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ABSTRACT 

 

Systematic parametric studies of fatigue crack propagation laws are not commonly found in the technical literature. 

Nevertheless, such studies are interesting to make explicit the dependence of fatigue life with the variation of the 

constants that characterize the mechanical behaviour of the material, such as the Paris law constants, fracture toughness 

or the applied force/stress. 

 

The parametric studies should contemplate the influence of several important aspects such as the various possible forms 

of the relationship 𝐾 = 𝑓(𝑎, … ). As concerns this aspect, while remote loading generally implies 𝐾 increasing with 𝑎, 

point loading acting upon the crack faces and opening the crack imply that 𝐾 increases with the reduction of 𝑎, 

assuming the remaining conditions constant. These circumstances led to the interest in broadening existing parametric 

analyses by including explicit treatment of aspects such as those mentioned above. 

 

It is shown that 𝐶 and 𝑚, the Paris' law parameters, are the most influential on life, followed by 𝑎0 and last by 𝐾𝑐 which 

has a small influence on life. This parametric study should help designers choose appropriate materials for their desired 

applications by considering their properties and the effect of those properties on fatigue crack propagation life, 

systematically shown in the communication. 
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 INTRODUCTION 

 

Engineers generally want to have durable structures, but 

in some applications, like cars and airplanes, they also 

need to be as lightweight as possible to reduce fuel 

consumption. Knowledge about fatigue is essential to 

achieve both those goals simultaneously, because it 

allows to determine how many loading cycles a given 

structure can support before it fails. 

 

Fatigue mechanics can be traced back to the XIX 

century [1] to authors such as Albert [2] and Wohler [3]. 

Four different approaches can be taken to fatigue, 

namely, the stress-life (𝑆 − 𝑁) model, the strain life 

(𝜀 − 𝑁) model, the fatigue crack growth model 

(𝑑𝑎/𝑑𝑁 − Δ𝐾), and the two stage model which 

combines the strain model and the crack growth model 

[4] The present report focuses on the fatigue crack 

growth model, which combines the stress intensity 

factor (𝐾) from Linear Elastic Fracture Mechanics 

(LEFM), proposed by Irwin [5], with fatigue using 

Paris' Law [6], [7]. 

 

Parametric studies of Paris' law were presented by 

Mínguez and his colleagues [8], [9]. These studies are 

interesting to make explicit the dependence of fatigue 

life with the variation of the constants that characterize 

the mechanical behaviour of the material, such as the 

Paris' law constants and the critical stress intensity 

factor (𝐾𝑐). But they do not contemplate the influence of 

several important aspects such as the various possible 

forms of the relationship 𝐾 = 𝑓(𝑎, … ). As concerns the 

latter aspect, recall that while remote loading generally 

implies 𝐾 increasing with 𝑎, point loading acting upon 

the crack faces and opening the crack imply 'ceteris 

paribus'  - i.e. assuming the remaining conditions 

constant - that 𝐾 increases with the reduction of 𝑎. 

These circumstances led to the interest in broadening 

the previous work by [8], [9]. The main aim of this 

work is to determine the influence of various material 

parameters in the fatigue life of three different cases, 

namely, an infinite plate with a central crack subjected 

to a remote stress loading and an infinite plate under 

point loading at the crack centre. 

 

 FATIGUE 

 

2.1. Infinite Plate Under Stress Loading 

 

Even though crack propagation occurring under fatigue 

shows some yielding at the crack tip, it is small when 

compared to monotonic loading, even for materials with 
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significant plasticity [4], so crack growth in fatigue can 

be described similarly to Linear-Elastic Fracture 

Mechanics (LEFM), except on very high loads and low 

cycle fatigue cases [10]. The stress intensity factor 

range (Δ𝐾) is defined as follows: 

 

Δ𝐾 = 𝑌Δ𝜎√𝜋𝑎 (1) 

 

𝑌 being the geometry factor of the problem, which is 

equal to 1 in the infinite plate, Δσ is the stress range and 

𝑎 is the half-crack length. The critical half-crack size 

(𝑎𝑐) is a crack for which 𝐾 exceeds its critical value 

(𝐾𝑐) for a given maximum stress σ𝑚𝑎𝑥, in the analysed 

case of 𝑅 = 0 and σ𝑚𝑎𝑥 = Δσ. So 𝑎𝑐 is defined as: 

 

ac =
Kc

2

(Yσmax)2π
 (2) 

 

In the early 1960s Paris and his colleagues proposed 

what is now known as Paris’ law [6], [7], which relates 

Δ𝐾 to the crack growth rate, being described as follows 

for the infinite plate problem: 

 
𝑑𝑎

𝑑𝑁
= 𝐶(Δ𝐾)𝑚 (3) 

 

This equation can be integrated for the infinite plate 

subjected to a remote stress loading. Its final form is 

commonly written as: 

 

𝑁 =
1

(
𝑚
2

− 1) 𝐶(Δσ√π)
𝑚 (

1

𝑎0
𝑚/2−1

−
1

𝑎𝑚/2−1
)

=
1

𝐵
(𝐴 −

1

𝑎𝑀
) 

(4) 

 

 
Figure 1. Infinite plate under remote stress loading 

Substituting the critical crack size obtained from Eq. (1) 

into Eq. (4) it is possible to obtain the first critical 

number of cycles: 

 

𝑁𝑐1 =
1

𝐵
(𝐴 −

1

𝑎𝑐
𝑀

) (5) 

 

This integration can also be written with respect to 𝑎 

after some transformations: 

 

𝑎 =
1

(𝐴 − 𝐵𝑁)
1
𝑀

 (6) 

 

This means that the crack length will tend to infinity 

when the denominator tends to zero, so the second 

critical number of cycles is 𝑁𝑐2 = 𝐴/𝐵, which can also 

be considered as the number of cycles needed for the 

plate to fail, however 𝑁𝑐1 is always lower than 𝑁𝑐2, and 

in reality a crack cannot propagate until infinity, so 𝑁𝑐1 

is a more correct failure assumption. 

 

2.2. Infinite Plate Under Point Loading 

 

A particular case in fracture mechanics is the infinite 

plate under point loading whose Westergaard function 

[11], can be written as [12]: 

 

Z =
P

πz
√

a2

z2 − a2
 

(7) 

 

Considering that the point load is located at the centre 

of the crack the stress intensity factor in this case can be 

used to obtain it according to the following equation, 

[12]: 

 

𝐾 =
𝑃

√π𝑎
 

(8) 

 

this equation can be used to determine 𝑎𝑐 by knowing 

the material 𝐾𝑐 and 𝑃𝑚𝑎𝑥 , which is equal to Δ𝑃 for 𝑅 =
0 as in the present case: 

 

𝑎𝑐 =
𝑃𝑚𝑎𝑥

2

𝐾𝑐
2π

 
(9) 

 

By substituting (8) into Paris’ law: 

 

𝑑𝑎

𝑑𝑁
= 𝐶 (

Δ𝑃

√π𝑎
)

𝑚

 
(10) 

 

Paris’ law is then integrated similarly to the previous 

example to obtain the number of cycles needed to reach 

a particular crack length: 

 

𝑁 =
1

(1 +
𝑚
2

) 𝐶(Δ𝑃/√π)
𝑚 (𝑎1+

𝑚
2 − 𝑎0

1+
𝑚
2 ) 

(11) 
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Figure 2. Infinite plate under point loading 

 

 PARAMETRIC STUDY 

 

3.1. Infinite Plate Under Stress Loading 

 

In the parametric study conducted for the infinite plate 

case the default values are: Δσ = 100 MPa; 𝑚 = 2.5 

mm/cycle; 𝐶 = 1 × 10−11; 𝐾𝑐 = 3000 N/mm3/2; 𝑎0 =
10 mm, one at a time, these values were changed to 

determine which ones have a greater influence on the 

number of cycles. The choice of default values was 

made based on the range of material  properties of 

various metals presented in [4], being these values 

within that range. 

 

The analysis of Figure 3 shows that 𝑚 has the biggest 

influence in 𝑁𝑓 when compared to the other parameters 

for high loads, low cycle life. However, 𝐶 also greatly 

influences fatigue life, and for lower loads it is more 

influential than 𝑚. For both 𝑚 and 𝐶 smaller values 

result in higher 𝑁𝑓, and the inverse happens for higher 

values of 𝑚 and 𝐶. This happens because 𝑚 is the slope 

of the logarithmic plot of Paris’ law [8], a lower slope 

leads to smaller crack growth rates per cycle, and 𝐶 is 

the crack growth rate value close to the origin [8], so if 

it is lower the crack growth rate will remain lower 

throughout fatigue life. 

In Figure 3 a Δσ plateau is also visible, if Δσ is higher 

than that the plateau the plate supports no load cycles, 

this plateau is increased by increasing 𝐾𝑐 or decreasing 

𝑎0, and it is decreased by the opposite changes to 𝐾𝑐 

and 𝑎0. This is due to Eq. (2), by replacing 𝑎𝑐 with 𝑎0 

and rearranging it is possible to determine the Δ𝜎 at 

which the plateau occurs (Δσ𝑝):  

 

Δσ𝑝 =
𝐾𝑐

√π𝑎0

 (12) 

 

which corresponds to a load that implies unstable crack 

propagation, causing failure after just one load, the 

monotonic load case. 𝐾𝑐 has an influence in the number 

of cycles before failing only for Δσ > 200 MPa, having 

minimal effect for loads lower than that. 

 

 

(a)  

(b)  

(c)  

(d)  

Figure 3. Number of cycles until failure as a function of 

the stress range, with varying (a) 𝑚, (b) 𝐶, (c) 𝐾𝑐, (d) 

𝑎0 
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3.2. Infinite Plate Under Point Loading 

 

The second case studied in this work is the infinite plate 

under a concentrated load at the crack centre. When an 

infinite plate is subjected to a concentrated load at the 

crack's centre 𝐾 tends to decrease with crack size, as 

shown in Figure 4, made using 𝑃 = 2 × 104 N and σ =
20 MPa. Therefore, unlike the case of Section 3.1 where 

after 𝑎𝑐 is reached 𝐾 would continue to increase beyond 

𝐾𝑐 and the crack propagates in an unstable manner 

which can be interpreted as complete failure of the 

plate; in the case of this section, since 𝐾 decreases with 

crack length, when everything else remains the same, 

the interpretation that can be made is that the crack 

stops propagating unstably when 𝑎𝑐 is equal to the 𝐾𝑐 of 

the material, meaning that 𝑎𝑐 is in fact the minimum 

crack length for a given load 𝑃 and critical stress 

intensity factor 𝐾𝑐. Beyond 𝑎𝑐 the crack grows only due 

to fatigue according to the Paris law.  

 

In the parametric study conducted for the infinite plate 

under point loading case the default values are: Δ𝑃 =
2 × 104 N; 𝑚 = 2.5 mm/cycle; 𝐶 = 1 × 10−11; 𝐾𝑐 =
3000 N/mm3/2; 𝑎0 = 10 mm, one at a time, these values 

were changed to assess their influence in the crack 

evolution, failure was not determined since this type of 

loading does not have a well-defined failure criterion. 

Initially, the difference between considering an arbitrary 

initial crack length or 𝑎𝑐 as the initial crack was tested, 

Figure Figure 5a. It is observed that, as expected, 

starting from a lower crack length, in the initial cycles 

there is a difference between both approaches, but as the 

cycles increase that difference starts disappearing and 

after 105 cycles it is almost null. 

 

In subsequent parametric analysis of this example the 

𝑎0 = 𝑎𝑐 approach was used because it is more logical in 

this example. With that in mind, the influence of 𝐾𝑐 in 

crack growth was assessed, Figure 5b, showing that  

while it influences the initial crack length, it does not 

change crack length much when the number of cycles is 

105 or more. The other parametric variations tested,  

 

 
Figure 4. Relationship between crack length and stress 

intensity factor for the two loading cases 

 

(a)  

(b)  

Figure 5. Influence in crack growth considering (a) that 

the initial crack length is 𝑎𝑐 or and initially set crack, 

(b) different 𝐾𝑐 which change 𝑎𝑐 

 

Figure 6, show that 𝑚 has the biggest influence on crack 

growth, with high values significantly increasing crack 

propagation speed. Also as expected, higher Δ𝑃 and 𝐶 

values result in accelerated crack propagation. 

 

 CONCLUSION 

  

This work presents a parametric study of fatigue crack 

propagation and resulting life for two different loading 

cases of an idealized cracked infinite plate, a remote 

stress loading and a concentrated load at the crack 

centre. 

 

These remote stress loading example shows a strong 

influence of the Paris' law parameters 𝑚 and 𝐶 on 

component life while 𝐾𝑐 and 𝑎0 have a comparatively 

smaller effect. However, the 𝐾𝑐 and 𝑎0 influence the 

Δ𝜎𝑝 values, with it increasing with higher 𝐾𝑐 values and 

lower 𝑎0 values, while the opposite variations result in 

the opposite effect. The point loading at the crack centre 

present a very different behaviour when compared to the 

remote stress loading. In this case 𝐾 tends to decrease 

with crack length instead of increasing, this is because 

as 𝑎 increases the loading starts being further apart from 

the crack tip, so it will have a lesser effect there, leading 

to the lowering 𝐾. As 𝐾 lowers, crack growth rate also 

lowers as the crack propagates further with each cycle. 
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(a)  

(b)  

(c)  

Figure 6. Crack growth with cycles changing (a) 𝑚, (b) 

𝐶, (c) 𝛥𝑃 

 

In summation this work shows the effect of various 

parameters in fatigue life considering a fatigue crack 

growth model. It was shown that 𝑚 and 𝐶, the Paris' law 

parameters, are the most influential on life. This 

parametric study should help designers choose 

appropriate materials for their desired applications by 

considering their properties and the effect of those 

properties on life shown here. 
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