
NEUBER’S RULE: A NUMERICAL ANALYSIS 

 

 

Lucas F. R. C. da Silva1*, Paulo M. S. T. de Castro1 

 
1 Faculdade de Engenharia da Universidade do Porto, R. Dr. Roberto Frias, Porto, 4200-465, Portugal 

* Corresponding author: lucasfrc_silva@hotmail.com 

 

ABSTRACT 

 

The history of deformation at critical points is of paramount importance in low cycle fatigue. In parts with sudden changes 

in geometry, due to the stress concentration effect plasticity may occur close to the notches even under nominal stress 

much lower than the yield strength of the material. This paper aims to analyze the stress and strain state near the notches 

using the Neuber rule and the Ramberg-Osgood description of the stress/strain relationship. 

 

MATLAB software routines were developed to analyze theoretical results, and these results will be compared with finite 

element method results using Abaqus software. 

 

In order to evaluate Neuber 's rule both analytically and numerically, a plate with a central circular hole, subjected to 

monotonic and cyclic loading, was analyzed to evaluate the behavior near the notch. Two different materials were 

considered. One of the materials has no hardening, i.e., elastic perfectly plastic material; the other material was the S355 

steel, displaying substantial hardening. 

 

While the stress concentration factor Kσ and the strain concentration factor Kε have the same value in elastic regime, in 

the elasto-plastic regime the stress concentration factor Kσ tends to decrease and the strain concentration factor Kε tends 

to increase with increase in plastic deformation. 

 

For the cases analyzed, Neuber’s rule gives accurate results for stresses and deformations near notches for σ/σy<0.6. The 

errors for stress and strain resulting from the use of Neuber’s rule, taking as reference the non-linear Abaqus analyses, 

are discussed and presented in this article. 
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 INTRODUCTION 

 

The history of deformation at critical points is of 

paramount importance in low cycle fatigue. In parts with 

sudden changes in geometry, due to the stress 

concentration effect, plasticity may occur close to the 

notches even under nominal stress much lower than the 

yield strength of the material. This paper aims to analyze 

the stress and strain state near the notches using the 

Neuber’s rule and the Ramberg-Osgood description of 

the stress/strain relationship. MATLAB software 

routines were developed to analyze theoretical results, 

and these results were compared with finite element 

method results using Abaqus software. 

 

 In order to evaluate Neuber’s rule both analytically and 

numerically, a plate with a central circular hole, subjected 

to monotonic and cyclic loading, was analyzed to 

evaluate the behavior near the notch. Two different 

materials were considered. One of the materials has no 

hardening, i.e., elastic perfectly plastic material; the other 

material was the S355 steel, displaying substantial 

hardening. 

 

 

 RAMBERG-OSGOOD 

 

Ramberg-Osgood equation aims to evaluate the non-

linear relationship between stress and strain in plastic 

regime. In other words, Ramberg-Osgood is useful to 

model material hardening. Deformations can be divided 

in elastic and plastic deformation. Elastic deformation is 

the one that once the load is removed the deformation 

disappear while the plastic deformation remains. 

According to Ramberg-Osgood the relation between total 

deformation, elastic and plastic deformations can 

analyzed from equation (1). 

 

𝜀 = 𝜀𝑒 + 𝜀𝑃 =
𝜎

𝐸
+ (

𝜎

𝐾
) 

1

𝑛                                 (1) 

 

 

 NEUBER’S RULE 

 

In uniaxial linear elastic case Neuber verified that    

Kt=Kε =Kσ. After the material’s yield stress, the relation 

between stress/strain is no longer linear. On plastic 

regime for elastic-perfectly plastic materials equations 

(2) is used.  

 

𝐾𝜎 . 𝜎𝑛 = 𝜎𝑌;  𝐾𝑡 > 𝐾𝜎                                (2) 
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It becomes important to highlight that the effect of the 

stress concentration factor during fracture depends on 

material behaviour. In ductile materials will occur 

deformation on notches decreasing the value of the stress 

concentration factor while fragile materials will break. 

High resistance materials are harder to deform next to 

notches, thus the stress concentration factors will remain 

high while in low resistance materials deformation will 

occur.  The notches on low resistance materials will 

become less sharp decreasing the stress concentration. 

Further explanations can be found, for e.g., in de Castro 

and Meggliolaro [1]. 

In ductile parts is possible to analyze that the relation 

between 
𝐾𝜎

𝐾𝑡
 tends to decrease while the relation between

𝐾ԑ

𝐾𝑡
    tends to increase. 

Figure 1. Schematic figure of 𝐾𝜎 , 𝐾ԑ and product of

𝐾𝜎 . 𝐾ԑ behaviour.

Neuber, while investigating strain concentration in 

plastic regime in prismatic parts of non-linear material 

under torsion and low deformation, proved that: 

𝐾𝑡
2 =

𝜎.𝜀

𝜎𝑛.𝜀𝑛
 (3) 

It became common to generalize the effect of stress 

concentration to any kind of part or load under plane 

stress. This relation became known as Neuber’s Rule. 

3.1. Monotonic Loading 

According to previously shown equations becomes 

possible to evaluate stress and strains next to notches as 

function of nominal stress. Combining equations (1) and 

(3) is possible to obtain the relation between nominal and

real stress under monotonic loading

𝐾𝑡
2. 𝜎𝑛 (

𝜎𝑛

𝐸
+ (

𝜎𝑛

𝐾
) 

1

𝑛  ) = 𝜎 (
𝜎

𝐸
+ (

𝜎

𝐾
) 

1

𝑛)  (4) 

Since the left-hand side of the equation is known is 

possible to calculate local stress. Strains for monotonic 

loading can be evaluated from equation (1). 

3.2. Cyclic Loading 

In cyclic loading cases turns out to be necessary to use 

nominal stress amplitude ∆𝜎𝑛 instead of nominal stress.

Ramberg-Osgood equation will become: 

𝛥𝜀

2
=  

𝛥𝜎

2𝐸
+ (

𝛥𝜎

2𝐾
) 

1

𝑛     (5) 

And Neuber’s Rule for cyclic loading will become: 

𝐾𝑡
2 =

𝛥𝜎.𝛥𝜀

𝛥𝜎𝑛.𝛥𝜀𝑛
 (6) 

Combining equations (5) and (6) makes possible to 

obtain an equation that relates nominal stress and stress 

and strain next to notches. 

𝐾𝑡
2. 𝛥𝜎𝑛 (

𝛥𝜎𝑛

𝐸
+ (

𝛥𝜎𝑛

𝐾
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1
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𝐸
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𝐾
) 

1

𝑛) (7)  

ANALYZED MODEL 

In order to analyze Neuber’s rule numerically and 

analytically was developed a finite element model of a 

plate with a hole loaded remotely. The plate is squared 

with dimensions 100 mm and a center hole with radius of 

10mm. The plate will be submitted to different 

monotonic loadings of up to 350 MPa. It will also be 

submitted to a cyclic loading in order to analyze the 

behaviour next to the notch. 

Two different materials were studied. One of them will 

have no hardening and will be considered as an elastic 

perfectly plastic material, EPP. The other will be steel 

S355 with great hardening. Mechanical properties can be 

analyzed on table 1. 

Table 1. Mechanical Properties of elastic perfectly 

plastic material and Steel S355 

Elastic Perfectly 

Plastic 

S355 

Young’s Modulus (GPa) 200 207 

Yield Strength (MPa) 400 460 

The plate geometry was modelled on software Abaqus in 

a 2D model of 1/4 of the plate. Symmetry condition was 

applied in axis X and Y. The loading was applied as a 

pressure. A structured mesh with refining next to the 

notch was used. Quadratic elements with reduced 

integration and plane stress CPS8R were applied to the 

model. Boundary conditions and mesh can be analyzed 

from figure 2. 
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Figure 2. (A) Boundary conditions applied to the model; 

(B) Mesh used in Abaqus. 

 

4.1. Evaluation of 𝐾𝑡 

 

The proposed geometry has a stress concentration factor 

Kt=3. In order to estimate Kt numerically in elastic 

regime was applied a 100 MPa load to EPP material. The 

100 MPa load was chosen because theoretically should 

not have any plastic strain, thus Kt=Kσ =Kε. Figure 3 

shows that the maximum stress is 299.9 MPa on the hole 

border. The Kt evaluated as 3 has an error of 0.033%. 

 

Figure 3. Numerical results for material EPP and load 

of 100 MPa. 

 

3.2. Ramberg-Osgood Modelling 

 

In order to model material hardening Ramberg-Osgood 

was used. Parameters for material S355 were extracted 

from a work made by Jesus et al. [2]. Figure 5 shows the 

comparison between experimental and Ramberg-Osgood 

results. Parameters K and n can be evaluated from table 

2. 

 

Table 2. Parameter used in Ramberg-Osgood model 

  
Elastic Perfectly 

Plastic 

S355 

K 401 595.85 

n 0.001 0.0757 

 

 
Figure 4. Comparison between experimental and 

Ramberg-Osgood modelling. 

 

It is important to highlight that the results are so precise 

that in part of the domain the curves superimpose each 

other. 

 

 

 MONOTONIC LOADING RESULTS 

 

5.1. Material Elastic Perfectly Plastic 

 

Figure 6 shows the graphic results of Neuber’s rule for 

different loadings applied on EPP material obtained in 

software MATLAB. Tables 3 and 4 shows the 

comparison between results obtained from ABAQUS 

and MATLAB and the error. 

 

Table 3. Overview of stress results for ABAQUS 

simulations and Neuber’s rule on MATLAB routine for 

material EPP 

 

Load 

(MPa) 

Abaqus 

stress 

(MPa) 

Neuber’s 

rule stress 

(MPa) 

Error (%) 

100 299.9 300 0.033 

150 400.93 400 0.23 

200 400.70 400 0.175 

250 400.72 400 0.18 

300 400.74 400 0.185 

 

Table 4. Overview of strain results for ABAQUS 

simulations and Neuber’s rule on MATLAB routine for 

material EPP 

 

Load 

(MPa) 

Abaqus 

strain  

Neuber’s 

rule strain  

Error (%) 

100 0.0015 0.0015 0 

150 0.00283 0.00254 10.24 

200 0.00458 0.0045 1.74 

250 0.00818 0.00703 14.06 

300 0.0184 0.01013 44.94 
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Figure 5. Graphic analysis for stress and strain for 

Neuber’s Rule. Material EPP 

Figure 6 shows values for Kε, Kσ and the product Kε.Kσ 

in function of normalized yield strength. It is possible to 

see that the product of Kε.Kσ is constant up to 
𝜎

𝜎𝑌
≤ 0.6. 

For values of 
𝜎

𝜎𝑌
> 0.6 the product of Kε.Kσ explodes. In 

other words, Neuber’s rule seems not to be valid for 
𝜎

𝜎𝑌
> 0.6. 

 
Figure 6. Graphic analysis for stress and strain for 

Neuber’s Rule. Material EPP 

5.2. Material S355 

Figure 7 shows the graphic results of Neuber’s rule for 

different loadings applied on steel S355 obtained in 

software MATLAB. Table 5 and 6 shows the comparison 

between results obtained from ABAQUS and MATLAB 

and the error. 

 

Table 5. Overview of stress results for ABAQUS 

simulations and Neuber’s rule on MATLAB routine for 

material S355 

 

Load 

(MPa) 

Abaqus 

stress 

(MPa) 

Neuber’s 

rule stress 

(MPa) 

Error (%) 

100 267.3 291 8.98 

150 324.2 354 9.25 

200 380.6 381 0.26 

250 426.9 398 6.57 

300 460.9 414 10.0 

350 519.1 436 15.9 

 
Table 6. Overview of strain results for ABAQUS 

simulations and Neuber’s rule on MATLAB routine for 

material S355 

 

Load 

(MPa) 

Abaqus 

strain 

Neuber’s 

rule strain 

Error (%) 

100 0.001792 0.001499 16.35 

150 0.003437 0.00276 19.69 

200 0.006351 0.00456 28.20 

250 0.01679 0.00687 59.08 

300 0.0372 0.0102 72.58 

350 0.166 0.0185 88.85 

 

Figure 7. Graphic analysis for stress and strain for 

Neuber’s Rule. Material EPP 

 

 

Figure 8 shows values for Kε, Kσ and the product Kε.Kσ 

as a function of normalized yield strength. It is possible 

to see that the product of Kε.Kσ is constant up to 
𝜎

𝜎𝑌
≤ 0.9. 

For values of 
𝜎

𝜎𝑌
≤ 0.9 the product of Kε.Kσ. In other 

words, Neuber’s rule seems not to be valid for 
𝜎

𝜎𝑌
≤ 0.9. 

 
Figure 8. Graphic analysis for stress and strain for 

Neuber’s Rule. Material EPP 

 

CYCLIC LOADING RESULTS 

 

In this section will be presented the results to cyclic 

loading applied to the plate. For material EPP the applied 

load block was (0 →200 →-200 → 200 →-200 →200) 

MPa and for S355 the applied loading block was                 

(0 →150 →-150 → 150 →-150 → 150) MPa. Both cases 

were analyzed under R=-1. The loading magnitudes were 

selected in order to be lower than 60% of the materials 

yield stress.  
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Table 7 shows the results for Δε and Δσ and its errors for 

material EPP. The obtained results were analyzed in 

function of Δε and Δσ since those are the main driving 

forces of low cycle fatigue. 

Table 7. Comparison between hysteresis loop for 

material elastic perfectly plastic 

Abaqus Neuber’s rule Error (%) 

Δε 0.009999 0.009 9.90 

Δσ (MPa) 873 800 8.36 

Figures 9 and 10 shows hysteresis loop for load blocks 

applied to both materials. 

Figure 9. Comparison between Stress-Strain obtained 

from Abaqus and Neuber’s rule for material EPP 

Figure 10. Comparison between Stress-Strain obtained 

from Abaqus and Neuber’s rule for material S355 

It is important to highlight that the hysteresis loop 

obtained through Abaqus shows material hardening. This 

phenomenon can be observed through the fact that 

besides same stress range applied the strains on the 

second loop will become smaller. 

Since the material behaviour changes from one loop to 

another the errors will be calculated to each loop 

individually. The results shown on table 6 show good 

convergence with those obtained through Neuber’s Rule 

and Ramberg-Osgood. 

Table 8. Comparison between hysteresis loop 1 for 

material S355 

Abaqus Neuber’s rule Error (%) 

Δε 0.005448 0.00552 1.32 

Δσ (MPa) 774 709.82 8.29 

Table 9. Comparison between hysteresis loop 2 for 

material S355 

Abaqus Neuber’s rule Error (%) 

Δε 0.005336 0.00552 3.45 

Δσ (MPa) 815 709.82 12.9 

CONCLUSIONS 

From the results obtained in this work is possible to reach 

to some conclusions. The stress concentration factor Kσ

and strain concentration factor 𝐾𝜀 have the same value in

elastic regime. When plasticity occurs the stress 

concentration factor tends to decrease while the strain 

concentration factor tends to increase. 

 Neuber’s rule showed good accuracy for loads lower 

than 60% of the materials yield stress. For loads 
𝜎

𝜎𝑌
> 0.6 on monotonic loadings Neuber’s rule leads to

wrong calculations. 
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