
Survey on Frameworks for Distributed Computing:
Hadoop, Spark and Storm

Telmo da Silva Morais

Student of Doctoral Program of Informatics Engineering
Faculty of Engineering, University of Porto

Porto, Portugal
Telmo.morais@gmail.com

Abstract
The storage and management of information has always been a challenge for
software engineering, new programing approaches had to be found, parallel
processing and then distributed computing programing models were developed,
and new programing frameworks were developed to assist software developers.
This is where Hadoop framework, an open source implementation of MapRe-
duce programing model, that also takes advantage of a distributed file system,
takes its lead, but in the meantime, since its presentation, there were evolutions
to the MapReduce and new programing models that were introduced by Spark
and Storm frameworks, that show promising results.

Keywords: Programing framework, Hadoop, Spark, Storm, distributed compu-
ting.

1 Introduction

Through time, size of information kept rising and that immense growth generated the
need to change the way this information is processed and managed, as individual
processors clock speed evolution slowed, systems evolved to a multi-processor ori-
ented architecture. However there are scenarios, where the data size is too big to be
analysed in acceptable time by a single system, and in this cases is where the MapRe-
duce and a distributed file system are able to shine.

Apache Hadoop is a distributed processing infrastructure. It can be used on a sin-
gle machine, but to take advantage and achieve its full potential, we must scale it to
hundreds or thousands of computers, each with several processor cores. It’s also de-
signed to efficiently distribute large amounts of work and data across multiple sys-
tems.

Apache Spark is a data parallel general-purpose batch-processing engine. Work-
flows are defined in a similar and reminiscent style of MapReduce, however, is much
more capable than traditional Hadoop MapReduce. Apache Spark has its Streaming
API project that allows for continuous processing via short interval batches. Similar to
Storm, Spark Streaming jobs run until shutdown by the user or encounter an unrecov-
erable failure.

Proceedings of the 10th Doctoral Symposium in Informatics Engineering - DSIE’15

1st Edition, 2015 - ISBN: 978-972-752-173-9 p.95

Apache Storm is a task parallel continuous computational engine. It defines its
workflows in Directed Acyclic Graphs (DAG’s) called “topologies”. These topologies
run until shutdown by the user or encountering an unrecoverable failure.

1.1 The big data challenge

Performing computation on big data is quite a big challenge. To work with volumes
of data that easily surpass several terabytes in size, requires distributing parts of data
to several systems to handle in parallel. By doing it, the probability of failure rises. In
a single-system, failure is not something that usually program designers explicitly
worry about.[1]

However, in a distributed scenario, partial failures are expected and common, but
if the rest of the distributed system is fine, it should be able to recover from the com-
ponent failure or transient error condition and continue to make progress. Providing
such resilience is a major software engineering challenge. [1]
In addition, to these sorts of bugs and challenges, there is also the fact that the com-
pute hardware has finite resources available. The major hardware restrictions include:

• Processor time
• Memory
• Hard drive space
• Network bandwidth

Individual systems usually have few gigabytes of memory. If the input dataset is
several terabytes, then this would require a thousand or more machines to hold it in
RAM and even then, no single machine would be able to process or address all of the
data.

Hard drives are a lot bigger than RAM, and a single machine can currently hold
multiple terabytes of information on its hard drives. But generated data of a large-
scale computation can easily require more space than what original data had occupied.
During this, some of the storage devices employed by the system may get full, and the
distributed system will have to send the data to other node, to store the overflow.
Finally, bandwidth is a limited resource. While a pack of nodes directly connected by
a gigabit Ethernet generally experience high throughput between them, if all transmit
multi-gigabyte, they would saturate the switch's bandwidth. Plus, if the systems were
spread across multiple racks, the bandwidth for the data transfer would be more di-
minished [1].

To achieve a successful large-scale distributed system, the mentioned resources
must be efficiently managed. Furthermore, it must allocate some of these resources
toward maintaining the system as a whole, while devoting as much time as possible to
the actual core computation[1].

Synchronization between multiple systems remains the biggest challenge in dis-
tributed system design. If nodes in a distributed system can explicitly communicate
with one another, then application designers must be cognizant of risks associated
with such communication patterns. Finally, the ability to continue computation in the
face of failures becomes more challenging[1].

Proceedings of the 10th Doctoral Symposium in Informatics Engineering - DSIE’15

1st Edition, 2015 - ISBN: 978-972-752-173-9 p.96

Big companies like Google, Yahoo, Microsoft have huge clusters of machines and
huge datasets to analyse, a framework like Hadoop helps the developers use the clus-
ter without expertise in distributed computing, and taking advantage of Hadoop Dis-
tributed File System.[2]

2 State of the Art

This section will begin to explain what is Apache’s Hadoop Framework and how it
works, also a short presentation of other Apache alternative frameworks, namely
Spark and Storm.

2.1 The Hadoop Approach

Hadoop is designed to efficiently process large volumes of information by connecting
many commodity computers together to work in parallel. One hypothetic 1000-CPU
machine would cost a very large amount of money, far more than 1000 single-CPU or
250 quad-core machines. Hadoop will tie these smaller and more reasonably priced
machines together into a single cost-effective compute cluster.[1]
Apache Hadoop has two pillars:

• YARN - Yet Another Resource Negotiator (YARN) assigns CPU, memory, and
storage to applications running on a Hadoop cluster. The first generation of Ha-
doop could only run MapReduce applications. YARN enables other application
frameworks (like Spark) to run on Hadoop as well, which opens up a wide set of
possibilities.[3]

• HDFS - Hadoop Distributed File System (HDFS) is a file system that spans all the
nodes in a Hadoop cluster for data storage. It links together the file systems on
many local nodes to make them into one big file system.[3]

MapReduce
Hadoop is modelled after Google MapReduce. To store and process huge amounts of
data, we typically need several machines in some cluster configuration.

Proceedings of the 10th Doctoral Symposium in Informatics Engineering - DSIE’15

1st Edition, 2015 - ISBN: 978-972-752-173-9 p.97

Fig. 1. - MapReduce flow

A distributed file system (HDFS for Hadoop) uses space across a cluster to store
data, so that it appears to be in a contiguous volume and provides redundancy to pre-
vent data loss. The distributed file system also allows data collectors to dump data
into HDFS, so that it is already prime for use with MapReduce. Then the Software
Engineer writes a Hadoop MapReduce job [4].

Hadoop job consists of two main steps, a map step and a reduce step. There may
be, optionally, other steps before the map phase or between the map and reduce phas-
es. The map step reads in a bunch of data, does something to it, and emits a series of
key-value pairs. One can think of the map phase as a partitioner. In text mining, the
map phase is where most parsing and cleaning is performed. The output of the map-
pers is sorted and then fed into a series of reducers. The reduce step takes the key
value pairs and computes some aggregate (reduced) set of data, i.e. sum, average, etc
[4].

The trivial word count exercise starts with a map phase, where text is parsed and a
key-value pair is emitted: a word, followed by the number “1” indicating that the key-
value pair represents 1 instance of the word. The user might also emit something to
coerce Hadoop into passing data into different reducers. The words and 1s are sorted
and passed to the reducers. The reducers take like key-value pairs and compute the
number of times the word appears in the original input.[5]

Proceedings of the 10th Doctoral Symposium in Informatics Engineering - DSIE’15

1st Edition, 2015 - ISBN: 978-972-752-173-9 p.98

2.2 SPARK framework

Apache Spark is an in-memory distributed data analysis platform, primarily targeted
at speeding up batch analysis jobs, iterative machine learning jobs, interactive query
and graph processing. One of Spark's primary distinctions is its use of RDDs or Resil-
ient Distributed Datasets. RDDs are great for pipelining parallel operators for compu-
tation and are, by definition, immutable, which allows Spark a unique form of fault
tolerance based on lineage information. If you are interested in, for example, execut-
ing a Hadoop MapReduce job much faster, Spark is a great option (although memory
requirements must be considered) [19].

It provides high-level APIs in Java, Scala and Python, and an optimized engine
that supports general execution graphs.

Fig. 3. - Spark Framework

Fig. 2. - Hadoop workflow[2]

Proceedings of the 10th Doctoral Symposium in Informatics Engineering - DSIE’15

1st Edition, 2015 - ISBN: 978-972-752-173-9 p.99

It also supports a rich set of higher-level tools, including Shark SQL for SQL and
structured data processing, MLlib for machine learning, GraphX for graph processing,
and Spark Streaming [6], helping the development of parallel applications.

The main goal of Spark is to work with distributed collections, as you would with
local ones. It relays on a resilient distributed datasets (RDDs), that is a immutable
collections of objects spread across a cluster, built through parallel transformations
(map, filter, etc), automatically rebuilt on failure controllable persistence (e.g. caching
in RAM) for reuse, shared variables that can be used in parallel operations [6].

Resilient Distributed Datasets (RDDs)
Spark’s main abstraction is resilient distributed datasets (RDDs), which are immuta-
ble, partitioned collections that can be created through various data-parallel operators.

Fig. 4. - Lineage graph for the RDDs in our Spark example.[7]

Each RDD is either a collection stored in an external storage system, such as a file
in HDFS, or a derived dataset created by applying operators to other RDDs. For ex-
ample, given an RDD of (visitID, URL) pairs for visits to a website, we might com-
pute an RDD of (URL, count) pairs by applying a map operator to turn each event
into a (URL, 1) pair, and afterward a reduce to add the counts by URL.[7]
Spark provides three options for persist RDDs:

1. In-memory storage as deserialized Java Objects (fastest, JVM can access RDD na-
tively) [2].

2. In-memory storage as serialized data (space limited) [2].
3. On-disk storage (RDD too large to keep in memory, and costly to recomputed) [2].

Spark streaming
The key idea behind the model is to treat streaming computations, as a series of de-
terministic batch computations, on small time intervals. The input data received dur-
ing each interval is stored, reliably across the cluster, to form an input dataset for that
interval. Once the time interval completes, this dataset is processed via deterministic
parallel operations, such as map, reduce and groupBy, to produce new datasets repre-

Proceedings of the 10th Doctoral Symposium in Informatics Engineering - DSIE’15

1st Edition, 2015 - ISBN: 978-972-752-173-9 p.100

senting program outputs or intermediate state. It stores these results in resilient dis-
tributed datasets (RDDs)[8].

Apache Spark does not itself require Hadoop to operate. However, its data parallel
paradigm requires a shared file system for optimal use of stable data. The stable
source can be S3, NFS, or, more typically, HDFS) [9].

2.3 Storm Framework

Apache Storm is, a free and open source distributed real-time computation system,
focused on stream processing or what some call complex event processing. Storm
implements a fault tolerant method for performing a computation or pipelining multi-
ple computations on an event, as it flows into a system. One might use Storm to trans-
form unstructured data, as it flows into a system into a desired format)[9].

Apache Storm makes it easy to reliably process unbounded streams of data, doing
for real-time processing what Hadoop did for batch processing. Storm has many use
cases: real-time analytics, online machine learning, continuous computation, distrib-
uted RPC, ETL and more. It’s scalable, fault-tolerant, guarantees your data will be
processed, is easy to set up and operate [9].

Fig. 5. - Storm Framework system architecture

System architecture:

• Nimbus: Like JobTracker in Hadoop
• Supervisor: Manage workers
• Zookeeper: Store meta data
• UI: Web-UI

A Storm cluster is superficially similar to a Hadoop cluster. Whereas on Hadoop
you run "MapReduce jobs", on Storm you run "topologies". "Jobs" and "topologies"
themselves are very different; one key difference is that a MapReduce job eventually
finishes, while a topology processes messages forever (or until you kill it).

Proceedings of the 10th Doctoral Symposium in Informatics Engineering - DSIE’15

1st Edition, 2015 - ISBN: 978-972-752-173-9 p.101

There are two kinds of nodes on a Storm cluster: the master node and the worker
nodes. The master node runs a daemon called "Nimbus" that is similar to Hadoop
"JobTracker". Nimbus is responsible for distributing code around the cluster, assign-
ing tasks to machines, and monitoring for failures [9].

Each worker node runs a daemon called the "Supervisor". The supervisor listens
for work assigned to its machine, starts and stops worker processes, as necessary
based on what Nimbus has assigned to it. Each worker process executes a subset of a
topology. A running topology consists of many worker processes, spread across many
machines [9].

Storm does not natively run on top of typical Hadoop clusters, it uses Apache
ZooKeeper and its own master/minion worker processes to coordinate topologies,
master and worker state, and the message guarantee semantics [9].

Having said that, both Yahoo! and Hortonworks are working on providing librar-
ies for running Storm topologies on top of Hadoop 2.x YARN clusters.

Regardless, Storm can certainly still consume files from HDFS and/or write files
to HDFS[18][21].

3 Discussion

Spark is one of the newest players in the MapReduce field. Its purpose is to make data
analytics fast to write, and fast to run. Unlike many MapReduce systems (Hadoop
inclusive), Spark allows in-memory querying of data (even distributed across ma-
chines) rather than using disk I/O. It’s no surprise that Spark out-performs Hadoop on
many iterative algorithms. Spark is implemented in Scala, a functional object-oriented
language that runs on top of the JVM. Similar to other languages like Python and
Ruby, Scala has an interactive prompt that users can use to query big data straight
from the Scala interpreter, making it a good choice in some scenarios. However, it
does not support a distributed file system on its own, it depends on Hadoop, if a
HDFS is required.

The Storm framework is referred as being the Hadoop of Real-time Processing.
Hadoop is a batch-processing system, this means, give it a big set of static data and it
will do something with it. Storm is real-time, it processes data in parallel as it streams.
Therefore, Storm is more a complement to Hadoop rather than a real replacement, as
Storm fails when it comes to process large persistent data, as its focus is to be able to
process a large number of streams of data (in real time computation), while Hadoop
focus is on large amount of persistent data (batch processing).

3.1 Frameworks features summary

In the beginning of this survey, I did not know what I would find on programing
frameworks for distributed computing. Therefore, after this review, summarizing the
main features and benefits of each of the evaluated frameworks, may serve as contri-
bution to an appropriated and better-informed selection of the framework, that aims

Proceedings of the 10th Doctoral Symposium in Informatics Engineering - DSIE’15

1st Edition, 2015 - ISBN: 978-972-752-173-9 p.102

the deployment of a new distributed computing platform, or for those considering to
improve an already existing one.

 Storm Spark Streaming
Processing Model Record at a time Mini batches
Latency Sub second Few seconds
Fault tolerant – every
record processed

At least one (may be
duplicates)

Exactly one

Batch framework inte-
gration

Not available Spark

Supported languages Storm was designed
from the ground up to be
usable with any pro-
gramming language [9].

Python, Scala, Java

Table 1. Storm vs. Spark Streaming

Based on my research, the comparison must be made based on use cases oriented
view, as the frameworks end up being more complementary than competitive among
each other. One thing was made clear, in all references, it does not matter if you
choose Hadoop, Spark or Storm, having the HDFS is an advantage, because it solves
many of storage problems associated with big data computing. So Hadoop is kind of
“mandatory”, if you need HDFS benefits.

For Spark, its best use cases, are iterative Machine Learning algorithms and Inter-
active analytics. Furthermore, Spark plus Hadoop is always better than only Hadoop,
except when the work dataset size exceeds the individual node RAM size, so in a way
it depends on the available infrastructure or required work dataset size.

Storm is a good choice if you need sub-second latency and no data loss. Spark
Streaming is better if you need stateful computation, with the guarantee that each
event is processed exactly once. Spark Streaming programming logic may also be
easier because it’s similar to batch programming, in that way, you are working with
batches (albeit very small ones)[19].

One key difference between these two technologies is that Spark performs Data-
Parallel computations while Storm performs Task-Parallel computations.

4 Conclusion

After this analysis it is possible to realize that the Hadoop framework will stay around
for a while, and for a good reason. Even knowing that MapReduce cannot solve every
problem, it is still a good choice for research, experimentation, and everyday data
manipulation. One of the other frameworks abovementioned, may be better if the
advantages of HDFS are not necessarily imperative, or if the use cases are compatible
with the framework capabilities, and consequently able to take advantage of its bene-
fits.

Proceedings of the 10th Doctoral Symposium in Informatics Engineering - DSIE’15

1st Edition, 2015 - ISBN: 978-972-752-173-9 p.103

In overall, the most suitable platform must always take into account the scenario
to witch the system is most focussed.

It’s important to acknowledge that the newer Hadoop versions based on YARN,
allow Spark to run on top of Hadoop, and there is on-going work to achieve the same
with Storm.

It remains to be seen how successful those implementations are, and also how they
compare to its native counterparts versions Spark and Storm, since these aspects
weren’t approached by this survey.

Acknowledgements

The author takes here the chance to say thanks to all the reviewers anonymous that
helped whit their revision to improve the resulting quality of this paper.

References

1. Yahoo! Hadoop Tutorial. https://developer.yahoo.com/hadoop/tutorial/. Accessed 20 Dec
2014.

2. Aridhi S (2014) Frameworks for Distributed Computing Sabeur Aridhi.
3. What is Hadoop. http://www-01.ibm.com/software/data/infosphere/hadoop/. Accessed 22

Dec 2014.
4. Rosario R (2011) No Title. http://www.bytemining.com/2011/08/hadoop-fatigue-

alternatives-to-hadoop/. Accessed 15 Dec 2014.
5. Welcome to ApacheTM Hadoop®! http://hadoop.apache.org/. Accessed 20 Dec 2014.
6. Apache Spark. https://spark.apache.org/. Accessed 26 Dec 2014.
7. Xin R, Rosen J, Zaharia M (2013) Shark: SQL and rich analytics at scale.
8. Zaharia M, Das T, Li H, et al. (2012) Discretized streams: an efficient and fault-tolerant

model for stream processing on large clusters. Proc. 4th Edition.
9. Apache Storm. https://storm.apache.org/. Accessed 27 Dec 2014.

10. Xuhui Liu; Jizhong Han; Yunqin Zhong; Chengde Han; Xubin He, Implementing WebGIS
on Hadoop: A case study of improving small file I/O performance on HDFS, Cluster
Computing and Workshops, 2009. CLUSTER '09. IEEE International Conference on , vol.,
no., pp.1,8, Aug. 31 2009-Sept. 4 2009.

11. L. Jiang, B. Li, M. Song, THE optimization of HDFS based on small files, In 3rd IEEE In-
ternational Conference on Broadband Network and Multimedia Technology (IC-
BNMT2010), Beijing, 2010. pp. 912-915.

12. G. Mackey, S. Sehrish, J. Wang, Improving metadata management for small files in
HDFS, In 2009 IEEE International Conference on Cluster Computing and Workshops
(CLUSTER'09), New Orleans,Sept, 2009, pp.1-4.

13. Jiong Xie; Shu Yin; Xiaojun Ruan; Zhiyang Ding; Yun Tian; Majors, J.; Manzanares, A.;
Xiao Qin, Improving MapReduce performance through data placement in heterogeneous
Hadoop clusters, Parallel & Distributed Processing, Workshops and Phd Forum
(IPDPSW), 2010 IEEE International Symposium on , vol., no., pp.1,9, 19-23 April 2010.

Proceedings of the 10th Doctoral Symposium in Informatics Engineering - DSIE’15

1st Edition, 2015 - ISBN: 978-972-752-173-9 p.104

14. Thanh, T.D.; Mohan, S.; Eunmi Choi; SangBum Kim; Pilsung Kim, A Taxonomy and
Survey on Distributed File Systems, Networked Computing and Advanced Information
Management, 2008. NCM '08. Fourth International Conference on, vol.1, no., pp.144,149,
2-4 Sept. 2008.

15. S. Ghemawat, H. Gobioff, and S.-T. Leung. The google file system. In SOSP ’03: Pro-
ceedings of the Nineteenth ACM Symposium on Operating Systems Principles, pages 29–
43, New York, NY, USA, 2003. ACM.

16. J. M. Hellerstein, M. Stonebraker, and J. Hamilton. Architecture of a database system.
Foundations and Trends in Databases, 1(2): 141–259,2007.

17. Apache Storm vs. Apache Spark. http://www.zdatainc.com/2014/09/apache-storm-apache-
spark/. Accessed 20 Dec 2014.

18. Storm vs. Spark Streaming: Side-by-side comparison. http://xinhstechblog.blogspot.pt/
2014/06/storm-vs-spark-streaming-side-by-side.html. Accessed 20 Dec 2014.

19. How to run Storm on Apache Mesos. https://mesosphere.com/docs/tutorials/run-storm-on-
mesos/. Accessed 20 Dec 2014.

20. Storm on YARN Install on HDP2 Cluster. http://hortonworks.com/kb/storm-on-yarn-
install-on-hdp2-beta-cluster/. Accessed 20 Dec 2014.

Proceedings of the 10th Doctoral Symposium in Informatics Engineering - DSIE’15

1st Edition, 2015 - ISBN: 978-972-752-173-9 p.105

