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Abstract 
The storage and management of information has always been a challenge for 
software engineering, new programing approaches had to be found, parallel 
processing and then distributed computing programing models were developed, 
and new programing frameworks were developed to assist software developers. 
This is where Hadoop framework, an open source implementation of MapRe-
duce programing model, that also takes advantage of a distributed file system, 
takes its lead, but in the meantime, since its presentation, there were evolutions 
to the MapReduce and new programing models that were introduced by Spark 
and Storm frameworks, that show promising results. 

Keywords: Programing framework, Hadoop, Spark, Storm, distributed compu-
ting. 

1 Introduction 

Through time, size of information kept rising and that immense growth generated the 
need to change the way this information is processed and managed, as individual 
processors clock speed evolution slowed, systems evolved to a multi-processor ori-
ented architecture. However there are scenarios, where the data size is too big to be 
analysed in acceptable time by a single system, and in this cases is where the MapRe-
duce and a distributed file system are able to shine. 

Apache Hadoop is a distributed processing infrastructure. It can be used on a sin-
gle machine, but to take advantage and achieve its full potential, we must scale it to 
hundreds or thousands of computers, each with several processor cores. It’s also de-
signed to efficiently distribute large amounts of work and data across multiple sys-
tems.  

Apache Spark is a data parallel general-purpose batch-processing engine. Work-
flows are defined in a similar and reminiscent style of MapReduce, however, is much 
more capable than traditional Hadoop MapReduce. Apache Spark has its Streaming 
API project that allows for continuous processing via short interval batches. Similar to 
Storm, Spark Streaming jobs run until shutdown by the user or encounter an unrecov-
erable failure. 
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Apache Storm is a task parallel continuous computational engine. It defines its 
workflows in Directed Acyclic Graphs (DAG’s) called “topologies”. These topologies 
run until shutdown by the user or encountering an unrecoverable failure. 

1.1 The big data challenge 

Performing computation on big data is quite a big challenge. To work with volumes 
of data that easily surpass several terabytes in size, requires distributing parts of data 
to several systems to handle in parallel. By doing it, the probability of failure rises. In 
a single-system, failure is not something that usually program designers explicitly 
worry about.[1] 

However, in a distributed scenario, partial failures are expected and common, but 
if the rest of the distributed system is fine, it should be able to recover from the com-
ponent failure or transient error condition and continue to make progress. Providing 
such resilience is a major software engineering challenge. [1] 
In addition, to these sorts of bugs and challenges, there is also the fact that the com-
pute hardware has finite resources available. The major hardware restrictions include: 

• Processor time 
• Memory 
• Hard drive space 
• Network bandwidth 

Individual systems usually have few gigabytes of memory. If the input dataset is 
several terabytes, then this would require a thousand or more machines to hold it in 
RAM and even then, no single machine would be able to process or address all of the 
data. 

Hard drives are a lot bigger than RAM, and a single machine can currently hold 
multiple terabytes of information on its hard drives. But generated data of a large-
scale computation can easily require more space than what original data had occupied. 
During this, some of the storage devices employed by the system may get full, and the 
distributed system will have to send the data to other node, to store the overflow. 
Finally, bandwidth is a limited resource. While a pack of nodes directly connected by 
a gigabit Ethernet generally experience high throughput between them, if all transmit 
multi-gigabyte, they would saturate the switch's bandwidth. Plus, if the systems were 
spread across multiple racks, the bandwidth for the data transfer would be more di-
minished [1].  

To achieve a successful large-scale distributed system, the mentioned resources 
must be efficiently managed. Furthermore, it must allocate some of these resources 
toward maintaining the system as a whole, while devoting as much time as possible to 
the actual core computation[1]. 

Synchronization between multiple systems remains the biggest challenge in dis-
tributed system design. If nodes in a distributed system can explicitly communicate 
with one another, then application designers must be cognizant of risks associated 
with such communication patterns. Finally, the ability to continue computation in the 
face of failures becomes more challenging[1]. 
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Big companies like Google, Yahoo, Microsoft have huge clusters of machines and 
huge datasets to analyse, a framework like Hadoop helps the developers use the clus-
ter without expertise in distributed computing, and taking advantage of Hadoop Dis-
tributed File System.[2] 

2 State of the Art 

This section will begin to explain what is Apache’s Hadoop Framework and how it 
works, also a short presentation of other Apache alternative frameworks, namely 
Spark and Storm. 

2.1 The Hadoop Approach 

Hadoop is designed to efficiently process large volumes of information by connecting 
many commodity computers together to work in parallel. One hypothetic 1000-CPU 
machine would cost a very large amount of money, far more than 1000 single-CPU or 
250 quad-core machines. Hadoop will tie these smaller and more reasonably priced 
machines together into a single cost-effective compute cluster.[1] 
Apache Hadoop has two pillars: 

• YARN - Yet Another Resource Negotiator (YARN) assigns CPU, memory, and 
storage to applications running on a Hadoop cluster. The first generation of Ha-
doop could only run MapReduce applications. YARN enables other application 
frameworks (like Spark) to run on Hadoop as well, which opens up a wide set of 
possibilities.[3] 

• HDFS - Hadoop Distributed File System (HDFS) is a file system that spans all the 
nodes in a Hadoop cluster for data storage. It links together the file systems on 
many local nodes to make them into one big file system.[3]  

MapReduce  
Hadoop is modelled after Google MapReduce. To store and process huge amounts of 
data, we typically need several machines in some cluster configuration.  
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Fig. 1. - MapReduce flow 

A distributed file system (HDFS for Hadoop) uses space across a cluster to store 
data, so that it appears to be in a contiguous volume and provides redundancy to pre-
vent data loss. The distributed file system also allows data collectors to dump data 
into HDFS, so that it is already prime for use with MapReduce. Then the Software 
Engineer writes a Hadoop MapReduce job [4].  

Hadoop job consists of two main steps, a map step and a reduce step. There may 
be, optionally, other steps before the map phase or between the map and reduce phas-
es. The map step reads in a bunch of data, does something to it, and emits a series of 
key-value pairs. One can think of the map phase as a partitioner. In text mining, the 
map phase is where most parsing and cleaning is performed. The output of the map-
pers is sorted and then fed into a series of reducers. The reduce step takes the key 
value pairs and computes some aggregate (reduced) set of data, i.e. sum, average, etc 
[4]. 

The trivial word count exercise starts with a map phase, where text is parsed and a 
key-value pair is emitted: a word, followed by the number “1” indicating that the key-
value pair represents 1 instance of the word. The user might also emit something to 
coerce Hadoop into passing data into different reducers. The words and 1s are sorted 
and passed to the reducers. The reducers take like key-value pairs and compute the 
number of times the word appears in the original input.[5] 
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2.2 SPARK framework 

Apache Spark is an in-memory distributed data analysis platform, primarily targeted 
at speeding up batch analysis jobs, iterative machine learning jobs, interactive query 
and graph processing. One of Spark's primary distinctions is its use of RDDs or Resil-
ient Distributed Datasets. RDDs are great for pipelining parallel operators for compu-
tation and are, by definition, immutable, which allows Spark a unique form of fault 
tolerance based on lineage information. If you are interested in, for example, execut-
ing a Hadoop MapReduce job much faster, Spark is a great option (although memory 
requirements must be considered) [19]. 

It provides high-level APIs in Java, Scala and Python, and an optimized engine 
that supports general execution graphs.  

 
Fig. 3. - Spark Framework 

Fig. 2. - Hadoop workflow[2] 
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It also supports a rich set of higher-level tools, including Shark SQL for SQL and 
structured data processing, MLlib for machine learning, GraphX for graph processing, 
and Spark Streaming [6], helping the development of parallel applications. 

The main goal of Spark is to work with distributed collections, as you would with 
local ones. It relays on a resilient distributed datasets (RDDs), that is a immutable 
collections of objects spread across a cluster, built through parallel transformations 
(map, filter, etc), automatically rebuilt on failure controllable persistence (e.g. caching 
in RAM) for reuse, shared variables that can be used in parallel operations [6]. 

Resilient Distributed Datasets (RDDs) 
Spark’s main abstraction is resilient distributed datasets (RDDs), which are immuta-
ble, partitioned collections that can be created through various data-parallel operators. 

 
Fig. 4. - Lineage graph for the RDDs in our Spark example.[7] 

Each RDD is either a collection stored in an external storage system, such as a file 
in HDFS, or a derived dataset created by applying operators to other RDDs. For ex-
ample, given an RDD of (visitID, URL) pairs for visits to a website, we might com-
pute an RDD of (URL, count) pairs by applying a map operator to turn each event 
into a (URL, 1) pair, and afterward a reduce to add the counts by URL.[7] 
Spark provides three options for persist RDDs: 

1. In-memory storage as deserialized Java Objects (fastest, JVM can access RDD na-
tively) [2]. 

2. In-memory storage as serialized data (space limited) [2]. 
3. On-disk storage (RDD too large to keep in memory, and costly to recomputed) [2].  

Spark streaming 
The key idea behind the model is to treat streaming computations, as a series of de-
terministic batch computations, on small time intervals. The input data received dur-
ing each interval is stored, reliably across the cluster, to form an input dataset for that 
interval. Once the time interval completes, this dataset is processed via deterministic 
parallel operations, such as map, reduce and groupBy, to produce new datasets repre-
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senting program outputs or intermediate state. It stores these results in resilient dis-
tributed datasets (RDDs)[8].  

Apache Spark does not itself require Hadoop to operate. However, its data parallel 
paradigm requires a shared file system for optimal use of stable data. The stable 
source can be S3, NFS, or, more typically, HDFS) [9]. 

2.3 Storm Framework 

Apache Storm is, a free and open source distributed real-time computation system, 
focused on stream processing or what some call complex event processing. Storm 
implements a fault tolerant method for performing a computation or pipelining multi-
ple computations on an event, as it flows into a system. One might use Storm to trans-
form unstructured data, as it flows into a system into a desired format)[9]. 

Apache Storm makes it easy to reliably process unbounded streams of data, doing 
for real-time processing what Hadoop did for batch processing. Storm has many use 
cases: real-time analytics, online machine learning, continuous computation, distrib-
uted RPC, ETL and more. It’s scalable, fault-tolerant, guarantees your data will be 
processed, is easy to set up and operate [9].  

 
Fig. 5. - Storm Framework system architecture 

System architecture:  

• Nimbus: Like JobTracker in Hadoop  
• Supervisor: Manage workers  
• Zookeeper: Store meta data  
• UI: Web-UI 

A Storm cluster is superficially similar to a Hadoop cluster. Whereas on Hadoop 
you run "MapReduce jobs", on Storm you run "topologies". "Jobs" and "topologies" 
themselves are very different; one key difference is that a MapReduce job eventually 
finishes, while a topology processes messages forever (or until you kill it). 
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There are two kinds of nodes on a Storm cluster: the master node and the worker 
nodes. The master node runs a daemon called "Nimbus" that is similar to Hadoop 
"JobTracker". Nimbus is responsible for distributing code around the cluster, assign-
ing tasks to machines, and monitoring for failures [9]. 

Each worker node runs a daemon called the "Supervisor". The supervisor listens 
for work assigned to its machine, starts and stops worker processes, as necessary 
based on what Nimbus has assigned to it. Each worker process executes a subset of a 
topology. A running topology consists of many worker processes, spread across many 
machines [9]. 

Storm does not natively run on top of typical Hadoop clusters, it uses Apache 
ZooKeeper and its own master/minion worker processes to coordinate topologies, 
master and worker state, and the message guarantee semantics [9].   

Having said that, both Yahoo! and Hortonworks are working on providing librar-
ies for running Storm topologies on top of Hadoop 2.x YARN clusters. 

Regardless, Storm can certainly still consume files from HDFS and/or write files 
to HDFS[18][21]. 

3 Discussion 

Spark is one of the newest players in the MapReduce field. Its purpose is to make data 
analytics fast to write, and fast to run. Unlike many MapReduce systems (Hadoop 
inclusive), Spark allows in-memory querying of data (even distributed across ma-
chines) rather than using disk I/O. It’s no surprise that Spark out-performs Hadoop on 
many iterative algorithms. Spark is implemented in Scala, a functional object-oriented 
language that runs on top of the JVM. Similar to other languages like Python and 
Ruby, Scala has an interactive prompt that users can use to query big data straight 
from the Scala interpreter, making it a good choice in some scenarios.  However, it 
does not support a distributed file system on its own, it depends on Hadoop, if a 
HDFS is required. 

The Storm framework is referred as being the Hadoop of Real-time Processing. 
Hadoop is a batch-processing system, this means, give it a big set of static data and it 
will do something with it. Storm is real-time, it processes data in parallel as it streams. 
Therefore, Storm is more a complement to Hadoop rather than a real replacement, as 
Storm fails when it comes to process large persistent data, as its focus is to be able to 
process a large number of streams of data (in real time computation), while Hadoop 
focus is on large amount of persistent data (batch processing). 

3.1 Frameworks features summary 

In the beginning of this survey, I did not know what I would find on programing 
frameworks for distributed computing. Therefore, after this review, summarizing the 
main features and benefits of each of the evaluated frameworks, may serve as contri-
bution to an appropriated and better-informed selection of the framework, that aims 
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the deployment of a new distributed computing platform, or for those considering to 
improve an already existing one. 
 
 Storm Spark Streaming 
Processing Model Record at a time Mini batches 
Latency Sub second Few seconds 
Fault tolerant – every 
record processed 

At least one (may be 
duplicates) 

Exactly one 

Batch framework inte-
gration 

Not available Spark 

Supported languages  Storm was designed 
from the ground up to be 
usable with any pro-
gramming language [9]. 

Python, Scala, Java 

Table 1. Storm vs. Spark Streaming 

Based on my research, the comparison must be made based on use cases oriented 
view, as the frameworks end up being more complementary than competitive among 
each other. One thing was made clear, in all references, it does not matter if you 
choose Hadoop, Spark or Storm, having the HDFS is an advantage, because it solves 
many of storage problems associated with big data computing. So Hadoop is kind of 
“mandatory”, if you need HDFS benefits. 

For Spark, its best use cases, are iterative Machine Learning algorithms and Inter-
active analytics. Furthermore, Spark plus Hadoop is always better than only Hadoop, 
except when the work dataset size exceeds the individual node RAM size, so in a way 
it depends on the available infrastructure or required work dataset size. 

Storm is a good choice if you need sub-second latency and no data loss. Spark 
Streaming is better if you need stateful computation, with the guarantee that each 
event is processed exactly once. Spark Streaming programming logic may also be 
easier because it’s similar to batch programming, in that way, you are working with 
batches (albeit very small ones)[19]. 

One key difference between these two technologies is that Spark performs Data-
Parallel computations while Storm performs Task-Parallel computations.  

4 Conclusion 

After this analysis it is possible to realize that the Hadoop framework will stay around 
for a while, and for a good reason. Even knowing that MapReduce cannot solve every 
problem, it is still a good choice for research, experimentation, and everyday data 
manipulation. One of the other frameworks abovementioned, may be better if the 
advantages of HDFS are not necessarily imperative, or if the use cases are compatible 
with the framework capabilities, and consequently able to take advantage of its bene-
fits.  
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In overall, the most suitable platform must always take into account the scenario 
to witch the system is most focussed. 

It’s important to acknowledge that the newer Hadoop versions based on YARN, 
allow Spark to run on top of Hadoop, and there is on-going work to achieve the same 
with Storm.  

It remains to be seen how successful those implementations are, and also how they 
compare to its native counterparts versions Spark and Storm, since these aspects 
weren’t approached by this survey. 
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