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Abstract. Identify Rework on Open Source Software (OSS) projects
is a challenging, complex and still open issue. We believe that in OSS
environment, team members should introduce less rework than volun-
teers, due to their knowledge about the project, but how to characterize
and classify developers’ actions as rework sources? In this paper we pre-
sented a novel approach for classifying commits by analysing data from
open source repositories, named in GitHub. We constructed our classifier
following a data mining methodology and comparing the performance of
three algorithms: Decision Trees, Naive Bayes and K-NN. For testing our
model, we applied data of 3311 commits from the Subversion project. Re-
sults show that K-NN outperforms the others in this task and the model
can predict whether a commit is a rework source or not with 70% of ac-
curacy. Our training data depends much on the relation commits-issues
and and the collecting methodology should be improved. We envisage
to create a more general classification model by using a bigger dataset
including data from many other projects.

Keywords: Rework, Data Mining, Classification, Open Source, OSS,
GitHub

1 Introduction

Software development is facing a big change. Traditionally, companies have teams
that work under a certain budget to achieve milestone objectives. On the other
side, the Open Source Software (OSS) has its importance growing in the last
years and is changing the rules of this game [1]. The Open Source initiative is
based on free code which any other developer can contribute with the project
by free will.

One big problem in this scenario is the work introduced by issues not solved
consistently or bugs created by developers. This work was not planned in project
specification and is called Rework. Rework can be defined as the time and effort
considered in trying to fix some bug or solving an issue that was already consid-
ered solved. It implies big costs because of the incremental nature of software.
Earlier a problem is found, less is the cost to be solved [2].

In OSS software, finding rework sources could help to discover developers’
behavior and create a profile for each of them, making it easy to select the best
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team members or even select those who need help to improve their program-
ming. In fact, it helps to reduce costs, improving the quality of code. Identifying
and reducing rework is fundamental for decreasing the cost of development and
maintenance of the software [2]. Companies are also interested in this because
they could benefit mixing their traditional techniques with ours and reduce even
more their expenses with rework. Traditional development has a much more
controlled environment and guided by project budgets, they have their own pro-
cesses for dealing with rework. In OSS software the main difficulty is the lack of
knowledge about the quality of code coming from different developers with very
different profiles [3]. The impact of rework in OSS software should be studied as
a way to know and compare how open source projects are affected by rework.

In this paper we present a data mining approach to create developers’ profiles
and classify their actions based on the observation of real open source projects
development data. We have created a general model, using well-known algo-
rithms and evaluated their performance to obtain a good prediction.

Using a data mining methodology we have compared several algorithms and
selected the best model for the classification task, expecting to improve the
quality and the reliability of the predictions. We believe that our model can be
a good ally on identifying rework sources in projects and helping developers to
manage new code. This work had three main goals (i) use data mining tools
and methodology to create a working model for classifying real OSS data; (ii)
compare the performance of classification using different algorithms and select
the best model (iii) analyse the model’s predictions and evaluate developers’
profiles in OSS projects.

Analysing a real world project’s source repository is a big challenge, but also
the results are very interesting [4]. Outcomes from our model included the char-
acteristics of the roles members and volunteers and their relation to the creation
of rework. Although the type of developer was very important, we wanted to dis-
cover more about the relation between rework and other features on developer’s
actions. Our results proved to be very surprising. We have found that mem-
bers do also introduce a considerable amount of rework, but volunteers work in
simpler tasks.

The rest of this paper is structured as follows: In Section 2 we present the
Open Source platforms scenario. Section 3 discusses the problem of based on
reviewing the literature introducing rework in software projects and how estab-
lishing a developer profile could help reducing efforts in tackling software bugs.
We also describe the GitHub environment as an example of OSS environment. In
Section 4 we describe the experimental design of our classification model. Section
5 presents the experimental evaluation of the model. We discuss the findings of
this work and point lines of future research in Section 6.

2 Related Work

Open Source Software (OSS) is a trend in software development. Since late 1990,
an uncountable number of projects have grown in this environment proving

15* Edition, 2015 - ISBN: 978-972-752-173-9 p.71



Proceedings of the 10"" Doctoral Symposium in Informatics Engineering - DSIE’15

it can be successful and and profitable [5]. Research interest in OSS is very
diversified. In some way, OSS platforms represent a social networking model
between developers and customers, useful information for analysing software
marketing and customers preferences [6]. In other way, people enrolled with
OSS highlight the relationship between the customers as volunteers and the
satisfaction with the product [4]. Big software companies (e.g., Microsoft, Google
GNOME, Linux, etc.) are also focusing OSS projects in the last years motivated
by the collaboration between volunteers and developers, which can reduce costs,
spread the technology and help developing more user-guided tools.

Given its free nature, OSS create a difficulty in managing resources, planning
and delivering projects. As said in [7], resource allocation and budgeting is even
a harder challenge. The cost of the development is an important factor for the
success of a project [7] and here we find the rework cost. As explained in section
1, rework consists on the effort and consequently monetary cost of trying to fix
something that was already considered a closed issue. Rework is, in fact, a big
problem in software engineering, consuming big part of the project budget (40%
up to 70%) [8]. Introducing rework could be explained by human problems in
project management like communication, formation and work conditions [8] and
the Industry believes that great part of rework could be early identified and
avoided, but until now not much attention has been paid in studying rework.

We point out the relation between rework and code quality, measured re-
garding the actions performed by developers, named commits. Commits are the
registries of the work and have the information of all modifications in previous
files and new code related to some issue discussed by the team. Commits pro-
vide us the information about how work was done and that could be used for
predicting if a commit represent or not a rework source.

3 Problem Statement

In a software project, all commits must be indexed by an issue and usually,
software development includes two types of tools for managing this: a SCM
(Software Configuration Management) tool and an Issue Tracker. SCM tools
are responsible for storing all the code produced and all the information about
modifications made in the development process (commits). Issue Trackers are
responsible for project management, storing the issues and their relation with
commits. In Issue Trackers we can see the history of the project and how commits
effectively concludes each activity needed.

Our work was to merge the information in this two sources and analyse the
data of a real project. We choose the GitHub !platform because of its great
importance in OSS environment. Known as the largest open source community,
GitHub is one of the most important code hosting sites and has a successful
social component useful for analysing developers’ behavior [9,10]. Based on the
Git version control system, GitHub hosts all kinds of open source projects, with

! GitHub.com
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different sizes and programming languages. Big companies have a very important
place in GitHub as they carry large projects and high numbers in the platform.

We have selected the Apache Subversion (SVN) ? project by its relevance
and importance in GitHub platform. A software versioning and revision control
system distributed as free software under the Apache License. Recognized as the
sole leader in the Standalone SCM category, Subversion has in GitHub about
50000 commits divided into 768 branchs and 238 defined milestones. Fifteen
developers are considered members of the actual development team and the
average development productivity in Subversion is about 300 commits and 140
files modified by 8000 lines of code per month. Subversion also uses the Tigris®
platform as the Issue Tracker system and have five types of issues: DEFECT,
CLOSED, NEW, REOPENED, and STARTED, in a total of approximate 2690
activities. This system provides us the information regarding which commits are
related to these issues and their committers.

4 Model and Experimental Setup

In order to analyse Subversion, we have prepared an experimental setup which
include gathering the data in GitHub and Tigris, perform some queries to join
and prepare this information, a statistical analysis about the content in hands
and selection of the relevant features for our model. Finally we created our best
classification model comparing a range of classification algorithms and parameter
refinement. We evaluated the performance with each algorithm tested. In our
data we found some commits that clearly have indicated rework and others that
not. Our work was then to train the model with the first set and test it with
the unlabeled data. Our main task was the classification of commits as rework
sources or not, according to the information about the developer’s activity.

4.1 Data Gathering

The data mining activity started by collecting the data. Two very helpful tools
were used in this job: CVSAnaly and BICHO. These tools are part of the Met-
ricsGrimoire project and fundamental for the OSS research in FLOSSMetrics
project ¢. The tools operate similarly: given a project URL they make auto-
matically all the process of crawling the repository and collecting available (and
public) data. Then a SLQ relational database was created mapping the relation
between the content properties in tables.

With the tools we have collected around 100350 commits, comprehended
between July, 2007 and December 2014. There were 33 developers enrolled with
the project (committing) in this period, 15 labeled as members. The original
data description gathered is listed on Table 1.

2 Apache Subversion - https://subversion.apache.org/
3 Subversion Tigris - http://subversion.tigris.org/
4 FLOSSMetrics Consortium. (2012)
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Table 1. Data description - Data originally gathered

Variable Type Value [Sample

commit _id id integer|189

type atribute [text M

file_id atribute |integer|3

file__name attribute|[text main.py

file path attribute|[text branches/remove-log-addressing /subversion
file parent id |attribute|text 4

revision atribute |integer|100978

date attribute|date [2014-07-01 04:38:02

code attribute|text yes

message attribute|text Follow-up to r1639319: Fix file object lifetime.,*
committer id attribut |[integer|16

committer name|attribute|text stefan.fuhrmann

member attribute|text no

rework target text |yes/no/?

The main item here is a commit, referenced by the commit-id identifier and
composed by the id of the developer, its type (member or not), date, revision
etc. The field type comes for the type of commit, mapped by CVSAnaly as one
of the types: A) ADDITION - file added; D) DELETION - file deleted; M)
MODIFIED - file modified and C) COPY - file copied

In this stage we also gathered the information about the issue, namely search-
ing from the commit-id in the issues table and collecting the type of activity.
We created a rework column that is used as the label column. When the type of
the issue is DEFECT or REOPENED we automatically find the correspondent
commit-id responsible for the error and set the rework as true. In the other cases
it is set false.

We ran a few statistical analysis on RapidMiner to evaluate the information
collected. Figure 1 offers the distribution of the commits between all commit-
ters, an interesting behavior that shows how developers contribute. Figure 2
in other hand shows the distribution of the commits by type of commit. We
clearly conclude that the action "M" is the most common as it represents code

submission.
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We highlight that a great number of commits in the table was not referenced
by an issue. In our analysis, only about 35000 of the 100350 commits (near
34%) could be labeled with this approach. This is an important factor for our
study, since it means we have a large set of unlabeled data for testing and a
correspondent training set (labeled) not so big.

4.2 Data preparation

Using the RapidMiner ® framework, the next step in the process was conduced.
The statistical data analysis implied that not all information contained in the
tables was very relevant to our study, and other needed to be prepared. Figure
3 highlights that revision, date, file-path, file-parent-id, committer-name and
message seems to have no strong correlation with the rework cases. Although
still in Figure 3 we clearly see that the type of the developer was a good property
for this. Thinking about the semantics of the rework, and the statistical analysis,
the most important features were selected: type of developer, type of modification
and number of files affected by one commit. In fact, this information was not
present in our initial data, but is a result of counting the files affected by the
same commit.

commit_id files files

.
. o o o o ©
[ ]

Mogr 00 L,
g 22.#0}. o) ) QSO'
Eks & ik &

comrnitter_id TEVISI0N tate

files " files

*s g0 * ': tpeeM o5 o0 ®C

e e
®o
* b/ .'. e, @ membem ng - @yes
9
.
comimit_l cormrmiter_n

Fig. 3. Statistical visualization of the features

Regarding to data cleansing, we have found some inconsistent commits that
were removed. Some had incomplete fields (the tools used do not make all fields
mandatory and we encountered many null values that could induce an error in
our evaluation), others were identified as merge commits (a commit that make

® https://rapidminer.com/
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the new code available as the official working branch) and were not referenced
by activities. There were few outliers identified and we believe that this could
be explained by a previous filter in the gathering tools. To solve this situation
we have created some basic SQL scripts that filter the undesirable behavior.

Here, our working dataset was consisting in 3311 commits, resulting from
the data preparation. We divided it into two subsets: training (containing all
labeled samples) consisting of 1490 samples and test (unlabeled) consisting of
1821 samples. We used the training subset for all modelling activities and the
test subset for the final evaluation of the model.

4.3 Modeling

In this section, we present the creation of the prediction. More than creating a
simple model, we wanted to compare how different algorithms could impact on
the results and the knowledge over the data. Using RapidMiner, we’ve chosen
three well-known algorithms for the prediction task: Decision Trees, Naive Bayes
and K-NN. These are powerful yet simple mechanisms used in data mining for
classification. Moreover, the chosen algorithms needed to be flexible on param-
eter types and resilient enough for the size and complexity of our dataset. For
all three algorithms we have followed the same methodology for improving the
model and check performance.

We have started with a simple algorithm model in RapidMiner and applied it
to our training set. This implementation gave us a first look at the computed data
and a comparative output for improving the performance. The main problem of
this approach was that it lacked a training mechanism and could be biased by
the distribution of the data. The following approach was improve it by using
a 70-30 split mechanism. We sampled the training set using stratified sampling
and added a performance validation tool in order to compare results and refine
parameters. The final configuration results on different approaches for training,
were: Bootstrap, Split-Validation, Cross-Validation and Holdout.

Decision Trees We have first applied the above methodology to the Decision
Trees algorithm. We have chosen this first because of the meaning of its results.
The algorithm creates a representation of the tree that is the model learned.
With Figure 4 we observed the resulting model as the tree output. We could
see that our first hypothesis was someway correct as decision weight was heavier
on the number of files, membership and type of modification. As we thought,
a commit that alters a big number of files have higher probability to introduce
rework. Equally, we observed that a commit changing files tends to introduce
more rework than a commit removing or adding files, as the last operations were
not too frequent as the first.

Following our strategy, we have implemented the other configurations. We
have tried different parameter settings and verified that the best setup is accu-
racy as the parameter criterion and maximal depth 6. Table 2 show the perfor-
mance evaluation for each configuration. We observed that the results were not
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Fig. 4. Decision Tree resulting model

so divergent, which could be a sign that our data represents well the big picture
of the project repositories or it that this data do not allow great improvement.

Naive Bayes Differently from Decision Trees, Naive Bayes is a simple prob-
abilistic classifier based on applying Bayes’ theorem with strong (naive) inde-
pendence assumptions between the features. As made with Decision Trees, we
have create a simple model and then tried different configurations with Naive
Bayes. Table 2 shows the performances of the this algorithm, when applied to
our training set and compared to the previous.

K-NN Finally, we have tested the K-NN algorithm. The k-Nearest Nearest
Neighbors algorithm is a non-parametric method used for classification and re-
gression that consists in searching the belongings of a sample by consulting the
weights of it K-nearest neighbors. We used parameter k = 2 with weighted vote
and Mixed Euclidean Distance. Back in Table 2 we could observe that this al-
gorithm clearly outperformed the others.

4.4 Performance and Final Model

In data mining, evaluating performance is very important to verify if our pre-
dictions are as good as we want to. Performance is the measure of the correct
predictions compared to the errors. Our model was based on identifying com-
mits as rework-sources (or not). We have a true positive when we identify a
rework-source as such; not identifying it as so causes a false negative.

From the relationship of these values we inferred how good our classifica-
tion was using several standard metrics. In our work we used the most relevant
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Table 2. Performance evaluation for different setups and different algorithms

[ Strategy [Accuracy (%)[Recall (%)[Precision (%)|

Decision Trees
Simple Model 69.80 0.22 100
Bootstrap 69.73 0.44 100
Split Validation 69.80 0.22 100
Cross Validation 69.80 0.22 100
Holdout 69.87 0.44 100
Naive Bayes
Simple Model 70.00 0.44 61.11
Bootstrap 70.00 0.68 60.30
Split Validation 70.00 0.55 100
Cross Validation 70.20 1.48 100
Holdout 70.00 1.71 61.49
K-NN

Simple Model 75.70 5.19 33.89
Bootstrap 78.52 5.48 36.64
Split Validation 75.70 5.19 31.89
Cross Validation 75.70 5.19 37.34
Holdout 73.83 1.41 100

ones: precision, recall, and accuracy. These values depend on the threshold value
obtained using a ROC curve. Figure 5 offers the ROC curves for the three al-
gorithms of the setup. The best threshold depends on the algorithm and by
our analysis we inferred that for Decision Trees is 0.42, and for the other two
algorithms is 0.5.
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Fig.5. ROC curve comparison for the threshold
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In our problem, accuracy was our main performance metric used to select the
best model, our final configuration for the classifier. Accuracy was calculated as
seen in Equation 1

tp +tn

tp+tn+fp+fn (1)

Accuracy =

and provided a measure to determine the quality of the classification crite-

ria. We have finalized this modeling stage by selecting the K-NN classifier with
Bootstraping validation as our final model setup.

5 Empirical Evaluation

We have seen how the final classifier model was created and selected, altogether
with the comparison of different algorithms using RapidMiner. But as said in
section 4.1, the training subset corresponded to 34% of the total number of
commits and the other 66% of the data was called test subset. This was the data
we wanted to classify. We wanted to apply our model to this data and check the
knowledge that extracted from it. Our ultimate goal was to verify if there were
significant developer profiles with different behavior concerning the introduction
of rework in OSS code.

Table 3. Payoff Matrix for the model

True yes|True no|Class Precision
Pred. yes 1582 3347 32.10%
Pred. no 1788 4295 70.61%

Class Recall| 46.94% | 56.20%

Table 3 shows the training payoff table for the model. The results were ob-
tained applying the classifier to the unlabeled data and condensed in Figure 6.
At total, 1821 commits were classified and 494 were predicted to be rework-
sources, corresponding to a 27% of the total. Considering that our prediction
was realistic, this is a very interesting result. It confirms that rework exists in
this environment and seems to achieve the 30%-40% of cost estimated by the
industry [8].

Manipulating the data we queried other relevant information. We have dis-
covered that in the total of 494 problematic commits (possible rework sources),
200 (40%) would be introduced by members and 294 (60%) would be in hands
of volunteers. From the point of view of the type of rework, 483 (98%) would be
in coding activities, facing 11 (2%) in other kinds.

We have found that volunteers introduced more rework in project than mem-
bers, corroborating the hypothesis that they may not know much about the code
specificity. But it is interesting that members of the team introduced a remark-
able quantity of rework also. In fact, this is mostly related to the complexity of
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Fig. 6. Results of prediction on unlabeled data

the activity, as members usually have commits with high number of file modi-
fications. Volunteers seemed to choose simpler issues, in which they have lower
probabilities to introduce rework. 20 of the 33 developers (60%) introduced re-
work, and the distribution of the problematic commits is normalized.

The results have shown a clearly coexistence of two profiles of developers by
analysing the classification of the commits. We attribute this profile distribution
into two distinct roles of developers: (i) regular developers which, members or
not, have probability of introducing bugs or other rework in the project and (ii)
leader developers, expert in programming techniques with a very good knowledge
about the code.

6 Conclusions and Future Work

Rework is a common problem in Software Engineering and some questions about
it are open opportunities of research. This work presented a novel approach for
the rework problem. Based on data mining we have created a model that can
classify developers’ actions and predict if they will lead to rework. Moreover,
our model could give some precious information about developers’ behavior and
associate profiles.

The model was developed following a data mining methodology and in the
process we have illustrated all the stages from data preparation to performance
comparison. Three different algorithms were compared, named Decision Trees,
Naive Bayes and K-NN. The results show that the Decision Tree algorithm is a
very good way to understand the process, but the best algorithm in our case was
K-NN. It outperformed the others in terms of accuracy, recall and precision.

Although volunteers introduced more rework than members confirming our
expectations, results have shown that members also presented this behavior. We
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have discovered that volunteers usually chose to contribute with more punctual
activities, with low impact on the source code. Regarding the classification of
commits, we have observed that the most important features for the classification
were the number of files affected, the type of action and the role of the developer.
Other features such the management of the rework inside project’s versions and
the impact of the contribution of volunteers in many projects at the same time
are beyond the scope of our model.

We consider this work a first attempt to tackle the problem of calculating
rework on OSS and to analyse the characteristics and impact of developers in
open development. We expect to expand this study in three main ways 1) creat-
ing a more general model that applies to all open source repositories and have
a better tunneled parameters; 2) managing to develop new algorithms and com-
bined strategies for multi-label classification; 3) integrating this approach in an
online tool that could help developers at the moment of merging code.
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