
Dataflow Programming
Concept, Languages and Applications

Tiago Boldt Sousa1,2

tiago.boldt@fe.up.pt

1 INESC TEC (formerly INESC Porto)
2 Faculty of Engineering, University of Porto

Campus da FEUP Rua Dr. Roberto Frias, 378 4200 - 465 Porto, Portugal

Abstract. Dataflow Programming (DFP) has been a research topic of
Software Engineering since the ‘70s. The paradigm models computer pro-
grams as a direct graph, promoting the application of dataflow diagram
principles to computation, opposing the more linear and classical Von
Neumann model. DFP is the core to most visual programming languages,
which claim to be able to provide end-user programming: with it’s visual
interface, it allows non-technical users to extend or create applications
without programming knowledges. Also, DFP is capable of achieving
parallelization of computation without introducing development com-
plexity, resulting in an increased performance of applications built with
it when using multi-core computers. This survey describes how visual
programming languages built on top of DFP can be used for end-user
programming and how easy it is to achieve concurrency by applying the
paradigm, without any development overhead. DFP’s open problems are
discussed and some guidelines for adopting the paradigm are provided.

Keywords: dataflow programming, visual programming, end-user pro-
gramming, programming languages, parallel computing

1 Introduction

Dataflow programming (DFP) introduces a new programming paradigm that
internally represents applications as a directed graph, similarly to a dataflow
diagram. Applications are represented as a set of nodes (also called blocks) with
input and/or output ports in them. These nodes can either be sources, sinks or
processing blocks to the information flowing in the system. Nodes are connected
by directed edges that define the flow of information between them. Most visual
programming languages that use a block-based architecture for representing their
workflow are indeed based on DFP 3. Several advantages are inherited with such
model, as presented in this paper.

3 Although UML may seem an obvious candidate, it should not be regarded as a
programming language, but rather as a specification language. Methods for making
UML executable exist [20], although they are mainly ad-hoc solutions [10] and not
part of the core standard, hence, not making UML a visual programming language.



1.1 Motivation

DFP is a commonly forgotten paradigm, despite its ability to successfully solve
certain scenarios, from which the author highlights two.

A first advantage is the existence of visual programming languages4, easing
the work of programmers in a tool that, due to its simplified interface, can provide
rapid prototyping and implementation of certain systems. Visual programming
languages are also known to ease the process of providing end-user programming,
where the user of an application is able to modify the behavior of the application
in some way. Many languages exist providing such capabilities, as described in
section 3. Visual programming has been successfully adopted both by experienced
programmers and non-technical computer users (while still experienced), who
are able to use those language as a tool to either extend an existing application
or to build one from scratch.

A second point in favor of DFP is the implicit achievement of concurrency [16].
In the internal representation of an application, each node is an independent
processing block, producing no side-effects, that is, working independently form
any others. Such execution model allows nodes to execute as soon as data
arrives to them, without the possibility of creating deadlocks, as there are no
data dependencies in the whole system. This is a core feature of the dataflow
model, removing the need to have programmers handle concurrency issues such
as semaphores or manually spawning and managing threads. Such feature can
greatly increase the performance of an application when executed on a multi-core
CPU, a common architecture nowadays, without introducing any additional work
for the programmer.

These two key points from DFP let the author believe that this paradigm
should be part of the knowledge of any developer, empowering him to use it in
scenarios were it best fits. This survey paper is expected to introduce readers with
DFP, describing its historical background, introducing existing languages and
open problems, guiding the reader in the right direction to adopt the paradigm.

1.2 Structure

This survey is composed by five sections, from which this first one is the intro-
duction. The history and concepts of Dataflow Programming are described in
the next section. Section 3 gives examples of DFP languages, frameworks for
implementing the dataflow paradigm and know usages from it. Section 4 argues
about some well-known issues over DFP, as well as describing some common
answers for some of those questions. In section 5 the author argues on why DFP
is relevant knowledge for any developer. Section 6 details future work and the
paper is then finished with a last section detailing the conclusions gathered in
this survey paper.

4 Most visual programming languages are based on DFP [25]



2 Dataflow Programming Overview

Dataflow Programming is a programming paradigm whose execution model can
be represented by a directed graph, representing the flow of data between nodes,
similarly to a dataflow diagram. Considering this comparison, each node is an
executable block that has data inputs, performs transformations over it and then
forwards it to the next block. A dataflow application is then a composition of
processing blocks, with one or more initial source blocks and one or more ending
blocks, linked by a directed edge.

2.1 History

DFP has been subject of study in the area of Software Engineering for more
than 40 years, with its origins being traced back at at the Ph.D. thesis of Bert
Sutherland [30]. Sutherland used a light-pen and a TX-2 computer to create a
visual programming language, on top of the SKETCHPAD framework. He also
contributed with patterns for graphical representation of procedures that are still
used in visual languages today.

In figure 1 Sutherland shows how arithmetic instructions can be represented
in both textual and visual forms. In that example, extracted from Sutherland’s
thesis, we can understand how parallel operations occur and why they result in a
reduction of the computation time in even such a small code snippet. We can
observe that the calculation of the value of W can be processed simultaneously
with the other arithmetic operations occurring in the two vertically aligned
nodes, as there are no data dependencies between them. In a DFP language, such
parallel computation is achieved automatically by the compiler. The compiler
analyses the source and creates an internal dataflow representation of it, based
on connected notes, commonly, with each node being processed by an individual
thread. DFP compilers exist to create such binaries from either textual and visual
languages.

2.2 Architecture

With the increased need to compute large datasets and enable common computers
to process more than a single thread at the same time, both in the industrial
and scientific world, the need for multi-core processor systems arose [9]. Despite
that, multi-threaded programming was still an error prone task to achieve,
as it was subject to race conditions, very complex scenarios to debug. The
disadvantages and common problems with using threads were well summarized
by Ousterhout [24]. Dataflow programming was able to provide parallelism
without the increased complexity involved in the management of threads.

In dataflow programming, computation nodes are connected between them-
selves whenever a node as a dependency on the value processed from another
node. Values are propagated as soon as they are processed to the dependent
nodes, triggering the computation on them.



Fig. 1. A comparison of the textual and graphical representation of an arithmetic
calculation, from Sutherland’s Ph.D. thesis [30].

An initial approach to dataflow programming, by Dennis [6], started by
suggesting the use of an architecture able to execute these applications at the
hardware level, by giving static memory positions to each node to fill with values
that could be read by the remaining nodes that were connected to it. With the
introduction of multi-core CPUs and processing farms, languages evolved into
supporting this more common architectures for portability reasons and provided
developers with the necessary tools to parallelize their computations on common
computers [2].

Introduced by Gilles Kahn, the Kahn Process Networks approached this
problem by having sequential processes (nodes) to communicate via unbounded
FIFO queues as message passing protocol [17]. Whenever the entry FIFO queue
of a node was not empty, the first value would be processed by the node and
outputted into the FIFO belonging to the next node in the chain.



DFP has evolved into a resourceful method to exploit modern computer
architectures, composed by multi-core CPUs, as well as computation farms, while
reducing the development complexity.

3 Languages and Usages

The dataflow paradigm has been used in a wide range of contexts, supporting
either massive computation of data or being the basis for visual languages
providing end-user programming capabilities. The Journal of Visual Languages
and Computing 5 is a reference point in the novel researches being held in this
topic.

This section introduces DFP languages and relevant implementations using
them. The section describes a textual and a visual dataflow language, particularly,
SISAL and Quartz Composer. Although, many more exist, with some relevant
names such as LabVIEW [31], VHDL [29] or LUSTRE [12].

3.1 Visual and Textual Dataflow Languages

Independently of the representation style adopted by a the language, it is up to
its compiler to analyze the provided source and generate an internal dataflow
representation that will define how information will flow between nodes. Several
architectures for generating the internal model were researched by Johnston et
al [16].

Despite this common comparison to dataflow diagrams, as previously stated,
DFP is not a synonym of visual programming, although most visual programming
languages are based on the dataflow paradigm. In fact, many early dataflow
languages had no graphical representation.

The applications achievable with textual and visual languages do not differ,
although, choosing the best language for each situation is a key factor to achieve
success. Visual programming languages favor the simplicity of a visual representa-
tion. Visual programming can also be used to provide an end-user programming
interface. Textual languages require more knowledge but are usually faster to
work with, as well as provide a more scalable organization of the source code [7].

SISAL SISAL, acronym for Streams and Iteration in a Single Assignment
Language, is a derivative of the Val language and it is a text-based functional and
dataflow programming language from the late 80’s, introduced by Feo and Cann
[19,8,9]. The language is strongly-typed, with a Pascal-like syntax for minimizing
the learning curve and enhancing readability.

The language intended to compete in performance with Fortran while using
the dataflow model to introduce parallel computation in the first multi-core

5 Available online at http://www.journals.elsevier.com/journal-of-visual-languages-and-
computing .

http://www.journals.elsevier.com/journal-of-visual-languages-and-computing/
http://www.journals.elsevier.com/journal-of-visual-languages-and-computing/


machines. It still provided a micro-tasking environment that supported the
dataflow architecture on traditional single-core machines.

In order to increase its performance, SISAL’s compiler was able distribute
computation between nodes in an optimized way. The management of the internal
dataflow was fully automatic — the compiler was responsible to create both the
nodes and connections between them. In runtime, each node was executed by an
independent thread that was always either running or waiting for data to arrive
to the node. Data was processed upon arrival and the result forward along the
dataflow chain.

In some benchmarks, SISAL was able to outperform Fortran in computation
performance [5].

Quartz Composer Part of XCode, the development environment suite from
Apple, Quartz Composer is a node-based visual programming language. The
language was developed for quick development of applications for processing and
rendering graphical data by non-technical users, as it doesn’t require programming
knowledges [15].

Quartz Composer stands out from other dataflow languages due to its superior
graphical editor, as seen in figure 2. The editor provides an intuitive way for users
to add, configure and connect nodes in their dataflow. Each node can be either
a source, sink or transformation of data and the editor manages type casting
automatically.

The language has a very extensive library of components that interacts with
the operative system out of the box. Transformation blocks can be connected
between any two blocks of information to provide computation over the flowing
data.

The editor allow users to create modules without having to write a single line
of code and allows these modules to be integrated with applications developed in
Cocoa with the XCode suite. It always allows the creation of animations that
can either be used as screen savers or played with Quicktime.

3.2 End-User Programming

DFP is behind most Visual Programming languages based on dataflow diagrams.
Such languages not only target experienced developers but also non-technical
users, providing them with a simplified interface for building applications. In
fact, end-user programming is a common usage for dataflow applications, both by
using visual dataflow-based editors, such as Apple’s Quartz Composer (previously
referred) or with spreadsheets, also a form of end-user programming, empowered
by the DFP paradigm.

Graph-based Empowered by intuitive interfaces, such as the one provided by
Quartz Composer, users are able to extend or create applications without the
need to know how to program. This approach usually relies on the use of a set
of pre-defined blocks that can be used to compose the diagram, connected by
directed edges.



Fig. 2. The Quartz composer editor. Blocks and the connection between them are
clearly visible. The interface is visually attractive and easy to use.

Spreadsheets Spreadsheets are probably the most common example of DFP
and widely adopted by every type of computer users.

On a spreadsheet, each cell represents a node that can either be an expression
or a single value. Dependencies can exist to other cells. Following the dataflow
model, whenever a cell gets updated, it sends its new value to those who depend
on it, that update themselves before also propagating their new values. This
specific type of application is commonly denominated as Cell-Oriented DPF or
Reactive programming.

At a more advanced level, tools exist that can extract a visual dataflow model
from spreadsheets [13]. These are useful for many scenarios, such as debugging
complex expressions or simplify the process of migrating a spreadsheet to a new
software.

3.3 The Actor Model

The actor model is a very popular concurrency model by Carl Hewitt from MIT
introduced in the ‘70’s. With his team, he researched a method that allow develop-
ers not only to simplify the process of parallelizing their computations, but also to
increase the confidence on the concurrent behavior of their programs [14].Twitter
as adopted it for scaling their computations [21].

An Actor is an agent that receives and sends messages, behaving independently
from other actors in the system. On each message, the actor is able to start new
actors, compute data or reply with messages to other existing actors. In the



dataflow paradigm, an actor is the equivalent to the node and the messages past
are equivalent to the connections between nodes.

This architecture perfectly fits the dataflow model when an actor is used as
a processing node and the massages between them as communication channels.
In cases where there’s the need to use an imperative or functional programming
language, the actor model could be applied to port the concepts of dataflow
programming into those languages, as it has been done by [27,18,11,23].

Many implementations of the actor model are freely available for several
languages [26,28,32,1].

4 Open Problems

Dataflow programming is an area still open to further research, with some open
issues to answer. In fact, most of the open questions today have long been
identified and despite the improvements, patterns for answering them are yet to
be achieved.

4.1 Visual Representations

Despite DFP being achievable without a visual programming environment, a
graphical representation of how nodes connect in a dataflow-based application
provides the user with a better understanding of what the application is supposed
to do, providing the possibility of end-user programming. Although, representing
conditions and iterations, as well as more complex algorithms or applications
might result in a graph with an huge number of nodes with tangled connections,
hard to read and maintain. Bellow, some solutions for this problem are proposed.

Iteration and Conditions To represent conditions or iterations as a set of
nodes can easily result in a complex graph, nontrivial to understand, if the proper
abstractions are not adopted.

Mosconi [22], summarized techniques adopted by the languages Show-and-Tell
and Labview, while also introducing his approach to iteration and conditions using
the VIPERS language, another dataflow visual programming environment based
on the Tcl language [3]. In his paper, Mosconi describes viable implementations
of the loop expressions For and While and explains how index-based iterations
can be represented, as well as how to handle ending conditions using blocks with
that sole purpose. The representation of a While block in VIPERS is shown in
figure 3. Similarly, he suggests the creation of a single block for each type of loop
and condition, native in the language, in order to significantly reduce the size
of the graph, removing the large number of elements that would be needed to
construct such expressions.

Visual Granularity Another open problem with visual DFP languages also
happens with complex applications, when composed by a very large number of



Fig. 3. A While block in VIPERS. A represents a block (or set of blocks) inside the
loop that receives and generates new values of x and y. Whenever A returns an x ≤ y
the loop exits and continues execution to block B.

nodes. In some cases, for experienced programers, the complexity of interpreting
a visual representation can end up being higher than reading textual source code.

An approach to solve this problem it to allow a variation on the granularity of
data shown at a given moment. To do so, nodes can be grouped hierarchically, so
that they can be reduced into a single block that represents them, only showing
the inputs and outputs of the whole group of that node. The amount of data
shown for a node at a given time can also be configured. At any time the node
can be expanded, enabling the user to alter its containing nodes.

4.2 Debugging

Debugging parallel applications requires tools capable of monitoring everything
happening in each concurrent operation. In visual programming languages that
process becomes even more complex, as the programmer has no direct control
over the parallelism. There is the need to map the execution in the direct graph
in order to provide visual feedback to the programmer. Browne et al [4] described
an approach to debug these languages as a set of five steps:

1. Identify and select the portions of the graph whose behavior will be monitored;

2. Specify the expected execution behavior for each of the nodes in the specified
set to be monitored;

3. Run the application with a test scenario as input and capture the execution
behavior of the selected portions of the program;

4. Determine where the actual execution and expected events first diverge;

5. Map the elaborated graph of expectations back to the original graph, signaling
where errors were detected.



The steps above can be followed by language designers to guide the de-
velopment of visual debugging tools for DFP languages using a graph-based
representation of the application, obtained from either a textual of visual lan-
guage.

5 Discussion

This paper introduces the DPF paradigm and presents the two most relevant
features within it: DFP as a basis for most visual programming languages,
including a as way of providing end-user programming in applications and the
ability to seamlessly provide developers with a parallel computational model,
without introducing development complexity.

Visual Programming Languages allow experienced users to perform rapid
application development and non-technical users to extend their application,
what is commonly denominated by end-used programming, or create their own
applications, without requiring programming knowledges. A common issue with
these languages is the complexity to provide abstractions capable of representing
an application without resulting in a huge, unperceivable, dataflow diagram —
this paper identifies two patterns that can be applied to prevent this situation.
Non visual DFP languages also exist. The textual approaches to DFP have a com-
piler capable of inferring the internal dataflow representation of the application,
defining how parallelism is achieved automatically.

Concurrency is also easily achieved by the lack of side-effects in a DFP process-
ing node. Following the concept that data is transmitted as a message and that
these are sequentially processed as they arrive to a node provides DFP languages
with parallelism out of the box, a valuable feature for developers looking to
increase performance on parallelizable applications and algorithms.

6 Future Work

Despite the advantages in performance provided by DFP and the possibility of
providing end-user programming with visual languages, there are no frameworks
that provide integration of these features in modern day languages. Future
work will consist on the development of such framework, believed to be of
interest either for academic and industrial purposes, by using the actor model for
implementing the dataflow paradigm, independently form the language chosen
for implementation.

7 Conclusions

To conclude, the author believes that dataflow programming is a viable paradigm
to be explored today for creating either end-user programming and parallel



computation applications. Due to the lack of good quality visual editors and
frameworks available for creating such systems, the creation of a generic framework
for building end-user programing systems on top of a DFP architecture based
on the actor model would be of use in several scenarios and will be pursued as
future work.

References

1. Agha, G.: Actors: a Model of Concurrent Computation in Distributed Systems,
Series in Artificial Intelligence (Jun 1985)

2. Arvind, D.: IEEE Xplore - Dataflow architectures and multithreading. Annual
review of computer science (1986)

3. Bernini, M.: VIPERS (1994)
4. Browne, J., Hyder, S., Dongarra, J.: IEEE Xplore - Visual programming and

debugging for parallel computing (1995)
5. Cann, D.: Retire Fortran? A debate rekindled (1991)
6. Dennis, J.B.: Data Flow Supercomputers. Computer 13(11), 48–56 (1980)
7. Erwig, M., Meyer, B.: Heterogeneous visual languages-integrating visual and textual

programming pp. 318–325
8. Feo, J., DeBoni, T.: A tutorial introduction to sisal (August 1991), https://

waimingmok.wordpress.com/2009/06/27/how-twitter-is-scaling/

9. Feo, J., Cann, D.: A report on the Sisal language project (1990)
10. Ferreira, H., Aguiar, A., Faria, J.: Adaptive Object-Modelling: Patterns, Tools

and Applications. In: Software Engineering Advances, 2009. ICSEA ’09. Fourth
International Conference on. pp. 530–535 (2009)

11. Gu, R., Janneck, J., Bhattacharyya, S., Raulet, M., Wipliez, M., Plishker, W.:
Exploring the Concurrency of an MPEG RVC Decoder Based on Dataflow Program
Analysis. Circuits and Systems for Video Technology, IEEE Transactions on 19(11),
1646–1657 (2009)

12. Halbwachs, N., Caspi, P., Raymond, P., Pilaud, D.: The synchronous data flow
programming language LUSTRE. Proceedings of the IEEE 79(9), 1305–1320 (Sep
1991)

13. Hermans, F., Pinzger, M., van Deursen, A.: Breviz: Visualizing Spreadsheets using
Dataflow Diagrams. arXiv.org cs.SE (Nov 2011), 9 Pages, 5 Colour Figures; Proc.
European Spreadsheet Risks Int. Grp. (EuSpRIG) 2011 ISBN 978-0-9566256-9-4

14. Hewitt, C., Bishop, P.: A universal modular ACTOR formalism for artificial intelli-
gence. 3rd IJCAI-73 (1973)

15. Inc., A.: Quartz composer user guide (July 2007), http://developer.

apple.com/library/mac/#documentation/graphicsimaging/conceptual/

QuartzComposerUserGuide/qc_intro/qc_intro.html#//apple_ref/doc/uid/

TP40005381

16. Johnston, W., Hanna, J.: Advances in dataflow programming languages. ACM
Computing Surveys (CSUR) (2004)

17. Kahn, G.: The Semantics of a Simple Language for Parallel Programming. In
Information Processing 7́4: Proceedings of the IFIP Congress (1974), pp. 471-475.
pp. 471–475 (1974)

18. Lee, E., Parks, T.: Dataflow process networks. In: Proceedings of the IEEE. pp.
773–801 (1995)

19. McGraw, J.: The VAL Language: Description and Analysis (1982)

https://waimingmok.wordpress.com/2009/06/27/how-twitter-is-scaling/
https://waimingmok.wordpress.com/2009/06/27/how-twitter-is-scaling/
http://developer.apple.com/library/mac/#documentation/graphicsimaging/conceptual/QuartzComposerUserGuide/qc_intro/qc_intro.html#//apple_ref/doc/uid/TP40005381
http://developer.apple.com/library/mac/#documentation/graphicsimaging/conceptual/QuartzComposerUserGuide/qc_intro/qc_intro.html#//apple_ref/doc/uid/TP40005381
http://developer.apple.com/library/mac/#documentation/graphicsimaging/conceptual/QuartzComposerUserGuide/qc_intro/qc_intro.html#//apple_ref/doc/uid/TP40005381
http://developer.apple.com/library/mac/#documentation/graphicsimaging/conceptual/QuartzComposerUserGuide/qc_intro/qc_intro.html#//apple_ref/doc/uid/TP40005381


20. Mellor, S.J., Balcer, M.B.J.I.: Executable UML: A Foundation for Model-Driven
Architectures. Addison-Wesley Longman Publishing Co., Inc. (Jun 2002)

21. Mok, W.: How twitter is scaling (June 2009), https://waimingmok.wordpress.

com/2009/06/27/how-twitter-is-scaling/

22. Mosconi, M.: ScienceDirect - Computer Languages : Iteration constructs in data-flow
visual programming languages. Computer languages (2000)

23. Oh, H.: Constant Rate Dataflow Model with Intermediate Ports for Efficient Code
Synthesis with Top-Down Design and Dynamic Behavior. Quality Electronic Design,
2008. ISQED 2008. 9th International Symposium on pp. 190–193 (2008)

24. Ousterhout, J.: Why threads are a bad idea (for most purposes) (1996)
25. Petre, M.: ScienceDirect - International Journal of Human-Computer Studies :

Mental imagery in program design and visual programming. International Journal
of Human-Computer Studies (1999)

26. Philipp Haller, F.S.: Actors in Scala pp. 1–139 (Mar 2011)
27. Plishker, W., Sane, N., Bhattacharyya, S.: A generalized scheduling approach for

dynamic dataflow applications. In: Design, Automation & Test in Europe Conference
& Exhibition, 2009. DATE ’09. pp. 111–116 (2009)

28. Scherer, A., Gandhi, R.: Programming Concurrency on the JVM
29. Sjoholm, S., Lindh, L.: VHDL for Designers. Prentice Hall PTR, Upper Saddle

River, NJ, USA (1997)
30. Sutherland, W.: On-Line Graphical Specification of Computer Procedures. (1966)
31. Travis, J., Kring, J.: LabVIEW for Everyone: Graphical Programming Made Easy

and Fun (3rd Edition) (National Instruments Virtual Instrumentation Series).
Prentice Hall PTR, Upper Saddle River, NJ, USA (2006)

32. Vajda, A.: Programming Many-Core Chips - András Vajda, Mats Brorsson, Diar-
muid (CON) Corcoran - Google Books (2011)

https://waimingmok.wordpress.com/2009/06/27/how-twitter-is-scaling/
https://waimingmok.wordpress.com/2009/06/27/how-twitter-is-scaling/

	Dataflow ProgrammingConcept, Languages and Applications
	Introduction
	Motivation
	Structure

	Dataflow Programming Overview
	History
	Architecture

	Languages and Usages
	Visual and Textual Dataflow Languages
	End-User Programming
	The Actor Model

	Open Problems
	Visual Representations
	Debugging

	Discussion
	Future Work
	Conclusions


