective of minimizing the overlapping of its path or circuit; and in the field of

* Partially supported by Fundação para a Ciência e Tecnologia (FCT) Project
PTDC/EME-GIN/105163/2008 - EaGLeNest

hydrographic surveying [12], in which the vehicle makes the mapping of the
underwater terrain and searching irregularities in the ocean. The particularity of the
hydrographic survey problem is that, although it is limited by the same set of
constraints, the area that is covered along its path is variable, since the visible area in
the ocean floor depends on the field of view and distance to the same ocean floor,
being greater with greater depths, smaller with lower depth, and the area monitored at
one side of the path may be different from the area monitored on the other side when
moving horizontally regarding a slope.
The proposed decomposition approach has also the objective of testing the
capabilities, in performance as also in adaptability, of a geometric library focused in
solving nesting problems, like two-dimensional irregular cutting-stock problems[13].
This library is being reconstructed to expand its functionality, performance and ease
of use. Its development is progressed in a modular structure where each module has a
specific application. With this kind of experiment, we hope to verify the current
capability of the geometric library, to increase the diversification of its application
areas and to further expand its functionality.
This paper is organized in 5 main sections. Starting with the Introduction, in Section
1. After it, in Section 2, it is presented an overview of the problem to solve, a general
description of how it is usually solved, and also what tools are used to solve it. In
Section 3, a detailed description of our proposed solution approach to the problem is
given, with the methods and algorithms used, the requirements and choices made
based on the constraints of the problem. Section 4 has the overview of the geometric
library that is used as a tool to implement these algorithms, presenting some main
functions used to build these algorithms, and its current state of development. In
Section 5 the final comments and future work are presented. No results are given
since this is a preliminary work, currently under development.

2. The Complete Coverage Path Planning Problem

The CCPPP includes many distinct cases of real application, in several distinct fields,
one of them being the field of agriculture. It is usually represented by irregular
geometrical forms, with a varied degree of complexity, which can include holes and
curved segments. This complexity in its geometrical form causes some limitations in
the possible ways that can be used to solve the CCPPP, so some approaches divide the
initial geometrical form into more simpler forms to ease the problem resolution [1],
[7]. Ideally, one would get the full path or circuit that would cover the entire region,
without any kind of overlapping, with the minimum number of turns, if they represent
and additional cost, in time or distance. Some methods divide the initial form in
triangular, trapezoidal, rectangular, and other polygonal forms, to reduce a single
complex problem into several simpler problems. After the division, the objective is to
try to find the best path or circuit that covers all of the polygons, regarding the
restrictions that increase or decrease the total cost.
Another methods proposed to deal with the CCPPP are based in rectangular cell
decomposition [7], triangular cell decomposition [8], neural networks [9], genetic
algorithms [10], but some of these methods have specific limitations. They need to
have previous information about the area that they will have to go through, with the

size and location of the obstacles. That information may not be initially available. One
example of an application with an initially unknown environment is [7], which makes
the mapping of the terrain in real time, and adjusts its defined path when needed.
In the chosen solution, the approximate representation of the real form, for which is
determined the maximum possible cover path or circuit with the minimum cost, is
described by a set of regions which can have holes and disjoint regions. All the
representations will initially be made with linear segments, although curved segments,
circles, ellipses and splines are supported in the library. One example of an region
divided into individual regions, and with the global path already determined is
presented in the Fig.1.

Fig.1. Global path example.

3. Solution Approach

In this work, the chosen method of resolution uses a decomposition approach to tackle
the CCPPP, which uses some functions developed in the library. This decomposition
approach has the advantage of being easier to implement, and to return results faster
than other approaches. Other necessary functions that do not yet exist will be
developed and inserted into an independent module on the EaGLeNest library when
necessary.
Two solutions to solve two variants of the CCPPP are presented. The first one has the
main objective of minimizing the number of turns in the complete circuit, while the
second one, the main objective is to minimize the maximum length of the circuit, also
achievable by minimizing the overlapping of the circuit path with itself.
Both solutions are divided in the same three phases. These three phases consist in
decomposing the complex form into convex polygons, then finding the Hamiltonian
circuit in the graph generated by connecting the centers of the convex polygons, and
finally the computing of the complete cover path for all convex polygons. The two

solutions only differ in the third phase.

3.1. Convex Decomposition
In the first phase, the first step is to make the transformation of the real area into an
approximate representation by connected linear segments, with the obstacles being
defined as holes, but with a sequence of linear segments connected in inverse order
compared to the outer layer. When a polygon is separated from the others (without
any edge that connects it to the other polygons) it is treated independently. If some
connection between invalid areas is allowed, we need to specify the extra cost to
traverse it from one valid area to another. As such, as a first step, the holes are
removed, by dividing the polygon in several parts, sectioned by an horizontal line
positioned at the half of each hole.
In the end, we will get several parts of the initial form, without holes, with a
maximum number equal to the number of holes plus one unit. Each of these elements
will be further divided into triangular polygons. Each triangle is made from three
sequential vertexes in a polygon, if they create a convex polygon in the inside of the
same polygon. The outer vertex is ignored on the next step, and the process repeats
itself until only 3 vertexes remain. The triangularization algorithm does not guarantee
that the minimum number of triangles will be generated for any single piece. We can
see that in Fig.2.

Fig.2. Complete triangularization of a complete form.

After the triangularization, all triangles are represented in a single mesh. This mesh
allows that the transformation algorithm of triangular polygons into convex polygons
tries to maximize the size of the convex polygons that may be build from a vertex that
belongs to the outer layer, minimizing the total number of convex polygons generated.
This transformation algorithm works by choosing an outer layer segment that has not
yet been selected, and proceeding to the next segment that does not breaks the
convexity criteria. In the event of not finding a next segment that complies with that
restriction, it returns to the previously selected segment, marks the current segment as

invalid, and continues the search from that point. In the worst case, the convex
polygon generated is the same triangle from where the algorithm started. The effect of
this can be seen in Fig.3.

Fig.3. Convex polygons generated by the transformation algorithm.

3.2. Hamiltonian Circuit
The second phase starts by calculating the positions of the center of the convex
polygons generated, and making the connections between them accordingly to shared
segments between polygons. This step creates a graph with the connections between
the center of each polygon connected to the other centers of polygons that share a
segment. If they share just a vertex, that is not enough to make a connection.

Fig.4. Equivalent graph generated from the center of the convex polygons and their contiguous
polygons.

One needs to generate an unique complete circuit that reaches all the vertexes of the
graph. This type of problem can be described as an equivalent to the Traveling

Salesman Problem, assuming that all the vertexes have a valid path to any other
vertex. Since we cannot guarantee that a viable path exists between a given pair of
vertexes, we compute the connections between any directly unconnected pair, with
the minor cost between them, that goes through other intermediate vertexes. These
virtual connections are added to the main graph, making the full Hamiltonian
circuit[11] easy to compute, but however, it does not guarantee that the triangular
inequality condition is satisfied.
To compute the full Hamiltonian circuit, we use a simple Traveling Salesman Problem
heuristic, through a greedy algorithm that starts in any vertex, and proceeds to the
next closest vertex, until it completes the path. At the end, it just connects to the
starting vertex, and the full circuit is complete. Since all vertex have a connection to
any other vertex, there is always a free connections to another vertex until all vertexes
are included in the path.
The determination of the Hamiltonian circuit has the advantage of allowing to know
which will be the edges of each convex polygons that will act as entry and exit points.
Through these edges we can optimize the way the internal cover is made in each
convex polygon, and also determine where the entry and exit point will be located in
each entry and exit edge.

Fig.5. Hamiltonian Virtual Circuit in the graph.

The Fig.5. presents the virtual full Hamiltonian circuit that was computed in the
graph. The connections represented by a single end arrow are normal connections.
The double head arrows represent part of a virtual connection that is overlapping with
the previously traversed path. The direction of navigation in the circuit of the graph is
determined by the arrows. Since this circuit travels through the same vertexes more
than one time, we cannot say that this is an Hamiltonian circuit, but it can be
considered one if we convert the returning paths into alternative connections that
connect only the end vertex of a real path, and a virtual free vertex that it returns to.
The real circuit in the presented graphs starts in 0, proceeds to 1, goes to 2, returns to
1, advances to 3 and then 4, returns to 3, goes to 5, turns back to 3 and then finally
ends with 0. However, the virtual Hamiltonian circuit does not return to previously
traversed vertexes. The Hamiltonian circuit is 0, 1, 2, 3, 4, 5, 0.

3.3. Polygon Coverage
In the third phase, with the complete circuit already defined, and the entry and exit
edges already selected, the complete circuit that covers the whole area can be built,
with the goal of minimizing its cost, in two distinct ways, depending on the imposed
conditions. If each turn implies an extended cost, a solution with the goal of
minimizing the total number of turns might be preferred, even considering the
increase of overlapping in the final circuit. In the opposite approach, if the turns do
not add a significant cost, or if the cost of overlapping is minimal compared to it, the
solution that minimizes the total overlapping is the favored resolution approach.
If we consider the option of minimizing the total number of turns, the proposed
heuristic is described in the following paragraphs.
Ignoring the positioning of the entry and exit segments in every convex polygon, the
coverage path of each polygon is achieved in a perpendicular pattern to the segment
that connects the most distant pair of vertexes for every convex polygon. This
minimizes the number of turns in the convex polygon coverage path [1].
Unfortunately, with this type of coverage path, the entry and exit points for each
convex polygons are going to be modified. The added cost is the cost of the path
overlapping necessary to connect one exit point from one convex polygon to the entry
point of the next one. Even so, this type of solution might have an advantage in some
instances of this kind of problem. The time that the path takes to be traversed is not
taken into account, and so it is not considered as an added cost, but usually traveling a
certain distance in a straight line is faster than traveling a same distance in a path with
many turns.

Fig.6. Complete path generated by the turns minimization heuristic.

In the previous image, the dashed lines indicate that the convex polygon which they
are contained will be covered in a perpendicular pattern to that same line. The arrows
with double end show the additional overlapping cost of connecting the entry and exit
points between convex polygons. The full circuit, based on the solution from the
previous step, follows the sequence defined in the image:

0, 1, 2, 3, 4, 5, 6, 7, 5, 8, 9, 10, 11, 12, 13, 14, 15, 12, 16, 17, 18, 2, 0.
When we consider the option of minimizing the overlapping of the circuit, we use an
heuristic like the one proposed in the following paragraphs.

Taking into consideration the entry and exit edges of each convex polygon, a few
particular cases might need some adjustments, so that the algorithm can generate a
path without any overlapping.
When a convex polygon has several entry and exit points, to make a correct coverage
the polygon needs to be divided accordingly to the number of the matched pairs of
entry and exit points. This type of division divides a convex polygon with several
entry and exit points, into several convex polygons with only a pair of entry and exit
points, just like the example in Fig.7.

Fig.7. Convex polygon division into polygons with only one pair of entry and exit vertexes.

Still, another transformation might need to be done. We cannot always cover a convex
polygon without any overlapping if we follow an exclusively perpendicular pattern to
the line that connects the entry and exit vertexes, even when the vertexes are in
contiguous edges.

Fig.8. Invalid path coverage in a convex polygon.

As it is shown in Fig.8, the area marked by 1 cannot be covered if we follow the
perpendicular pattern to the dashed line that connect the two most distant vertexes of
the entry and exit segments.
As such, to solve this problem, the convex polygon is further divided, with a first
division made from the common vertex, in the case of contiguous segments, or from

the last of the in-between outer layer segments that connect the vertex in the exiting
edge up to the most distant vertex from it, that preferentially does not belong to the
entry edge. One exception to this case, in which no division is made, is when the
convex polygon is a triangle. In this exception, we cover the polygon with a parallel
pattern relative to the entry edge. If the edges are not contiguous, we need to make an
alternative kind of division, to make sure that the cover ends at the exiting edge.
When an edge is simultaneously an entry and exit edge, that edge will be divided,
connecting to an opposite free vertex or edge, also dividing the polygon in which it is
contained. We can see an example in Fig.9.

Fig.9. Main coverage lines after division.

This method allows to have a single path, without any overlaps, that minimizes the
total distance traveled when comparing to the alternate solution. As a consequence,
we now have a high number of turns, that can severely worsen the cost if they are
taken into account, due to the further division of convex polygons, increasing their
number, and creating the need to the individual coverage of every independent
component.

Fig.10. Coverage path created with the overlapping minimization heuristic.

The arrows in Fig.10 present the complete path without any overlapping, generated by

the described heuristic. The coverage pattern is perpendicular to the correspondent
line contained in each convex polygon.

4. Implementation

The implementation of these algorithms will rely in some existing functions from the
EaGLeNest geometric library. This reassures the capabilities of this library to
diversify the range of practical application, having the simultaneous advantage of
testing and develop this tool to be applied in this kind of problems.
Some functions might need to be slightly modified, depending on the problem, but no
heavy modification of functions will occur, since it is preferred to develop an
independent function from scratch with a particular use in mind.
The data to any problem, be it vertexes, edges, polygons, and groups of polygons, and
also algorithms to use in the resolution of the problem with their execution sequence,
are contained in a XML file, which is the default file to use with the library. This
format ensures backwards compatibility with the current version of the library, while
also allowing the ease of reading, construction and manual modification of the
contents of the file by any person. The main data structures are based on simpler
one's, with identifiers. The most elementary unit is the vertex, or dot (with
identification). With two vertexes we build a linear segment and its identification, and
with an array of segments we build a polygon, also with identification. The higher
hierarchical structure available is designed by geometrical shape, which can contain
several polygons that might not be contiguous with any other, not be defined as holes,
nor contained in another polygon's hole. These structures are also designed to support
curves, with Bezier representation, including also ellipses and circles (and arc if an
angle is specified), but the functions used to manipulate these forms are not yet
implemented in the geometric library.
The most basic functions of the geometric library that were implemented to this
moment are:
Reading data in XML file format, and loading the data structures accordingly;
intersection detection between segments, that return the intersection points (be it
linear segments or curved segments); computation of the minor angle between the
intersection point generated with the intersection of two segments; the lesser distance
of a vertex to a straight line; position of a vertex relative to a straight line segment (to
the left, right or co-linear); the linear segment most to the left or to the right of a
current selected segment; the nearest linear segment to the left or to the right of a
current selected segment; determine if two vectors are oriented to the same quadrant;
determination of the representation of a polygon (if it is a hole or an outer layer,
according to the settings specified in the system); inversion of a polygon (transform a
hole into an outer layer and vice-versa).
The functions composed by these basic functions of the geometrical library are:
Transformation of a polygon with holes into several polygons without holes;
triangulation of irregular geometrical forms, construction of lists that contain every
reachable vertex from a specified vertex (useful to determine which vertexes belong
to a polygon); decomposition of a mesh into individual polygons; function that returns
only the outer layer of a mesh and another that subtracts only the outer layer from a

mesh; computation of biggest convex polygons in a mesh (with exclusion for
partition, and inclusion for coverage of polygons); construction of an adjacency
matrix from a mesh; merging of geometrical forms, and finally the No-Fit Polygon
construction from a pair of convex polygons.
The functions used in the geometric library, that can be used in the resolution of the
problem discussed in this paper, are mostly the elementary functions, including a few
of the more complex functions like the transformations of convex polygons in
polygons without holes, the triangularization, and merging of polygons. The functions
destined to the computation of the coverage path of the convex polygons are currently
being implemented. The functions destined to the computation of Hamiltonian paths,
and to the resolution of variants of Traveling Salesman Problems will be implemented
later.

5. Final Comments

Since this is still a preliminary work, we cannot solve for every best solution possible
with these heuristics, but we can use them to attempt to get solutions that achieve the
minimum amount of turns or the minimum overlapping.
The geometric library has only some basic functionality, but already shows some
good flexibility and support for generic applications, when considering usage of some
of the implemented functions described in the previous section (4). It cannot be used
extensively in any area, but can be used to start solving these problems in the fields of
agriculture, hydrographic surveys, autonomous robotic house cleaning, and a few
others.

As future work we expect to fully implement the modules presented in this work. We
then proceed to collect the results from some variants of this proposed problem, and
make some adjustments to improve performance. We also plan to improve the
algorithms used in this paper, and continuously improve the geometric library to
support more features. Most of the features have the possibility of being used in other
kinds of problems that can have a representation based on geometrical forms.

References

1. G. Zuo, P. Zhang, and J. Qiao, “Path planning algorithm based on sub-region for
agricultural robot,” in Proceedings of the 2nd international Asia conference on
Informatics in control, automation and robotics - Volume 2, CAR’10, pp. 197–200,
IEEE Press, 2010.

2. T. Oksanen and A. Visala, “Coverage path planning algorithms for agricultural field
machines,” J. Field Robot., vol. 26, pp. 651–668, August 2009.

3. H. Choset, “Coverage for robotics – a survey of recent results,” Annals of
Mathematics and Artificial Intelligence, vol. 31, pp. 113–126, 2001.

4. De Carvalho, R.N.; Vidal, H.A.; Vieira, P.; Ribeiro, M.I.; , "Complete coverage path
planning and guidance for cleaning robots ," Industrial Electronics, 1997. ISIE '97.,
Proceedings of the IEEE International Symposium on , vol.2, no., pp.677-682 vol.2,
7-11 Jul 1997.

5. X. Wang and V. L. Syrmos, “Coverage path planning for multiple robotic agent-based
inspection of an unknown 2d environment,” Mediterranean Conference on Control

and Automation, pp. 1295– 1300, 2009.
6. R. Mannadiar and I. Rekleitis, “Optimal coverage of a known arbitrary environment,”

in Robotics and Automation (ICRA), 2010 IEEE International Conference on, pp.
5525 –5530, May 2010.

7. H. Choset and P. Pignon, “Coverage path planning: The boustrophedon cellular
decomposition,” in In International Conference on Field and Service Robotics, 1997.

8. J. S. Oh, Y. H. Choi, J. B. Park, and Y. Zheng, “Complete coverage navigation of
cleaning robots using triangular-cell-based map,” Industrial Electronics, IEEE
Transactions on, vol. 51, pp. 718 – 726, June 2004.

9. S. Yang and C. Luo, “A neural network approach to complete coverage path
planning,” Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE Transactions
on, vol. 34, pp. 718 – 724, February 2004.

10. A. Ryerson and Q. Zhang, “Vehicle path planning for complete field coverage using
genetic algorithms,” Agricultural Engineering International: the CIGR Ejournal, vol.
IX, July 2007.

11. Reinhard Diestel – “Graph Theory” - Springer - Verlag New York 1997,2000 – Page
214, theorem 10.1.1.

12. Cheng Fang; Anstee, S.; , "Coverage path planning for harbour seabed surveys using
an autonomous underwater vehicle," OCEANS 2010 IEEE - Sydney , vol., no., pp.1-8,
24-27 May 2010.

13. Julia A. Bennell, Jose F. Oliveira, “The geometry of nesting problems: A tutorial”,
European Journal of Operational Research, Volume 184, Issue 2, 16 January 2008,
Pages 397-415.

