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Abstract 
 
Manipulation of atoms and molecules for 
the enhancement of the macroscopic 
behavior of materials is no longer 
uncommon to the researchers in material 
science. The concept of use specific 
materials has also attracted the 
manufacturers in aeronautics where 
composites are readily used. This entails a 
spectrum of scale for the microstructure to 
the bulk properties of the material going 
from the nano to the macro. From the 
structure and material integrity view point, 
if the abnormal conditions can be detected 
at the lower scale, this may lead to early 
detection of malfunction at the higher 
scale to provide early warning. Such a 
benefit, however, can be achieved only if 
effective models can be developed by 
multiscaling and covering a sufficiently 
wide scale range of several orders of 
magnitude in lineal dimension. This is not 
within the capability of the theoretic 
non-linear continuum approach. 
 
The general scheme of multiscaling in 
material science application has been 
addressed. It involved the division of the 
non-equilibrium process into several 
smaller equilibrium segments such that 
conventional methodologies can be 
applied. Characteristic length parameters, 
say at the macro, micro and dislocation 

level, were introduced to account for 
change in the degree of inhomogeneity 
when scale range is shifted. Specific 
application to engineering problems, 
however, further requires effective 
physical models of the defect 
configuration whose morphology changes 
with the size scale. Even the theoretical 
and physical differences of a macrocrack 
and microcrack has not been explored up 
to now. Their only distinction is that one 
is microscopic and the other is 
macroscopic in length. This in principle is 
not acceptable, the details of which will 
be pointed out in light of developing 
multiscale damage models. Unlike 
previous models, the microcrack surfaces 
will no longer be assumed as traction free. 
That is the microcrack will have a stress 
singularity other then 1/r0.5 because of the 
influence of the material microstructure 
that can exert a variety of constraints on 
the microcrack surface. Such an 
allowance can lead to a microcrack tip 
singularity of the order of 1/r0.75 
depending on the particular mixed 
boundary conditions on the microcrack. 
This is in contrast to the 1/r0.5 macrocrack 
stress singularity for the traction free 
condition and to the 1/r singularity of the 
dislocational stresses of the edge- or 
screw-type. For a fault line or crack in the 
microscopic range, the singularity 
representation scheme suggests the order 



 

 

1/rλ where 0.5<λ<1.0. A cluster of such 
single fault lines can then be considered to 
generate macro-defects. In this way, a 
multiscale damage model can be 
developed where the change in system 
inhomogeneity can be accounted for in 
addition to non-equilibrium by adapting 
the segmentation approach.  
 
 
1. Introduction 
 
The parallel advancement of fundamental 
science and applied technology cannot be 
more evident than the field of 
nanoelectronics which has set the pace for 
other disciplines. This includes chemistry, 
physics, biology, material science and 
mechanics. The trend has been the 
micromanipulation of atoms and/or 
molecules for controlling the behavior of 
macroscopic material properties or of 
cells in vivo. Material science alone has 
benefited from the concept of use 
specificity. The application has ranged 
from the studies of bio-tissues to 
jumbo-jet aircraft structural component 
materials. The realization that 
micromanipulation can be made more 
effective by relating the results at the 
nano-scale to that of the micro-scale has 
prompted the development of multiscale 
models rather than relying on speculative 
and empirical approaches. No theories at 
the present can be extended to cover the 
space/time scale where quantum 
mechanics terminates and continuum 
mechanics begins. While the former has 
been custom made for subatomic particles 
the latter has been developed for large 
bodies where the bulk material properties 
can be used. However, there are a host of 
physical events that are left unconnected 
in between the quantum and the 
continuum. One of these segments in 
electronics has now been identified as 
meso-electronics [1]. The same applies to 
the mechanics of deformable bodies 
where the unfamiliar domain is being 
referred to as Mesomechanics [2-4]. 
Similar regions have yet to be found for 

other fields. What this means is that the 
available theories are unable to keep pace 
with the space/time range required by the 
physical events that are being discovered. 
The reconciliation of quantum mechanics 
with general relativity is still pending on 
the outcome of quantum gravity theory. 
Multiscaling as considered here pertains 
to connecting results from the different 
space/time segments. The aim is to 
understand macroscopic consequences of 
microscopic structure. Such an objective 
is not new. It has been attempted by 
non-linear continuum mechanics theoretic 
approach in the past with limited success. 
Ii should have been known that those 
theories advocating the vanishing rate 
change of volume with surface expressed 
by ΔV/ΔA→0 are disqualified for 
application to problems with 
non-equilibrium phenomena which are 
inherent characteristics of interface and/or 
inter-phase. The Navier-Stokes equation 
is invalid near the wall where the bulk 
properties of the fluid are inadequate for 
describing the near surface fluid behavior. 
It should also have been known that 
classical continuum mechanics 
disconnects the surface from the volume. 
The condition ΔV/ΔA→0 would be 
regarded as a fatal blow to the holy grail 
for those who delve in developing the 
string theory. One of the basic premises is 
that “surface” laws where quantum 
particles interacting like quarks and 
gluons are equivalent to “volume” (or 
interior) laws that are a form of string 
theory including the force of gravity. The 
detrimental consequence of disconnecting 
surface from the volume cannot be over 
emphasized. It would deprive the 
equivalency of the particle description on 
the surface to that of the gravity 
dependent object in the volume, the pillar 
of the holographic theory [5]. 
 
Interaction of surface and volume should 
be of no surprise to everyday engineers 
and scientists who in fact make use of 
such relationships without question. 
Volume integrals in finite element 



 

 

analysis are converted to boundary 
integrals as a matter of foregone 
conclusion. The divergence theorem 
testifies to such an operation. The Green’s 
theorem is used in text books time and 
over again to show the equivalence of 
surface and boundary integrals for 
satisfying certain boundary conditions. 
Reduction in dimensionality is not a 
strange notion in engineering application. 
The energy used in a surface layer 
weighed against that expended in a unit 
volume has been known to determine the 
size of a grain in the Gibb’s theory of 
crystal nucleation. If a three dimensional 
volume integral can be reduced to a 
two-dimensional surface integral and if a 
two-dimensional surface integral can be 
reduced to a one-dimensional contour 
integral, then there is no reason why the 
deduction cannot work for the reduction 
of a three-dimensional space to one 
dimension. This is precisely what happens 
in an isoenergy density space where a 
three-dimension physical space 
transforms into one-dimension [6]. That is 
a tensorial quantity becomes a scalar. If 
indeed, the string theory is able to resolve 
the duality separating the particles and 
fields, then multiscaling can cover the full 
range from the subatomic to the 
continuum. Until then, there prevails the 
mesoscopic zone that will take the 
transition for granted. Even in the absence 
of the fundamental issue of particle and 
field, mutliscaling is not a trivial 
undertaking. 
 
This is because size reduction encourages 
non-equilibrium where the microscopic 
character of the material properties can no 
longer be averaged as the bulk and 
approximated by equilibrium conditions 
where time and non-homogeneity are 
smeared out. And yet this is precisely the 
region where nano-technology applies. 
This work represents the initial effort 
made to model defects and imperfections 
at the macro-, micro- and atomic scale by 
application of the continuum theories 
stopping short at quantum mechanics, the 

equivalent of which in continuum 
mechanics would the theory of 
non-equlibrium mechanics [6,7]. That is 
when spatial and temporal effects are 
intrinsically interwoven and the solutions 
are no longer unique by definition. Keep 
in mind that there is no proof for 
uniqueness when the medium is 
completely non-homogeneous. Refer to 
the work in [7,8] for physical examples of 
bi-phase media. In an open thermo- 
dynamic system, the system and its 
surrounding would be regarded as 
bi-phase. To circumvent the use of 
non-equilibrium theories, the scale range 
from macroscopic to atomic will be 
segmented into three stages, i,e., macro-, 
micro- and smaller-scale if needed. 
Meso-zones can be introduced to soften 
the jumps at the connections. Segmen- 
tation is made to allow the use of 
equilibrium mechanics within each 
segments. This is accomplished by appli- 
cation of the singularity representation 
method of material damage. The approach 
was originally used at the macroscopic 
scale, later extended to include damage at 
the microscopic scale [9,10]. In this way, 
physical parameters at the different scales 
can be stretched several order of 
magnitude (say 8 or more in lineal 
dimension). The range of ordi- nary linear 
or non-linear theories posse- sses at most 
one order of magnitude in lineal 
dimension. With the advent of the scale 
multiplier concept [11], closed form 
solutions can also be obtained for 
localized regions where dominant energy 
transfer takes place. The methodology, 
however, were developed for a micro- 
crack that satisfies the same free-free 
traction conditions as those for a 
macro-crack. Such an assumption was 
necessary because of the lack of a more 
realistic solution for the microcrack. This 
shortcoming was examined only recently 
[12] in connection with associating 
physical characteristic lengths to the 
strong and weak singularities to 
multiscale modelling. 
 



 

 

This work continues the discussion and 
explores the possibility of including a 
more realistic microcrack before con- 
cerning imperfections at the quantum 
scale where the discrete and continuum 
disparities remain to be reconciled. Also 
keep in mind that multiscaling would be 
stymied if the distinction between the 
local and bulk properties of the materials 
is not made. This gigantic step has been 
skipped in solid state physics and material 
science texts by equating the results 
obtained from the inter-atomic force 
potential directly to the classical 
thermodynamic relations for bulk 
compression. Tabulated bulk modulus for 
the different chemical elements are 
reported without realizing that an 
empirical scale shifting factor was used. 
The bulk or Young’s modulus E is a 
macroscopic quantity while the strength 
calculated from the inter-atomic force 
potential is microscopic. The approxi- 
mate agreement of the end result with the 
uniaxial tensile data for metals is made 
possible by the empirical factor E/10 or 
E/15 that accounted for scale shifting. 
Such a defacto procedure cannot be 
justified in the development of multiscale 
models. 
 
Proposed therefore is to implement the 
non-equilibrium process by equilibrium 
segments limited in range such that 
conventional methodologies can be 
applied. Characteristic length parameters, 
say at the macro, micro and dislocation 
level, can then be introduced for the 
respective volume energy densities. The 
total energy or force criterion being scale 
invariant can be applied to connect the 
divided segments. Because there is still no 
general agreement with reference to the 
unification of the four fundamental forces, 
multiscaling cannot be expected to do any 
better.   
 
2. Scale shifting scheme based on 
singularity representation 
 
The scheme for relating the results in 

small regions to those in large regions will 
be accomplished in segments by 
application of the volume energy density 
function dW/dV to be written as W. Recall 
that the form dW/dV = S/r has been used 
frequently in connection with the strain 
energy density criterion [14,15] where the 
energy density factor S depends only on 
the polar angle θ for homogeneous 
systems. When system inhomogeneity 
prevails, the function S will also depend 
on r, the distance from the point of 
singularity. For the sake of familiarity the 
1/r form will be preserved with the 
emphasis that 
 
S = S(θ) homogeneous  and  S = S(r,θ)  
non-homogeneous  (1) 
 
The dependency of S on r arises from 
system inhomogeneity which deprives the 
uniquenss of solution in the theory of 
elasticity.   
 
Segmentation in scaling. 
Change of system homogeneity is made 
possible by introducing characteristic 
length parameters jl  for each segment j 
within which the subsystem is 
homogeneous. A time dependent scale 
shifting criterion can thus be stated [16]:  
 

The time rate of the energy density factor is 
assumed to remain unchanged between two 

successive scale range. 
 
Stated mathematically are the expressions 
[16] 
 

j j j+1m S =S& &  or 1j1jjjjm ++= WW &l&l  (2) 
 
where use has been made of the relation S 
= r W with r being replaced by l . The 
factor mj is unity for all segments j = 1,2, 
etc. if the curve for W&  versus distance r 
is a perfect hyperbola. This corresponds 
to a perfectly homogeneous system. The 
deviation from a hyperbola is expressed 
by the factor mj for segments j = 1,2, etc. 
It is not difficult to see that S&  is the area 



 

 

under the time rate of W or W&  versus 
distance r curve as shown in Fig. 1. 
Application of Eq. (2) to two successive 
sizes, say  
 

 
Figure 1: Time rate of energy density W&  
versus distance r: scale shifting scheme. 
 
nano to micro and micro to macro can 
then be written as 
 

nano micro nano microm S = S→
& & and 

micro macro micro macrom S = S→
& &   (3) 

 
To repeat, the shaded areas jS&  and j+1S&  
for segment from j to j+1 would be equal 
if the curve is a true hyperbola. Assuming 
that j and j+1 correspond, respectively to 
nano and micro, then nano microm 1→ = . The 
factor nano microm →  serves as a measure of 
the change in homogeneity when size 
scale is switched from nano to micro. This 
change for each segments can be 
determined by using the singularity 
representation approach that will be 
discussed later. That is by finding the W&  
versus r curve. The use of Eq. (2) or (3) 
follows the same thought process as that 
used in applying the strain energy density 
criterion [14,15].  
 
System inhomogeneity associated with 
segment characteristic length.  
Singularities are known to represent the 
character of a system in the limit when the 

denominator of the quotient out competes 
the nominator in the time- and/or the 
space-related variable. Stresses being 
defined as the quotient of the increment of 
force to the area become unbounded at a 
re-entrant corner or crack when the 
increment of the area tends to be 
vanishingly small. The degree of severity 
of this unbounded limit is determined by 
the order of the stress singularity. They 
have been discussed [13] in relation to a 
class of singularities with order weaker 
and stronger than the classical branch cut 
in complex variable. 
 
By relating the stress singularity order 
with the eigenvalue λ in the form σ ≈ 1/rλ 
with r being the distance to the singularity 
point, it is possible to assign a 
characteristic length l  to each stress 
singularity order range based on the 
physical defect types that have observed 
experimentally. Their relations can be 
found in [16] and summarized in Table 1. 
A graphical display of the information in 
Table 1 can be found in Fig.2. 
Determination of the parameter m in Eq. 
(3) can be best illustrated in Fig. 3 which 
shows how each successive steps are 
carried out by following the dW/dV or W 
curve. This is also expressed by the 
expressions in Eqs. (4): 

disl subg disl. disl subg subgm → =& &l lW W  

subg micro subg subg micro microm → =& &l lW W    

micro macro micro micro macro .macro.m → =& &l lW W  (4) 
 

Defect type 
Order of 

singularity 
λ 

Characteristic 
length l (cm) 

Dislocation 0.90-0.95 10-6.5 
Subgrain 

defect 0.80-0.85 10-5 

Microcrack 0.55-0.75 10-3.5 
Macrocrack 0.50 10-2 
 
Table 1: Order of stress singularity 
associated with characteristic length [16]. 



 

 

 
Figure 2: Characteristic length related to 
order of stress singularities. 
 

 
Figure 3: Classification of volume energy 
density with characteristic length. 
 
There remains the determination of the 
volume energy density functions Wdisl, 
Wsubg, Wmicro and Wmacro  so that the factors 
mj in Eqs. (2) or those in Eqs. (4) can be 
found.  The various segments can then 
be linked to bridge the results from the 
small scale to the large scale. For the sake 
of illustration, discussion will be made 
only for Wmicro and Wmacro. Moreover, time 
rate effects will be neglected as they 
would add complexities that are 
secondary to the development of 
mutliscale models. 
 
 
3. Multiscale model with microscopic 
fault line or microcrack 
 
Consider a macro-stress field with 

uniform load σ∞ applied in the x2 
direction as shown in Fig. 4. The medium 
contains a microcrack of length 2a with a 
tip section d, the geometry of which 
depends on the local morphology of the 
material microstructure. A notch with 
mixed boundary conditions and variable 
angle 2β can be used to model the 
situation. This is particularly essential for 
modeling the microcrack tip entranched in 
the microstructure entities. Without loss 
in generality, the free-fixed boundary 
condition is used as depicted in Fig. 5 
where β* = π - β. Tractions of varying 
magnitude σo can be present on the 
surfaces of the microcrack. They 
determine the tightness of the microcrack 
surfaces. In what follows, uniform σo will 
be taken for simplicity although varying 
σo will likely to be the rule rather than the 
exception.  
 

 
Figure 4: A microcrack engulfed by a 
uniform macro-stress field. 

 
Figure 5: Surface traction on microcrack 
with a notch tip. 



 

 

Macro-intensification caused by 
microcracking. 
This work will take the opportunity to 
emphasis not only the need to model 
microcracks with the effect of 
microstructure but also the additional 
feature that a microcrack can cause local 
macro-intensification. This is illustrated 
in Fig. 6.Note that there two near field 
stress zones, one at the microscopic scale 
and one at the macroscopic scale. The 
subscript “mimacro” will be adopted to 
indicate that the macro-intensification 

mimacro
IK is caused by a microcrack. It 

should be distinguished from macro
IK repre- 

senting the stress intensity factor that is 
caused by the presence of an actual 
macrocrack. There is no macrocrack in 
this model but there is a macro-stress 
intensification around a microcrack with a 
mixed boundary condition tip where the 
notch angle 2β can vary or be zero for a 
crack. Since the applied load in Fig. 4 
induces macroscopic symmetry, the 
macro-displacements contain only 

mimacro
IK  as follows:  

 
mimacro mimacro

macro r I macro

mimacro mimacro

macro θ I macro

θ 3θ
4μ 2πu = r{K [(5-8ν )cos -cos ]+

2 2

θ 3θ
4μ 2πu = r{K [-(7-8ν )sin +sin ]+

2 2

⋅ ⋅ ⋅

⋅ ⋅ ⋅

  
 (5) 
where νmacro and μmacro are the 
macroscopic material constants. Terms of 
order higher than r1/2 with r being 
macroscopic have been neglected. The 
corresponding polar 
 

mimacro mimacro
r I

mimacro mimacro
θ I

mimacro mimacro
rθ I

2 θσ = [K (3-cosθ)cos ]+
πr 2
2 θσ = [K (1+cosθ)cos ]+
πr 2
2 θσ = [K sinθcos ]+
πr 2

⋅ ⋅ ⋅

⋅ ⋅ ⋅

⋅ ⋅ ⋅

  

 (6) 
 

components of the macro-stress field are 
singular and of the order r−1/2 as indicated 
in Eqs. (6). Fig. 6 shows the relative size 
of the dual scale near stress field two 
zones. One is more intensified with the 
densely spaced dots, the other being less 
intensified. 
 

 
Figure 6: Dual scale stress intensification 
zones around a microcrack. 
 
Without going into details, mimacro

IK can be 
obtained by a procedure similar to that 
used for the dual scale model [9] except 
that the physical interpretation is different 
since the present model consists of only a 
microcrack. The result is 
 

mimacro -1o
I

2σ aK =(1- sin )σ πc
πσ c ∞

∞

  (7) 

 
Note that σ∞ is the applied macro-stress in 
Fig. 4 while the ratio σo/σ∞ adjust the 
tightness of the contacting microcrack 
surfaces. Higher σo/σ∞ corresponds to 
microcrack surfaces that are compressed 
together more severely while. σo/σ∞ 0 is 
the case of no crack surface constraint 
where the macro-intensification would be 
the largest. This effect is exhibited in Fig. 
7 for a = 10mm and σ∞ = 10 MPa as the 
ratio d/a is varied in increment of 0.01 
from 0.0 to 0.1. The intensification 
increases slightly with the size of the 
microcrack tip segment d on which part of 
the surface is free and part is fixed. This 
corresponds to β = 0 in Fig. 5. 
Macro-intensification disappears or 



 

 

mimacro
IK = 0 for d = 0 and σo/σ∞ = 1 ,i.e., 

when the medium is under uniform stress 
but not damaged. 
 

 
Figure 7: Variations of macro- 
intensification with the ratio d/a for 
different σo/σ∞. 
   
Microcrack tip stress intensity factor. 
If the distance r is reduced to the 
microscopic scale in Fig. 5 with β = 0, 
then the effect of the microcrack tip will 
be felt. The order of the micro-stress 
singularity will depend on the Poisson’s 
ratio. This behavior has been discussed in 
detailed [13] and will not be repeated here. 
Of interest is the case of strong singularity 
where λ > 0.5. Such a possibility can 
prevail in the limit as νmicro→0.5. The 
governing eigen equation from [13] 
reduces to     
 

0)2(sin1 2 =πλ−       (8) 
 
which yields λ = 0.75 for the order of the 
micro-stress singularity. The micro- 
displacements near the tip are given by 
 

micro
micro 0.25I/II

micro r micro
K 5 5 3 5 32μ u = r [-cos( θ)+cos( θ)+sin( θ)+sin( θ)]+

4 4 4 4 42π
⋅ ⋅ ⋅

micro
micro 0.25I/II

micro θ micro
K 5 5 5 3 5 5 32μ u = r [sin( θ)- sin( θ)+cos( θ)+ cos( θ)]

4 4 3 4 4 3 42π
+ ⋅⋅⋅

   (9) 
The corresponding microcrack tip stresses 
are 
 
 

 micro
micro I/II
r 0.75

micro

K 5 5 11 3 5 11 3σ = [-cos( θ)+ cos( θ)+sin( θ)+ sin( θ)]+
16 4 3 4 4 3 4r 2π

⋅ ⋅ ⋅

micro
micro I/II
θ 0.75

micro

K 5 5 5 3 5 5 3σ = [cos( θ)+ cos( θ)-sin( θ)+ sin( θ)]+
16 4 3 4 4 3 4r 2π

⋅ ⋅ ⋅

micro
micro I/II
rθ 0.75

micro

K 5 5 3 5 5σ = [sin( θ)+sin( θ)+cos( θ)-cos( θ)]+
16 4 4 4 4r 2π

⋅⋅⋅

  (10) 
The evaluation of the micro-stress 
intensity factor micro

I/IIK can be found in [17] 
and  will not be dealt with here since it 
would be beyond the scope of this work. 
The subscript I/II signifies microscopic 
anti-symmetry is permitted even though 
the loading is symmetric at the 
macroscopic scale. In this special case of 
νmicro→0.5, the skew-symmetric portion 
of the micro-stress field vanishes. Except 
for the macro-stress σ∞ , Poisson’s ratio 
νmacro and shear modulus μmacro, all of the 
other quantities in Eq. (11) are 
microscopic.  
 

)
c
asin21(

d5
ac)1(6K 1o

macro
25.0

22
micromacromicro

II/I
−

∞

∞

πσ
σ−

μ
−σμν−π=

 (11) 
Numerical values of Eq. (11) are obtained 
for a = 10 mm, σ∞ = 10 MPa and νmacro= 
0.3 although the condition of microscopic 
νmicro→0.5 was used to find Eq. (11).  
 
Fig. 8 gives a plot of micro

I/IIK versus d/a for 
Emicro/ Emacro = 4 as σo/σ∞ = 0.0, 0.2, ---, 
1.0. Although the general trend of the 
curves are similar to that in Fig. 7 but the 
micro-stress intensity factor is more 
sensitive to d/a and the curves rise faster 
for small d/a as they should. A similar plot 
of micro

I/IIK  versus d/a can be found in Fig. 
9 for σo/σ∞ = 0.5 but for three values of 
Emicro/ Emacro=3, 4 and 5. It is seen that the 
microcrack tip stress becomes more 
intensified as the micro-modulus is 
increased relative to the macro-modulus. 
This effect increases with increasing d/a. 



 

 

 
Figure 8: Micro-stress intensity factor 
versus ratio d/a for different σo/σ∞ with 
Emicro/ Emacro = 4. 
 

 
Figure 9: Micro-stress intensity factor 
versus ratio d/a for different Emicro/ Emacro  
with σo/σ∞ = 0.5. 
 
Macro/micro intensification of volume 
energy density. 
Once the stresses are known from Eqs. (6) 
and (10), the corresponding volume 
energy densities can also be found in the 
macro-size zone as 
 

2
mimacro -1 2macro macro o

macro macro

(1+ν )(1-2ν )(σ ) 2σ a c= (1- sin )
2E πσ c r

∞

∞

W

          (12) 
and the micro-size zone as 
 

2 2 2
micro 2 -1 2micro macro micro o

0.5 1.5
micro macro micro

(1-2ν )(1-ν ) μ 2σ a (c -a )= ( σ ) (1- sin )
4μ μ πσ c d r∞

∞

W

     (13) 
Eqs. (12) and (13) correspond to θ = 0, i.e., 
along the x1 axis.More specifically, the 
notation Wmimacro and Wmicro stand, 

respectively, for (dW/dV)mimacro and 
(dW/dV)micro. The macro-dW/dV has the 
1/rmacro singularity and the micro-dW/dV 
has the 1/ 1.5

micror singularity. There is a 
discontinuity which occurs at r = 10-3 cm. 
This is illustrated in Figs. 10 and 11 for 
plots of Wmimacro and Wmicro versus the 
radial distance r along the x1 axis in Fig. 4. 
The numerical values chosen for the 
various parameters are a = 10mm, d/a= 
0.01, νmacro = 0.3, νmicro ≈ 0.5, Emacro= 200 
GPa and σ∞ = 10 MPa. In Fig. 10, the 
moduli ratio is fixed at Emicro/ Emacro = 4 
while σo/σ∞ = 0.0, 0.2, ---, 1.0. Both the 
micro- and macro-volume energy density 
increase with decreasing constraint to the 
microcrack surface. The top curves for 
σo/σ∞ = 0 correspond to no constraint. 
The discontinuities in dW/dV may be 
reduced by introducing a meso zone such 
that the transition from micro to macro 
can be less sudden. By having σo/σ∞ = 0.5, 
the ratio Emicro/ Emacro can take values of 3, 
4 and 5. These results are displayed 
graphically in Fig. 11. the same 
discontinuity is observed at r = 10-3 cm 
but the curves are spaced much closer 
than those in Fig. 10.That is Wmimacro and 
Wmicro are less sensitive to variations in 
Emicro/ Emacro. It should be said in passing 
that the micro and macro material 
constants need not be the same. They are 
distinguished as 
 

 
Figure 10: Variations of micro- and 
macro-volume energy density with 
distance for Emicro/ Emacro = 4 and different 
σo/σ∞. 



 

 

 
Figure 11: Variations of micro- and 
macro-volume energy density with 
distance for σo/σ∞ = 0.5 and different 
Emicro/ Emacro. 
 

)1(2
E

macro

macro
macro ν+

=μ , 

)1(2
E

micro

micro
micro ν+

=μ    (14) 

 
For νmacro=0.3, νmicro=0.48, Eqs. (14) 
yield. 
 

macro

micro

macro

micro

E
E87.0=

μ
μ       (15) 

 
Computer results have generally 
acknowledged that Emicro/Emacro=3, 4, 5. 
Hence, the application of Eqs. (14) and 
(15) suggest that  
 

micro micro

macro macro

ν E=0.87 2.60, 3.67, 4.33
ν E

=  (16) 

 
These results appear to be consistent with 
known findings although there are no 
precise validation from experiments.  
 
 
4. Concluding remarks and future 
research 
 
The benefit to be gained by quantifying 
the results at the lower scale to that at the 
macroscopic scale can be best recognized 
in brain-simulation research. Electrodes 
may be implanted in animals or humans 

[18] to correct disorders such as epilepsy, 
Parkinson’s decease and blindness. 
Detection of disorder of cells and relate it 
to macroscopic behavior would involve 
the abridgement of scale range of several 
orders of magnitude. The same basic idea 
applies to materials that might have 
degraded prematurely in an aggressive 
environment and the detrimental effects 
may not show up at the macroscopic scale 
until much later in time such that 
irreversibility has been set. This may well 
be the scenario found in low alloy steels 
for LWR where nanometer size defects 
have been identified by tests as potential 
source of inter-granular stress corrosion 
cracking. Even smaller size defects or 
imperfections might have occurred but 
their detection may have to wait for 
further refinement of electron microscope 
resolution. The development of multi- 
scale damage models becomes an abso- 
lute necessity. 
 
The difficulty associated with multisca-  
ling is the enormous range of size scale 
extending from the nano to the macro, not 
to mention the time scale as well. This 
problem is not unique in material science, 
it occurs in life science as well. Such a 
challenge was not realized until the 
advent of nanotechnology [19] and the 
recognition that there is a gold mine to be 
benefited by going small. Upon closer 
examination, the process of multiscaling 
is stymied at the very stage when 
attempting to relate micro and macro 
damage effects, even for the simple 
configuration of a line defect or crack. 
Previously taken for granted was that a 
microcrack differed from a macrocrack 
only in size. Such a simplistic view is no 
longer accepted in this work where the 
very existence of a microcrack must 
consider the effect of material micro- 
structure and hence the change in system 
inhomogeneity when compared to that for 
a macrocrack. In other words, irregu- 
larities of a microcrack cannot be 
neglected from the fact that microcrack- 
ing deviates from symmetry, a physical 



 

 

fact that has to be inherent in model. 
Although this feature is not demonstrated 
in general from this work, it is reflected 
from the example of νmicro→0.5 where the 
order of the microcrack tip singularity 
λ→0.75. In can be shown that only in this 
case that the minimum of (dW/dV)micro 
[14,15] coincided with the x1 axis in Fig. 
4. This means that the microcrack would 
grow straight ahead. For νmicro other than 
0.5, the direction of (dW/dV)micro would 
deviate from θ = 0. According to the 
strain energy density criterion, the 
microcrack would grow off to the side of 
the original path. The off axis direction 
will depend on the boundary conditions 
specified on the microcrack that are 
dictated by the material microstructure. 
Such details can be demonstrated and will 
be disussed in future work. 
 
Part of the success of being able to exhibit 
the influence of the microstructure details 
can be attributed to the obtainment of 
closed form solution for the microcrack 
stress intensity factor and that of 
macro-intensification caused by the 
microcrack. Keep in mind that the order 
of the microcrack tip stress singularity is 
no longer 1/ r . The order would depend 
on the sharpness or bluntness of the 
microcrack tip. These geometric details 
and the micro/macro material constants 
are expressed in closed form in a manner 
similar to the classical stress intensity 
factors that have been used so 
successfully for designing 
macro-structural components. Not 
withstanding the progress made in 
multiscaling, the factors mimacro

IK  
and micro

I/IIK have clear the way for the 
further development of a macrocack 
model to include micro-damage. The idea 
of multiscaling to consider the physical 
damage at the different size scale without 
addressing non-linearity of the 
stress-strain response by keeping the scale 
range sufficiently small. This circumvent 
the questionable use of the non-linear 
portion of the stress-strain data, two third 

of which falls into the non-equilibrium 
region.   
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Abstract 
 
Multiscaling involves the discussion of 
physical events that extends over a wide 
range of size and time. With reference to 
material science, the system is concerned 
with inhomogeneity of the material 
microstructure, especially when the size is 
reduced while mechanics is associated 
with the non-equilibrium aspect of the 
behavior. Both non-homogeneity and 
non-equilibrium are in fact synonymous 
in some ways. The former may imply that 
the material properties can change from 
location to location. The latter may infer 
that the temporal behavior of a system 
changes from one instance to the next. The 
available theories and models, however, 
are not equipped to describe mutltiscale 
phenomena. They are valid only within a 
narrow range of size and time. The 
objective of this communication is to offer 
an alternate approach that makes use of 
classical mechanics but only in narrow 
segments for approximating the full range 
of the non-homogneous and 
non-equilibrium process. 
 
Morphology change of the material 
substructure is one of the main cause of 
non-homogeneity. It has been referred to 
as damage since the process involves the 
dissipation of energy. This may entail the 
nucleation of defects and imperfections in 
the crystal lattice or the creation of cracks 
and interfaces in the polycrystals. 

Assessment of damage evolution has been 
addressed in terms of a variety of 
parameters. The energy per unit volume or 
the energy density function denoted by 
dW/dV will be chosen in conjunction with 
the use of a characteristic length. The 
distinction (dW/dV)disl, (dW/dV)micro and 
(dW/dV)macro will be made since dW/dV is 
scale dependent. Characteristic lengths 

disl micro macro, andl l l at the respective scales 
can be defined to express the degree of 
local inhomogeneity. They also convert 
dW/dV to the total energy that is needed 
for obtaining the scale invariant criterion 
Depicted is a triple scale segmentation 
model where a macrocrack, microcrack 
and edge dislocations are assumed to 
prevail along a line segment. Meso zones 
are introduced at the scale crossing 
regions to smooth out the transitions. A 
coefficient for adjusting the degree of 
inhomogeneity between two consecutive 
segments of the volume energy density 
curve is introduced. Computed are the 
(dW/dV)disl, (dW/dV)micro and 
(dW/dV)macro values from which the 
coefficients of local inhomogeneity can be 
found. In the ideal case of a homogeneous 
system, this coefficient is unity and the 
volume energy density versus distance 
relation is a perfect hyperbola. It can be 
seen from the analytical expressions of 
dW/dV that the material properties at the 
each scale, the restraining stress and 
applied loading as a combination 
contribute to the change of system 



 

 

inhomogeneity. Under normal 
circumstances, effects of the local details 
are not significant. This, however, cannot 
be taken as a general conclusion, 
especially when time effects are taken 
into account. The exceptions are usually 
significant. Based on the frame work for 
treating the spatial aspect of multiscaling, 
the time effects can be supplemented as a 
future addition. 
 
Keywords: Multiscaling, inhomogeneous, 
non-equilibrium, segmentation, size and 
time scale, volume energy density, 
characteristic length, scale shifting 
criterion, macro/micro/dislocation. 
 
 
1. Introduction 
 
A process is said to be in non-equilibrium 
when the local properties of the system 
can not be represented as a whole. The 
local behavior changes continuously with 
time giving rise to non-homogeneity [1,2]. 
Uniqueness of solution can no longer be 
expected since fluctuations of the 
environment will perturb the system 
boundary and affect the surface 
conditions that in turn would affect the 
behaviour in the volume. The uncertainty 
aspect of nature is well reflected in 
quantum mechanics via the uncertainty 
principle. Uniqueness theorem is an 
idealization for closed thermodynamic 
systems that should not be expected to 
hold in general. Solutions, however, can 
be bounded for a given set of prescribed 
condition. This has been discussed [1] in 
relation to the isoenergy density theory. 
 
The essence of multiscaling is to address 
the varying system inhomogeneity from 
the very small to the very large. The 
particular concern of material science is to 
learn how a solid would degrade by 
defects and imperfections at the atomic 
scale and would eventually affect the 
integrity of a specimen at the macroscopic 
scale. Among the disciplines that have 
received wide attention concerning size 

scale are fracture mechanics, non-linear 
continuum mechanics and dislocation 
theories. Leaving out the field of fluid 
mechanics, each of the other disciplines 
lacked coordination and progressed 
individually. By in large, they all shied 
away from discussing system 
inhomogeneity and/or non-equilibrium. 
The attitude of the scientific community 
changed drastically in mid 1900s when 
nanotechnology pointed out the need and 
advantage to go small. The 
pretentiousness to work on size effects 
without admitting the change of 
fundamental laws of physics [3,4] can no 
longer be justified. Empirical and/or 
technological approaches based on 
instrumentation may be appealing at the 
outlook but they are no substitute for 
converting the data to physical 
interpretation. Monitored signals from the 
local material and/or structure response 
serve little or no purpose if they are not 
identified with the malfunction of the 
system from the sub-critical to the 
termination state. Multiscaling can assist 
in extending the range of prediction. 
 
Previous works [5-9] have attempted to 
lay the ground work for developing a 
multiscale material damage model 
although there remains much fine details 
that must be investigated. One of them is 
a more realistic model of the microcrack 
[10] in contrast to that of the macrocrack. 
The importance of this difference has only 
been recognized during the development 
of multiscale models. It is not so much of 
the size of the cracks but rather the 
conditions under which the material 
microstructure will dictate the growth 
characteristics of the crack. This may 
include the zig-zag path of the microcrack 
and the tightness of the adjoining crack 
surfaces. Classification by the crack 
length and/or opening alone may not 
always be relevant unless the other factors 
are also included. Because of space 
limitation, this work will focus only on 
the general approach of multiscaling. One 
of the details reserved for future 



 

 

consideration is the obtainment of closed 
form solutions for microcracks that would 
reflect the influence of material 
microstructure. The 1/ r  singularity will 
no longer be assumed for the microcrack. 
The present model involving a 
macrocrack, microcrack and edge 
dislocations will entail the following 
salient features: 
 

• Singularity representation used to 
characterize the combined effect of load, 
geometry and material at each scale. 
• Scale segmentation allowing the use 
of equilibrium mechanics. 
• Restraining stress zones introduced to 
smooth scale change transitions. 
• Criterion using volume energy density 
and characteristic lengthy. 
• Coefficient of system inhomogeneity. 

 
In contrast to the traditional thought of 
continuum mechanics where material 
behaviour is classified by constitutive 
relations, stress and strain relation for 
each scale segment is assumed to be linear 
and considered homogeneous and 
isotropic such that only two constants are 
used. This is equivalent to modelling a 
nonlinear curve by linear segments. The 
use of linear elasticity theory for 
characterizing atomic lattice structure is 
not new. Nonlinearity can be viewed as 
the reflection of effects at a lower scale 
and can be avoided by restricting the size 
of scale range of investigation. 
Connection of the results of the different 
segments is made possible by invoking 
the scale invariant criterion based on force 
or total energy. 
 
 
2. Singularity representation by 
segments 
 
Although the choice of breaking up the 
non-equilibrium process by small 
segments of equilibrium processes is 
arbitrary, available knowledge will be 
used as much as possible such that much 

of the existing results can be pieced 
together in the chain of event. Cases in 
point are the 1/ r  singularity for the 
crack and 1/r singularity for the classical 
edge or screw dislocation. This is 
illustrated in Fig. 1 with λ denoting the 
order of the stress singularity, i.e., σ ∼ 1/rλ. 
Except for the base of reference λ = 0.5  

 
Figure 1: Classification of stress 
singularities with characteristic lengths. 
 
for macrocracks, a range of λ is suggested 
for the other defects. The corresponding 
characteristic lengths denoted 
by disl micro,l l   macroand l  are assigned 
with the average values 10-7, 10-5 and 10-3 
cm, respectively. This selection of choice 
was made in [11] on the basis of physical 
argument. A possible extension in the 
direction of weaker singularity for λ = 
0.45 to 0.25 is referred to as deka with 

dekal = 101.5 cm, the size of a structural 
member. This would be the direction of 
connecting the model to the larger size 
scale. Fig. 2 illustrates how the 
macro-scale is extended to the deka-scale 
based on the singularity approach for a 
macrocrack. Ahead of the macroscopic 
zone of stress intensification, there is also 
a larger zone possessing a weaker 
singularity of the order of 0.25 to 0.45 as 
suggested in Fig. 1. The influence of this 
zone extends via the component members 
into the structure.  
 



 

 

 
Figure 2: Deka-zone of stress 
intensification.  
 
Base reference of the macrocrack. 
Let the macrocrack be the base reference. 
The asymptotic macro-stress field 
referred to a rectangular system with axes 
x1 and x2 as shown in Fig. 3.for symmetric 
loading is given by 
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 Figure 3: Macro/micro/dislocation 
subjected to uniform stress field.  
 
In Eqs. (1), the macro-stress intensity 
factor takes the form 
 

cK 1macro
macro
I πσΛ=     (2) 

 
in which σ1 is the restraining macro-stress 
on the segment d. It is the resistance of the 
material to do further damage at the 
macroscopic scale. Note further that  
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while the functions Λ1 and Λ2 stand for 
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Fig. 3 gives an enlarge view of the 
restraining zone together with the 
dimensions of line segments of the 
damage model: 
 

gdaf ++= , 

bb rhfrhgdac ++=++++=   (5) 

 
Figure 4: Enlarged view of the triple scale 
damage model. 
 
Microcrack stress fields: symmetric 
and skew-symmetric.

 Assuming that qualitative behavior of the 
microcrack tip stresses is the same as that 
for the macrocrack, then the symmetric 
and skew-symmetric angular distributions 
can be written as 
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Note that the micro-stress field need not 
be symmetric as the applied load because 
anti-symmetry at a lower scale can be 
allowed where 0Kmicro

I ≠  and 
0Kmicro

II ≠  can occur simultaneously. A 
more refined definition of the microcrack 
can be found in [10] where the local stress 
field will no longer satisfy the conditions 
of free tractions as in Eqs. (6). The 
microcrack surfaces may be in contact 
following the configuration of the 
material microstructure. Moreover, the 
boundary conditions at the tip is likely to 
be mixed with the prescription of 
displacement and traction. For the 
simplified version referred to in Eqs. (6), 
the micro-stress intensity factor micro

IK  
can be expressed as 
 

eK 2micro
micro
I πσΛ=     (7) 

 
According to the notation in Fig. 4, 
e=g+h+rb. In Eq. (7), Λmicro is another 
positive scale parameter that can be taken 
as  

)
g
h1(micro −=Λ       (8) 

 
which serves as a good approximation [5]. 
The skew-symmetric micro-stress 
intensity factor micro

IIK  is given by  
 

c2K 22
micro
II πτΛ

π
=    (9) 

 
in which Λ2 corresponds to the second of 
Eqs. (4). Both σ2 and τ2 are, respectively, 
the restraining normal and shear stress 
along meso zone 2 in Fig. 4.  

Edge dislocation stress field. 
The singular stress field for an edge 
dislocation is well known [12]. It is of the 
form 
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Eqs. (10) is skew-symmetric in θ with 
reference to the x1 axis. The 
corresponding dislocation-stress intensity 
factor can be defined as 
 

π
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πν+
=

2
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2)1(2
nbEK disl

disl
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in which Edisl is the elastic modulus, νdisl 
the Poisson’s ratio, b the length of the 
Burger’s vector, n the number of edge 
dislocations in the segment rb and μdisl the 
shear modulus. The theory of elasticity 
considers no size effect and it can be used 
at the atomic as well as the macroscopic 
scale. For a homogeneous and isotropic 
system, two constants are sufficient for 
describing the material behaviour.  
 
Interaction of macro/micro/dislocation 
effects. 
The interactive effects of the macrocrack, 
microcrack and dislocation are obtained 
by using the concept of scale multipliers 
[5-7] so as to satisfy the stress 
compatibility condition. Connection of 
the local stress intensity between the 



 

 

macro- and micro-scale can be satisfied 
by substituting Eqs. (2) and (7) into 
 

macro
I1

micro
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For finding α1 as  
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1 σ

σ
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which is positive and dimensionless. In a 
similar manner, Eqs. (9) and (11) may be 
inserted into 
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to yield 
 

hc2)1(4
nbE

22disl

disl
2 τΛν+

=α         (15) 

 
Interaction between the microcrack and 
dislocations is thus established. It is seen 
that only the skew-symmetric portion of 
the microcrack stress field has an effect 
on the edge dislocation while the 
symmetric portion of the microcrack 
stress field makes connection to the 
macrocrack stress field. 
 
 
3. Scale invariant and shifting 
 
Volume energy density and charac- 
teristic length. 
In order to make use of the concept of 
scale shifting, it is necessary to compute 
for the volume energy densities at the 
different scales. For plane strain at the 
macroscopic scale, it can be shown that 
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Making use of Eqs. (1), it is found that 
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  (17) 
In the same way, the micro-volume 
energy density takes the form 
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Making use of Eqs. (6) to (9), there results 
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Finally, the dislocation-volume energy 
density is given by 
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Eqs. (10) and (11) lead to 
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The edge dislocation number n can be 
determined from the displacement 
compatibility condition. This detail can be 
found elsewhere [8,9]. Eqs. (17), (19) and 
(21) can now be computed numerically to 
complete three segments of the volume 
energy density curve in Fig. 5. The fourth 
segment involves the deka scale that can 
also be computed.  
 
Scale shifting criterion. 
It is now more pertinent to connect the 
four line segmentations shown in Fig. 5. 
In general, a plot of dW/dV versus r may 
be used to exhibit the behavior of system 
homogeneity. For the line crack solution 
used in fracture mechanics, it is known 
that dW/dV versus r follows a perfect 
hyperbola if the system is homogeneous. 
That is the rectangular area S = r x dW/dV 



 

 

is the same at each point of the hyperbolic 
curve. Reference can be made to [13] for 
many crack problems where the 
S-criterion were used to determine 
subcritical and/or the onset of macrocrack 
propagation. The extension to a 
multiscale system of defects is depicted in 
Fig. 6. Let W = dW/dV. The values of Wdisl, 
Wmicro and Wmacro are computed, 
respectively from Eqs. (21), (19) and (17) 
by assigning numerical values to the 
material, length and load parameters 
shown in Figs. 3 and 4. They are a = 10 
mm, g = 1 mm, Emicro = 200 GPa, Emicro/ 
Emacro= Edisl/ Emicro = 5, νdisl = νmicro =νmacro 

= 0.3, σ∞ = 20 MPa and τ2 = 20 GPa. The 
five normalized quantities σ1/σ∞, σ2/σ1, 
d/a, h/g and rb/h are varied about the 
respective values of 2, 4, 0.05, 0.2 and 0.2 
to obtain the dotted curve as an average. It 
is not a hyperbola. That is the system is 
not homogeneous. The deviation from a 
hyperbola can be quantified via the 
characteristic lengths disll , microl , macrol  
and dekal  by the two consecutive 
relations  
 
mdisl→micro disll Wdisl = microl Wmicro, 
mmicrosl→macro microl Wmicro = macrol Wmacro 

 (22)  
 

In Eqs. (22), mdisl→micro and mmicrosl→macro 
stand for the coefficients of 
inhomogeneity when crossing the scale 
range from dislocation to microcrack and 
from microcrack to macrocrack, 
respectively. Keep in mind that 

mesol Wmeso may have to used in between  
disl /micro and/or micro/macro if the 
segmented gap needs to be refined. In this 
case, any two consecutive points on the 
curve in Fig. 6 may be related as  
    

j j j+1m S =S or j j j j+1 j+1m =l lW W   (23) 
 

The criterion in Eq. (23) may be 
generalized to consider time rate effects. 
With the notation that dot represents time 
rate Eq. (23) can also be expressed as 

 
j j j+1m S =S& &  or 1j1jjjjm ++= WW &l&l  (24) 

 
A statement equivalent to Eq. (24) is that  
  
the time rate of the energy density factor 
is assumed  
to remain unchanged between two 
successive scale ranges. 
 
 

 
Figure 5: Volume energy densities as a 
function of the characteristic lengths. 
 

 
Figure 6: Macro/micro/dislocation volume 
energy densities versus distance. 
 
 
4. Concluding remarks and future 
considerations 
 
Several possible improvements of the line 
damage multiscale model have been 
pointed out. The anticipation is that the 



 

 

extension of the size range beyond the 
macrocrack size to the structural 
component range may be accomplished 
by applying the weak singularities [6]. 
They involve singularity orders lower 
than the 1/ r  which has been regarded 
as the base reference. Regularity of the 
crack tip displacement field must still be 
invoked. This possibility is encouraged by 
the obtainment of closed form solutions 
for a microcrack [10] with a variable 
angle wedge shaped notch head that can 
model different orders of stress 
singularities representing the variance in 
the material microstructure. The 
analytical solution can be used to 
advantage in the development of physical 
models for examining the sensitivity of 
the geometric and material parameters at 
the different scale levels. The field of 
fatigue is particularly in need of such an 
approach where data interpretation 
becomes cumbersome when using 
numerical models. Effective mutliscale 
physical damage models can assist the 
signal recognition of sensor data that are 
now widely used in the health monitoring 
of civil engineering and high energy 
storage structures. The correlation 
between signal data and potential 
malfunction of any physical systems is 
not always straightforward. 
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Abstract 
 
The increased miniaturisation of parts and 
processes leads to increased interest on 
size effects. These effects may appear as a 
not directly predictable change of 
component or process behaviour, even if 
scaling is done in correct similarity 
relations. 
 
In this study size dependencies on flow 
stress and failure behaviour of an 
unalloyed 1045 steel, a titanium alloy 
Ti-6-22-22S and an aluminium alloy 
Al7075 T6 under compressive loading and 
over a wide range of strain rates are 
discussed. Based on experimental and 
numerical results the influence of friction 
at scaled deformation processes is 
described and provides a possible 
explanation for measured size effects at 
low dynamic deformation processes. At 
high strain rates, the explanation for the 
measured behaviour requires the 
consideration of thermo dynamical aspects 
including the transition of an isothermal to 
an adiabatic process. 
 
Keywords: size effects, flow stress, 
failure, strain rate 
 

 
 
1. Introduction 
 
The increased complexity of products and 
processes leads to an increased 
miniaturisation of components to be 
manufactured. Actually, the influence of 
size appearing at scaled manufacturing 
processes is not explained and has to be 

clarified especially where plastic shape 
changing of metals takes a central part. In 
material characterisation size effects under 
various loading types and conditions are 
widely discussed (e.g. [1]-[6]). 
Nevertheless, less is known about size 
dependencies at high strain rates.  
 
Within this study size and time 
dependencies of flow stress, strengthening 
and failure behaviour of an unalloyed 
1045 steel, a titanium alloy Ti-6-22-22S 
and an aluminium alloy Al7075 T6 under 
compressive loading is presented. Under 
quasistatic and low dynamic loading 
conditions the measured effects are 
explained by increased friction with 
reducing size. At high strain rates 
thermodynamic aspects are considered. By 
applying a simple thermodynamic 
approach the measured size dependent 
material behaviour is explained. 
 
 
2. Materials 
 
For the experimental investigations of size 
dependencies three types of metals were 
used. The body-centred cubic unalloyed 
steel 1045 in a normalised condition was 
used for the determination of size and time 
dependent flow stress behaviour under 
compressive loading and different loading 
rates. 
Additionally, a titanium alloy (Ti-6-22-
22S) and an aluminium alloy (Al7075 T6) 
were applied for studying size effects on 
failure behaviour under compressive 
loading. The final bimodal microstructure 
of the titanium alloy contains globular α -
phase between the lamellar arrangement of 



α - and β -phase. The aluminium alloy 
was used in a solution heat treated and 
artificially aged state (peak aged). 
 
 
3. Experimental setup 
 
Within this work the material behaviour 
under compressive loading with special 
emphasis on size and time dependencies 
was investigated. Cylindrical compression 
specimens were scaled in a range of 1 and 
9 mm in diameter and 0.5 to 1.5 in aspect 
ration (height to diameter), respectively. 
Experimental work was carried out by use 
of both common available universal 
testing machines and special designed 
testing devices. Under quasistatic and low 
dynamic loading rates up to 101 s-1 
mechanical and servo hydraulic testing 
machines were used. Force was measured 
by calibrated and adjusted load cells. The 
deformation was measured by strain 
gauges and incremental gauges, 
respectively.  
 
At high strain rates the design of drop 
weight towers and the Split Hopkinson 
Pressure Bar were used. The drop weight 
towers (Fig. 1) consist of a frame and a 
guided mass (120 and 600 kg). A detailed 
description of the test procedure is given 
e.g. in [7]. The displacement is measured 
either by incremental gauges and strain 
gauges or by electro optical extensometer. 
The force is calculated from the elastic 
deformation of the punch by means of 
calibrated strain gauges and Hooke’s law. 
 

 
 

Figure 1: Drop weight tower [7]. 
 
Compression tests at strain rates >103 s-1 
were realised by split Hopkinson pressure 
bars (Fig. 2). The determination of stress-
strain-response of the materials is based on 

the principles of one-dimensional elastic-
wave propagation within the pressure bars 
[8]. 
 

 
 

Figure 2: Split Hopkinson Pressure Bar. 
 
Hence, with the experimental setup 
described above investigations within a 
range of strain rates of 10-4 to 104 were 
realised. 
 
 
4. Experimental results and discussion 
 
4.1. Flow stress behaviour 
 
Fig. 3 illustrates the size and time 
dependent flow stress and strengthening 
behaviour of 1045 steel. With increasing 
strain rate from 10-3 to 200 s-1 an increase 
of the flow stress in the order of 250 MPa 
was measured. This is due to the thermally 
activated flow stress behaviour of 1045 
steel. However, it can be evaluated that 
flow stress of smaller specimens is 
significantly higher than the larger ones. 
The difference in flow stress is increased 
with increasing strain rate from 50 MPa 
under quasistatic loading to 100 MPa 
under high strain rates. However, if the 
strain rate is kept constant a similar 
strengthening behaviour of the different 
specimen geometries is observed. 
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Figure 3: Specimen size and time 
dependent flow and strengthening 

behaviour of 1045 steel. 



To explain the measured behaviour the 
influence of friction was investigated. Due 
to a disproportionate increase of the ratio 
surface area to volume with reducing size, 
a size dependent frictional behaviour was 
expected. Recently, numerical and 
experimental investigations on the 
development of friction coefficient as a 
function of size [9] have shown, that 
friction coefficient µ is increased with 
reducing size. Hence, under quasistatic 
loading conditions friction corrected flow 
curves were calculated, which were nearly 
identical between the different specimen 
sizes and the assumption of friction 
affected flow stress behaviour was 
confirmed. 
Additionally, at high strain rates the 
temperature development during the 
deformation process was considered. 
Numerical simulations (Fig. 4) have 
shown, that no temperature increase under 
quasistatic and low dynamic loading is to 
be expected. 
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Figure 4: Size and time dependent 

temperature development for 1045 steel 
after 50 % plastic strain (calculated by 

DEFORMTM-2D). 
 
The deformation process is nearly 
isothermal. At high strain rates, the 
temperature increase of the different 
specimen sizes is similar. With a further 
increase of strain rate no significant 
difference in the temperature increase of 
different specimen sizes can be found. The 
process is nearly adiabatic. Within the 
transition area a specimen size dependent 
temperature development was found. 
Hence, this may influence the flow stress 
behaviour within this range of high strain 
rates and lead to an increase of the 
differences in flow stresses of small and 

large specimens compared to quasistatic 
loading (Fig. 3). 
 
Scaling of the aspect ratio (height to 
diameter) between 0.5 and 1.5 shows a 
similar yield behaviour up to 0.2 plastic 
strain under quasistatic loading conditions 
(Fig. 5). With increasing strain a higher 
flow stress for specimens with a smaller 
aspect ratio is measured. At high strain 
rates differences of flow stresses of 
different specimen geometries occur at 
approximately 0.1 plastic strain.  
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Figure 5: Influence of aspect ratio on flow 
stress of 1045 steel under quasistatic and 

dynamic compressive loading. 
 

An intersection of the flow curves of 
quasistatic and dynamic compression tests 
between 0.4 and 0.6 plastic strain (Fig. 3 
and 5) occurs due to the adiabatic heating 
of the specimen at high strain rates and the 
thermal softening, respectively.  
 
 
4.2. Failure behaviour 
 
To investigate the influence of specimen 
size on failure, a titanium alloy and an 
aluminium alloy were used. The titanium 
alloy even failed under quasistatic loading 
conditions. At high strain rates both 
materials tend to fail due to adiabatic shear 
banding. 
Cylindrical compression tests within a 
range of strain rates from 10-3 to 104 s-1 
lead to a decrease of compressive 
deformability with increasing strain rate. 
Furthermore, for both materials a size 
dependent failure behaviour was observed, 
where the larger specimens tend to fail 
earlier than smaller (Fig. 5).  
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Figure 5: Size and time dependent 
compressive deformability of (a) Ti-6-22-

22S and (b) Al7075 T6. 
 
However, the measured failure strain 
depends on both a geometrical and a 
process variable. Using a simple approach 
to describe failure strain fε  as a function 
of strain rate and diameter (Eq. 1), where 

*  is the normalised characteristic length 
and 
d

ε&  the strain rate, Fig. 6 can be drawn. 
 
( ) ( ) **lnln εε &+⋅+= dbaf  (1) 

 
Fig. 6 illustrates, that the geometry of the 
specimen is the major influencing variable 
under quasistatic and low dynamic loading 
conditions up to 102 s-1. At high strain 
rates, the influence of size seems to be 
reduced and the strain rate mainly affects 
the macroscopically measured plastic 
deformability until fracture. 
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Figure 6: Compressive deformability of 
Ti-6-22-22S as a function of strain rate 

and length according to Eq. (1). 
 
To investigate the failure process itself 
stopped cylindrical compression tests 
followed by microstructure investigations 
were realised by use of Ti-6-22-22S. 
Under quasistatic loading the larger 
specimens tend to fail earlier than the 
smaller ones, although the crack initiation 
is similar. However, differences were 
found in bulging of the specimens which 
indicates different friction conditions 
(Fig. 7). 
 

a)

b)

a)
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Figure 7: Ti-6-22-22S, ε&  = 10-3 s-1, after 

40 % plastic strain: a) Ø2x2 and b) Ø6x6. 
 
Applying an approach of size dependent 
friction coefficients described in section 
4.1 and [9], in FEM calculations an 
alteration of the distribution of equivalent 
plastic strain was found. However, 
assuming a crack development in regions 
of highest plastic strain (“forging cross”) 
the different crack geometry can be 
explained. 



At high strain rates, a size dependent 
failure behaviour was found, too. Friction 
effects may also play an important role. 
Additionally, thermodynamic aspects 
including temperature development and 
heat conduction have to be considered. 
 
Zehnder et al. [10] used the Fourier 
number 0  (Eq 2) to estimate the time 
span over which a deformation process is 
adiabatic. In Eq. 2 the time t  is substituted 
by strain 

F

ε  and strain rate ε& . 
 

220 ll
tF

⋅
⋅

=
⋅

=
ε

εαα
&

 (2) 

 
α  is the thermal diffusivity and  a 
characteristic length. Using Eq. 2, Fig. 8 
can be drawn. If 0  is larger than 10 the 
process is isothermal. If 0  is smaller than 
0.1 the process is essentially adiabatic. 
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Figure 8: Size dependent transition of 

isothermal to adiabatic process conditions 
for Ti-6-22-22S according to Eq. (2). 

 
It can be evaluated that the transition from 
an isothermal to an adiabatic process is 
much more influenced by specimen 
geometry than by the extend of 
deformation. Furthermore, it can be seen 
that for large specimens (>4 mm) the 
transition is nearly independent on size. 
However, for smallest geometries the 
transition area is displaced to high strain 
rates. This means, a decrease of specimen 
size in order to obtain higher strain rates 
needs attention between 10-2 to 102 s-1. 
This will lead to a not determinable 
increase of flow stress due to less 

temperature development during the 
deformation process. The influence of 
thermal softening on flow stress behaviour 
would be underestimated. Fig. 4 and 9 
confirm this statement. 
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Figure 9: Size and time dependent 

temperature development for Ti-6-22-22S 
after 30 % plastic strain (calculated by 

DEFORMTM-2D). 
 
In Fig. 9 the size and time dependent 
temperature development within a 
compression specimen of Ti-6-22-22S can 
be evaluated. According to Fig. 4 at 
quasistatic and low dynamic loading 
conditions no significant temperature 
increase is observed. This is due to heat 
conduction processes during the 
deformation process and the isothermal 
process character, respectively. At high 
strain rates the process is nearly adiabatic 
and heat conduction can be neglected. In 
the transition area a significant 
temperature increase from room 
temperature to approximately 220 °C is 
found. However, the transition area is 
displaced to higher strain rates with 
decreasing size. This may be explained by 
different thermodynamic state according 
to Eq. 2. The question now arises: What 
happens, when the thermodynamic state is 
kept constant ? 
Table 1 shows the influence of size on 
thermodynamic state represented by 
Fourier number 0  and strain rate 
respectively. All values are normalised to 
a reference size of 6 mm in diameter and 
height. 

F

 
 
 
 
 
 



 ε&  = const. 0F  = const. 

Ø 1 mm 036 F⋅  Ø636 ε&⋅  

Ø 2 mm 09 F⋅  Ø69 ε&⋅  

Ø 4 mm 025.2 F⋅  Ø625.2 ε&⋅  

Ø 6 mm 0F  Ø6ε&  

Ø 9 mm 044.0 F⋅  Ø644.0 ε&⋅  
 

Table 1: Influence of size on 0  and F ε&  
related to a reference size of Ø6x6. 

 
Table 1 illustrates, that e.g. a nine times 
larger strain rate is required between Ø2x2 
and Ø6x6 specimens to keep 0  constant. 
Keeping the thermodynamic state related 
to Ø6x6 specimens constant by adjusting 
the strain rate a size and time dependent 
temperature development shown in Fig. 10 
is observed. Assuming 

F

α  to be in the 
order of 7.3·10-6 m²/s and a plastic strain 
of 0.3, Fig. 10 can be drawn. 
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Figure 10: Size and time dependent 
tem S 

 
 can b ing the 

perature development for Ti-6-22-22
after 30 % plastic strain (calculated by 
DEFORMTM-2D). The thermodynamic 
state is kept constant relating to Ø6x6 

specimens and Table 1. 

e evaluated that keepIt
thermodynamic state represented by 
Fourier number 0F  constant, a nearly size 
independent tem ature evolution profile 
as a function of strain rate is calculated. 
The differences of temperature between 

small and large specimens can be 
explained by the increased flow stresses 
with increasing strain rate. Small 
specimens have to be tested at higher 
strain rates which lead to increased flow 
stresses due to thermal activated 
deformation processes. According to Eq. 3 
a larger temperature increase 

per

T∆  due to 
plastic deformation is expected.  
 

∫⋅⋅
=∆ pd

C
T εσ

ρ
η  (3) 

 
η  is the partition of plastic work 
converted to heat and assumed to be 
constant at 0.9, ρ  and  are the density 
and heat capacity, respectively. 

C

 
If the temperature is related to the initial 
flow stress, the influence of thermal 
activation is suppressed and Fig. 11 can be 
drawn. 
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Figure 11: Normalised temperature 
development related to initial flow stress 
for Ti-6-22-22S after 30 % plastic strain 

(calculated by DEFORMTM-2D). 
 
However, applying the basic assumption 
described above, stopped cylindrical 
compression tests were realised by use of 
Ø6x6 and Ø2x2 specimens. The Fourier 
number was kept constant at 2.193·10-3 
which requires a strain rate of 250 s-1 for 
the small and 28 s-1 for the large 
specimens. The results are shown in 
Fig. 12. 



 
Figure 12: Failure characteristics: 
Ti-6-22-22S: a) Ø2x2, ε&  = 250 s-1

and b) Ø6x6, ε&  = 28 s-1. 
 
From Fig. 12 similar failure characteristics 
both for initiation at approximately 25 % 
as well as for compressive deformability at 
30 % plastic strain can be evaluated, 
whereby the flow stress differs between 
the two geometries due to the thermal 
activated flow stress behaviour in the 
order of 100 MPa. Nevertheless, if the 
thermodynamic state is kept constant, no 
size dependent failure is observed.  
 
However, testing Ø6x6 specimens at 
250 s-1 requires a strain rate of 2250 s-1 for 
the Ø2x2 specimens to keep 0  constant. 
Experiments have shown, that an approach 
in the direction of high strain rates >10

F
3 s-1 

do not fulfil the assumptions made above. 
The effect may be explained by the 
transition to adiabatic process conditions, 
which means, according to Fig 9 no size 
dependent temperature development was 
found. Furthermore, experimental work at 
strain rates >104 s-1 shows, that the plastic 
deformability of Ti-6-22-22S obtained 
with Ø2x2 specimens seems to be 
increasing at highest strain rates. This 
effect is finally not explained and part of 
future efforts. 
 

. Conclusions 

rom our work the following conclusions 

The measured flow stress of 1045 steel 

- o 

- d low dynamic 

- loy (Al7075 T6) 

-  

- e failure 

- mptions made at low and 

 

. Acknowledgement 

his work is part of the DFG priority 

eferences 

] Armstrong, R.W. (1961), J. Mechanics 

5

plastic strain εp [%]
0 5 10 15 20 25 30 35

en
gi

ne
er

in
g 

st
re

ss
 σ

 [M
Pa

]

0

500

1000

1500

2000

2500
plastic strain εp [%]

0 5 10 15 20 25 30

en
gi

ne
er

in
g 

st
re

ss
 σ

 [M
Pa

]

0

500

1000

1500

2000

2500

10 %

20 %

25 %

>30 %

30 %

10 %

20 %

25 %

>30 %

30 %

a)

b)

plastic strain εp [%]
0 5 10 15 20 25 30 35

en
gi

ne
er

in
g 

st
re

ss
 σ

 [M
Pa

]

0

500

1000

1500

2000

2500
plastic strain εp [%]

0 5 10 15 20 25 30

en
gi

ne
er

in
g 

st
re

ss
 σ

 [M
Pa

]

0

500

1000

1500

2000

2500

10 %

20 %

25 %

>30 %

30 %

10 %

20 %

25 %

>30 %

30 %

a)

b)

 
F
can be drawn: 
 
- 

is size and time dependent. The flow 
stress of smaller specimens is higher 
than the larger ones. The effect is 
increased with increasing strain rate. 
Scaling the aspect ratio (height t
diameter) leads to increased flow 
stresses with smaller aspect ratios at 
high strains (>15 %). 
Under quasistatic an
loading conditions friction effects may 
explain the measured flow stress 
behaviour. Additionally, at high strain 
rates temperature development 
provides an explanation for the 
measured behaviour. 
For an aluminium al
and a titanium alloy (Ti-6-22-22S) a 
size and time dependent failure 
behaviour was measured. Both 
materials tend to fail due to adiabatic 
shear banding under high strain rates. 
At quasistatic loading conditions and
intermediate strain rates the different 
failure characteristics may be 
explained by changed frictional 
conditions at different sizes. 
At high strain rates, th
characteristic is strongly dependent on 
thermodynamic state, including length 
dependencies. A specimen size and 
time dependent temperature 
development was predicted by FEM 
calculations. 
Anyhow, assu
intermediate strain rates are not 
directly applicable to describe the 
material behaviour at highest strain 
rates. 

 
6
 
T
programme “Process Scaling”. The 
authors like to thank the DFG for its 
financial support. 
 
 
R
 
[1
and Physics of Solid, 9, pp. 196-199. 
 



[2] Gunasekera, J.S., Havranek, J., 

] Gorham, D.A. (1991), Appl. Physics, 

] Geiger, M., Meßner, A., Engel, U. 

] Fleck, N.A., Muller, G.M., Ashby, 

] Stölken, J.S., Evans, A.G. (1998), Acta 

] Meyer, L.W., Krüger, L. (2000) In: 

] Gray, G.T. (2000), In: ASM 

] Meyer, L.W., Herzig, N. (2005): In: 

0] Zehnder, A.T., Babinsky, E., Palmer, 

Littlejohn, M.H. (1982), Trans. ASME, 
104, pp. 274-279. 
 
[3
24, pp. 1489-1492. 
 
[4
(1997), Production Engineering, IV/1, 
pp.55-58. 
 
[5
M.F., Hutchinson, J.W. (1994), Acta 
Materialia et Metallurgica, 42, pp. 475-
487. 
 
[6
Materialia et Metallurgica, 46, pp. 5109-
5115. 
 
[7
ASM Handbook, Volume 8, Mechanical 
Testing and Evaluation, pp. 452-454, 
Kuhn, H. And Medlin, D. (Eds.), ASM 
International, Materials Park, Ohio. 
 
[8
Handbook, Volume 8, Mechanical Testing 
and Evaluation, pp. 462-476, Kuhn, H. 
and Medlin, D. (Eds.), ASM International, 
Materials Park, Ohio. 
 
[9
Process Scaling, pp. 147-156, Vollertsen, 
F. and Hollmann, F. (Eds.), BIAS Verlag, 
Bremen. 
 
[1
T. (1998), Experimental Mechanics 38, 
pp.295-302. 
 



A MULTISCALE APPROACH TO CRACK 
GROWTH 

R. Jones 
DSTO Centre for Structural Mechanics, Department of 

Mechanical Engineering, Monash University, P.O. Box 31, 
Monash University, Victoria, 3800, Australia 

 
C. Wallbrink 

CRC Integrated Engineering Asset Management, Department of 
Mechanical Engineering, Monash University, P.O. Box 31, 

Monash University, Victoria, 3800, Australia. 
 

S. Pitt 
Air Vehicles Division, Defence Science and Technology 

Organisation, 506 Lorimer Street, Fishermans Bend 3207, 
Australia 

 
L. Molent 

Air Vehicles Division, Defence Science and Technology 
Organisation, 506 Lorimer Street, Fishermans Bend 3207, 

Australia 
 
 

Abstract (bold, leave 1 line blank after) 
 
This investigation first discusses the link 
between the Frost-Dugale crack growth 
law, incomplete self similarity, the two 
parameter crack growth law, and fractal 
fatigue concepts. We then illustrate its 
applicability to predict crack growth from 
30 microns to the macro scale. This 
methodology is then used to predict crack 
growth in the F/A-18 specimen test 
program. 
 
Keywords: Crack growth, Multi-scale, 
Frost-Dugdale, Fractals; Non self similar. 

 
 

1. Introduction 
 

The science of fatigue crack growth 
traditionally revolved around the 
relationship between the stress intensity 
factor range, ΔK and the crack growth 
rate, da/dN. The first paper making this 

correlation was published in 1961 by 
Paris, Gomez and Anderson [1], who 
adopted the K-value from the analysis of 
the stress field around the tip of a crack as 
proposed by Irwin in 1957 [2]. The results 
of the constant-amplitude crack growth 
tests by Paris were expressed in terms of 
da/dN (where N is the number of fatigue 
cycles, a is the crack depth or length at 
time N) as a function of ΔK on a double 
log scale. Plotting the data in this fashion 
reveals a region of growth where a linear 
relation between log(da/dN) and log(ΔK) 
appears to exist. This led to the well-
known Paris equation:  
 
 da/dN = CΔKm (1)

 
where C and m are experimentally 
obtained constants.  
 
This law has continued to be modified to 
account for a variety of real life 
observations including, stress ratio R and 



crack closure effects [3, 4], and 
dependency on the peak stress intensity 
factor (Kmax) [5, 6], etc. However, in 
recent years a number of earlier 
modifications have been questioned [5, 6].   
 
In the mid 1970’ Pearson [7] showed that 
fatigue crack growth laws determined for 
macroscopic cracks could not be used to 
predict the growth of small sub-millimetre 
cracks and that the constants in the crack 
growth law were a function of the size of 
the crack. He also revealed that this 
inconsistency was not due to crack-tip 
plasticity effects.  
 
In this paper we will present an explicit 
expression for this crack length 
dependency and reveal how it is related to 
incomplete self-similarity, the two 
parameter crack growth model [5, 6], and 
to fractal fatigue concepts. 
 
At this stage it is important to note that the 
Paris equation was not the first law 
proposed to describe crack growth. The 
first law (according to Frost et al [[8]]) can 
be attributed to an early Australian 
Defence Science and Technology 
Organisation (DSTO) researcher, A. K. 
Head [[9]]. Subsequently Frost and 
Dugdale [8], using Head’s observation of 
self-similar crack growth, expanded 
Head’s law and reported that crack growth 
under constant amplitude loading could be 
described via a simple log linear 
relationship, viz: 
 

( ) )( oaLnNaLn += λ     or   N
oeaa λ=   (2) 

 
which gives as the crack growth rate 
equation: 
 

da/dN = λa    (3) 
 
where λ, which we will define as the 
“growth acceleration rate” constant, is a 
parameter that is geometry and load 
dependent, N is the “fatigue life”, and a0 is 
the initial crack-like flaw size (depth of 
the crack at the start of loading). When the 
far field stress and crack geometry remain 
relatively constant then:  

 
 ( )σλ f=  (4) 
 
For constant amplitude loading [8, 10] 
found that λ could be expressed as:  
 

 ( )3σφλ Δ=  (5) 
 
where φ is only a function of the loading 
and geometry of the structure.  
 
A near linear relationship between ln(a) 
and N has also been reported for 
physically short cracks by a large number 
of researchers including Harkegard, Denk, 
and Stark [11],  Nisitani et al  [[12]], 
Kawagoishi et al [[13]], Caton et al [[14]], 
Murakamia and Miller [[15]], Polak and 
Zezulka [[16]], Tomkins [[17], etc, see 
Figure 1 and 2. Indeed, Polak and Zezulka 
found that this approximation held for sub 
micron cracks. 

 
With respect to MEMS technology it is 
now known that, although bulk silicon 
does not exhibit a significant 
susceptibility to cyclic fatigue, micron-
scale structures made from silicon films 
are vulnerable to fatigue in ambient air 
environments. Of particular interest is the 
fact that the crack growth histories 
presented by Ritchie et. al. [[18] and 
Mulhstein et al [19] also appear to 
conform to the Frost & Dugdale law, see 

 
Figure . 

 
Figure 1: Crack growth at the nano-scale 
in 2 µm-thick polysilicon, adapted from 
[[18] 
 
Molent, Sun and Green in their 
compendium of F/A-18 fatigue crack 
growth data [[20], which examined more 
than 300 different cracks in a various full 
scale fatigue tests and the associated 
coupon test programs, also found that a 
near log linear relationship holds for crack 
growth from a starting length of less than 
100 microns to lengths of 5 mm’s or more. 
A more general and comprehensive review 
of the applicability of the Frost-Dugdale 



law to represent crack growth is given in 
Barter et al [[21], and by Molent et al [[22] 
who reviewed crack growth in the fuselage 
lap joints in commercial transport aircraft. 
 
 
2. Relationship to the two parameter 

crack growth model  
 
It is now known that fracture surfaces can 
be considered as an invasive fractal set, 
see Mandelbrot et al, 1984 [23]. Indeed, 
Mandelbrot et al has shown that: 
 
“When a piece of metal is fractured either 
by tensile or impact loading the facture 
surface that is formed is rough and 
irregular. Its shape is affected by the 
metal’s microstructure (such as grains, 
inclusions, and precipitates where 
characteristic length is large relative to the 
atomic scale), as well as by 
‘macrostructural’ influences (such as the 
size, the shape of the specimen, and the 
notch from which the fracture begins). 
However, repeated observation at various 
magnifications also reveal a variety of 
additional structures that fall between 
‘micro’ and ‘macro’ and have not yet been 
described satisfactorily in a systematic 
manner. The experiments reported here 
reveal the existence of broad and clearly 
distinct zone of intermediate scales in 
which the fracture is modelled very well 
by a fractal surface.” 
 
This concept, i.e. of a fracture surface as a 
fractal, has been further developed by 
Carpinteri and Spagnoli [24] and Spagnoli 
[25] who used renormalisation techniques 
to develop a growth law for an invasive 
lacunar fractal, viz.  
 
 da/dN = C1(a) (ΔK) p = C1 aφ (ΔK) p   (6)  
 
This law is formally identical to the 
classical Paris law except that the 
coefficient C1 depends on a whereas in the 
Paris law it is assumed to be a material 
constant (φ and p are constants). Spagnoli 
[[25] also revealed that such a crack 
growth law also corresponds to 
incomplete self-similarity, or self-
similarity of the second kind. 
 
These findings together with the 
realisation that “in the threshold regime, 
there is something missing either in the 
model…”, see [[26], led to the conjecture 

[21, 22] that in the low ΔK region, i.e. 
Region I, the crack growth rate can be 
expressed in the form: 
 
da/dN = C ( a/a*)(1-m*/2) (ΔKeff) m (7) 
 
where C, a*, and m* are constants, and 
ΔKeff is an “effective stress intensity 
factor” range. It is clear that this 
relationship follows the form proposed in 
[24], and therefore has a fundamental 
basis. Furthermore, for small cracks we 
can write  
 
 K =β Δσ√πa (8) 
 
so that da/dN becomes proportional to a. 
 
Noroozi, Glinka and Lambert [[27] 
modelled the crack as a notch with a small 
but finite tip radius *ρ > 0, see Figure 1, 
which as per the Neuber micro-support 
concept [[28] remains open during crack 
growth. They then used the Smith-
Watson-Topper (SWT) fatigue damage 
parameter to determine failure of the 
ligament immediately in front of the 
notch, to obtain a crack growth law of the 
form first proposed by Dinda and 
Kujawski [[29], viz:  
 
 
da/dn = C (ΔKtot

(1-p)(Kmax,tot)p)γ  (9) 
 
 
Here +ΔK corresponds to the tensile part 
of the load cycle, i.e. the tensile part of the 
stress intensity range. After rearranging 
the expression for C given in [[27]  we 
find that C can be expressed in the form  
 
C =   ρ1-γ/2 C  (10) 
 
where C is independent of *ρ . 
 
 
 
 
 
 
 
 
 

 
Figure 2 Crack with a finite tip radius, 
from [[27] 
 
Noroozi, Glinka and Lambert [[27] 
revealed that 

ρ*ρ*

2

σmax,n



 
ρ = (ψy,1 )2(ΔKth/Δ a

thσ~ )2/2π           (11) 
 
where Δσath is the actual threshold stress 
range over the first elementary block in 
front of the crack tip, ψy,1 is a constant, 
and ΔKth is the threshold stress intensity 
range. 
 
The formulae presented in Section 2.3.1 of 
the Nasgro users manual [[30] can now be 
used to relate the threshold stress intensity 
range to the crack length, viz: 
 
 ΔKth  = ϖ √(a/(a+a0))           (12)  (12) 
 
where ϖ is a function of the R ratio, 
constraint state and prior load history.  
 
  ΔKth  = ϖ √(a/a0)  (13)  (13) 
 
so that ρ becomes proportional to a/ a0 , 
viz:  
 
ρ = (a/a0) (ϖ/ a

thσ~Δ )2 ψy,1
2/2π  

    α (a/a0)    (14) 
 
and the crack growth Equation (9) can 
both be written in the generalized form: 
 
da/dn = (a/a0)1-γ/2 C′ ( ΔKtot

p(Kmax,tot)(1-p)) γ  
          = (a)1-γ/2 C~ (ΔKtot

p(Kmax,tot)(1-p))γ  (15) 
 
where the parameter C′  is independent of 
a and ρ*  and C~  = C′  /a0

1+γ/2. 
 
It is clear that this expression coincides 
with that presented in [21, 22]. 
 
It is interesting to note that this 
relationship between the generalised Frost 
& Dugdale law and the two parameter 
crack growth law mirrors the findings of 
Wnuk [[31]] who concluded that: 
 
 “For any given fractal dimension D (or 
roughness exponent H) a fractal crack may 
be reduced to an equivalent smooth crack 
equipped with a finite root radius 
dependent on D (or H). Once this 
transformation is accomplished, the laws 
of linear elastic fracture mechanics apply. 
Since the root radius of the equivalent 
crack is finite, the crack may be further 
reduced to a notch visualized as an 
elongated elliptical void. Therefore, the 
laws of the LEFM and those of Neuber’s 
notch mechanics coincide, and they can be 
used interchangeably.” 

Expressions similar to Equation (9) have 
also been proposed by Donald and Paris 
[[32]] and Sadananda and Vasudevan 
[[33]]. who postulated the existence of two 
thresholds, i.e. the maximum threshold 
stress intensity factor max, thK  and the 
threshold stress intensity range thKΔ , and 
that both should simultaneously be 
exceeded to make the fatigue crack grow.  
 
One problem associated with current crack 
growth codes such as AFGROW, 
FASTRAN, NASGRO, and CRACKS 
2000 is that they are unable to predict 
crack growth from small defects. In this 
paper we will show the generalised Frost-
Dugdale law, as given in Equation (7), 
enables accurate predictions of the crack 
growth history from less than 100 
microns to several mm’s. 
 
 
3. Crack Growth in 7050-T7451 
 
Two test programs were undertaken to 
study the fatigue behaviour of 7050-T7451 
aluminium alloy. In each case the test 
coupons were intended to represent the 
“mould line flange” on the F/A-18 FS488 
wing attachment carry-through bulkhead, 
and were machined from a 6.35 mm thick 
7050-T7451 aluminium alloy plate.  The 
dimensions of the coupon test specimens 
used in the first test investigation are 
shown in Figure 3, and the material 
properties for 7050-T7451 are given in 
Table 1. These specimens were tested 
under the SPEC1 spectra, i.e. obtained 
from the operational strain data from a 
RAAF fleet aircraft, see [[33]] for more 
details.  Tests were performed at two 
reference stresses, viz: 57.5 ksi 
(396.5MPa) and 47 ksi (324.1MPa). 
 
The generalised Frost-Dugdale crack 
growth law presented in Equ. (7) was used 
to predict fatigue life on a cycle by cycle 
approach.  C , m and a* are the material 
fatigue crack growth parameters 
 
The constants C = 3.36 and m =1.78 10-10 
were directly obtained from the “average” 
crack growth data, as presented by Sharp 
et al [16], and a transition value ΔKeff of 
11 MPa√m together with a Kc of 35.4 
MPa√m, as quoted in [35], was used.  
Below the transition value we used the 
Frost-Dugdale law as shown in equations 
(1) and (2), whilst above this value we 



used the standard FASTRAN algorithm. 
The transition value should always lie in 
the low end of the “Paris” region where 
Frost, Pook, and Denton [35] established 
that the Frost-Dugdale law and the Paris 
law are equally valid in describing crack 
growth.   
 
A finite element model of the specimen 
was developed. The analysis allowed for 
two different crack configurations, viz: 
semi-elliptical surface flaws and corner 
flaws. This was necessitated by the nature 
of the cracks that developed during 
testing. To illustrate this Figure 4 presents 
micrographs of the fracture surfaces of 
two indicative specimens KD1R13 and 
KD1P24.  Specimen KD1R13 contained a 
corner crack, and as such was typical of 
the majority of the cracks.  Two of the 
specimens contained cracks that initiated 
as semi-elliptical cracks and later grew to 
become a corner crack, e.g.. specimen 
KD1P24 in  Figure 4  For these cases the 
analysis considered them as semi-elliptical 
and halted when the surface crack tip 
reached the boundary. 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 3: Specimen Geometry 
 
Table 1: Material Parameters 
Property Coupon 
Thickness 6 inches 
Radius 6.35 mm 
Cross-sectional area 177.8 mm2 

Stress concentration 
factor Kt 

1.055 

Elastic Modulus 71,000MPa 
Poisson’s ratio 0.33 
Fracture Toughness 35.6 MPa.m½ 
C crack growth 
parameter 

1.78x10-10 

γ crack growth 
parameter 

3.36 

 

For each configuration we computed the 
stress intensity factors at both the deepest 
point and the surface points.  
 
The results of this analysis for a SPEC 1 
load spectra with a peak stress of 396.5 
MPa are shown in Figure 5 for seven 
specimens that failed due to either corner 
cracks, in five cases, or from semi-
elliptical initial cracks, two cases, and in 
Figure 6 for six crack cases that were 
tested under a  SPEC 1 load spectra with a 
peak stress of 321.4 MPa.    
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

 
Figure 4: Macrograph of the fracture 
surfaces of coupons a) KD1R13 and b) 
KD1P24 
 
 
In the second test program a slightly 
different test specimen geometry was 
used. These coupons were surface etched 
using the chemicals to produce surface 
pitting, which, on examination, had pitting 
similar to the pitting in the F/A-18 
FT488/1 bulkhead. The etch solution was 
50% (volume) Nitric Acid (HNO3, 70%) 
and 1% volume percent Hydrofluoric acid 
(HF, 70% Technical grade), remainder tap 
water, with an etching time of 5 minutes. 
In this test program the test spectrum, 
miniFALSTAF was modified to aid in its 
recognition during quantitative 
fractography by moving the flights with 
the most severe loads closer together. 
 

a
)

b



The resultant predictions are shown below 
in Figure 6 for 3 different crack sizes 
together with a prediction made using 
FASTRAN. The FASTRAN prediction 
started at a comparably large flaw, i.e. a 
0.019 mm quadrant flaw. For the 0.008 
mm initial flaw associated with specimen 
KY48 FASTRAN yielded an essentially 
infinite life.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 4: Fatigue life predictions for the 
SPEC1 test coupons with a reference 
stress of 396.5 MPa 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 5. Crack growth predictions for 
SPEC1 load spectra at 324.1 MPa 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 6. Crack growth predictions for 
mini-Falstaff load spectra at 390 MPa 
 
 
4. Conclusion  
 
This paper has shown how the generalised 
Frost-Dugale growth law presented in 
[21], which may also be viewed as a 
fractal/non-self similar based growth law, 
can be used to successfully predict crack 
growth in coupon tests under realistic 
spectrum loading. 
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Abstract

The present study deals with an ex-
perimental characterization and a micro-
mechanical modelling of the behaviour
of a hyperelastic composite with random
microstructure. The studied material is
an elastomeric matrix reinforced by rigid
spherical particles. In the perspective of
a multiscale modelling, we first carried
out uniaxial and equibiaxial tension tests
on the elastomeric matrix. Then, the
composite material with different volume
fractions of the particle is tested under
uniaxial tensile loading. The modelling of
the macroscopic hyperelastic behaviour
of this class of non linear composites
is performed by using the second order
method introduced by [(8)] in the frame-
work of their variationnal homogenization
technique. Detailled analysis of the nu-
merical implementation of the method is
given. Finally, the predictive capabilities
of the modelling approach are evaluated
by comparison of the numerical results
with the experimental data.

Keywords: reinforced elastomer; mi-
cro mechanic; homogenization.

1 Introduction
Thanks to their remarkable properties of
flexibility, deformability and resistance to
the high deformation levels, the elastomers
are often considered for various indus-
trial applications. In order to compensate
the largely deformable character of these
materials which, paradoxically, constitutes
the main reason of their use, particles rein-
forcement are usually added to the matrix.

However, the study of hyperelastic behav-
iour of reinforced elastomers still raises
many questions which are related to their
heterogeneous character; for instance, the
real impact of the reinforcement of this
class of materials is still poorly under-
stood. So, the objectives of the present
study are to provide experimental data al-
lowing to characterize the composite and
its constituents and to applied a homoge-
nization approach for the modelling of the
reinforced material. A confrontation of the
predictions of the model with experiments
allows to evaluate the relevance of the ap-
proach.

2 Experimental characterization and
identification of the mechanical be-
havior

The studied material is an Ethylene Propy-
lene Diene Monomer (E.P.D.M.) matrix
having a hyperelastic behaviour and rein-
forced by isostatic Polypropylene particles
(P.P.). In this section, we first recall some
basic results on the mechanical behavior
of hyperelastic materials. Then, we sum-
marize the experimental investigation and
the identification of the mechanical behav-
ior of the elastomeric matrix. The particles
are assumed rigid with respect to the ma-
trix.

2.1 The matrix strain-energy density
The hyperelastic behaviour of elastomers
is classically defined in the form:

T =
∂W(X, F)

∂F
(1)

where T denotes the first Piola-Kirchhoff
stress,W the strain-energy density at a ma-



terial point M0 having coordinates Xin the
reference configurationΩ0. F represents
the deformation gradient at M0.
The studied materials being assumed
isotropic in their reference configuration
and having to satisfy the principle of ma-
terial indifference, W can be expressed in
terms of the invariants of the right Cauchy-
Green deformation tensorC = F

t
F (cf. for

instance Ogden [(6)]):

W(X, F) = W(X, I1, I2, I3)

F
t denotes the transpose of tensorF.

For this study, we adopt an appropri-
ate energy density, initially proposed by
Lambert-Diani and Rey [(5)]:

W =

∫ I1

3
e(α0+α1(I1−3)+α2(I1−3)2)dI1

+

∫ I2

3
β1I2

β2dI2

(2)

α0, α1, α2, β1 et β2 are parameters which
have to be identified for the considered
elastomeric matrix.

2.2 Experimental characterization
and identification of the mechani-
cal behavior of the matrix

For the purpose of the identification of all
these parameters, we perform an uniaxial
tensile test and an equi-biaxial tensile test
on the elastomeric matrix.

Experimental protocol:
The tensile tests were carried out on stan-
dardized samples of type2 [(2)], subjected
to cyclic loadings with imposed maxi-
mum deformation. These tests, controlled
in displacement, were carried out on a
conventional machine (INSTRON4302)
equipped with a load cell of low capac-
ity (1kN). The device which has been used
for the equi-biaxial tensile tests was de-
signed at the laboratory of Mechanics of
Lille [(1)]; it is adaptable to the uniax-
ial tensile testing machine in finite defor-
mation. The deformation rate chosen for
the whole study is10−4/s, which makes
it possible to ensure the quasi-static char-
acter of the tests. Note also that the tests
were carried out several times in order to
guarantee a good reproducibility. The av-
erage responses of the matrix, obtained by

means of these tests are given on figure 1.

Figure 1: Mechanical response corre-
sponding to the uniaxial and equi-biaxial
tensile test of the matrix

Identification of the strain energy den-
sity:
The determination of the parameters of the
energy density is done from from experi-
mental stress-strain curve data of the ma-
trix by using the software Excell . These
parameters are determined with the solvor
which minimizes the relative error in
stress. For the n nominal-stress/nominal-
strain data pairs, the relative error measure
E is minimized, with:

E =
n∑

i=1

(
1−

T
(th)
i

T
(exp)
i

)2

(3)

T
(exp)
i is a stress value from the test data,

and T
(th)
i comes from the nominal stress

expression calculated by means of the
strain-energy density adopted.
From the tests carried out, the following
values were obtained:

α0 =−1.8439; α1 = 0.14139; α2 = 0.0098;

β1 = 0.0082; β2 = 0.5674

3 Homogenization of particle-
reinforced elastomer

We now come to the nonlinear homoge-
nization modelling of the composite with
random microstructure, justified by its het-
erogeneous character and the hyperelas-
tic behavior. This micromechanical mod-
elling is primarily based on the sec-
ond order theory introduced by P. Ponte



Castãneda [(7)] and thereafter extend to
the hyperelastic behaviour (cf.[(8)]). A de-
scription of this method is made in the sub-
section 3.1; its implementation is the sub-
ject of the subsection 3.2.

3.1 Second order Method applied to
elastomer reinforced with rigid
particles

The composite is subjected to a homo-
geneous strain conditions at the bound-
ary of the representative elementary vol-
ume: F̄ = 〈F〉. The second order ho-
mogenization procedure [(7)], whose vari-
ational interpretation was proposed by
Ponte Castãneda and Willis [(9)], makes it
possible to obtain estimates of the energy
density of the hyperelastic composite from
the behavior of its constituents (matrix and
particles). On the basis of available obser-
vation on the studied material, we make an
assumption of rigid particles embedded in
the hyperelastic matrix whose energy den-
sity is denoted W(1). Moreover, we assume
that these particles, whose volume fraction
c(2) = c, are spherical and dispersed in a
random manner, so that the composite re-
mains statistically isotropic in the non de-
formed configuration. The adherence be-
tween particles and matrix is supposed to
be perfect, even if the processesing of ma-
terial do not totally guarantees this one.
The assumption of rigid particles led,
through the identity (̄F(2) = I), to :

F̄
(1) =

1

1− c

(
F̄− cI

)
(4)

which, in the context of the second order
method, gives:

W̃
(
F̄
)

= (1− c)W(1)
(
F̄

(1)
)

+
1

2

(
F̄− I

)
:

[
L̃−

1

1− c
L

]
:
(
F̄− I

)
(5)

L = L
(1)
t = ∂T

(1)

∂F̄

(
F̄

(1)
)

= ∂2W(1)

∂F∂F

(
F̄

(1)
)

represents the tangent moduli tensor of the
matrix (into the linear thermoelastic com-
posite of comparison involved in the ho-
mogenization procedure [(7)]).̃L is the
overall tangent moduli tensor correspond-
ing to the linear comparison composite
(two-phase) made up of rigid inclusions

with volume fraction c, distributed in a ma-
trix of modulus tensorL and having the
same microstructure as the elastic nonlin-
ear composite in its undeformed configu-
ration. It follows that, the overall mechani-
cal behaviour is determined by computing
the macroscopic first Piola-Kirchoff stress
tensor by derivation of the overall energy
density with respect tōF (see Hill [(4)]):

T̃
(
F̄
)

= T
(1)(F̄(1))

+
1

2

(
F̄− I

)
:

[
L̃−

1

1− c
L

]

+
1

2

[
L̃−

1

1− c
L

]
:
(
F̄− I

)

+
1

2

(
F̄− I

)
:

∂

∂F̄

[
L̃−

1

1− c
L

]
:
(
F̄− I

)

(6)

The use of (6) requires the determination
of the local deformation̄F(1) in the matrix
and the homogenization scheme. Consid-
ering rigid particle, it was shown from the
deformation average rule thatF̄

(1) is given
by (4).

3.2 Numerical implementation
The estimate of the effective tangent mod-
ulus tensor L̃ of the linear compari-
son composite requires the consideration
of a linear homogenization scheme. For
the implementation of the second order
method in this study, two well known
schemes were considered: Reuss model
and Hashin-Shtrikman estimate (HS). It is
pointed out that the strain-energy density
of the hyperelastic matrix, W(1), was se-
lected in the form (2) with the parameters
identified in section2.2.
The very simple REUSS estimate, cor-
responding to an assumption of uniform
stress in the linear comparison composite,
leads toL̃ = 1

1−c
L, from where it follows

that:

T̃
(
F̄
)

= T
(1)(F̄(1)) = T

(1)

[
1

1− c

(
F̄− cI

)]

with T
(1)(F̄(1)) =

∂w(1)

∂F
(F̄(1))

(7)

Note that the Reuss-based model cor-
responds to the one already introduced
by [(3)] The more sophisticated Hashin-
Shtrikhman estimate, takes a priori into ac-
count the interactions between the differ-
ent constituants (phases) in the composite



for a spherical spatial distribution of the
phases. It leads to:

L̃ = L +
c

1− c
P
−1 (8)

Due to the anisotropic character of the
tangent modulus, even in the case of an
isotropic behavior, tensorP can be eval-
uated by the following expression:P =
P

(1) = 1
4π

∫
|ξ|=1

H
(1)(ξ)dS, with K

(1)
ik =

L
(1)

ijklξjξl, N
(1) = K

(1)−1
, H

(1)
ijkl(ξ) =

N
(1)

ikξjξl.
It must be therefore emphasized that the
Hashin-Shtrikman estimate requires the
calculation due to the anisotropy of the
tangent tensorL, there is no analytical ex-
pressions forP in the general case. So,
we have performed numerical integration
on the sphere unit|ξ| = 1. Two numerical
methods of integration, namely Newton-
Cotes and Gaussian integration technique,
were implemented, compared and vali-
dated both in various cases. The introduc-
tion of (8) in (6) led to the macroscopic
stress-strain relation:

T̃
(
F̄
)

= T
(1)(F̄(1))

+
1

2

c

1− c

(
F̄− I

)
:
[
P
−1 −L

]

+
1

2

c

1− c

[
P
−1 −L

]
:
(
F̄− I

)

+
1

2

c

1− c

(
F̄− I

)
:

∂

∂F̄

[
P
−1 −L

]
:
(
F̄− I

)

(9)

A last key point which have to be adressed
is the requirement of a mathematical
derivation which enters in (9). For this pur-
pose, a numerical derivation has been per-
formed. In order to have ggod accuracy at
this step, a Ridders-Richardson method (cf
Numerical Recipes, Press et al. [(10)]) was
implemented. This method is based on an
algorithm in which a control and optimiza-
tion of the computations errors are per-
formed at each step of the derivation pro-
cedure.

4 Application to a compressible uni-
axial tensile loading

The macroscopic deformation gradient as-
sociated to a compressible uniaxial trac-
tion is written in the form:

F̄ = Diag(λ(t), α(t), α(t))

λ (increasing from 1.0). The fact that the
uniaxial tensile sollicitation applied on the
composite is controlled in deformation im-
plies, for a givenλ, to determine the value
of α in order to fulfill the uniaxial tensile
loading:

T̄ = Diag(T11(t),0,0)

In practice, since the matrix and the
composite are assumed compressible, the
above conditions can be obtained only by
an iterative procedure. For this, we have
considered an algorithm based on a di-
chotomy procedure which, after conver-
gence, yiels the suitable value ofα for a
givenλ. Application of the hole method to
the considered reinforced rubber yields nu-
merical results for the two estimates which
have been described before. The Reuss and
Hashin-Shtrikman estimates are compared
to the experimental results on figures 2, 3
and 4 respectively for 5%, 10% and 35%
of reinforcement volume fractions. In or-
der to underline the effect of these rein-
forcements, we also report the response of
the elastomeric matrix on the same figures.
From the obtained results, the following
observations can be made:

• For weak volume fraction of the rigid
particles (5% and 10%), we note a
rather good agreement between the
predictions of the Reuss estimate and
the experimental data, whereas the re-
sults based on the Hashin-Shtrikman
model gives an underestimate of the
macroscopic deformation. Due to the
simplicity of the Reuss model, this
numerical prediction is quite surpris-
ing; however, this can be explained by
the two strong assumptions (rigid par-
ticles, perfect adherence between ma-
trix and particles) which are made at
the present step of the modelling.

• For the relatively high volume
fraction of 35%, it is seen that the
Hashin-Shtrikman estimate show
better agreement with the experi-
mental data. It is believed that this
agreement illustrates the capability of
the Hashin-Shtrikman scheme to take
into account the notable effect of the
interacting reinforcements.



Figure 2: Predictions of Hashin-Shtrikman
and Reuss models for the composite with
a volume fraction of 5%

Figure 3: Predictions of Hashin-Shtrikman
and Reuss models for the composite with
a volume fraction of 10%

5 Conclusions

The study presented in this paper concerns
the experimental characterization and the
multiscale modelling of the mechanical
behaviour of reinforced elastomers. Uni-
axial and equi-biaxial tensile tests were
first performed on the elastomeric matrix
material and on the different reinforced
materials. The tests carried out on the ma-
trix allows to calibrate the parameters of
the strain-energy density considered for
the study. The particles used for reinforce-
ments are assumed rigid. For the nonlin-
ear multiscale modelling, a second order
method is numerically implemented us-
ing a Reuss and a Hashin-Shtrikman esti-
mates for the linear comparison compos-
ite. It is shown that the model based on the
Hashin-Shtrikman estimate gives results in
agreement with the experimental data for
high volume fraction of particles, while the

Reuss model seems to agree with the avail-
able data for the low volume fractions. Al-
though interesting, these results needs to
be improved, at least by the consideration
of deformable particles and by incorpora-
tion of the fluctuations of fields in the sec-
ond order method (cf [(8)]).

Figure 4: Predictions of Hashin-Shtrikman
and Reuss models for the composite with
a volume fraction of 35%
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Abstract 
 
The shear behaviour of W/Cu composites 
(W/Cu-80/20, 70/30 and 60/40 wt.%) was 
experimentally investigated using 
axisymmetrical hat-shaped specimens with 
different shear zone width. To show the 
deformation and failure at the shear zone the 
microstructure was imaged after different 
degree of deformation. 
 
The relevant deformation zone the shear 
specimen was used as a 2D-mesomodel for the 
numerical computation. A micrograph of the 
microstructure was scanned digitally to define 
the composite components. The brightness of 
the composite components (Cu and W) was 
used to distinguish between them. The material 
law of the composite components (Cu and W) 
was determined from the flow curves that are 
determined in compression tests. 
 
The development of deformation and damage at 
the shear zone were followed up by step 
loading and with the FE-simulation as well. 
The FE-simulation on the real microstructure 
with different shear zone width values 
confirmed the experimentally measured size 
effects of shear specimens. 
 
 
Keywords 
 
FE-Simulation, mesomodel, W/Cu particle 
composites, size effects, shear deformation 
 
 
 
 

 
1. Introduction 
 
The computation of the mechanical behaviour 
of heterogeneous materials from the knowledge 
of the behaviour of their components using the 
FE-technique gains in the present time greater 
interest. In this respect, an idealized 
representative volume element (RVE) is used. 
Computation of the deformation and fracture 
behaviour of the heterogeneous material using a 
mesomodel based on the real microstructure of 
the material will be more definite. There are 
many efforts [ 1 , 2 ] for examining the 
deformation the composites behaviour using 
the microstructure as a base of the FE-mesh 
using the SEM based grating method by in-
situe recorded image during loading. 
 
Size effects play a decisive role in 
manufacturing and deformation processes due 
to either physical or structural properties [3,4]. 
The deformation behaviour of a metallic matrix 
reinforced with hard particles depends on 
volume fraction, size, shape, and distribution of 
the reinforcements [5,6,7]. The effects of the 
volume fraction in the W/Cu composites on the 
mechanical properties were studied in [8 ,9]. 
Cleveringa et al [5] have numerically 
investigated the effect of the particles´ 
morphology on the deformation behaviour of 
particle composite materials. It has been 
concluded that when the reinforcements block 
all the slip planes of the matrix the composite 
shows a high strain hardening and there is a 
significant size effect. On the other hand when 
veins of unreinforced matrix material or 
clustering of the reinforcement exist [7] the 
matrix will easily be deformed in these zones, 



therefore, the overall flow stress of the 
composite decreases and there is no size effect. 
Obvious scaling effects in the W/Cu 
composites were found at testing cylindrical 
specimens under compression loading 
especially at lower temperatures and at higher 
contents of the hard phase (W) [9, 10 ]. The 
dominance of shear deformation in the state of 
stress during machining of metallic materials 
[ 11 ] makes it reasonable to investigate the 
scaling effect under shear loading. 
 
Besides studying the size effects under shear 
loading, the major goal of this paper is to 
simulate numerically the deformation 
behaviour of the composite material 
(tungsten/copper) from a microstructure based 
2D-mesomodel. 
 
 
 
2. Test materials and experimental work 
 
W/Cu composites in different weight 
percentages (W/Cu-80/20, 70/30 and 60/40) 
were tested under shear loading. These 
composites were studied with two different 
mean particle size of the tungsten particles (DP) 
namely 10 µm and 30µm. Figure 1 shows the 

structure of the composite material W/Cu-80/20 
and W/Cu-60/40. 
 
Shear test was conducted on hat-shaped shear 
specimens [12] as in Figure 2a. The shear zone 
width (S) was varied to be 0.1, 0.2, or 0.3 mm. 
Shear test was conducted at a temperature 
range between 20°C and 800°C and strain rates 
of 0.01, 1.0 and 100 s-1. 
 
Step-loading and metallographic examination 
were carried out to follow the development of 
the deformation and the damage due to shear 
loading. To conduct such test, hat-shaped shear 
specimens composed of two metallographically 
prepared longitudinal separated halves were 
prepared, Figure 2c. The microstructure of the 
relevant shear zone is shown in Figure 2b was 
documented. The micrograph of the shear zone 
before loading was used for the mesh 
generation of 2D mesomodel. The tow halves 
were supported tightly in a holder to avoid the 
relative displacement between the two halves. 
Three steps of loading were done before 
reaching the complete fracture. After each 
loading step the shear zone of the specimen’s 
halves were photographed. 
 

 
 
 

 
(a) W/Cu-80/20 (wt.%) (b) W/Cu-60/40 (wt.%) 

Figure 1: Examples for microstructure of the W/Cu composite materials. 
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(a) (b) (c) 
Figure 2: (a) Hat-shaped cylindrical shear specimen, (b) the relevant shear zone and (c) the two-
half specimen for step loading. 
 
 
 
3. Deformation behaviour under shear 
loading 
 
The shear stress and the shear strain up to 
fracture of the shear specimens with narrow 
shear zone (S=0.1mm, Figure 3-a) was higher 
than the wider shear zone (S=0.3mm, Figure 3-
b) due to the increased strain concentration in 
the narrower shear zone. This tendency occurs 
regardless the strain rate and the test 
temperature. Figure 4 shows the size effect on 
the shear stress for the different W/Cu 
composites. Due to the high volume fraction of 

tungsten in W/Cu-80/20 an increased 
obstruction of the deformation, consequently, a 
higher size effect than in the other tested 
composites was obtained (Figure 4-a). 
 
The variation of tungsten particle sizes (DP) 
from 30 µm to 10 µm increases the stress levels, 
with the same effects of the deformed size 
(Figure 4). W/Cu composites have shown strain 
rate sensitivity on loading at relatively higher 
strain rates (100 s-1). 
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Figure 3: Effect of the shear zone width (S) on the shear stress-shear strain curves of W/Cu-80/20 
with particle size of 30µm under strain rates of 0.01s-1, 1s-1 and 100s-1 and at temperatures of 
20°C, 400°C and 800°C. 
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Figure 4: Size effects (S=0.1, 0.2 and 0.3 mm and DP= 10 and 30µm) under shear deformation of 
W/Cu composites at 20°C and 800°C under strain rates of 0.01s-1, 1s-1 and 100s-1. 
 
 
 
Since the wider shear zone (S=0.3mm, Figure 
5-b) resulted in a diffused deformation that was 
mostly expended in the deformation of copper 
so that the fracture takes place mainly through 
the softer component (Cu) with unmarkable 
deformation of tungsten particles. In contrary, 
high shear localization was occurred in the 
smaller shear zone (S=0.1mm, Figure 5-a). The 
stresses were high enough to deform the hard 

tungsten particles and the fracture grows 
through copper and tungsten as well [10]. This 
can explain the effect of the smaller shear zone 
widths on increasing the stress level of the 
shear stress-shear strain curves in Figure 3. 
 
 

 

     
Figure 5: Effect of the shear zone width (S) on the fracture of W/Cu-80/20 at 20°C. 
(a) S = 0.1 mm, dγ/dt =0.01 1s− and DP=10µm        (b) S = 0.3 mm, dγ/dt=0.01 1s− .and DP=10µm 
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4. Step loading and FE-simulations 
 
FE-simulation based on the real microstructure 
was carried out to determine the deformation 
and fracture behaviour of composite W/Cu 
under shear loading. The microstructure of the 
relevant shear zone of one half of the shear 
specimen prepared for step loading was used as 
a mesomodel for FE-Simulation. Figure 6-a 
includes a micrograph of the relevant region of 
the shear specimen of the composite W/Cu-
60/40 with a particle size of 30µm and shear 
zone width of 0.1 mm. A fine mesh with one 
material element based on the microstructure 
before loading was produced. Figure 6.b shows 
to what extent the generated mesh can represent 
the microstructure components. 
 
The mechanical properties of the composite 
components (W and Cu) were fed to the FE-
Code “ABAQUS” separately. The elastic 
properties were in the values as in Table (1). 

 
 
 

 SE-Copper  Tungsten 
E-modulus, GPa 110 400  
Poisson’s ration, ν 0.35 0.28 

Table 1. Elastic properties of Cu and W [13] 
 
The plastic properties were calculated from the 
flow curves determined in quasi-static 
compression test on the tungsten and SE-
Cupper. The flow curves were described by a 
modified Mecking-Kocks model [14]: 
The flow stress in MPa is given by 
 
For tungsten: 

( )500 426 715 1 1076exp  σ ε ε= + + − −⎡ ⎤⎣ ⎦  
 
For copper: 

( )190 162 97 1 140exp  σ ε ε= + + − −⎡ ⎤⎣ ⎦  
 
 

 

 
Figure 6: Transformation of the microstructure picture of the relevant shear region of a hat-
shaped of W/Cu-60/40 before loading (displacement of two reference particles u0=0) into 2D-
idealization. Dark = tungsten, bright = copper. 
 
 
 
 

u0= 0 

(a) Picture before loading 

(b) Fine mesh, 35710 elements (one element = 3 x 3 pixels) 



 
 
 
 
 
 
 
 
 
 
 
 
(a) The microstructure after the third step of loading (W/Cu-60/40, 30µm). 
 

 
(b) The equivalent strain distribution after displacement of 0.25 mm. 
 

 
(c) The equivalent stress distribution after displacement of 0.25 mm. 

Figure 7: Distribution of the equivalent stress and strain compared with the microstructure after 
the third stage of step loading. 
 
 
 
The concentrated deformation in the shear 
zone of the specimens with small shear zone 
widths allows choosing the sides of the 
model as rigid boundary condition. One side 
was held constant and the other was moved 
for a distance of 0.25 mm which is slightly 
higher than the permanent plastic 
deformation (u3 =237 µm) measured from 
the relative displacement of nearly not 

affected positions on the sides of the shear zone 
(Figure 6-a and Figure 7-a). The distribution of 
the equivalent strain obtained from the FE-
simulation shows a relatively similar deformation 
pattern to the microstructure after the last step of 
loading (Figure 7-a and b). 
 
As shown in Figure 7-a, the cracks grow through 
the copper matrix. A deformation limit was 

u3=237 µm 



applied as failure criterion for copper. The 
elements of copper which reach the limit (ε = 
3) will be considered as failed elements. This 
leads to the decrease of the stress level 
beyond the peak in the FE-results in analogy 
to the experimental results (Figure 8a). 
 
The numerical calculations of this 2D-
mesomodel were carried out first with plane 
strain condition and second with the plane 
stress condition, as shown in Figure 8. The 

experimental shear stress-shear strain curves lies 
between the two solutions. The mean value of the 
two solutions is comparable with experimental 
one. 
 
The FE-simulation was also carried out for shear 
zone width of S = 0.3 mm of the composite 
W/Cu-60/40 starting from the microstructure of 
an unloaded specimen. The results are shown in 
Figure 8-b. 
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Figure 8: FE-simulation results compared with the experimental shear stress-shear strain curves 
of W/Cu-60/40 with shear zone width (S) of 0.1 and 0.3 mm at the quasi-static strain rate at room 
temperature. 
 
 
 
 
5. Conclusions 
 
1. The size effects on the deformation of W/Cu 

under shear loading were obvious at higher 
content of the reinforcement (W). 

2. The strong W-particles were deformed 
particularly in the case of thin shear zone (S 
= 0.1). 

3. The composites studied show a strain rate 
sensitivity by loading at strain rates up to 
100 s-1. 

 
4. The FE computation of the 2D mesomodel 

obtained from the micrograph simulated the 
pattern of the shear zone. 



5. The FE-simulation delivered comparable 
deformation behaviour either for the stress 
distribution pattern or the stress strain curves 
with the experiment; however, the 
experimental curves were between plane 
strain and plan stress solutions. 
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Abstract 
 
Adiabatic Shear Bands (ASB) have 
been observed during high stain rate 
deformation (in excess of 10 3-1) of 
metallic materials. 
 
There are manifestations of occurrence 
of plastic deformation and stain 
softening due to rise in temperature in 
the material.  In this study, the process 
of development of ABS is modeled by a 
finite element method which predicts 
the characteristic size of the ASB.  The 
model was verified by experimental 
techniques involving the use of a direct 
impact Split Hopkinson Pressure Bar 
and torsional SHB. Several steels were 
tested to investigate the occurrence and 
characteristic of the produced ASB in 
these materials. 
 
Keywords: High stain rates, adiabatic 
shear bands finite element modeling. 

1. Introduction 
 
At very high stain rates, metallic 
materials may experience adiabatic 
conditions where part of the retained 
heat generated during impact causes 
stain softening.  During deformation 
under adiabatic conditions, both work 
hardening and stain softening take place 
simultaneously causing the occurrence 
of adiabatic shear bands (ASBs) [1, 2].  
These appear as narrow bands with 

localized stains in the 100s percent.  
Strain rates in excess of 103-1 are 
required to produce ASBs.  Also, ASBs 
can be the source for initiation of 
microcracks leading to the fracture of 
the material. 
 
In the present study, modeling of the 
formation of ASB in a typical steel is 
performed using finite element 
methods. This is followed by an 
experimental study to verify the 
occurrence of ASBs in steels and to 
study their characteristic features. 

2. Present Study 
 
Modeling 
 
In this part, we used a rate depending 
constitutive equation approach based on 
ANSYS [3]. The constitutive equations 
have been given previously by Feng and 
Bassim [4]. 
 
Fig 1 shows the dimensions of the 
sample used in a torsional SHB.  The 
cross section A-A is cut in the middle of 
the specimen and a torque M is applied 
at both the top and bottom sides.  A 
shear band is usually found in the 
middle part of the specimen. 



 
Figure 1: Representation of a torsional 
specimen for finite element modeling 

 
The modeling was started at time t=0. 
After the first step of deformation, there 
was some strain hardening.  The 
temperature rise was calculated at every 
node to account for the thermal 
softening. 
 
Input data pertinent to a typical heat 
heatable (AISI 4340) were used for the 
modeling [5], A typical F-E analysis is 
shown in Fig 2 which also shows, for 
comparison, experimental date obtained 
for this steel. 
 

 
Figure 2: Simulated (by F-E) and 

measured properties for 4340 steel 
tested at high strain rates 

 
The formation of ASB at high stain rate 
was simulated by F-E method and 
shown in fig. 3.  it can be observed that 

the localized shear deformation 
increases resulting in increased width of 
the ASB as the onset of fracture 
approaches. 
 

 
Figure 3: Evolution of the ASB from 

the beginning (a) to fracture (c) 
 
Experimental Techniques 
 
An experimental study to verify the 
occurrence and width of ASB in steels 
and other materials was conducted. Two 
Split Hopkinson Bar systems were used.  
One is a direct impact bar shown in 
fig.4, while fig 5 shows a torsional bar 
and fig 6 shows the hexagonal specimen 
used for torsional testing.  These 
systems were described earlier in detail 
in [6,7]. 
 
The steels tested included 4340 steel 
and other rail steels with a carbon 
content ranging from 0.73% to 0.79% 
and various alloying elements (Mo, V, 
G, Al).  Some tests were performed 
using direct impact while the tests on 
4340 steel used the torsional bar. 
 

 
Figure 4: Direct impact split Hopkinson 

Bar



 

 
 

Figure 5: Torsional Split Hopkinson Bar 
 
 

 
 

Figure 6: Hexagonal specimen used 
in torsional bar 

 
Experimental Results 
 
Distinct occurrence of ASBs was 
observed in both testing approaches.  
Fig 7 shows such an ASB which also 
contains a microcrack within the ASB.  
Fig 8 a and b show occurrence of ASB 
in 4340 steel with (a) corresponding to a 
heat heated specimen and in fig. 8b, 
multiple layers of ASB are observed. 
Fig 9 shows initiation of cracks within 
the ASB of 4343 which is treated to 
high strength. 
 

 
 

Figure 7: ASB containing a crack 

 

 
 

Figure 8: Single and multiple ASB 
during torsional test 

 

 
 

Figure 9: SEM of crack within an ASB 
 

3. Conclusions 
 
A finite element study investigated the 
process of evolution and extension of 
ASB in metallic materials leading to 
crack initiation within the ASB.  It was 
found that the ASB can initiate at 



localized material defects and extend in 
width till cracking is initiated.  
Experimental investigation of the 
occurrence of ASB in steels validates 
the model and shows that ASB are a 
primary source of crack initiation at 
high stain rates. 
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Abstract 
 
A new damage model based on a 
micromechanical analysis of cracked 
laminates subjected to multiaxial loads is 
proposed. The model predicts the onset 
and accumulation of transverse matrix 
cracks in laminates uniformly stressed, the 
effect of matrix cracks on the stiffness of 
the laminate, as well as the ultimate failure 
of the laminate. The model also accounts 
for the effect of the ply thickness on the 
ply strength. Predictions relating the 
elastic properties of different laminates 
under multiaxial loads are presented. 
 
Keywords: Micromechanics, Fracture 
Mechanics, Damage Mechanics 
 
 
1. Introduction 
 
The aerospace industry is committed to 
improve the performance of aircraft whilst 
reducing emissions and weight. Such a 
goal can be achieved by the use of 
composite materials, which have excellent 
properties for aerospace applications, such 
as low density, and fatigue and corrosion 
resistance. 
 
The design procedure used for advanced 
composite structures relies on a 'building-
block' approach, where a large number of 
experimental tests are performed 
throughout the product development 
process. The use of improved analytical or 

numerical models in the prediction of the 
mechanical behavior of composite 
structures can significantly reduce the cost 
of such structures. Such models should 
predict the onset of material degradation, 
usually in the form of transverse matrix 
cracks, the effect of the non-critical 
damage mechanisms on the stiffness of the 
laminate, and ultimate structural failure. 
 
Strength-based failure criteria are 
commonly used to predict failure in 
composite materials [1]-[4]. Failure 
criteria predict the onset of the several 
damage mechanisms occurring in 
composites and, depending on the 
laminate, geometry and loading 
conditions, may also predict structural 
collapse. 
 
Multidirectional composite laminates 
accumulate damage before structural 
collapse. Under this circumstance, failure 
criteria are not sufficient to predict 
ultimate failure. Final failure occurs by a 
process of damage accumulation and the 
ultimate failure load is higher than that 
predicted by any strength-based failure 
criteria. Furthermore, stress-based failure 
criteria cannot represent size effects that 
occur in quasi-brittle materials [5]. 
 
Methods based on Continuum Damage 
Mechanics have been proposed to predict 
the material response, from the onset of 
damage up to final structural collapse [6]-
[8]. Although the existing models can 



accurately predict the evolution of 
damage, some of the existing models rely 
on empirical parameters, such as critical 
values of thermodynamic forces that need 
to be measured at laminate level. 
 
Alternative methods based on the 
combination of elastic analysis of cracked 
plies and finite Fracture Mechanics 
provide the basis for an accurate 
representation of the response of 
composite materials [9], [10]. Typically, 
micromechanical models represent the 
initiation and evolution of transverse 
matrix cracks under either in-plane shear 
or transverse tension, and generalizations 
for the more usual case of multiaxial 
loading are required. 
 
The objective of this work is to define a 
new damage model based on 
micromechanical models of transverse 
matrix cracks. The onset and evolution of 
transverse matrix cracks under multiaxial 
loading is predicted using a 
micromechanical model. Based on the 
proposed micromechanical model a new 
constitutive model is derived. The model 
proposed is able to predict the onset and 
propagation of matrix transverse cracks 
under multiaxial loading as well as final 
failure of laminates uniformly stressed. 
 
 
2. Micromechanical Model 
 
The continuum damage model proposed is 
based on two major components: stress 
based failure criterion and 
micromechanical models of transverse 
matrix cracks in multidirectional 
laminates. The failure criterion defines the 
onset of transverse matrix cracking, i.e. 
the activation of the damage variables. 
Micromechanical models of transverse 
matrix cracks are required to define the 
evolution of the damage variables. 
 
Using the assumption of generalized plane 
strain, Tan and Nuismer [9], [10] 
developed a model able to relate the 
density of transverse matrix cracks in a 
central 90º ply to the homogenized elastic 
properties of that ply. The model 
developed by Tan and Nuismer was used 
for the prediction of the evolution of 
transverse matrix cracks under either in-
plane shear or transverse tensile stresses. 
 

The laminates under investigation are 
symmetric and balanced with a (±θ/90n)s 
layup containing a periodic distribution of 
transverse matrix cracks, as shown in 
Figure 1. The micromechanics analysis of 
a balanced symmetrical laminate requires 
the division of the laminate in two sub-
laminates: the 90º layers in the middle 
layer (sublaminate 1), and the outer plies 
(sublaminate 2). 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 1: Representative volume element. 
 
Stiffness tensor of cracked sublaminate 

 
Considering Figure 1, the stiffness tensor 
of a balanced and symmetric laminate, 
relating the through-the-thickness 
averaged stress and strain tensors, is 
established as a function of the density of 
transverse matrix cracks (L) in the 
sublaminate 1: 
 
 
 
 
 
 
 
 
 
The components of the laminate stiffness 
tensor are obtained according to the 
micromechanical model developed by Tan 
and Nuismer [10]. Assuming that the 
degradation due to the transverse matrix 
cracks only occur in sublaminate 1, the 
damaged stiffness tensor of laminate 1 can 
be obtained using lamination theory as: 
 
 
 
 
 
Having defined damaged stiffness tensor 
of laminate 1 it is possible to calculate the 
transversal modulus, the Poisson ratio, and 
(1)
(2)



the shear modulus of sublaminate 1 as a 
function of the density of transverse 
matrix cracks. 
 
 
 
 
 
 
 
 
 
 
 
 
The plane stress compliance tensor of the 
damaged sublaminate 1 only contains two 
components that depend on the density of 
transverse matrix cracks. The tensor H(1) is 
established as a function of the density of 
transverse matrix cracks, L, as: 
 
 
 
 
 
 
 
with: 
 
 
 
 
 
 
 
 
The relation between the homogenized 
elastic properties of a cracked ply 90º in a 
(±25º/903)s laminate and )2/(1 L=β  is 
shown in Figure 2. 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 2: Elastic properties of sublaminate 
1 as a function of the density of matrix 

cracks. 

Onset of transverse matrix cracking 
 
In general, the sublaminate 1 represented 
in Figure 1 is subjected to transverse 
tensile stresses and in-plane shear stresses. 
Under multiaxial loading it is necessary to 
use a failure criterion to predict the onset 
of matrix cracking. The criterion used is 
the LaRC04 [2], [3] failure criterion, 
established in terms of the components of 
the stress tensor and in-situ strengths: 

(3)

 
 
 (6)
 
 
with IIcIc GGg /= . The parameters Ic and 

IIc are respectively the mode I and mode 
II components of the fracture toughness 
associated with matrix transverse 
cracking. The in-situ strengths, TY  and L , 
are calculated using the closed-form 
equations previously developed by the 
authors [11]. 

G
G

S

(4)  
Evolution of transverse matrix cracks 
 
In order to predict laminate failure under 
general loading it is necessary to know 
how the density of transverse matrix 
cracks evolve in a ply subjected to both in-
plane shear and transverse tensile stresses.  
 

(5) To define damage evolution laws it is 
necessary to relate the applied stress or 
strain state to the density of transverse 
matrix cracks. This relation is obtained 
from a Fracture Mechanics analysis of 
cracked plies combined with the definition 
of the damaged constitutive tensor.  
 
It is assumed that the relation between the 
tensile and shear strains is constant 
throughout the loading history and defined 
by the multiaxial strain ratio κ: 
 
 (7)
 
 
The strain energy stored in a laminate unit 
cell of length 2L, just prior to fracture, 
U2L, can be established as a function of the 
strain tensor and of the crack density as: 
 
 (8) 
 



After the creation of additional matrix 
cracks the strain energy stored in the 
original unit cell of length 2L is: 
 
 
 
 
 
The energy required to generate a new 
matrix crack in sublaminate 1 equals the 
loss of strain energy of the laminate. 
Therefore the difference between equation 
(11) and equation (10) is equal to the 
energy released by the sublaminate 1: 
 
 
 
 
 
where Gc is the mixed-mode frac
toughness of sublaminate 1 under ten
(mode I) and shear (mode II) loading. 
 
Equation (10) is established as a func
of the mixed-mode fracture toughness,
that needs to be defined. The crite
proposed by Hahn [12] for the predic
of transverse matrix cracking u
transverse tensile and in-plane shear lo
is used: 
 
 
 
 
 
 
Figure 3 show the relation between
crack density in a (±25º/903)s laminate
the applied strain for different multia
strain ratios. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3: Relation between applied str

and density of matrix cracks. 
 

The effects of multiaxial strain states on 
the crack density are clearly shown in 
Figure 3: the density of transverse matrix 
cracks increases with the multiaxial strain 
ratio for a fixed value of εxx. 
 (9)
 
3. Damage model 
 
Constitutive model 
 
A damage model able to represent the 
onset and accumulation of a periodic 
distribution of transverse matrix cracks 
should yield a compliance tensor similar to 
the one obtained from the 
micromechanical model, equation. To 
(10)
ture 
sile 

tion 
 Gc, 
rion 
tion 
nder 
ads 

 the 
 and 
xial 

ain 

accomplish this, the Gibbs free energy per 
unit volume is defined as: 
 
 (12)
 
 
 
The constitutive model is obtained from 
the derivative of the Gibbs free energy 
with respect to the stress tensor: 
 
 (13) 
 
 
The compliance tensor H is defined as: (11)  
 
 
 (14)
 
 
 
The compliance matrix is established in 
terms of the damage variables is similar to 
the compliance tensor derived in the 
micromechanical model. The damage 
variables d2 and d6 are related to the crack 
density β as: 
 
 
 

(15) 
 
 
 
 
Damage activation functions 
 
Transverse matrix cracks are predicted 
using two scalar functions, Fk (k=2+, 2-), 



established in terms of the effective stress 
tensor, tσ , and of the damage threshold 
value, rt: 
 
 
 
 
 
 
The functions used to predict transverse 
matrix cracking are based on the LaRC04 
failure criteria previously proposed by the 
authors [2], [3]. The damage activation 
function used to predict matrix cracking 
under transverse tension and in-plane 
shear is: 
 
 
 
 
 
 
The damage activation function used to 
predict matrix cracking under moderate 
values of transverse compression and in-
plane shear is defined as: 
 
 
 
 
 
The damage activation functions used 
predict the onset of transverse matrix 
cracks lying in ply thickness direction, as 
shown in Figure 1. Transverse matrix 
cracks lying in the direction of the ply 
thickness occur under transverse tension 
and in-plane shear, or under moderate 
values of transverse compression and in-
plane shear. For high values of transverse 
compression, the matrix crack does not lie 
along the direction of the ply thickness as 
shown in Figure 4. 
 
 
 
 
 
 
 
 
 

Figure 4: Matrix crack in a created by 
high in-plane compressive transverse 

stress. 
 
High values of transverse compression and 
a fracture angle α different from zero 
favour the occurrence of a delamination 

between the plies. This damage 
mechanism is usually catastrophic in 
uniformly stressed composites. Laminate 
catastrophic failure is assumed to occur 
when matrix cracking under high values of 
transverse compression or fibre fracture 
are predicted using the LaRC04 failure 
criteria [2], [3]. 

(16)

 
Damage evolution functions 
 
The density of transverse matrix cracks is 
a state variable. Therefore, it is necessary 
to define an evolution law subjected to 
thermodynamic restrictions. 
 
The first condition to be satisfied is the 
requirement of positive dissipation. To 
satisfy the condition of (17)
positive dissipation, the evolution of the 
state variable β must be defined by a 
monotonic increasing function: 
 
 

(19) 
 
The evolution of the elastic domain must 
satisfy the following inequalities: 
 (18)
 

(20) 
 
 
 

(21) 
 
Using Eqs. (19)-(21), the damage 
evolution law is established as: 
 
 
 (22) 
 
 
Eq. (22) can be integrated using a 
numerical method, such as the return-
mapping algorithm, in order to calculate 
the density of transverse matrix cracks β. 
 
 
4. Examples 
 
The damage model developed can be used 
in combination with classical lamination 
theory using stand-alone codes. 
Alternatively, the damage model can be 
implemented in numerical models, such as 
the Finite Element Method. 



The damage model proposed is used in the 
prediction of the response of glass-epoxy 
laminates. A ply thickness of 0.144mm 
and temperature between stress free and 
working temperatures of -100ºC are used. 
The coefficients of thermal expansion in 
the longitudinal and transverse directions 
are α11=7.43x10-6 /ºC and α22=22.4x10-6 

/ºC respectively. The remaining material 
properties used are shown in Tables 1 and 
2. 
 
 
 
 

Table 1: Glass-epoxy elastic properties. 
 
 
 
 

Table 2: Glass-epoxy strengths and 
fracture toughness. 

 
Figure 5 compares the predicted response 
of two laminates for different values of the 
multiaxial strain ratio. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5: Relation between laminate 
modulus and applied strain. 

 
Figure 5 shows that the rate of degradation 
of the elastic properties of the laminate is 
higher when the axial stiffness of the outer 
sublaminate decreases. The effect of 
multiaxial loading is also clear in Figure 6: 
as expected, the application of shear 
strains leads to a reduction of the 
extension corresponding to the onset of 
transverse matrix cracks and to a higher 
rate of degradation of the elastic properties 
of the laminate. 
 
 
 
 

5. Conclusions 
 
A new, micromechanics-based, continuum 
damage model able to simulate the onset 
and propagation of transverse matrix 
cracks and final laminate failure is 
proposed. The model is applicable in 
laminates, under multiaxial loading and 
uniform stresses or small stress gradients. 
 
The model uses ply properties and does 
not require any tests performed at laminate 
level to identify damage onset and 
evolution functions. The onset of damage 
is predicted using failure criteria and 
damage evolution laws are established 
from the micromechanical analysis of 
cracked plies. 
 
The model can be effectively used in 
Finite Element analysis because the 
resulting constitutive model does not 
result in strain-softening. The onset and 
accumulation of transverse matrix cracks 
are represented as a distributed damage 
mechanism; the onset of localization, 
triggered by either fibre fracture or matrix 
cracking with α≠0º results in structural 
collapse. 
 
The predictions show that the rate of 
degradation of the laminate elastic 
properties increases when decreasing the 
stiffness of the outer sublaminate. 
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Abstract 
 
The purpose of this study is to investigate 
on the use of quantitative computed 
tomography (QCT) to estimate trabecular 
bone mechanical properties. The specific 
objective is to study how the 
mesostructure of parts built with a known 
material affects the ability to predict the 
mechanical behaviour with QCT.  
 
An experiment has been proposed into 
which 60 compression specimens were 
built with a predefined mesostructure. 
They were tested mechanically to 
determine their mechanical properties, CT 
scanned and measured experimentally to 
establish relationships predicting their 
mechanical behaviour from the image 
properties. Finally, finite element analyses 
were performed in order to verify how a 
FEM with personalized mechanical 
properties obtained using the proposed 
method could predict adequately the 
mechanical behaviour of an object. 
 
Results of this study suggest that QCT 
allows predicting the density and the 
mechanical properties of ABS parts but it 
is not sufficient without an appropriate 
knowledge of their mesostructure. This 
may represent a limitation in predicting 
the mechanical properties of trabecular 
bone from CT images. 

Keywords: Fused deposition modelling, 
Rapid prototyping, Quantitative computed 
tomography, Mesostructure, Mechanical 
behaviour. 
 
1. Introduction 
 
Computed tomography (CT) is a powerful 
imaging tool used for several medical 
applications. In particular, this imaging 
method allows defining comprehensive 3D 
geometric models of bony structures. 
Quantitative computed tomography (QCT) 
is also a long-standing method for 
assessing the trabecular bone density of 
vertebral bodies [2] based on quantitative 
analyses of the linear attenuation 
coefficients (CT numbers) measured by 
the CT scanner. To do this, a calibration 
object is placed in the scan field and is 
used to convert the CT numbers into bone 
mineral density units.  Correlations have 
also been proposed between CT number, 
density and mechanical properties of 
vertebrae [3;4;6] to build biomechanical 
simulation models using finite element 
methods. However, the relationship 
between the mechanical properties of bone 
and the apparent density estimated from 
CT images is not yet understood since 
several parameters such as the effect of the 
trabecular structure is still unclear.  
Actually, results of previous studies [5;7] 
suggest an unpredictable adequacy of such 
models with respect to experimental data. 



w
hd avgavg

app *4

2π
ρ =

As a result, there is still a need to better 
understand the effect of the bone 
mesostructure on the relationship between 
CT number, density and mechanical 
properties of bone. 
 
The specific objective of this work is to 
study the effect of the mesostructure on 
the relationship between the apparent 
density and the mechanical behaviour of 
parts built with a material of known 
mechanical properties. 
 
2. Material and Methods 
 
Cylindrical ABS compression specimens 
were fabricated by fused deposition 
modelling (FDM) in order to study the 
effect of apparent density and 
mesostructure on their mechanical 
behaviour. FDM is a free-form fabrication 
process which deposit molten filaments of 
thermoplastic in a criss-cross pattern to 
build a part layer by layer. This process 
results in ABS parts with anisotropic 
properties depending of the build 
parameters.  
 
Specimens Fabrication. Three build 
parameters were varied in this study to 
simulate the effect apparent density and 
the mesostructure in ABS parts (Figure 1): 
air gap, layer orientation and raster 
orientation. The layer thickness is another 
important build parameter. It has been 
kept constant (0,18 mm) for all specimens 
in this study. The air gap (figure 1a) 
consists of the spacing between the 
filaments of FDM material. Five values of 
air gap were used (0mm, 0,13mm, 
0,54mm, 1,2mm and 1,95 mm) in order to 

obtain parts with apparent density between 
300 mg/cm3 and 1000 mg/cm3. The layer 
orientation (figure 1b) was defined either 
as transverse or longitudinal. Finally, the 
raster orientation (figure 1c) refers to the 
direction of the filaments relative to the 
loading of the part for two consecutive 
layers. Three raster orientations were used: 
0°&90°, 45°&-45° and 30°&-60°.  
 
A total of 60 ABS compression specimens 
were fabricated using a Prodigy Plus 
(Stratasys Inc., Eden Pairie, MN) FDM 
machine according to a plan of experiment 
varying the 3 build parameters mentioned 
above: 30 specimens in 0°&90° raster 
orientation (5 air gap values x 2 layer 
orientations x 3 replications), 15 
specimens in 30°&-60° raster orientation 
(5 air gap values x 3 replications) and 15 
specimens in 45°&-45° (5 air gap values x 
3 replications). In this experiment, the 
layer orientation was varied only for 
specimens with a 0°&90° raster 
orientation. All other specimens were built 
longitudinally. 
 
Specimens Apparent Density. The 
apparent density of specimens was 
calculated as the ratio between their 
overall measure of weight (w) and volume. 
Four measurements of the diameter and 
two measurements of the length evenly 
distributed along the specimens were 
made using a calliper. The average value 
of height (havg) and diameter (davg) were 
then used to estimate the apparent density 
of the objects using equation 1. 
 
  (1) 
 
 
Specimens Imaging and Analysis. All 
specimens were imaged (figure 2) using a 
PQ5000 (Picker International Inc., 
Highland Heights, OH) CT scanner.  The 
scanner parameters were set to 120 kV, 30 
mA, 140 mm field of view and 1 mm slice 
thickness and slice spacing. The 
specimens were placed into a custom 
made jig to stabilize it horizontally and 
longitudinal with respect to the moving 
table.  A small recipient containing water 
was also placed in the field of view.  
 
All images were analysed using a 
commercially available semi-automated 
segmentation and 3D reconstruction 
software (SliceOmatic, Tomovision Inc, 

             a)                b)

             c) 
Figure 1 Build parameters: a) air gap, b)
layer orientation, c) raster orientation 

0°&90° 45°&-45° 30°&-60°

 Air Gap 



)(
)(*1000

airwater

water

CTCT
CTCTHU
−

−=

Figure 4 Effect of build parameters on elastic 
modulus 
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Montreal, CANADA) in order to identify 
regions of interest (ROI) on the 
compression specimens. ROI were defined 
as cylindrical areas avoiding the outer 
contour of the parts. They were then used 
to compute the average CT numbers of 
every compression specimens and to 
convert them into Houndsfield units (HU) 
using equation 2 [6], for which           
CT(air) = -1000 and CT(water) = 0. 
 
  (2) 
 

 
Mechanical Testing of Specimens.  
Uniaxial compression tests were 
performed on the cylinder specimens 
using an MTS 810 machine (MTS Corp., 
Eden Prairie, MN) to evaluate their elastic 
modulus. The tests and data analysis were 
performed according to the ASTM D695-
96 [1] standard test method for 
compression properties of plastics. 
 
Finite Element Analysis. Nine additional 
compression specimens were built with 
different density than the ones used to 
establish the relationships, the 0°&90° 
raster orientation and the 2 layer 
orientations (6 longitudinal, 3 transverse). 
A personalized FEM was built using the 
QCT data to predict their mechanical 
properties from the relationship 
corresponding to their build orientation. 
Finite element analyses were performed 
on the specimens (figure 3). Finally, 
compression tests were performed and 
compared with the stiffness (N/mm) 
predicted using the slope of the FEM 
force-displacement curves. 
 
 
 

 
3. Results 
 
The results were first analysed as a mixed 
design of experiment (DOE) using a 
statistical analysis software (Statistica, 
StatSoft Inc., Tulsa, OK) in order to 
estimate the effect of build parameters on 
the properties of compression specimens 
built by FDM. Figures 4, 5 and 6 present 
pareto charts of the absolute effects of 
build parameters on the elastic modulus, 
the apparent density and the standardized 
attenuation coefficient, respectively. 

 
The air gap is clearly the build parameter 
affecting the most all properties. It did 
affect the apparent density of 0,54 g/cm3, 
the image properties of 631 HU and the 
elastic modulus of 845 MPa for this 
particular experiment. Although all 
parameters were found to have a 
significant effect (p < 0,005), the layer 
orientation has a very small influence on 
all properties. Moreover, the raster 
orientation has a very small effect on the 
CT image properties and the apparent 
density but is affecting more importantly 
the elastic modulus (~200 MPa). 
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Figure 3 Typical FEM analysis of a specimen

Figure 2 CT image of compression specimens 



Figure 5 Effect of build parameters on apparent
density 
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Figure 6 Effect of build parameters on
standardized attenuation coefficients 

 

 

 
The relationships between image intensity 
(HU), apparent density, and elastic 
modulus were also studied. Linear and 
quadratic regressions were calculated to 
identify the most relevant for predicting 
elastic moduli from CT images.  
 
Table 1 presents the relationships obtained 
between the image intensities and the 
apparent density for: 1) 30°&-60° of raster 
angle; 2) 45°&-45° of raster angles; 3) 
0°&90° of raster angles and longitudinal 
build layers; 4) 0°&90° of raster angles 
and transverse build layers; and 5) all 
confounded. Linear relationships were 
found between the apparent density and 
the image intensities. These results suggest 
that one relationship (#5) would be 
sufficient to predict the apparent density 
regardless of the build parameters used. 
 
 
 
 
 

Table 1 Relationships between image intensity 
and apparent density 
 Relationships R2 
1 
2 
3 
4 
5 

ρ=0,0008CT + 1,0578 
ρ=0,0008CT + 1,0564 
ρ=0,0008CT + 1,0479 
ρ=0,0009CT + 1,0634 
ρ=0,0008CT + 1,0567 

0,9995 
0,9995 
0,9991 
0,9993 
0,995 

 
On the other hand, the relationships 
between the apparent density and elastic 
modulus were found to be quadratic. Table 
2 presents the relationships obtained for: 
1) 30°&-60° of raster angle; 2) 45°&-45° 
of raster angles; 0°&90° of raster angles 
and longitudinal build layers; 4) 0°&90° 
raster angles and transverse build layers; 
and 5) all raster angles confounded and 
longitudinal layers; 6) 0°&90° raster angle 
and layer orientation confounded; and 7) 
all build parameters confounded. These 
results suggest that the predicted elastic 
modulus is dependent on the build 
parameters. Thus, one relationship could 
not predict adequately the elastic modulus 
without knowledge of the mesostructure. 
 
Table 2 Relationships between apparent density 
and elastic modulus 
 Relationships R2 
1 
2 
3 
4 
5 
6 
7 

E=4345ρ2 - 4079ρ + 1324 
E=4293ρ2 - 4068ρ + 1320 
E=1960ρ2 -   938ρ +   499 
E=1629ρ2 -   643ρ +   233 
E=3552ρ2 - 3042ρ + 1046 
E=1367ρ2 -   235ρ +   210 
E=2645ρ2 -  1854ρ +  662 

0,9835
0,9897
0,9946
0,9991
0,967 
0,908 
0,9308

 
Figure 7 presents the results of the FEM 
analysis using personalized mechanical 
properties from QCT. It shows the 
comparison between experimental 
stiffness and FEM estimation using: 1- the 
relationship for longitudinal layers (Table 
1, relation 3) for the 9 specimens, 2- the 
relationship for transverse layers (table 1, 
relation 4) for all specimens and 3- the 
relationship corresponding to the layer 
orientation of each specimen. 
 
This latter result indicates a better 
agreement between FEM and experimental 
measurements when the mesostructure of 
the part (layer orientation) is taken into 
account (r2=0.979) than for the 2 other 
cases (r2=0.839).  
 
 



 
4. Discussion and Conclusion 
 
The specific objective of this study was to 
study the effect of the mesostructure on 
the relationship between the apparent 
density and the mechanical behaviour of 
parts built with a material of known 
mechanical properties. The long term goal 
of this is to verify if QCT could be 
appropriate to predict the mechanical 
properties of trabecular bone. 
 
An experiment has been proposed into 
which compression specimens were built 
with a predefined mesostructure, tested 
mechanically, CT scanned and measured 
experimentally to establish relationships 
predicting their mechanical behaviour 
from images properties. Finally, finite 
element analyses were performed in order 
to verify how a FEM with personalized 
mechanical properties obtained using the 
proposed method could predict adequately 
the mechanical behaviour of an object. 
 
The first results of this study suggest that 
CT images could predict adequately the 
apparent density of ABS objects 
regardless to their mesostructure using 
equation 3. 
 ρ=0,0008CT + 1,0567 (3) 
 
However, the relationships obtained to 
predict the elastic modulus from the 
apparent density of an object seem to be 
strongly dependent of the mesostructure. 
This finding was confirmed by the 
analysis of the effects of FDM build 
parameters. It showed that the air gap 
strongly affects the CT image, the 
apparent density as well as the elastic 
modulus of parts. It also suggests that the 
layer orientation affects the elastic 
modulus of parts built by FDM. This 
suggests that the relationship used to 
predict the mechanical behaviour of an 
object should be carefully chosen by 

taking into account the mesostructure of 
the object. 
 
This result was also confirmed by FEM 
analyses showing that the agreement 
between the predicted behaviour and 
experimental measurements was better 
when the layer orientation was taken into 
account. 
 
These findings could explain in part the 
disagreement found in the literature [5;7] 
on the efficiency of QCT to predict the 
mechanical properties of the trabecular 
bone. Actually, the trabecular bone is a 
mixture of a CaP type minerals, collagen, 
cellular marrow and fatty marrow. 
Moreover, the mineral content forms a 
complex architecture, the trabeculae, 
spatially arranged to resist to the external 
loads applied to the bone, similar to 
composite materials. Overall, the CT 
image intensity (HU) represents a 
weighted average of these constituents.  
 
These observations could mean that QCT, 
as it is currently used, allows predicting 
the density and the mechanical properties 
of ABS parts but is not sufficient without 
an appropriate knowledge of their 
mesostructure.  This may represent a 
limitation in predicting the mechanical 
properties of trabecular bone from CT 
images. However, more experiments are 
currently underway to confirm the 
preliminary conclusions drawn from this 
study. Other improvements to QCT are 
presently under investigation, such as: 
calibration objects with controlled 
mesostructure and close to bone properties 
material, multiscale image analysis, 
quantitative microCT, etc. 
 
Nevertheless, QCT is a powerful clinical 
tool that allows extending the knowledge 
and understanding on the mechanical 
behaviour of bone as related to bone 
fractures. The use of such non invasive 
tools in clinical practice could improve the 
preoperative assessment, the surgical 
planning and the healing of complex bone 
fractures. 
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Abstract 

 

The conventional ductile (also shear) 

fracture mechanism models – based on the 

nucleation and development of voids 

around inclusions and separations – have 

many limitations such as their inability to 

explain the damage and fracture 

mechanism for pure metals and single-

phase metal alloys. A more serious 

limitation is their inability to generate 

shear fracture control criteria. 

 

The lack of shear fracture control criteria 

makes it difficult to optimise mechanical 

material working processes and prevent 

any damage preceded by large local plastic 

strains. The problem is compounded by 

the lack of suitable solutions within the 

classical theory of continuous medium and 

within fracture mechanics. There are few 

indications that the problem can not be 

solved within existing damage mechanics. 

 

Hence the paper’s main goal is to present a 

strategy of the mesoscopic-macroscopic 

modelling of the damage and shear 

fracture mechanism. The strategy is based 

on the properties of a mesostructure which 

forms in the final isothermal stage in the 

evolution of dislocation structures.  

 

Keywords: Physical mesomechanics, 

shear fracture, modelling, control 

strategies, criteria. 

1. Introduction 

 

Mesomechanics is a newly created 

scientific discipline [1,2]. The 

establishment of this discipline provided a 

stimulus for innovative research and has 

made possible effective management of 

the previously existing interdisciplinary 

researches. 

 

The main aim of this paper is to show the 

benefits stemming from the application of 

mesomechanics to the analysis of the 

development of strains and fracture in 

processes based on shear.  

 

The earlier methods of such analysis were 

based mainly on the slip line field theory 

and the theory of transition zones. Both 

theories have serious limitations. 

 

According to the slip line field theory, the 

plastic sinking of the cutting tool in the 

sheared material first causes gradual 

widening and then narrowing of the plastic 

strain area [3]. Characteristically, this area 

finally assumes the shape and dimensions 

a line (a plane) with zero thickness. The 

line defines the location of slip velocity 

discontinuity and it is identified with the 

presumed trajectory of fracture. It is 

thought that the only way in which the 

shape of the fracture trajectory can be 

changed is by eliminating the rotation 

(bending) of the sheared material, which is 



usually done by pressing the sheared 

material against the cutting tool. With this 

the possibilities of the method are 

exhausted. The fact that shear strain 

determined by this method approaches 

infinity poses an additional problem. The 

problem has been partially solved by the 

development of the theory of transitional 

zones [4]. 

 

The introduction of the theory of 

transitional zones made the values and 

distribution of strain in the final stage of 

shearing real. This means that instead of a 

line (a surface) with zero thickness, an 

area having the shape of a biconvex lens is 

considered. 

 

The beginning of the formation of this 

area is identified with conditions 

corresponding to the action of an absolute 

stress concentrator. But it is not known 

when and why such a significant change in 

the stress concentration conditions occurs. 

Moreover, it is assumed that once the lens 

is formed, it does not change its shape but 

only diminishes as the displacement of the 

cutting tool increases. 

 

The inconsistency between the model of 

the brittle fracture mechanism and that of 

the ductile fracture mechanism is another 

problem, which will be illustrated by maps 

of the mechanisms of: fracture (figs 1 and 

2), deformation (fig. 3) and dislocation 

structures development (fig. 4). 

 

 

2. Maps of mechanisms 

 

Maps of fracture mechanisms 

Typical views on fracture mechanisms are 

presented on maps of fracture mechanisms 

(figs 1 and 2). 

As the figures show, the brittle fracture 

mechanisms (fig. 1a, b) and the ductile 

fracture ones are explained quite 

differently even though both require 

preceding plastic deformation. The brittle 

fracture mechanism is explained by the 

effects of a flat pile-up of dislocations (fig. 

1a,b), whereas the ductile fracture 

mechanism (fig. 2a) is explained by the 

nucleation and development of voids 

around inclusions and separations. This 

means that two different theories of 

fracture are applied here: the theory of 

dislocations in the case of brittle fracture 

and a modified theory of the porous body 

in the case of ductile fracture [5,6]. 

 

Problem. Due to the lack of cohesion 

between the above theories the causes of 

the transition from ductility to brittleness 

(fig. 1d) cannot be clearly explained. 

Moreover, the above model of the ductile 

fracture mechanism does not explain the 

fracture of pure metals or the fracture of 

monophase metal alloys. Neither does this 

model generate any criteria for the control 

the trajectory of shear fracture. 

 

Since it is not possible to control the 

trajectory of shear fracture, several 

technical problems, connected with, e.g., 

the precision of die shearing and similar 

technological processes, arise. Neither is 

the problem of shear fracture trajectory 

control solved by the theory of adiabatic 

shear bands (fig. 3). 

 

Maps of deformation mechanisms 

Figure 3 shows the location of the areas in 

which adiabatic shear bands occur 

depending on the kind of material, the rate 

of its deformation, the temperature and the 

magnitude of the strains (not shown on the 

map) – grey area on fig. 3. 

 

According to fig. 3, adiabatic shear bands 

(ASB) occur during cold deformation. The 

presence of adiabatic shear bands is 

equated with thermal softening which 

takes place in the region of the dislocation 

mechanism of deformation (blackened 

area on fig. 3). 

 

Adiabatic shear bands appear only after 

critical strain γcrit and critical strain rate 
γ*crit are exceeded. Moreover, their 

appearance largely depends on 

temperature.
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In some cases, the temperature is very 

low, e.g. for aluminium it is about -200°C. 
 

 
 

Fig. 3. Strain rate/homologous temperature 

deformation maps. Base on [9,10] 

 

Problem. The theory of adiabatic shear 

bands does not explain the mechanism of 

shear fracture which occurs at strain rates 

lower than the critical ones (γ* < γ*crit). 
 

Therefore one can conclude that the shear 

fracture problem still is not fully 

correlated with the dislocation mechanism 

of plastic deformation, although the 

research on the evolution of dislocation 

structures seems to be quite advanced (fig. 

4). 

Maps of dislocation structures 

Figure 4 shows a map of the evolution of 

dislocation structures depending on 

temperature and the magnitude of strain. 

Characteristic strain values divide the map 

into three main areas separated from each 

other by thick lines. 

 

The upper limit of the first area marks the 

strain measured at the end of the yield 

threshold (εp). The upper limit of the 

second area is marked by uniform strains 

(εr). The boundaries of the third area are 
marked by failure strains (εf). 
 

Against the background of the three areas 

the boundaries of subareas, corresponding 

to the successive stages in the evolution of 

the dislocation structures, can be 

distinguished. No complete coincidence of 

the boundaries of the subareas and those 

of the three main areas is observed. But 

this poses no problem for the approach 

adopted below. 

 

The present author proposes to focus on 

the subarea with strongly disoriented 

cellular structure (the shaded subarea in 

fig. 4). In the author’s opinion this subarea 

is closely linked to the shear fracture 

mechanism. 

 

Problem. The above subarea of strongly 

disoriented cellular structure is not 

contiguous with the failure strain (εf) 
curve. In other words, there is still no clear 

connection between the evolution of 

dislocation structures and ductile fracture, 

and particularly shear fracture. 

This is due to, among other things, the fact 

that a cellular structure belongs to low-

energy structures, and as such does not 

explain the causes of the fracture. 

 

Thesis. The author proposes the following 

thesis: 

The causes of shear fracture lie in the 

formation of high-energy dislocation 

structures which the boundaries of 

subgrains forming within isothermal 

mesoscopic shear bands can constitute. 



 
 

Fig. 4. Map of dislocation structure evolution. Based on [11]. 

 

3. Mesoscopic-macroscopic concept 

and model of shear fracture 

 

The mesoscopic-macroscopic concept of 

the shearing process, proposed by the 

author of this paper, is illustrated in figs 5 

and 6. According to this concept, the onset 

(fig. 5b) and then the development of 

strain localization in mesoscopic shear 

bands (fig. 6a) are of key importance. 

Here a case of strain localization in quasi-

isothermal, mesoscopic shear bands (SB) 

is considered. The development of shear 

bands manifests itself in the appearance of 

a lenticular strain localization zone (fig. 

5b). 

 

The beginning of strain localization in the 

mesoscopic shear bands puts an end to the 

displacements of the free surface:  

Us = Us,max (fig. 5a, b).  

 

The moment when shear bands appear and 

the free surface displacements are 

inhibited can be easily predicted. It is 

enough to know the relationship between 

limiting strain Ul and strain-hardening 

coefficient n [12,13]. Strain 

(displacement) Ul is limiting from the 

strain localization point of view. The 

development and properties of the 

dislocation structure within shear bands 

(fig. 5 h, i, j) determine the susceptibility 

of the material to fracturing along the 

shear bands. The macroscopic course of 

fracture depends on the shape of the 

boundaries of the strain localization zone 

(fig. 5b, 6b) and the magnitude of the 

displacements of the material along the 

defective grain boundaries (fig. 6a). 

 

The original grain boundaries become 

defective as a result of the interaction 

between them and the shear bands (fig. 6a, 

boundary GB2). This means that the 

course and effects of the shearing process 

depend here only on the synergy between 

the strain localization mechanism and the



 

 
 

Fig. 5. Mesoscopic-macroscopic concept of shearing. According to E.S. Dzidowski. 

Description in text. 

 
 

Fig. 6. Model of shear fracture mechanism (b) and scanning electron microscopy 

results which validate it (a,c). According to E.S. Dzidowski. Description in text. 



mechanism of fracture along mesoscopic 

shear bands.  

 

As fig. 6 shows, the fracture of the sheared 

material consists in its separation along 

mesoscopic shear bands SB (fig. 6a, 

separation ∆L)). Initially the fracture 

propagates along the shear bands (fig. 6b, 

trajectories A-B and E1-D1) and it consists 

in the loss of cohesion between the 

particular layers of the material. As the 

fracture reaches points 2 and 3, the 

fracture mechanism changes. From now 

on the fracture propagates only along the 

defective grain boundaries (fig. 6b, line 2-

3 and fig. 6a, boundary GB2). 

 

Hence the final shape of fracture surface 

A-2-3-4’ and that of surface A1-2-3-4 

depend on the shape and width of the 

lenticular strain localization zone and on 

the magnitude of the displacements along 

the defective grain boundaries (fig. 6 a, b).  

 

This means that the fracture initially 

propagates along the boundaries and then 

across the strain localization zone formed 

by the shear bands (fig. 6b,c). 

Characteristically, the strain localization 

zone shrinks from top and bottom and 

eventually widens as a result of 

intercrystalline displacements of the 

material. Immediately before the total 

separation of the sheared material into two 

parts, the zone assumes a shape similar to 

parallelogram BCE1F1 (fig. 6b, blackened 

area). 

 

The above shear fracture mechanism 

model relates fracture not only to the 

properties (misorientation) of the 

material’s substructure within shear bands, 

but also to transverse (acting transversely 

to the direction in which shear bands 

(SBs) develop) tensile stresses. Such 

stresses may arise naturally or be 

artificially generated as in shear with 

tension. One should note here that the 

effective value of artificially generated 

tensile stresses amounts to about 0.25 of 

the yield point value (σ0.2) [12]. 

Conventional shearing (fig. 6) is an 

example of the natural generation of 

transverse tensile stresses. The stresses 

arise because of interaction between SBs 

and the original grain boundaries (see fig. 

6a, GB2). The development of shear bands 

results in strong flattening and rotation of 

the grains and in the formation of 

characteristic laminar lenticular strain 

localization zones (SLZ). This may be 

accompanied by the formation of wedge-

shaped discontinuities along the original 

grain boundaries (see fig. 6a, GB2). The 

tendency to form such discontinuities 

depends to a large degree on the condition 

of the original grain boundaries. One of 

the factors conducive to the lamination of 

the original grain boundaries may be 

adsorption of foreign atoms. 

 

The defective grain boundaries become 

some kind of inclined planes whereby the 

sheared portions of material move and 

separate along the SBs (fig. 6a, shear 

bands SB1-SB4 and the next ones). The 

separation is the most complete near the 

boundaries of SLZs, i.e. at the places 

where displacement (non-dilatational 

strain) gradients are the steepest (see fig. 6 

a and b). 

 

To sum up, the shape of slip fracture 

trajectories depends here on: the way in 

which shear bands develop, the properties 

of the shear bands, the condition of the 

original GBs and the shape of the SLZ 

formed by the mesoscopic SBs. 

This means that by properly changing the 

properties and direction of development of 

shear bands and the way in which 

transverse tensile stresses are generated 

one can change the shape of the shear 

fracture trajectories or totally eliminate the 

fracture.  

 

 

4. Conclusion 

 

The mesoscopic-macroscopic concept of 

investigating and modelling the 

mechanism of shear fracture along 



isothermal mesoscopic shear bands 

generates criteria which allow one to: 

1. control of the trajectory of fracture, 

2. accelerate and slow down the 

development of shear fracture, 

3. prevent the development of shear 

fracture. 

 

The main such criteria are: 

1. The material’s strain hardening ability 

which determines the onset of strain 

localization in isothermal shear bands. 

2. Stacking fault energy which 

determines: 

a) the course of the evolution of 

dislocation structures and their 

properties and so: 

b) the susceptibility to cracking along 

isothermal shear band and its 

dynamics. 

Exemplary applications of the presented 

concept can be found in [12-17]. 
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Abstract 
 
This paper applies a Continuum Damage 
Mechanics (CDM) model in lifetime 
assessment of a full size pressure vessel. 
The CDM model adopted in the analysis is 
a ductile damage model, which can be 
extended to model fatigue damage, since 
can be argued that fatigue loading 
develops plasticity, at least at the 
mesoscale level of a weak inclusion. A 
hypothesis of local coupling between 
damage and elastoplastic behaviour is 
assumed. The damage model was 
identified, based on experimental data, in 
order to model both ductile and fatigue 
damages. The CDM model was applied in 
the assessment of a fully size pressure 
vessel which was tested until failure, 
under variable internal pressure. The 
failure occurred at a nozzle-to-vessel 
intersection. The application of the 
damage model to that location suggested 
that the vessel failed due to excessive 
plastic deformation and not due to fatigue 
as was initially expected with the test. 
 
KEYWORDS: Fatigue, Crack initiation, 
CDM, Plasticity.  
 
 
1. Introduction 
 
The problem of propagation of 
macroscopic cracks up to failure has been 
intensively studied through fracture 

mechanics concepts. The crack initiation, 
which requires the knowledge of what 
happens before a mesocrack breaks the 
representative volume element (RVE), 
cannot be modelled by classical fracture 
mechanics that deals with pre-existing 
meso or macro cracks. 
 
A tool for modelling the evolution of the 
progressive deterioration of materials up 
to mesocrack initiation is the Continuum 
Damage Mechanics (CDM). A continuous 
damage variable is introduced as an 
internal variable of tensorial nature, but it 
reduces to a scalar, D , if damage is 
isotropic, which is the base hypothesis 
considered in this study. 
 
For most applications, and especially in 
fatigue, the damage is highly localized in 
such a way that the damaged material 
occupies a small volume in comparison to 
the macroscale of the structural 
component or even the mesoscale of the 
RVE. This means that the effect of the 
damage on the stress/strain behaviour only 
occurs in very small damaged regions. The 
coupling between damage and strains may 
be neglected everywhere in the structure, 
except in the RVE, where damage 
develops, leading to the principle of 
locally coupled analysis, which is 
considered in this paper.  
 
This paper applies a ductile CDM model, 
originally proposed by Lemaitre et al 
[1-3], to the modelling of the lifetime of a 



full size pressure vessel, which was tested 
by the authors. The paper also describes 
the ductile damage model and its 
identification using experimental data 
obtained for the tested pressure vessel 
material – the P355NL1 steel [4]. 
 
 
2. The ductile CDM Model 
 
A ductile CDM model is proposed to 
model both plastic and fatigue failures. In 
this section the base assumptions of this 
model are discussed, the respective 
constitutive equations are summarized and 
some numerical implementation issues are 
discussed. 
 
Base assumptions 
For many practical situations, plastic 
damage and mainly fatigue damage can be 
considered highly localized, only affecting 
locally the stress-strain behaviour. The 
damage localization is due to stress 
concentrations and also due to some 
weakness in strength at the microscale. 
Then, a locally coupled analysis is applied 
into two stages: i) a global elastoplastic 
finite element analysis (FEA) of the 
structure to derive the strains history; ii) a 
local analysis at the critical points, 
considering an elastoplastic damageable 
constitutive behaviour. 
 
Lemaitre et al [1-3] suggested a 
micromechanics-based model for the RVE 
at mesoscale which is applied in this 
paper. The RVE is made of a matrix 
containing a micro-element or inclusion 
weakened by its lower plasticity threshold; 
all other material characteristics are the 
same for both inclusion and matrix. In the 
present study it is assumed an elastoplastic 
behaviour for the matrix with a yield 
stress, yσ , ultimate tensile strength, uσ , 
and a fatigue limit, flσ  ( fl yσ σ< ). The 
inclusion is considered to follow an 
elastic-perfectly plastic behaviour coupled 
with damage. Its weakness is due to a 
plasticity threshold lower than yσ  and 
equal to flσ  if not known by another 

consideration: s y fl
µ µσ σ σ≥ = . Below the 

fatigue limit no damage should occur. The 

fatigue limit of the inclusion is supposed 
to be reduced in the same proportion: 
 
 fl fl fl y( / )µσ σ σ σ=  (1) 
 
A law of localization is adopted based on 
the Lin-Taylor’s hypothesis [5], which 
states that the state of strain at microscale 
is considered equal to the state of strain 
calculated, independently, at macroscale. 
Then, there is no boundary value problem 
to be solved. Only a set of coupled 
constitutive equations must be solved for a 
given history of mesostrains at the critical 
point(s). The criterion of microcrack 
initiation is also the criterion for brittle 
crack instability at mesoscale [1]. 
 
Constitutive equations 
The constitutive equations for the weak 
inclusion are described. The superscript µ 
is omitted hereafter for sake of simplicity. 
It is assumed an elastic-perfectly plastic 
behaviour coupled with isotropic damage. 
Let’s assume valid the decomposition of 
the strain tensor into elastic and plastic 
components: 
 
 E P

ij ij ijε ε ε= +  (2) 
 
The strain tensor ijε  is evaluated through a 
global elastoplastic analysis, without 
damage, for the whole structure. Its 
complete history is known in advance to 
the integration of the constitutive 
equations for the weak inclusion.  
 
The elasticity law coupled with damage 
can be expressed as follows: 
 

( ) ( )( )

E E
ij kk ij

ij E 1 D
1 1 1 2
ε νε δ

σ
ν ν ν

 
= − + 

+ + −  
 (3) 

 
or, inversely, as: 
 

 E
ij ij kk ij

1
E E
ν νε σ σ δ+ = −  

 (4) 



where ijδ  is the delta Kronecker operator 
and ijσ  is the effective stress tensor 
defined as follows: 
 
 ij ij /( 1 D )σ σ= −  (5) 
 
A plastic yield function is established as 
follows: 
 

eq
s eq sf 0 f 0

1 D
σ

σ σ σ= − = ⇔ = − =
−

 (6) 

 
where eqσ  is the equivalent stress defined 
using the deviatoric stress tensor, ijS , as 
follows: 
 
 ( )

1
23 1

eq ij ij ij ij kk2 3S S ;Sσ σ σ= = +  (7) 
 
In the framework of associate plasticity, 
the plastic strain tensor rate can be 
expressed as follows: 
 

ijP
ij

ij eq

Sf 3
2 1 D

λε λ
σ σ
∂

= =
∂ −

 if f f 0= =  (8) 

 
where λ  is the plastic multiplier. Taking 
into account the definition of the 
accumulated plastic deformation 

1
2P P2

ij ij3p ( )ε ε= , the plastic strain rate can 
be expressed as: 
 

 ij ijP
ij ij

eq s

S S3 3p p N p
2 2

ε
σ σ

= = =  (9) 

 
where ijN  is a normal to the yield 
function, with a magnitude of 2

3 . 
 
The kinematic damage law can be stated 
as follows:  
 

 YD p
S

=  if Dp p>  (10) 

 

where Dp  is the damage threshold 
corresponding to microcrack nucleation; 
S  is a damage strength constant and Y  is 
the strain energy release rate, defined as: 
 
 ( )22

eqY R 2E 1 Dνσ  = −   (11) 

 
In the previous equation, Rν  is the 
triaxility function, defined as: 
 

 ( ) ( )
2

H2
3

eq

1
H kk3

R 1 3 1 2 ;ν
σν ν
σ

σ σ

 
= + + −   

 
=

 (12) 

 
Assuming an elastic-perfectly plastic 
behaviour, the triaxility function can be 
expressed using information directly from 
the strain tensor: 
 

( ) ( ) ( )

2

H2
3

s

ER 1 3 1 2
1 2ν

εν ν
ν σ

 
= + + −   − 

(13) 

 
The accumulated plastic strain associated 
with the damage threshold, Dp , can be 
associated with the corresponding axial 
plastic strain, P

Dε , based on energetic 
considerations [1]: 
 

 u flP
D D 2

s fl

p
/ k

σ σ
ε

σ σ
−

=
−

 (14) 

 
The conditions of failure of the RVE are 
reached for a critical value of damage, cD . 
This critical damage can be related with 
the corresponding uniaxial damage, using 
energetic arguments [1]: 
 

 
2
u

c 1c 2
s

D D
Rν

σ
σ

=  (15) 

 
Numerical Integration 
The numerical integration of the 
constitutive equations was performed 
using an incremental strain driven 
algorithm since the strain tensor is known 



in advance for any time. The aim of the 
integration procedure is to evaluate the 
stress tensor, the plastic strain tensor, 
damage, and other material model 
variables, for the time n 1t + , knowing the 
corresponding values for the time nt . The 
integration algorithm is applied into two 
stages: an elastic trial followed by an 
eventual plastic correction. The elastic 
trial leads, for the time n 1t + : 
 
 P P

ij ijn 1 n
ε ε

+
=  (16) 

 n 1 np p+ =  (17) 
 n 1 nD D+ =  (18) 

( )P
ij kk ij ij ijn 1n 1 n 1 n

2σ λ ε δ µ ε ε
++ +

= + −  (19) 

 ( )ij ij nn 1 n 1
1 Dσ σ

+ +
= −  (20) 

 
If the effective stress, given by Eq. (19), 
leads to a yield function value, defined by 
Eq. (6), f 0≤ , then Eqs. (16) to (20) 
define the final state for time n 1t + . 
Inversely, if f 0>  then a plastic 
correction is required. The consideration 
of a perfect plastic material model allows 
the explicit derivation of the plastic 
correction. Eqs.  (9) and (10) can be stated 
in the incremental form using the 
Backward-Euler fully implicit scheme: 
 
 ( )P P

ij ij ij n 1 nn 1n 1 n
N p pε ε +++

− = −  (21) 

 ( )n 1
n 1 n n 1 n

YD D p p
S
+

+ +− = −  (22) 

 
In the final of the increment the yield 
function should be verified: 
 
 n 1 eq sn 1

f 0σ σ+ +
= − =  (23) 

 
with the effective stress tensor given by: 
 
 ( )P

ij kk ij ij ijn 1n 1 n 1
2σ λ ε δ µ ε ε

++ +
= + −  (24) 

 
The previous equation can be rewritten 
using the result of Eq. (21): 

( )
ij kk ijn 1n 1

P
ij ij ij n 1 nn 1 n 1n

2 N p p
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++ +
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Eqs. (23) and (25) form a non-linear 
system of equations in the unknowns 

ij n 1
σ

+
 and n 1p + : 
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They can be linearized and solved 
simultaneously, using the Newton method: 
 

 
ij

ij

ij ij
ij kl p

kl

ff C 0               

h h
h C C 0

p

σ

σ

σ

σ

∂ + = ∂
 ∂ ∂ + + = ∂ ∂

, n 1t t +=   (27) 

 
The coefficients ijCσ  and pC  are defined 
for iteration l  as follows: 
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The iteration l 0=  corresponds to the 
elastic prediction. The coefficients ijCσ  and 

pC  can be evaluated explicitly for n 1t t += : 
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After the evaluation of the ij n 1
σ

+
 and 

n 1p + , one can evaluate the P
ij n 1
ε

+
, n 1D +  

and ij n 1
σ

+
 using Eqs. (21), (22) and (5), 

respectively. 
 
This ductile damage model is 
implemented in the DAMAGE 90 code 
[1,3]. This code admits the strain tensor 
history, ( )ij tε , at the critical point as 
input. Also, the constants of the plasticity 
and damage model are required. The 
outputs of the code are the damage, the 
accumulated plastic strain and the stress 
tensor. 
 
 
3. Model Identification 
 
The constants of the model can be 
identified to model distinct damage 
behaviours. Two alternative sets of 
constants are proposed to model the plastic 
damage and the low/medium cycle fatigue 
damage. While plastic damage is 
associated with monotonic loading, fatigue 
damage is associated with cyclic loading. 
The constants to be evaluated can be 
grouped into four distinct sets: elastic 
constants ( E , ν ); general strength 
constants ( uσ , yσ , lfσ ); plastic constants 

( sσ ) and damage constants ( P
Dε , 1cD , S ). 

The elastic and general strength constants 
were determined using standard tests for 
the P355NL1 steel [4]. The ductile 
damage model should model the complete 
uniaxial tensile test. This test is used to 
identify damage constants. The critical 
damage, 1cD , can be evaluated through a 
relation between the ultimate tensile 
strength, uσ , and the fracture strength, rσ  
[1]: 
 

 r
1c

u

D 1 σ
σ

= −  (30) 

The damage threshold, P
Dε , can be 

assumed equal to the uniaxial ultimate 
tensile strain, uε : 
 
 P

D uε ε=  (31) 
 
The damage strength coefficient S  is 
evaluated through a trial and error process 
in order to guarantee the following 
conditions: 
 

 u u

1c r r

, D 0
D D ,
ε ε σ σ

ε ε σ σ
≤ ≤ ⇒ =

= ⇒ = =
 (32) 

 
Table 1 summarizes the constants under 
option 1. The plastic behaviour of the 
material is simulated using a perfectly 
plastic model, being the strain hardening 
simulated through several plastic 
thresholds, sσ . These plastic thresholds 
are listed in Table 2. Fig. 1 illustrates the 
simulation of the uniaxial tensile test. 
Alternatively to the constants of Option 1, 
the ductile damage model can be identified 
to model a theoretical uniaxial tensile test: 
after reaching the maximum, the strength 
decreases progressively until zero. The 
condition of null strength means unit 
damage. The model constants are 
presented in Table 1 for Option 2. 
 

Parameters Option 1 Option 2 
E  [MPa] 205200 
ν  0.275 

uσ  [MPa] 568 

yσ  [MPa] 362 

lfσ  [MPa] 284 

1cD  0.19 1.00 
P
Dε  0.15 

S  [MPa] 0.600 0.118 
Table 1: Properties for the ductile model. 

 
ε  [%] 0.0 0.1 0.2 1.5 4.0 6.5 10 
sσ  [MPa] 284 324 362 440 500 540 568

Table 2: Plastic thresholds. 
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Figure 1: Simulation of the uniaxial tensile 

test. 
 
The ductile damage constants are now 
identified in order to model the 
low/medium cycle fatigue 
( 2 5

f10 N 10< <∼ ∼  cycles). The constants 
of the model are estimated indirectly in 
order to minimize the deviations between 
the response of the model and the 
experimental data. The experimental data 
used to identify the constants of the model 
are results from fatigue tests of smooth 
specimens, performed under total strain 
control with fully-reversed straining [4]. 
Two sets of constants were proposed. 
Table 3 summarizes the constants of the 
fatigue damage model. Fig. 2 presents 
predictions of strain-life data using the 
proposed CDM model. Both sets of 
constants (Options 1 and 2) give very 
reasonable predictions. Although both 
options led to similar fatigue life 
predictions, they are based on distinct 
damage thresholds. The Option 1 
considers the same damage threshold of 
the plastic damage model. This damage 
threshold is, for low/medium cycle fatigue 
regimes, achieved for the very first cycles. 
Hence, a linear relation between damage 
and the accumulated plastic strain, and 
consequently the number of cycles, is 
observed from the beginning as is 
illustrated by Fig. 3a. This damage 
evolution is not according to the actual 
fatigue damage evolution curves of the 
material as illustrated by Fig. 3b. Fig. 3b 
compares the damage evolution curves 
simulated with the Option 2 set of 
constants and the experimental results 
from reference [4]. It is clear that the 
fatigue damage evolves non-linearly 

which is reasonably captured by the model 
with the set of constants from Option 2.  
 

Parameters Option 1 Option 2 
E  [MPa] 205200 
ν  0.275 

uσ  [MPa] 568 

yσ  [MPa] 362 310 

lfσ  [MPa] 284 

1cD  1.00 
P
Dε  0.15 13 

S  [MPa] 26.0 2.5 
Table 3: Properties for the fatigue damage 

model. 
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Figure 2: Strain-life data prediction. 

 

 

 
Figure 3: Damage evolution for Option 1 

(a) and Option 2 (b). 
 



Fig. 4 illustrates the application of the 
fatigue damage model in the prediction of 
the damage accumulation for a two-block 
loading. It can be concluded that the 
Option 1 of the model yields a non-linear 
damage accumulation; the Option 2 of the 
damage model simulates almost linear 
damage accumulation. The predictions are 
compared with the experimental data 
derived in reference [4] for the P355NL1 
steel. The non-linear predictions achieved 
with the Option 1 model are very 
satisfactory in terms of damage 
accumulation. 
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Figure 4: Simulation of damage 

accumulation under two-block loading. 
 
 
4. Damage Analysis of a Pressure Vessel 
 
The described CDM model is now applied 
in the lifetime assessment of a full size 
pressure vessel. The pressure vessel was 
tested under fluctuating internal pressure. 
Details about the experimental test of the 
vessel can be found in reference [4]. The 
vessel failed at 12 455 full pressure cycles 
ranging from 0 to 35 bars, due to a crack 
initiated at the crotch corner of the nozzle-
to-vessel intersection. Figs. 5 and 6 
illustrate the geometry, boundary 
conditions and FEM mesh used in a global 
elastoplastic analysis of the vessel. 
 
The global elastoplastic analsis was 
performed using the Chaboche model with 
superposition of 3 non-linear kinematic 
hardening variables (c1=180GPa, γ1=1200, 
c2=20.4GPa, γ2=120, c3=0.48GPa, γ3=12). 
A radius of the yield function equal to 200 
MPa was assumed. The simulation was 

carried out over 20 pressure cycles. The 
strain history was recorded at the crotch 
corner, where damage localization is 
expected.  
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Figure 5: Pressure vessel. 

 

 
Figure 6: Finite element mesh of the 

nozzle-to-vessel intersection. 
 
An asymptotic progressive cyclic mean 
strain is observed and confirmed in the 
experimental tests [4], which is 
superimposed to the respective cyclic 
strains. The transient behaviour can be 
expressed through the following equations 
for the increments of the three cyclic mean 
direct strain components at the crotch 
corner: 
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It is assumed that a stabilized behaviour is 
achieved as soon as the strain increments 
between to successive cycles are lower 
than a critical value: 
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If cN  corresponds to the minimum 
number of cycles for which cξ ξ≤ , then 
the strain increments, for cN N≥ , can be 
assumed constant: 
 
 ( ) ( )

c
ij ,med ij ,medN N

/ N / Nδε δ δε δ=   (35) 

 
Eqs. (33) to (35) allow the simulation of 
the cyclic mean strain. The alternate 
behaviour is characterized by the 
following strain ranges: 
 

 
xx

yy

zz

0.386 %
0.130 %
0.123 %

∆ε
∆ε

∆ε

=
=

=

 (36) 

 
Both ductile and fatigue damage models 
are used to simulate the lifetime of the 
nozzle-to-vessel behaviour. The history of 
strains at the crotch corner is processed 
using the DAMAGE90 software [3]. The 
ductile damage model, identified to predict 
the low/medium cycle fatigue, predicts 
fatigue lives of 67 320 cycles and 66 990 
cycles, for Options 1 and 2, respectively. 
These lives are about four times the 
observed experimental life (12 455 
cycles). This prediction suggests that the 
observed failure is not a fatigue type 
failure. The ductile damage model, 
identified to model the plastic failure was 
applied to process the cyclic mean strains 
at the crotch corner. The predictions 
depend on the cξ  values. The following 
values were obtained with the Option 2: 

c 3.87%ξ = ⇒  N 2582= cycles ; c 1%ξ =  
⇒ N 4141=  cycles ; c 0.5%ξ =  ⇒  
N 7485= cycles . These values are the 
same order of magnitude of the observed 
experimental life, which confirms a plastic 
failure of the vessel.  
 

The proposed CDM model predicts the 
crack initiation which represents the 
failure of the RVE. In general, a 
propagation period is expected. This 
propagation period was verified to be 
reduced for the tested vessel due to the 
high applied pressures. Neglecting the 
propagation period, it is expected that the 
CDM model give conservative 
predictions. 
 
 
5. Conclusions 
 
This paper describes a CDM model which 
is formally a ductile damage model. The 
model was identified to model both plastic 
and low/medium cycle fatigue damages. 
Locally elastoplastic coupled with damage 
behaviour is assumed. The CDM model 
was applied in the lifetime assessment of a 
full size pressure vessel. The model 
predictions clarify that the vessel failure 
was of plastic type rather than fatigue, in 
contradiction with expected by the vessel 
testing. 
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Abstract 
 
Energy methods are used to consider 
damage formation in both laminated 
composites and other smaller scaled multi-
layered systems.  For laminates, the 
damage mode is the formation of arrays of 
ply cracks that progressively form during 
loading.  Crack damage also forms in other 
multi-layered systems (e.g. small scale 
metal-ceramic super-lattices).  For other 
multi-layered systems, such as silicon 
germanium systems encountered in the 
electronics sector, dislocation formation 
can be the preferred damage mode and is 
also considered using energy methods. 
 
Keywords: Energy, Laminates, First ply 
cracking, Super-lattices, Dislocations. 
 
 
1. Introduction 
 
Multi-layered multi-material systems are 
used for many engineering applications in 
various forms, where the assembly of a 
three-dimensional components from 
materials having a two-dimensional 
structure is used to enhance properties in 
one or more directions.  Applications areas 
are wide ranging in the sectors involved, 
and in the length scales encountered. For 
example, at the macroscopic level, some 
laminated composite structures involve 
many layers of unidirectional composite 
material at various orientations, having 
total thicknesses in the 0.1-0.5 mm range, 
bonded together to form composite 

laminates.  At the microscopic level metal-
ceramic super-lattices, used as hard-
wearing coatings applied to cutting tools, 
involve alternating layers of different 
essentially epitaxial materials where 
individual layer thicknesses are in the range 
10-100 nm.  Also at this length scale, 
epitaxial semi-conductor materials are in 
widespread use, which are often 
functionally graded to obtain desired 
electronic properties.  Such material 
systems are a very special class of layered 
composite material.   
 
At the macroscopic level, the integrity of an 
engineering structure is determined by its 
geometry, which is often complex 3D 
structure, and the loading, which is often 
not known accurately and is complex 
involving triaxial stress states that arise 
from combined in-plane and out-of-plane 
loading modes. Structural failure of 
composite laminates can depend on the 
nature of localised damage modes such as, 
delaminations, ply cracks, fibre and 
fibre/matrix interface failure.  The integrity 
of structure whose dimensions are 
measured in metres might be determined by 
localised damage modes that involve much 
smaller dimensions such as millimetres in 
the case of ply cracking, and such as 
micrometres in the case of fibre failures.  
The prediction of the integrity of a 
composite structure thus requires a fully 
integrated multi-scale modelling approach 
traversing many length scales, connecting 
macroscopic structural features to 
microstructural features such as ply lay-up, 



fibre architectures and the very localised 
behaviour of clusters of molecules and 
atoms when considering fibre/matrix 
interfacial effects. 
 
For layered composite materials of any 
type, mechanical and thermal loading can 
lead to the initiation and growth of damage 
followed by component failure.  Recent 
progress will be summarised on the 
application of stress transfer models 
developed for ply cracking in composite 
laminates, in conjunction with energy 
methods, to predict progressive damage 
formation in several different areas of 
layered composite systems having practical 
importance, where the structure is defined 
at two distinct length scales.   
 
The requirement for the modelling of 
composite structure to bridge many length 
scales needs to be accompanied by the 
application of appropriate physical 
principles at each length scale involved.  
The key principles involved are the balance 
(or conservation) of mass, momentum 
(both linear and angular) and energy.  At 
the same time the laws of thermodynamics 
must also be obeyed.  Such principles must 
also be applied when modelling damage 
mechanisms.  However, failure theories for 
composite systems are usually based on 
stress-based criteria that are empirical in 
nature, as evidenced by many of the models 
presented in the International Failure 
Prediction Exercise [1-3] where a final 
analysis of results and conclusions has 
recently been published.  Such methods are 
applied to predict the failure of individual 
plies in laminates, and combined with ply 
discount schemes to model progressive 
damage growth and eventual failure of the 
laminates.  Evidence has been presented [4] 
that stress-based failure criteria are not able 
to predict ply thickness and ply lay-up 
effects, issues that were not in fact 
addressed in the recent Failure Prediction 
Exercise [1-3]. It has been shown [4] that 
energy methods are required to explain 
these effects.  It will be shown in this paper 
that as length scales reduce, energy 

methods indicate that damage formation 
becomes more difficult to analyse, as 
observed in nature, and it must be 
emphasised that stress-based methods 
cannot explain this behaviour. For very 
small length scales, often encountered in 
the electronics sector, dislocation, rather 
than crack formation, can be the damage 
mode that occurs. It will be shown that 
energy methods are capable of predicting 
dislocation formation in epitaxial layered 
systems.    
 
 
2. Ply cracking in laminates 
 
The first type of composite to be 
considered is the conventional laminate 
where the problem is to make use of 
physically-based prediction methods for the 
degradation of properties due to damage, 
and for laminate strength in multiaxial 
loading conditions, in contrast to the 
empirical failure criteria normally used by 
engineers.  The damage in composites 
appears as fully developed cracks in the 
individual plies of laminates.  Recently 
developed homogenisation methods, can be 
combined with energetic methods [5, 6], 
and with a fibre failure criterion based on 
strain, to predict the failure of many types 
of composite laminate.  The simulation 
method recently developed models 
progressive ply cracking in any ply of a 
symmetric laminate using an 
homogenisation method [6], and has led to 
a very useful technique of predicting 
laminate failure.  In particular it has been 
shown how ply thickness and ply ordering 
affects laminate strength, including a 
discussion of experimental data for CFRP 
[7].  Energy methods indicate that as the 
ply thickness is reduced, the first ply failure 
stress increases, a phenomenon observed in 
practice that cannot be explained using 
conventional stress-based approaches. It is 
emphasised that most of the recommended 
methods for predicting laminate failure 
resulting from the International Failure 
Prediction Exercise for Composites [1-3] 
are not capable of accounting for such 



effects as they are derived from stress-
based rather than energy-based failure 
criteria. This should be a matter of concern 
for composite engineers who are building 
ever-larger structures where manufacturing 
cost considerations may tempt them to use 
thicker plies.  In passing it is emphasised 
that methods exist (see for example [5]) for 
predicting the required undamaged ply 
properties from fibre and matrix properties, 
and when these are combined with the 
damage prediction methods outlined above, 
they offer a rigorous bridging of mechanics 
method from the fibre and matrix level 
through to laminates and on to structures 
where the methodology is designed for 
application.  A commercially available PC 
software system known as PREDICT [8] is 
now available to enable users to carry out 
some of the required calculations. 
 
 
3. Predicting first ply failure 
 
As already mentioned, when a composite 
laminate is loaded, catastrophic failure is 
usually preceded by a number of different 
interacting failure mechanisms such as ply 
cracking, delamination, fibre fracture, and 
fibre/matrix interface failure.  Ply cracking 
is often the first damage mode to occur, and 
if it occurs in a structure where gas or 
liquid is contained, perhaps under pressure, 
a leakage failure mode becomes a 
possibility that must be avoided.  Also, if 
the structure is subjected to fatigue loading, 
damage growth from ply cracks in the form 
of delaminations can lead to the 
degradation of the structure and 
catastrophic failure at some time in the 
future. Clearly the avoidance of ply 
cracking is a prudent approach when 
designing some types of laminated 
composite structure.  The requirement is to 
design a structure that avoids first ply 
failure for all expected operating 
conditions. 
 
The prediction of first ply failure has 
traditionally involved the application of a 
stress-based failure criterion in each of the 

plies of a laminate. The effective (or 
global) stresses that are sufficient to satisfy 
the ply failure criterion in a particular ply 
defines the first ply failure stress that can 
be used in design.  Sometimes plies that 
have failed are discounted by reducing their 
Young’s and shear moduli to zero so that 
the local effective properties of the 
laminate are degraded using classical 
laminate theory (i.e. the ply discount 
method).  This procedure may be continued 
progressively until all plies in the laminate 
have failed.  While this approach is used 
frequently, it suffers from the significant 
problem that the predicted failure stress of 
the laminate does not depend in any way 
upon the thickness of the plies.  It is useful 
to consider a specific example.  Consider 
the two quasi-isotropic laminates 
[02,902,452,-452]s and [0,90,45,-45]2s.  They 
both have the same number of lamina at 
various angles and classical laminate theory 
predicts that the same stress field will arise 
in each of the plies having the same angle 
(assuming the region considered is free of 
edge effects).  The application of a stress-
based first ply failure criterion then leads to 
the conclusion that both laminates would 
generate ply failures at the same stress.  
This type of behaviour is not observed in 
practice [7]. Also the application of 
conventional failure criteria to the laminate 
as a whole would lead to the conclusion 
that both laminates have the same strength 
which is another situation that does not 
occur in practice [7]. Clearly first ply 
failure is governed by other physical 
principles, and some of these will now be 
described. 
 
Energy-based approach to ply failure 
In the following analysis, the symbols EA, 
ET and μΑ will be used to denote the axial 
and transverse Young’s moduli of a 
laminate, and the axial shear modulus for a 
damaged state, while νΑ, νa and νt denote 
the corresponding major and minor axial 
Poisson’s ratios and the transverse 
Poisson’s ratio, respectively.  The symbols 
αA and αT will be used to denote the axial 
and in-plane transverse thermal expansion 



coefficients of a damaged laminate. The 
same notation is used for laminar properties 
except that the symbol is written in italics 
to denote that the property refers to a single 
lamina.  A superscript ‘o’ denotes that the 
elastic constant refers to that for an 
undamaged laminate.   
 
An effective applied stress s, accounting for 
in-plane biaxial and through-thickness 
loading, is defined by (see [5, and cited 
papers] for details of its derivation) 

 
t Ts k k ,′= σ + σ + σ               (1)                                             

 
where tσ  is the through-thickness stress, σ  
is the effective axial stress and where Tσ  is 
the effective in-plane transverse stress that 
are applied to the laminate.  The parameters 
k′  and k, which are laminate constants that 
depend on the effective elastic constants of 
the laminate (when undamaged) and on the 
elastic constants of the individual plies, are 
given by (see [5] for details) 
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where A and B are defined by the elastic 
properties of individual plies (in italics) 
 
       A  /   / , B  = + =ν ν ν νt T a A A AE E      (3) 
 
When laminates are balanced (so that for 
any ply orientation angle θ  the number of 
+ θ  plies is equal to the number of −θ  
plies), it can be shown using the results 
given in [5] that the criterion for ply 
cracking in a specific ply can be expressed 
in terms of just two loading parameters: i) 
an effective stress defined by s, and ii) the 
in-plane shear stress to be denoted by τ .   
The criterion for first ply cracking is energy 
based and may be derived from results 
given in [5] so that 
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where TΔ  is the difference between the 
current temperature of the laminate and its 
stress-free temperature, and where 1k  is 
another laminate constant defined by 
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        (5)                             

 
The parameter C is defined by the thermo-
elastic properties of individual plies (in 
italics) 
 

C   .= +α ν αT A A               (6)                             
 
In (4), the term 1k TΔ  has the property that 
when 1s k T= − Δ  and 0τ =  the axial 
stress in the 90o plies of an undamaged 
laminate is zero.  It is also the stress at 
which the ply cracks in the 90o plies of a 
damaged laminate (for which there is no in-
plane shear strain) are just closed. It is 
emphasised that the term 1k TΔ  appearing 
in (4) takes full account of the effects of 
thermal residual stresses in the laminate.  
The criterion (4) is quadratic in the 
effective stress s, the shear stress τ  and the 
temperature difference TΔ . The relation 
(4) is in fact an approximation as very 
small shear coupling terms and a shear 
expansion coefficient have been assumed to 
be zero. For balanced undamaged laminates 
they are precisely zero, but when the 
laminate has a distribution of ply cracks 
they have small values due to the fact that 
if a θ-ply has cracks then there are no 
cracks in the corresponding –θ ply leading 
to an asymmetry that generates small non-
zero shear coupling and shear thermal 
expansion terms.  This effect is most easily 
observed by using the software system 



known as PREDICT, which is a specific 
application module of the commercial 
product developed by NPL that is known as 
CoDA [8]. 
 
When using (4) to undertake energy 
balance calculations determining the 
conditions for first ply failure, the laminate 
and stress field are rotated so that the ply in 
which ply crack formation is being 
considered has a 90o orientation.  Ply 
cracking damage in the 90o plies of a length 
2L of laminate is defined by {L1, L2, ... Ln} 
where n is the number of cracks in length 
2L of the 90o plies and where LI, I = 1...n 
denote the distances between neighbouring 
cracked planes.  For this case the energy 
absorption per unit volume for length 2L of 
laminate appearing in (4) is given by 
 

                   
M(90)

(90)
j j

j=1

h = ,
hL

Γ δ γ∑           (7) 

 
where 2h(90) is the total thickness of all 90o 
plies in the laminate having total thickness 
2h, and where M is the number of potential 
cracking sites in 90o plies which are 
ordered in a regular way, e.g. from top to 
bottom in the plies which are taken in order 
from the centre of the laminate to the 
outside, symmetry about the mid-plane of 
the laminate being assumed.  The quantity 
2γj

(90) is the fracture energy for the jth 
potential cracking site of the 90o plies. The 
parameters δj describe the crack pattern in 
the laminate such that δj = 1 if the jth site of 
the 90o ply is cracked and δj = 0 otherwise.               
An examination of the L.H.S. of the 
energy-based first ply cracking criterion (4) 
reveals that, even though it involves four 
distinct loading modes characterised by the 
parameters t T, , andσ σ σ τ , it is in fact a 
quadratic function of only two independent 
parameters for a given temperature, namely 
the effective stress s and the applied shear 
stress τ . A ‘two-dimensional’ first ply 
failure envelope can be constructed that 
captures the effects of through-thickness 
loading, in-plane biaxial and shear loading 
on the formation of the first ply cracks.  

This is a new approach and needs to be 
applied to all orientations of the plies in one 
half of the laminate.   
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Figure 1: First ply failure envelopes for a 

CFRP quasi-isotropic laminate for the 
case when ΔT = −90oC. 

 
Fig.1 shows the first ply failure envelopes 
for the 90o and the o45±  plies of a CFRP 
quasi-isotropic [45/-45/0/90]s laminate 
having thermal residual stresses 
( oT 90 CΔ = − ).  The envelope for the 0o 
ply involves very large stresses and is not 
shown.  The fracture energy for ply 
cracking is assumed to be 150 J/m2.  There 
are mixed-mode loading issues that also 
need to be considered.  Each point is 
obtained from a single run of PREDICT 
[8]. The appropriate fracture energy can be 
determined from a single test for a simple 
loading case, e.g. uniaxial tension.   
 
The envelopes suggest that during loading 
ply cracking always occurs first of all in the 
90o ply.  It is worth noting that the 90o ply 
is located next to the mid-plane so that the 
total thickness of the 90o ply is double that 
of any o45±  and 0o plies.  The envelopes 
are not closed, but terminate at points of 
ply crack closure.  The lines drawn joining 
the closure points pass through the origin as 
shown in Fig.1.   
 
Fig.2 shows first ply failure envelopes for a 
GRP [-55/55]s angle-ply laminate having 
thermal residual stresses such that 

oT 90 CΔ = − .  The envelopes again are 



not closed, but terminate at points of ply 
crack closure as shown in Fig.2.  The lines 
joining the closure points again pass 
through the origin.  Again the fracture 
energy for ply cracking is assumed to be 
150 J/m2, and each point is obtained from a 
single run of PREDICT [8]. 
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Figure 2: First ply failure envelopes for a 

GRP [55/−55]s laminate for the case 
when ΔT = −90oC. 

  
 
4. Cracking in small scale multi-layers 

The first type of multi-layer having thin 
layers is a laminated composite where the 
ply thicknesses are reduced in size.  
Figure 3 shows the first ply cracking stress 
as a function of ply thickness predicted 
(using PREDICT [8]) for typical GRP and 
CFRP cross-ply laminates subject to 
uniaxial loading and a temperature 
difference ΔT = -85oC.  The total thickness 
of the laminate is always 4 mm so that as 
the ply thickness is reduced the number of 
plies progressively increases. 

It is seen from Fig.3 that as the ply 
thickness reduces the first ply cracking 
stress increases (dramatically for the case 
of CFRP).  Failure theories based on stress-
based criteria would not predict this effect 
that has been observed in experiments (e.g. 
[7]). 
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Figure 3:  Effect of ply thickness on first ply 

cracking stress for CFRP and GRP 
laminates. 
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Figure 4:  Dependence of cracking stress 

on the thickness of the layers. 
 

The second type of composite involves 
nanoscale metal-ceramic super-lattices [9] 
where alternating very thin layers of steel 
and titanium nitride are bonded together to 
form a material system that exhibits 
improved properties when compared to the 
bulk properties of the weakest constituent 
(titanium nitride).  The problem is to try to 
explain observed improvements in 
performance using physical principles.  
Fig.4 shows the cracking stress for the 
titanium nitride layers when 16 multi-layers 
having the same thickness are uniaxially 
loaded when ΔT = -500oC.  It is seen that as 
the layer thickness decreases, the cracking 
stress increases to the extent that through-
thickness cracking damage is virtually 
impossible.  Other types of damage occur, 



such as dislocation formation, and the 
modelling of this type of damage will now 
be discussed. 
 
 
5. Dislocation formation in multi-layers 
 
A method [10] will now be described for 
predicting defect formation in multi-layer 
materials using energy-based rather than 
stress-based criteria for the case where the 
layers exhibit an epitaxial structure having 
a lattice mismatch. Defects will be 
considered in the form of arrays of edge 
dislocations in individual layers of the 
system.  Continuum methods [10] are used 
to develop solutions, extending the use of 
stress-transfer methods that were originally 
developed for ply cracks in composite 
laminates. Dislocations are modelled as 
cracks having modified boundary 
conditions where a prescribed displacement 
profile is imposed in place of the usual 
stress-free condition. By modifying the 
displacement discontinuity profile of the 
dislocation in the core region, it is possible 
to remove the troublesome 1/r stress 
singularity that is encountered when using 
the classical model of an edge dislocation, 
which is much stronger than the 1/r1/2 
singularity that is associated with cracks.  
The dislocation model can be used to 
examine the onset of yielding, for 
multiaxial stress states, of epitaxial metals 
in constrained conditions, and its 
dependence on layer thickness.  The 
dislocation model can also be used to 
model defect formation in epitaxial semi-
conductor systems where the practical 
problem is to enable desirable electronic 
properties while minimising defect 
formation that degrades electronic 
performance. The validity of the model has 
been demonstrated [10] by comparing in 
Fig.5 predictions of dislocation densities 
with an exact analytic solution [11] that is 
possible only for the very special case of a 
system of two layers where the only 
difference between the layer properties is 
their lattice parameter. 

 
A key issue for dislocation formation is the 
prediction of the critical thickness below 
which it is energetically impossible for any 
dislocations to form. This concept is 
illustrated, for a silicon-germanium system, 
where the normalised energy (calculated 
using the methods described in [10]) is 
plotted in Fig. 6 as a function of the ratio 
b/p where the dislocation separation is p 
and where b is the Burgers vector for the 
dislocations.  For thicknesses lower than 
the critical thickness of 11.211 nm, where 
the energy curve minimum occurs when 
b/p = 0, the energy curve does not exhibit a 
local minimum and the existence of an 
equilibrium distribution of dislocations is 
then impossible. For thicknesses greater 
than the critical value, the local minimum 
that occurs defines the normalised 
equilibrium dislocation density b/p. 
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Figure 5: Comparison of predictions with 
an exact analytical solution. 
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Figure 6: Energy plots showing how to 



identify the critical thickness for 
dislocation formation. 

 

The dislocation analysis [10] has been 
applied to capped dislocations and the 
resulting critical thicknesses as a function 
of germanium content are shown in Fig.7 
and compared with the uncapped solution 
and predictions of the approximate 
analytical solution given by the Matthews 
and Blakeslee model (see [10]).  
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Figure 7: Plots showing the dependence of 

the critical thickness for dislocation 
formation on germanium content. 

 
It is seen that as the germanium content 
increases the critical thickness decreases 
implying the easier it becomes for 
dislocations to form. 
 
 
5. Conclusions 
 
The results of this paper have shown that 
energy methods are able to explain various 
damage phenomena that occur in multi-
layer systems at various length scales.  
When applied to laminated composites, the 
energy approach can explain  
experimentally observed ply thickness and 
ply layup effects, including the increasing 
difficulty of forming ply cracks when the 
layers are thin.  A similar effect is shown to 
occur when the layer thickness of metal-
ceramic super-lattices is reduced.  Energy 
methods are also shown to explain the 
occurrence of critical layer thicknesses for 

dislocation formation in semi-conductor 
materials.  
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Abstract 
 
This work aims to investigate the 
influence of ageing, at room temperature, 
and for different ageing times, on the 
yielding kinetics of polypropylene, having 
different morphologies, induced by 
different cooling rates during molding. 
Compressive tests were performed over 
various loading rates to analyze the effect 
of ageing on the yielding kinetics. Ree-
Eyring’s model was used to analyze the 
effect of ageing on the yielding behavior. 
Ageing only slightly affects the yielding 
stress, but it causes a significant variation 
in the pre-exponential factor values. The 
results suggest that plastic deformation 
implies more cooperative segmental 
motions for higher crystalline content, 
which result in higher values of the pre-
exponential factor containing the entropy 
term. The parameters related to the β-
process did not undergo any significant 
change during ageing, suggesting that 
ageing at room temperature does not affect 
localized molecular motions. 
 
Dielectric spectroscopy was conducted in 
the frequency domain using a broadband 
dielectric spectrometer for the lowest and 
highest crystalline morphologies in both 
aged and unaged states. The results 
showed significant changes in the 
dissipation factors of the primary 
relaxations with ageing time, for both low 
and high crystallinity samples. On the 

other hand, no change in the secondary 
relaxation was observed in either case. 
DSC measurements did not show any 
effect of ageing at room temperature the 
degree of crystallinity as well as the 
melting temperature of polypropylene. 
 
Keywords: Polypropylene, Ageing, 
Crystallity, Yielding, Plasticity, 
Microstructure, Molecular Relaxation.  
 
 
1. Introduction 
 
Polypropylene (PP) is one of the most 
widely used polymers. Despite the use of 
antioxidants, ageing can pose significant 
problems in practical applications of these 
materials. Ageing is defined as the 
occurrence of a gradual change of state 
and properties that affects the mechanical 
performance and shortens the useful live 
of polymers. There are two types of 
ageing; physical ageing, and chemical 
ageing. In chemical ageing, changes of the 
material structure are irreversible such as 
ruptures of chemical bonds and oxidation; 
whereas physical ageing is reversible. It is 
an evolution of the polymer structure 
towards a more stable thermodynamic 
state, after cooling from its liquid state. 
During cooling, molecular 
rearrangements, due to the drop in 
temperature, decrease to such a point that 
they are much slower than the imposed 
rate of cooling. The material is thus frozen 
in an unstable thermodynamic state and 
tends to reach a more stable conformation 
with time. The evolution of the material 
towards its thermodynamic equilibrium is 



called physical ageing. For polypropylene, 
at the ambient temperature, chemical 
ageing does not take place. The rupture of 
chemical bonds by oxidation has been 
found to occur only within a depth 
between 8 to 10 nm [1, 2] 
 
Several reported studies on polypropylene 
have showed important changes of its 
mechanical and physical properties after 
ageing at ambient temperature. Gezovich 
and Geil [3] reported an increase in the 
yield stress with ageing of a polypropylene 
film, without any change of its 
crystallinity or of its crystalline structure. 
Schael [4] explained the effect of ageing 
by the reduction of the free volumes 
distributed in the bulk material, resulting a 
reduction in the mobility of the chain 
segments. Kapur and Rogers [5] noted an 
increase in the tensile modulus, the 
dynamic shearing modulus, and the tensile 
yield stress after physical ageing. However 
the yield strain and the relaxation rate 
decrease with ageing. To interpret these 
results, the authors suggested that the 
mechanisms of ageing could imply 
molecular rearrangements comparable 
with those of the secondary crystallization 
process, with a reduction of the mobility 
of the chain segments in the 
intercrystalline areas. Agarwal and Schultz 
[6] explained the increase in the density 
during to ageing, by a volume reduction in 
the noncrystalline regions. Due to this 
reduction, the amorphous regions are 
partially confined in more restricted 
regions, resulting in a reduction of the 
mobility of the polymer. To explain the 
effect of physical ageing on mechanical 
properties of semicrystalline polymers 
such as polypropylene, Hutchinson and 
Kriesten [7] associated the reduction in the 
relaxation rate of polypropylene after 
ageing at ambient temperature, to the 
rearrangement of the amorphous 
mesophase between the crystallites and the 
inter-lamella amorphous phase. 
 
This work aims to investigate the 
influence of ageing at room temperature, 
on the mechanical performance of 
polypropylene with different 
morphologies, induced by different 
cooling rates during molding. Ree-
Eyring’s model was used to analyze the 
kinetics of the yielding. DSC 
measurements were also performed in 
order to determine the effect of ageing at 

room temperature the degree of 
crystallinity as well as the melting 
temperature of polypropylene. Dielectric 
spectroscopy measurements were 
conducted in the frequency domain using a 
broadband dielectric spectrometer for both 
aged and unaged states.  
 
2. Experimental 
 
The isotactic polypropylene (PP) was 
supplied by Dow Chemical, Inspire H308-
02Z. The PP pellets were compression 
molded into plaques (22.5cm x 225.5 x 
3.5mm) at 205°C, under a pressure of 
4.3 MPa. The plaques were cooled down 
at various cooling rates using either 
running water or immersion in water baths 
at various temperatures. Four cooling rates 
were attained: 1°C/min, 10°C/min, 
50°C/min, and quenching in cold water 
(>100°C/min). Compressive tests were 
performed on an Instron Automated 
Material Testing System, Model 4206, at 
various crosshead speeds over various 
temperatures to analyze the effect of 
ageing on the yielding kinetics. Dielectric 
spectroscopy measurements were 
conducted in the frequency domain using a 
broadband dielectric spectrometer from 
Novocontrol on a 20 mm-diameter circular 
disk with the parallel surfaces coated with 
evaporated electrodes. Since the leakage 
currents flowing on the sample edges were 
found to be negligible, guarded electrodes 
were not used. Differential-scanning-
calorimeter measurements were carried 
out on a Perkin-Elmer DSC-7 calorimeter. 
The heat of fusion was measured at a 
constant heating rate (20°C/mn), using 
samples with a mass between 6 and 10 
mg. 
 
 
3. Results and discussions 
 
To investigate yielding behavior, 
compression tests were carried out at the 
various temperatures, ranging from -60°C 
to 40°C, and various loading rates, ranging 
from 0.0003 to 0.3 s-1 (corresponding to 
crosshead speeds between 0.2 and 200 
mm/min). Ree-Eyring viscosity theory [8] 
was used to analyze the yielding kinetics. 
The yield stress is frequently derived from 
the following equation: 
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where HΔ is the activation energy of the 
yielding process, T is the absolute 
temperature, ε&  is the strain rate 
(proportional to the cross-head speed), ∗V  
is called the activation volume, οε&  is the 
pre-exponential factor and R is the 
universal gas constant. In fact, over a very 
large range of temperatures and loading 
rates, the yielding kinetics of polymers has 
been shown to be controlled by two 
molecular motion processes acting in 
parallel [9, 10]. Equation (1) has been 
modified from the theory of Ree-Eyring 
and expressed by: 
 
 
 
 
 
 
 
 
 

(2) 
 
 
where ∗

αt
V , ∗

βt
V , ∗

αcV , ∗
βcV , αHΔ , βHΔ , 

οαε&  and οβε&  have the same meanings as in 
Equation (1) but are related to the primary 
(α ) and the secondary ( β ) relaxation 
processes. 
 
Figure 1 shows the semi-logarithmic plots 
of σy/T against loading rate, for the 
samples with lowest and highest 
crystalline levels (42 % and 66 %). The 
plots exhibit two distinct areas with two 
different slopes. In area I, corresponding 
to high temperatures and low loading 
rates, the primary molecular relaxation 
dominates. Whereas in area II, 
corresponding to lower temperatures and 
the higher loading rates, the secondary 
molecular relaxation also contributes to 
the yielding kinetics, resulting in a 
different activation energy. Table 1 shows 
the values of the parameters 

∗
αV , αHΔ , αε o

•
,

∗
βV , βHΔ , βε o

•
, in Eq. [2] 

determined by best fitting the data shown 
in Fig. 1 with this equation. It can be 

observed that only αε o

•
 and αHΔ , 

corresponding respectively to the jump 
frequency (or entropy) and the energy 
barrier of the polymer segments during 
plastic deformation, change with the 
crystalline level. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1: σy/T versus loading rate; (a) 
42%, (b) 66% 

 
The Ree-Eyring model assumes that, in 
moving from one equilibrium position to 
another, a molecule (or a segment of a 
macromolecule for polymers) must pass 
over an energy barrier. In the absence of 
stress, the segments of the polymer jump 
over the barrier very infrequently and they 
do so in random directions. The rate of 
jump between two equilibrium positions is 
expressed by an Arrhenius-type equation 
as: 
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where οε& ~ Forward jump rate ~ Backward 
jump rate at equilibrium. 
 
 
Cris. 42% 50% 66% 

αHΔ  
(kJ/mol) 

313 329 366 

αε o

•
 (s-1) 

6.0 
x1044 

3.0 
x1047 

4.0 
x1052 

∗
αV  

(m3/mol) 
2.336 
x10-3 

2.337 
x10-3 

2.349 
x10-3 

βHΔ  
(kJ/mol) 

25.5 27.1 29.7 

βε o

•
 (s-1) 

2 
x104 

5 
x104 

11 
x104 

∗
βV  

(m3/mol) 
9.215 
x10-4 

9.396 
x10-4 

9.998 
x10-4 

 
Table 1: Ree-Eyring parameters of α and 

β relaxations controlling yielding for 
different crystalline contents. 

 
It has also been proposed [11] that the 
parameter οαε& contains an entropy term, 
ΔS, that varies with physical ageing. In the 
above equations, the activation energy ΔH 
corresponds to the height of a potential 
energy barrier over which a molecular 
segment has to pass when it makes a 
single step of displacement, whereas the 
activation entropy ΔS is a measure of the 
number of segments jumping over the 
barrier ΔH. According to [11], the 
parameter οαε&  can be expressed by: 
 

     (4) 
 
 

where ν, frequency factor, may be taken to 
be equal to the Debye frequency, as a first 
approximation. The increases in both 
parameters with higher crystalline content 
suggest that plastic flow is mostly 
controlled by the crystallized polymer. 
 
Varying the ageing time at room 
temperature up to about eight months does 

not reveal any effect on the Ree-Eyring 
parameters controlling the primary (α) and 
the secondary (β) relaxations for all 
crystalline levels. The results confirm 
again that yielding energy dissipates 
mostly in the crystallized polymer. In fact, 
at room temperature, the bulk amorphous 
polymer is not frozen in an unstable 
thermodynamic state because its Tg is 
about 0°C. However, it has been 
demonstrated that the amorphous material 
in contact with the crystalline lamellas is 
partially blocked and cannot move freely. 
This explains a peak sometime observed in 
PP around the upper glass transition 
temperature between 40-100°C. It has also 
been suggested that physical ageing can 
take place at temperatures below this 
region, in the amorphous-crystalline 
interfacial polymer [7]. It is thus 
interesting to note that compressions tests 
also suggest that ageing at room 
temperature seems to alter slightly the 
number of jumping segments involved in 
plastic flow of PP. The entropy 
corresponding to the primary (α) 
relaxation of yielding seems to slightly 
decrease with ageing time as shown in 
Table 2. This may be due to physical 
ageing of PP at room temperature. 

 

ta 
(days) 

ε•
α 

(s-1) 
αSΔ  

(J/mol.K) 

2 6.1 x 1044 618 
15 9.3 x 1043 603 
60 3.85 x 1043 596 
240 2.21 x 1043 590 

 
Table 2: Effect of ageing time at room 

temperature on jump frequency factors of 
primary relaxation in 42% crystalline 

sample. 
 
 
To verify in more detail this effect, 
compressions tests were also performed at 
higher temperatures. The results indeed 
revealed another relaxation process as 
shown in Fig. 2. Above about 60°C, the 
plots of σy/T vs Log 

•
ε  show another 

change in slope. This can be explained by 
the particularly broad glass transition 
region in PP as discussed above. In this 
semicrystalline material, Tg can take place 
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over a broad range of temperatures, with a 
lower limit around 0°C, corresponding to 
Tg of the bulk amorphous material, and an 
upper limit between 40-100°C, 
corresponding to the amorphous phase that 
is partly entangled with the crystalline 
lamellas. The first term in Eq. (2) of the α 
process can thus be divided into two 
relaxations α1 and α2 with increasing 
temperature in a similar way: 
 

 (5) 
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Figure 2: σy/T versus loading rate for 42% 
(a) and 66% crystalline sample. 

 
The experimental results of compression 
test at high temperatures suggest that 
ageing does not affect the jump frequency 
factor of α1 but only that of α2 as shown in 

Table 3. The results confirm that physical 
ageing takes place in the amorphous 
regions next to the crystalline lamellas, 
due to an unstable conformation state, 
induced by crystallization during cooling. 
 
 

ta 

(days)
2αε o

•
 (s-1) 

42 % 

2αε o

•
 (s-1) 

66 % 

2 4.63 x 1044 2.84 x 1052

15 8.3 x 1043 7.14 x 1051

60 2.35 x 1043 3.20 x 1051

240 4.06 x 1042 2.95 x 1050

 
Table 3: Effect of ageing time at room 

temperature on jump frequency factors of 
primary relaxation α2. 

 
 
To verify the above assumptions, dielectric 
spectroscopy was used to analyze the aged 
and unaged samples. Dielectric 
spectroscopy has proven to be very useful 
for studying the conformation, the structure 
and the dynamics of relaxation processes of 
polymeric systems. Since the reorientation 
of the molecular dipoles within the 
polymeric chain results in a dielectric 
activity that can be measured, the dielectric 
spectroscopy allows to characterized the 
various relaxation processes, from localized 
motions (<< 1 nm) to segmental motions (1 
– 2 nm) and chain motions.  The dielectric 
processes in the case of wholly amorphous 
polymers have been well studied and are 
well documented [12].  Most amorphous 
polymers exhibit a principal, or α-process, 
and a secondary, or β-process, located at 
higher frequency (or lower temperature).  
While the α-relaxation is related to the glass 
transition of the system, the β-relaxation is 
generally consider to originate from 
localized fluctuations but the actual 
molecular mechanisms is not yet fully 
understood [12]. For semi-crystalline 
polymers such as PP, the relaxation 
processes, especially the glass transition 
process, are strongly perturbed by the 
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presence of the crystal phase. Furthermore, 
dielectric relaxation processes can also 
occur directly in the crystals for several 
semi-crystalline polymers such as PE or PP.  
 
The dielectric dissipation factor at 23oC for 
unaged PP samples, as a function of 
frequency in the range of 10-2 to 103 Hz, is 
illustrated in Figure 3 for the least and the 
most crystalline samples in an unaged state.  
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3: Dielectric dissipation factor 
versus frequency for high- and low-

crystalline contents. 
 
The results display three distinct peaks 
over the above frequency range. Since the 
crystalline relaxation process, possibly 
involving screw-type motion of the chains 
[13], it lies at the lowest frequency, and 
can be labelled α’.  On the other hand, the 
sub-glassy β-process, related to the 
localized chain segment motion, occurs at 
high frequency. Between these two 
extremes, a third relaxation peak α can be 
seen for both crystalline levels.  The 
observed higher α’ peak of the 66% 
crystalline sample confirms that this 
relaxation takes place in the crystalline 
region. Conversely, the α peak would 
correspond the dielectric activity in the 
amorphous polymer, confirmed by the 
higher α peak of the 42% crystalline 
sample.  
 
The effects of physical ageing at room 
temperature for three months on the 
dielectric response of PP are shown in 

Figures 4 and 5 for the 42% and 66% 
crystalline samples respectively. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4: Effect of ageing on dielectric 
dissipation factor for 42% crystalline 

sample. 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5: Effect of ageing on dielectric 
dissipation factor for 66% crystalline 

sample. 
 
The results indicate that ageing does not 
affect the side motions of the secondary or 
β-process located at higher frequency.  
This is consistent with the lack of 
influence of physical ageing on the 
secondary relaxation of the yielding 
process observed above. The primary 
relaxations, α’ and α, undergo two 
opposite effects of ageing at room 
temperature. The peak α’ is increased 
whereas the peak α is reduced by physical 
ageing. These variation confirm again that 
α’ is related to the dielectric activity in the 
crystalline polymer and α corresponds to 
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that of the amorphous region. Physical 
ageing strongly reduces the dielectric 
dissipation factor of the amorphous region 
but increases the dissipation of the 
crystalline material, suggesting a reduction 
in the mobility of the amorphous polymer.  
 
For most amorphous thermoplastics, the 
reduction in the mobility of molecular 
segments usually results in an increase in 
yield stress. However, this effect is not 
observed in the case of PP. Figures 6 and 7 
show respectively the effects of ageing 
time at room temperature on the yield 
stress, measured under various test 
temperatures. 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6: Effect of ageing time at room 
temperature on yield stress (42% 

crystalline sample) 
 
 
 
 
 
 
 
 
 
 
 
 Ageing Time (Days) 
 

Figure 7: Effect of ageing time at room 
temperature on yield stress (66% 

crystalline sample) 
 
It can be seen that physical ageing does 
not alter the yield stress of PP, regardless 

of the crystalline content. The results 
further confirm the dominant role of the 
crystalline region in the mechanism of 
yielding discussed above. The results of 
compression tests at various loading rates 
and temperatures do not show a significant 
effect of physical ageing at room 
temperature on the Ree-Eyring parameters 
governing yielding kinetics.  This can be 
explained by the fact that yielding energy 
is mostly dissipated by the crystalline PP. 
The change in molecular mobility in the 
amorphous region is not sufficient to alter 
the yielding behavior of the polymer. In 
fact a closer look at the data in Figures 6 
and 7 could reveal a small increase in the 
yield stress measured at very low test 
temperatures. In the region well below the 
glass transition temperature, the 
amorphous polymer becomes rigid enough 
to slightly contribute to plastic 
deformation. 
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Conclusion 
 
Varying the ageing time at room 
temperature up to about eight months does 
not have a significant effect on primary 
(α) and secondary (β) relaxation 
parameters, controlling the yielding 
kinetics of PP. Energy dissipated in plastic 
deformation mostly takes place in the 
crystallized polymer. At room 
temperature, above Tg (~0°C), the bulk 
amorphous polymer is not frozen in an 
unstable thermodynamic state. However 
the amorphous material partly entangled 
with the crystalline lamellas is partially 
blocked and cannot move freely, resulting 
in a relaxation around the upper glass 
transition temperature around 40-100°C. 
Compression tests at high temperatures 
also revealed another relaxation process 
above about 60°C. The α process can be 
divided into two relaxations α1 and α2 
with increasing temperature. Ageing does 

Ageing Time (Days) 



not affect the jump frequency factor of α1 
but only that of α2.  Physical ageing takes 
place in the amorphous regions next to the 
crystalline lamellas, due to an unstable 
conformation state, induced by 
crystallization during cooling.  
 
Measurements of dielectric dissipation at 
23oC in the range of frequencies from 10-2 
to 103 Hz display three distinct relaxation 
peaks. The peak at lowest frequency  
corresponds to the relaxation process of 
the crystalline polymer (α’). The sub-
glassy β-process, related to the localized 
chain segment motion, occurs at high 
frequency. Between these two extreme, a 
third relaxation peak α, observed for all 
crystalline levels, corresponds to the 
dielectric activity in the amorphous region. 
Ageing does not affect the side motions of 
the secondary or β-process located at 
higher frequency.  However, the primary 
relaxations, α’ and α, undergo two 
opposite effects. The α’ peak is increased 
whereas the α is reduced by physical 
ageing. These variation confirm again that 
α’ is related to the dielectric activity in the 
crystalline region and α corresponds to 
that of the amorphous region. Physical 
ageing strongly reduces the dielectric 
dissipation factor of the amorphous region 
but increases the dissipation factor of the 
crystalline material, suggesting a reduction 
in the mobility of the amorphous polymer. 
Energy of plastic deformation is mainly 
dissipated by the crystalline region. The 
reduction in molecular mobility of the 
amorphous region, due to physical ageing, 
is not sufficient to alter the yielding 
behavior of PP. 
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Abstract 
 
The effect of photoageing on the 
behaviour of isotactic polypropylene 
films was studied on samples of weight 
average molar mass Mw=270Kgmol-1. 
The chemical modifications (molar 
mass, carbonyl and hydroperoxide 
indexes) of the material were analysed. 
The influence of photoageing on the 
fracture toughness was examined by 
using the EWF and the J-integral 
methods.  
 
Keywords: EWF, J-integral, elastic-
plastic fracture, finite element method, 
photooxidation, polypropylene film. 
 
1. Introduction 
 
Polymer films have many major 
applications in the industry. Their 
physical and mechanical properties are 
then important from an industrial point 
of view. Over the past four decades, 

considerable progress has been achieved 
in the understanding of the fracture of 
polymers at a molecular level. 
However, the understanding of the 
macroscopic fracture mechanics in 
ductile polymers has still to be 
developed. More precisely, an accurate 
evaluation of the fracture toughness of 
polymer films requires to improve the 
methodologies. 
The global approach of the fracture 
mechanics is now commonly used for 
the characterisation of the materials 
fracture. In this energy approach, it is 
considered that the fracture 
phenomenon is initiated from a pre-
existing crack. However, this approach 
does not require the knowledge of the 
stress and strain fields around the crack 
tip. Due to significant deviations from 
linear elastic fracture mechanics 
(LEFM) under large-scale crack tip 
plasticity, essential work of fracture and 
J-integral methods are commonly 
considered as quite good approaches to 



 

quantify fracture toughness in this 
configuration. However, in particular 
for polymer films, there is still a great 
effort to do because of the complex 
behaviour of such materials and their 
sensitivity to many factors (such as 
strain rate, temperature, ageing...). 
It is well known that polymers are 
sensitive to environmental parameters 
and in particular to ultraviolet (UV) 
radiation which affects their intrinsic 
mechanical properties. The loss of 
mechanical integrity reflects 
modifications of the macromolecular 
skeleton such as polymer chain scission 
and cross linking. General features of 
the mechanism of photodegradation in 
polymers has been intensively 
investigated and they are fairly well 
understood [1-6] for most of common 
polymers. However, various aspects of 
the involved mechanisms remain 
unelucidated. Furthermore, the 
understanding of the link between the 
photodegradation process and the 
macroscopic mechanical behaviour is 
not really established.   
In this work, the photoageing behaviour 
of a semi-crystalline polypropylene film 
is examined from a physico-chemical 
and mechanical properties point of 
view. The chemical modification (molar 
mass, carbonyl and hydroperoxide 
indexes) of the polymer is analysed and 
correlated to ultimate tensile response. 
The essential work of fracture and the J-
integral methods are used to estimate 
fracture toughness of the film. 
Therefore, this paper investigates the 
techniques to calibrate the fracture 
mechanics parameters.   
 
2. Background on photoageing 
 
The effect of photoageing on the 
behaviour of semi-crystalline polymers 
has been the subject of many 
investigations [1-6]. This type of 
chemical ageing is the main component 
of climatic ageing, i.e. ageing resulting 
from direct exposure to solar radiations. 

Photodegradation governed by diffusion 
of O2 in the polymer irreversibly 
modifies the structure and the behaviour 
of this material. Polypropylene contains 
impurities which make it especially 
sensitive to the presence of UV rays. 
Natural polypropylene without 
stabilizers and pigments is very 
sensitive to this kind of degradation. 
The primary act of any photooxidation 
process is the absorption of a photon by 
the molecule. After absorption, the 
latter is in an excited electronic state. 
The potential energy of the excited 
molecule (400KJ/mol) is much higher 
when compared with that obtained by 
increasing the temperature 
(<100KJ/mol); this explains how certain 
non-existent processes in thermo-
degradation become possible in 
photodegradation. The energy of the 
firstly excited molecule can be 
transferred to another molecule. The 
photooxidation can be described by the 
following chemical reactions: 
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The reactions of oxidation in the 
macromolecule chain of polypropylene 
start by the decomposition of 
hydroxides. This reaction self-
accelerates by following a closed loop 
[4] (see Fig. 1). 

*
2PO *P

( )POOH( )PH
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Fig. 1. Diagram of photoageing. 

 
The photooxidation, by the formation of 
free radicals, leads to molecule 
scissions. Consequently, it has a large 



 

influence on the physical and 
mechanical properties of polypropylene. 
In oxygen diffusion-controlled 
processes, as photooxidation, the 
crystallinity of polypropylene increases 
with rate of oxidation. The scission of 
the macromolecules involves the 
formation of smaller molecules which 
allow easier crystallization. Many 
researchers observed the decrease of 
molar mass caused by the scission of 
chains during the photodegradation of 
the polypropylene [1]. 
The decrease of glass transition 
temperature (Tg) and melting 
temperature with increase of exposure 
time was also observed [5]. This kind of 
ageing generally leads to an 
embrittlement of polymer materials. It 
causes a dramatic effect on the 
mechanical properties and fracture 
behaviour. 
The study of ageing is complicated by 
the heterogeneous distribution of the 
chain scissions. Ageing by 
photooxidation is a surface phenomenon 
and it locally propagates. 
 
3. Materials and exposure 
 
Extruded films of 100µm thickness 
were made from a polypropylene (PP) 
homopolymer (3050MN1 from 
ATOFINA) stabilized by a mixture of 
Irganox 1010 and Irgafos 168 (0.5% by 
weight). The number and weight 
average molar masses, determined by 
size exclusion chromatography (SEC), 
were Mn = 55Kgmol-1 and Mw = 
270Kgmol-1 respectively. 
The crystallinity rate, determined by 
differential scanning calorimetry (DSC), 
was 65%. The PP was selected because 
it can be considered as a model material 
according to its sensitivity to 
photoageing. 
The PP films were exposed in reactors 
equipped with a fluorescent lamp 
(300<λ<450nm; λmax=365nm) at 70°C 
in air with free edges or in wooden 
frames 10x20cm2 (Fig. 2). These 

boundary conditions avoid edge effect, 
so that the film is considered infinite at 
the scale of heterogeneous oxidation 
phenomena. 
 

 
Fig. 2. Set-up for the photoageing of films. 

 
After ageing, tension samples of 25mm 
length and 4mm width, were cut out 
from the films using a MTS H2 stamp. 
Tensile tests were performed on an 
Instron 4502 under a nominal strain rate 
of 50mm/min. Load is measured by 
using a load cell of 1KN full range with 
a relative error of 0.5 %. As shown in 
Fig. 3, the yield stress remains quite 
constant and is not dependent on the 
exposure time. One can conclude that 
yield stress is not a convenient mean to 
describe the polymer lifetime.  

Fig. 3. Evolution of yield stress during 
exposure.  

 
According to the literature, the ultimate 
stress can not be considered as a 
representative parameter to describe the 
lifetime of polymers [6]. On the other 
hand, the ultimate strain is generally 
considered as a suitable indicator of 
photoageing. As shown in Fig. 4a, the 
ultimate strain remains almost constant 
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at a value of about 830% during the 
initial period of exposure and decreases 
abruptly after 305±10h to reach a value 
close to the initial yield strain. An 
induction time may thus be defined as 
the time elapsed from the beginning of 
exposure to this ductile-brittle 
transition.  

(a) 

(b) 
Fig. 4. Evolution of (a) strain at break, (b) 

average molar mass weight during exposure 
and kinetic curves of C=O at 1720cm-1 and OH 

groups at 3400cm-1. 
 
In order to record spectra (carbonyl and 
hydroperoxide indexes), fourier 
transform infrared spectroscopy (FTIR) 
Bruker IFS 28 equipped with a 
computerized XY translational mapping 
system was used by steps of 20µm. The 
absorbances of OH (3400cm-1) and 
C=O (1720cm-1) bands were converted 
into concentrations using the Beer-
Lambert law with molar absorptivity 
values of 70lmol-1cm-1 (OH) and 
300lmol-1cm-1 (C=O) respectively. Note 

that in the literature, the hydroperoxide 
(OH) and the carbonyl (C=O) bands are 
considered as the most suitable 
indicators for photoageing in 
polypropylene. The kinetic curves of 
carbonyl and hydroperoxide build-up, 
which have been also included in Fig. 4, 
display an induction time iCOt  of 
approximately 370±10h. In Fig. 4b the 
decrease of weight average molar mass 
Mw after an ageing time of 190h 
indicates that the chain scission process 
begins during the classical induction 
period iCOt  of 380h. We can conclude 
that embrittlement occurs at a very low 
conversion of the oxidation process. 
Does the sudden change of ductile to 
brittle behaviour result from the 
existence of a critical structural state? 
At the end of ductile-brittle transition 
(300h), the value of critical molar mass 
for embrittlement is very close to 
190Kgmol-1. The fact that 
embrittlement occurs at very low 
conversion could then be linked to some 
peculiar character of the tie chain: in 
semi-crystalline polymers tie molecules 
interconnecting lamellar play a crucial 
role in process of yielding [7]. The 
following causal chain may be thus 
assumed: Oxidation in the amorphous 
phase ⇒  chain scission ⇒  rupture of 
ties chains ⇒  loss of plasticity/ductility 
potential.  
In order to investigate the ductile 
fracture behaviour of the PP film, it is 
very important to find appropriate 
experimental methodology. The fracture 
mechanics may be a suitable alternative 
to the traditional tensile tests achieved 
above. In this work, the fracture 
behaviour of the film was studied by 
two different approaches under mode I 
loading: the J-integral and the essential 
work of fracture (EWF) theory. 
 
4. EWF method 
 
The LEFM as a matter of fact does not 
take into account the energy dissipated 
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during the blunting and the stable crack 
propagation precedes the fracture of 
highly ductile polymer films. So, 
Hashemi and O’Brien [8] and Chan and 
Williams [9] have adopted an aproach 
for characterizing polymers films based 
upon Broberg’s suggestion [10]: the 
essential work of fracture (EWF) 
method. 
In the EWF approach, the zone around 
the crack tip is divided into two regions: 
the inner fracture process zone (IFPZ) 
related to the actual fracture and the 
outer plastic deformation zone (OPDZ) 
related to shear yielding as shown in 
Fig. 5 for a double edge notch in tension 
(DENT) specimen.  

Z

B

L

W

OPDZ
IFPZ

a a

 
Fig. 5. DENT specimen geometry showing the 

OPDZ and IFPZ zones. 
 
The method consists of dividing the 
total energy for fracture fW  into two 
components: the specific essential work 
of fracture ew  and the specific non-
essential work of fracture β pw  as 
illustrated in Fig. 6. To obtain these two 
components, the total work of fracture 

fW , recorded during the mechanical test 
and containing all the energy dissipated 
during the test, can be expressed by 
[11]: 

= +f e pW W W  (1) 
Assuming that eW  is proportional to the 
uncracked ligament area while pW  is 
linked to the volume of the plastic zone, 
it comes: 

2β= = +∫f e pW Pdu w LB w L B  (2) 

where P  is the load, u  is the 
displacement, B  is the sample 
thickness, β  is the shape factor of the 
plastic zone and 2= −L W a  is the 
uncracked ligament length (W  being 
the sample width and 2a  the initial total 
crack length). So that one has, per unit 
cross section: 

β= = +f
f e p

W
w w w L

LB
 (3) 

As schematically shown in Fig. 6, the 
work of fracture is plotted versus 
ligament length. Assuming a linear 
evolution, ew  is the ordinate at the 
origin and β pw  is the slope of the 
straight line. The component accounting 
for the essential work of fracture ew  and 
the plastic deformation term β pw  are 
expected to be independent on specimen 
geometry since the fracture process is in 
pure plane stress configuration. 

Pure plane stress region

we

wf

βwp

Lmin Lmax

L

Fig. 6. Determination of EWF parameters. 
 
The films of polypropylene consist in 
sheets of 100µm thin; rectangular 
samples of 25mm width and 90mm 
length were cut out from the sheets 
(clamped zones length equal to 55mm, 
i.e. Z=35mm). DENT samples (Fig. 5) 
were precracked using a razor blade 
with ligament lengths L  ranging from 6 
to 16mm [12].  
Samples were tested in uniaxial tension 
using the Instron 4502 setup under a 
constant crosshead speed of 5mm/min 
and at room temperature. The 
specimens were tested up to complete 
failure and the load-displacement curve 
for each specimen was recorded using a 
data acquisition computer. Load-
displacement curves examples are 



 

shown in Fig. 7 for various values of 
a W  ratio. These curves display a 
maximum which corresponds to the 
blunting due to complete ligament 
yielding (zone I in Fig. 7). Beyond this 
maximum, a slow decrease of the load 
corresponding to zone II, indicates slow 
stable crack growth in the yielded 
ligament, perpendiculary to the load 
direction. 

Fig. 7. Typical load-displacement curves as a 
function of a/W ratio. 

 
The influence of photoageing on the 
specific essential work and non-
essential work of fracture is given in 
Fig. 8.  

Fig. 8. Effect of ageing on the EWF parameters. 
 
The EWF parameters show two zones 
of varying photoageing dependence. In 
the first zone (0≤time≤240h), they are 
more or less independent of 
photoageing, having an average value of 
58.7kJ/m2 for ew  and 7.8MJ/m3 for 

β pw . In the second zone (time>240h), 

ew  and β pw  decrease with the time of 
exposure and then with fragility. The 
decrease of β pw  is more emphasized 
and the dependence of this parameter 
with photoageing implies that both the 
shape of the plastic zone β  and the 
work dissipated in the plastic 
deformation zone pw  depend on 
photoageing. 
 
5. J-integral method 
 
The fracture toughness of the material is 
now examined with an alternative tool: 
the J-integral. This concept was firstly 
proposed by Cherepanov [13] and Rice 
[14] for the ductile fracture 
characterization of metallic alloys and 
extended to the evaluation of polymers 
fracture toughness [15]. The J-integral 
is a path independent contour integral 
given, for a two dimensional crack, by: 

∗

Γ

∂ = − ∂ ∫
uJ W dy T ds
x

 (4) 

where ( ),x y  are coordinates normal to 
the crack front, ∗W  is the strain energy 
density, T  and u  are stress and 
displacement acting on a contour Γ  and 
ds  is a small element on Γ . The crack 
initiation can be evaluated from a 
critical value Jc of J. 
The J-integral, under elasticity 
assumption, is the potential energy 
decrease per unit area required to create 
new surfaces. Under monotonic loading, 
this energy concept has been extended 
to non-linear and irreversible behaviour 
but the energy includes the dissipative 
terms (involved by plastic deformation 
for instance). The energy parameter J is 
expressed as: 

1 ∂
= −

∂ u

UJ
B a

 (5) 

where U  is the expended energy of the 
body which can be obtained by the area 
under the load-displacement curve, u  is 
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the displacement, a  is the crack length 
and B  is the thickness of the specimen. 
The parameter J can be also seen as a 
multiplicative form of a geometrical η -
factor and the energy per unit area: 

η= UJ
BL

 (6) 

where L  is the uncracked ligament. 
Considering an elastic-plastic material, 
the parameter J is generally 
decomposed into an elastic elJ  (related 
to the stress intensity factor) and a 
plastic part plJ  (related to the dissipated 
energy) expressed as [16]: 

η η= + = + plel
el pl el pl

UUJ J J
BL BL

 (7) 

where elU  and plU  are the elastic and 
plastic parts of the area under the load-
displacement curves, ηel  and η pl  are the 
elastic and plastic calibration factors 
which are functions of the a W  ratio. 
The aim of the following sections is 
particularly focused on the 
identification of the calibration factors, 
directly derived from the load-
displacement records or by using a 
finite element analysis.  
 
5.1. Experimental calibration of η 
 
The elastic calibration factor ηel  is 
related to the compliance C  of the 
specimen [17] in the following way: 

η =el
L dC
C da

 (8) 

C  is determined from the initial slope 
of the load-displacement curve and is 
only function of the a W  ratio. 
From experimental data, the elastic 
calibration factor ηel  can be then 
expressed with a polynomial function: 

( ) ( )24.58 5.26 1.53η = − +el a W a W  (9) 
An analytical formula of the stress 
intensity factor 1K  is given in [18] for a 
DENT plate: 

( )
( )1

2

1

π
=

−

P a W
K f a W

B W a W
 (10) 

with:
( ) ( ) ( )

( ) ( )

2

3 4

{1.122 0.561 0.205

0.471 0.19 }

= − −

+ +

f a W a W a W

a W a W
The analytical expression of the elastic 
calibration factor ηel  can be then 
obtained from: 

2 2
1 1

22η = =el
el

K KBL BL
E U E P C

 (11) 

where E  is the Young’s modulus. 
Fig. 9 gives the evolution of ηel -factor 
versus the a W  ratio. A quite good 
agreement is obtained between the 
experimental and analytical solutions. 
However, some slight divergence can be 
pointed out for a W  ratio smaller than 
0.25.  

Fig. 9. ηel-factor as a function of a/W ratio. 
 
The plastic calibration factor η pl  is 
experimentally determined from a 
methodology based on the load 
separation criterion. According to that, 
the load can be written as the following 
separable form [19]: 
( ) ( ) ( ), =pl plP a u G a W H u W  (12) 

where ( )G a W  is the crack geometry 
function depending only on crack length 
to width ratio ( a W ) and ( )plH u W  is 
the deformation function depending 
only on the normalized plastic 
displacement ( plu W ). So, η pl  exists 
only if the load can be expressed in a 
multiplicative form of the two functions 
[20].  
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The separation parameter ijS  is defined 
as the ratio of the applied load to a 
specimen with a crack length ia , with 
the applied load to another specimen 
with crack length ja : 

( )
( )

,

,
= −

=

pl

i pl
ij

j pl u u CP

P a u
S

P a u
 (13) 

The suffixe plu  denotes that the ratio is 
taken at constant plastic displacement. 

ijS  is expected to have a constant value 
over the range of the load separation 
validity zone:  

( )
( )

constant= =i
ij

j

G a W
S

G a W
 (14) 

The separation parameter ijS  was 
evaluated at different values of the 
plastic displacement by using the 
a W =0.22 record as the reference. Fig. 
10 shows the separation parameter 
variation with the plastic displacement 
for different a W  ratios.  

Fig. 10. Separation parameter Sij as a function 
of the plastic displacement upl. 

 
In Fig. 10, the limits of the load 
separation validity is pointed out. 
Indeed, the separation factor is quite 
constant, and it only depends on the 
crack length, for plastic displacement 
values greater than 0.2 and smaller than 
4. In this range the load can be 
separated into the two multiplicative 
functions and outside this range η pl  
does not exist. 

The plastic factor η pl  can be expressed 
as [19]: 

( ) ( )
( )

η =pl

dG L W d L W L
G L W W

 (15) 

The geometry function ( )G L W  can be 
easy given by the following power law: 
( ) ( )η= plG L W c L W  (16) 

with c  a constant. 
In order to determine the η pl  parameter, 
the data of the load-displacement record 
must be used. By taking logarithms to 
both sides of the equation, the η pl  
parameter is obtained from a less square 
method.  
In Fig. 11, ijS  is plotted versus L W  for 
the plastic displacement interval defined 
earlier where no major influence of 
plastic displacement was pointed out. 
The data are fitted by the power law 
function (16) giving a η pl  value very 
close to 1 as shown in Tab. 1. 

Fig. 11. Separation parameter Sij as a function 
of the uncracked ligament ratio L/W.  

 
aj/W 0.38 0.34 0.3 0.26 0.22 0.18 
ηpl 0.9916 0.9899 0.9946 0.9911 0.9905 0.9901

Tab. 1. Values of ηpl-parameter. 
 
5.2. Numerical calibration of η 
 
In order to avoid to separate U  into its 
elastic and plastic parts, we examine an 
alternative technique to determine the 
calibration factor η  via a finite element 
approach.  
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5.2.1. Constitutive model 
 
In order to achieve finite element 
simulations, the constitutive law of the 
material is required. The material 
behaviour is described using a 
phenomenological elastic-viscoplastic 
law [21] containing an internal variable. 
It must be noted that the viscoplastic 
model is suitable only for isotropic 
behaviour since the induced anisotropy 
is not described by this model. 
The total strain rate is decomposed into 
an elastic and a plastic part as follows: 
ε ε ε= +el pl

ij ij ij  (17) 
The elastic strain rate obeys to the 
following law: 

1ε σ−=el
ij ijkl klC  (18) 

where ijklC  is the fourth-order isotropic 
elastic modulus tensor. 
The plastic strain rate is given by: 

3
2

σ
ε

σ
′

= ijpl
ij

eq

p  (19) 

where σ ′ij  is the stress deviator, σ eq  is 
the equivalent stress and p  is the 
equivalent plastic strain rate depending 
on internal variable according to: 

σ − −
=

n
eq k R

p
K

 (20) 

with =x x  if 0>x  and 0=x  
otherwise. 
In (20), the exponent n  and K  are 
viscosity parameters, k  is the initial 
yield stress and R  is the isotropic 
hardening defined by the following 
evolution equation: 

( )= −R b Q R p  (21) 
b  and Q  are hardening variables. 
In order to determine the material 
parameters involved in the elastic-
viscoplastic model, experimental 
uniaxial tension tests on unnotched 
specimens have been achieved under 
various strain rates for the unaged 
material. The experimental set-up is 

mainly constituted by an Instron 
machine and a Video-Traction device.  
The unnotched specimen used has a 
specific geometry as shown in the 
schematic representation of the Fig. 12. 
The specimen presents a fairly large 
radius of curvature which ensure both 
the strain localization and the 
minimization of stress triaxiality in the 
center.  

10

90

R=1306

B=0.1  
Fig. 12. Specimen geometry used for Video-
Traction tensile tests (dimensions in mm). 

 
The following of the gravity centers of 
seven round black markers (Fig. 12) is 
achieved by the Video-Traction device 
[22], which allows to determine their 
relative displacement in real time. 
Hence, according to the position of the 
markers, the two principal strains (axial 
and transversal strains) were measured 
in the region where the plastic necking 
occurs. 
The method allows to keep the true 
strain rate under control during the test, 
even when the heterogeneous 
deformation occurs, by regulating the 
cross-head velocity (Fig. 13). 

Fig. 13. True axial strain and cross-head 
displacement as functions of time.  

 
The yield stress, determined from the 
Considere’s criterion on the true stress-
strain curves, allows to determine k , n  
and K . The hardening parameters b  
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and Q  were calibrated on the tensile 
curves. Tensile modulus E  was 
calculated using the initial slope of the 
stress-strain curve and Poisson’ratio ν  
was determined using the ratio between 
the transversal strain and the axial 
strain. The values of the parameters are 
listed in Tab. 2. 
 

E  ν  k  K  n  b  Q  
MPa - MPa MPa - - MPa
550 0.47 10 33.8 3.3 50 10 

Tab. 2. Material parameters. 
 
Fig. 14 presents a comparison between 
the experimental data and the 
theoretical model. A relatively good 
agreement is pointed out. However, 
some sligth divergence is highlighted 
for large strains. 

Fig. 14. Theoretical and experimental stress-
strain curves. 

 
5.2.2. FE model of DENT specimens 
 
In this section the η -factor is estimated 
using a finite element (FE) analysis. 
The commercial FE program Marc© 
was used to carry out the numerical 
simulations. DENT specimens were 
discretised, with different crack lengths, 
using triangular elements with six nodes 
in the vicinity of the crack tip and 
quadrilateral elements with eight nodes 
far from the crack. Due to symmetries, 
only a quarter of the geometry is 
modelled. The boundary conditions are 
given in terms of assigned 

displacements as shown in Fig. 15. The 
displacement velocity is applied to the 
node set at the top of the mesh, by 
gradually incrementing the applied 
displacement. 
 

 
 

Fig. 15. Mesh of the DENT specimen. 
 
The numerical load-displacement 
curves are compared with those 
experimentally obtained for different 
a W  ratio in Fig. 16. Although a scatter 
is depicted between simulated and 
experimental values, the validity of the 
numerical modelling is clearly pointed 
out.  

Fig. 16. Numerical and experimental load-
displacement curves. 

 
The numerical J-integral was computed 
using the Lorenzi method and the 
independence property of this quantity 
on the integration contour was checked 
by comparing the calculations made for 
various integration contours sufficiently 
far from the crack tip. Fig. 17 shows an 
illustrative example ( a W =0.3) of the 
path independence of the J-integral 
where the ratio ( )cont iFEJ  of a contour 
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i over ( )cont jFEJ  of a contour j is 
plotted versus displacement. This result 
shows without any ambiguity the 
relevance of the adopted meshing. 

Fig. 17. Effect of contour integration on the J-
integral values. 

 
The value of η  for each ligament length 
was calculated from [23]:  

η =FE FE
FE

BLJ
U

 (22) 

The evolution of ηFE , determined from 
FE calculation, versus a W  ratio is 
plotted in Fig. 18. The dependence of 
ηFE  on the crack length is clearly 
pointed out. 

Fig. 18. η-factor determined by finite element 
modelling as a function of a/W ratio. 

 
Since the η -factor is now known, the 
parameter J can be experimentally 
evaluated. Fig. 19 presents a 
comparison between the two 
methodologies for the η -factors 

identification through the evolution of 
the ratio ( ) ( )η+el pl FEJ J J  for different 
a W  ratio. An important divergence 
between the two solutions is highlighted 
at small displacements and it decreases 
when the displacement increases. The 
ratio is crack length dependent. When 
considering a W <0.34, the J value 
given by the purely experimental 
methodology is always smaller than that 
given by the FE approach.  

Fig. 19. Comparison between the two methods 
of η-factors calibration. 

 
The J-integral was determined by using 
both the load-displacement curves 
obtained for aged samples and the factor 
of calibration determined by FE (the η -
factor was assumed to be ageing-
independent). The effect of photoageing 
on the J-integral is given in Fig. 20.  

Fig. 20. Effect of ageing on the J-integral. 
 
With increasing time of ageing the J-
integral decreases. Assuming that the 
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onset of the crack growth starts at a 
critical displacement corresponding to 
the beginning of the necking stage (see 
Fig. 7), the critical value of J (Jc) 
decreases slightly with the photoageing. 
   
6. Conclusion 
 
Polypropylene films were subjected to 
photoageing and its effect on physico-
chemical and mechanical properties was 
investigated. 
Chemical modifications of the polymer 
were established as functions of ageing. 
The modifications induced by the 
photoageing are well reflected in the 
changes of the molar mass, the carbonyl 
and hydroperoxide indexes.  
The effect of ageing on the tensile and 
fracture toughness behaviour of the 
polymer was investigated. The ultimate 
strain can be considered as a good 
indicator of ageing. The η -factors, 
introduced in the J-integral expression, 
were experimentally and numerically 
estimated in the DENT configuration 
specimens. The EWF parameters were 
determined in the same configuration. 
Results indicated that the specific 
essential work of fracture ew  and the 
critical value of J (Jc) are not very 
sensitive to time of exposure while the 
plastic deformation term β pw  varies 
with this factor. It seems then that both 

ew  and Jc can not be considered as 
adequate variables being able to reflect 
the structural changes of this material 
caused by photoageing. The changes of 
the plastic deformation term can be 
correlated with the photoageing and 
give useful informations on the 
alteration due to ageing.   
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Abstract 
 
A micromechanical model was developed 
for the prediction of the longitudinal 
tensile strength of polymer matrix 
composites. The model considers 
successive fibre breaks within an infinitely 
wide Li-long representative volume 
element (RVE), Li being the so-called 
ineffective length. An elastic-plastic stress 
transfer model is used to define Li and 
fibre strength is described by a Weibull 
distribution. The composite strength is 
obtained by solving numerically an 
equation for the maximum RVE stress. A 
simplified closed-form solution derived 
proved to be in very good agreement with 
the base formulation. Although there is 
still significant uncertainty over model 
input data, predictions agreed well with 
experimental strengths of carbon fibre 
composites. 
 
Keywords: Polymer-matrix composites, 
longitudinal tensile strength, ineffective 
length, Weibull distribution.  
 
 
1. Introduction 
 
Laminated polymer matrix composites are 
increasingly used in structural 
applications. This is mainly due to the 
outstanding fibre dominated ply 
longitudinal modulus and tensile strength. 
It is well known that, in contrast with 

matrix cracking, fibre fracture usually 
causes overall laminate failure. It is also 
known that modern structural design 
methodologies aim at taking full 
advantage of material properties. 
Therefore, accurate prediction of the ply 
longitudinal tensile strength, σut1, is an 
important contribution to avoid large 
safety factors. However, longitudinal 
failure is a complicated process [1-6].  
 
Let us consider a unidirectional composite 
subjected to a rising tensile load. Owing to 
the statistical distribution of fibre strength, 
various fibre breaks occur at different 
locations. Broken fibres cannot support 
any load at the fractured section. However, 
shear stresses in the surrounding matrix 
gradually transfer stress to broken fibres. 
These fibres can actually recover the stress 
acting on unbroken fibres at some length 
Li, known as “ineffective length”. Early 
strength prediction models have viewed 
the composite as a chain of Li-bundles [1-
6]. However, oversimplifying assumptions 
have been made to maintain analytical 
tractability. In order to overcome these 
limitations, Monte Carlo simulations have 
recently become widespread [7-14]. The 
models may contain hundreds of fibre 
elements, but computational cost limits 
model dimensions and thus makes further 
size scaling essential to predict σut1. 
Moreover, model predictions overestimate 
significantly experimental σut1 values. 



 
This paper presents a simplified model 
that compares favourably with 
experimental data for several carbon fibre 
composites. 
 
 
2. Model description 
 
The aim of the present model is to predict 
the longitudinal tensile strength of an 
infinite composite. In these circumstances, 
the composite can be seen as an infinite 
stack of Li-long infinitely wide regions. 
Obviously, any of such regions can be 
considered the representative volume 
element (RVE). Therefore, the analysis 
yields the longitudinal tensile strength 
without requiring any further size scaling. 
Moreover, one fibre only undergoes a 
single break, thus greatly simplifying the 
analysis [14]. Failure occurs when the 
number of fibre breaks prevents further 
load increases.  

 
 

 
 

Figure 1: Fibre breaks in the RVE. 
 

Early work by Hedgepeth [15,16] 
indicated that fibres adjacent to a broken 
one would be subjected to significant 
stress concentration effects. Most Monte 
Carlo simulations based models have 
included such effects and therefore predict 
the formation of broken fibre clusters. 
Furthermore, one of the clusters becomes 
unstable and triggers final failure [7-14]. 
Clusters of fibre breaks have been reported 
in model composites containing a very 
limited number of fibres [17]. They could 
also occur in contacting fibres of real 
composites, although they have not been 
observed in bundle tests [14]. In particular, 
the formation of one large cluster of fibre 
breaks leading to final failure seems 
unlikely and clearly lacks experimental 
support [14]. Moreover, three-dimensional 
finite element analyses showed very 
modest highly localised stress 
concentration in fibres adjacent to a 
broken fibre [18-20]. Therefore, it is 
assumed that fibre breaks are uniformly 
distributed in the RVE. This implies that 
the average axial distance of the breaks to 
the RVE mid-plane is Li/4. The average 
stress supported by broken fibres in any 
transverse plane is thus the stress at Li/4 
from the fibre break. The RVE average 
fibre stress can then be expressed as 
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where σfl and σfb are the stresses on the 
unbroken and broken fibres, respectively, 
and P is the cumulative probability of 
fibre failure. The two-parameter Weibull 
distribution is known to provide a good fit 
to experimental fibre strength data [21-
23]. Thus, at gauge length Li, 
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where σfi is a characteristic strength and ρ 
the Weibull modulus. Since it is not 
possible to perform tensile tests at such 
small gauge lengths, the distribution of 
fibre strength must be scaled down from 



 
experimental data for some larger gauge 
length L0, 
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This scaling seems to be reasonably 
accurate [21-23], although it tends to 
overestimate strength at small gauge 
lengths [23]. However, this can be 
explained by premature near the grips 
failure [22]. Eq. (2) is thus re-written as 
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It is now necessary to determine Li, which 
is strongly influenced by interface and 
matrix shear strengths. In general, 
interface debonding takes place when the 
interface is weaker than the matrix, while 
localised matrix cracking and yielding 
occur otherwise [19]. Recent experimental 
studies [24-26] suggest that matrix 
yielding is the main stress transfer 
mechanism in modern composite systems 
with treated and sized fibres. Accordingly, 
perfect interface bonding is assumed and 
Li is calculated from the stress transfer 
model presented in [19]. This model is 
based on the analysis of a concentric 
cylinder cell formed by the broken fibre 
and the surrounding matrix layer (Fig. 2). 
The outer diameter of the matrix layer is 
tangent to the nearest neighbour fibres of 
the hexagonal packing arrangement, which 
is the most representative for the usual 
range of fibre contents. The thickness of 
the matrix layer is 
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where df is the fibre diameter and Vf the 
fibre volume fraction. The matrix is 
assumed elastic-perfectly plastic with 
shear yield stress τpm. Neglecting normal 
stresses, stress transfer along the matrix 
yielding zone (0 ≤ z ≤ zp) is [19] 
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In the subsequent elastic zone (z ≥ zp) [19], 
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where 
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and Gm and Ef are the matrix shear 
modulus and the fibre longitudinal 
modulus, respectively. Stress continuity at 
zp leads to 
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Figure 2: Scheme of the stress transfer 
model. 

 
 
On the other hand, at z = Li the broken 
fibre recovers a high fraction α of the 
remote stress σfl, e.g. α = 95 %. Eqs. (7) 
and (9) allow us to write 
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Finally, we can determine the maximum 
fibre stress in the RVE from 
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After substitution of (4), (6) and (10), Eq. 
(11) can be expressed as 
 0)()( =+ flbfll FF σσ  (12) 
where 

 

H
L

LL

L
LF

f

ifli

f

fli
fll

⎥
⎥
⎦

⎤
−

⎢
⎢

⎣

⎡

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−=

+

ρ

ρ

ρ

σ
σ

σ
σρσ

00

1

00

2

'2

1)(

 (13) 

and 
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are the contributions of unbroken and 
broken fibres, respectively, and 
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Eq. (12) can be solved by a simple 
numerical procedure e.g. Newton’s 
method. The result is then inserted in (1) 
and the tensile strength calculated from the 
rule-of-mixtures 
 fafut V σσ ≈1  (17) 
  
If we neglect: 
• the contribution of broken fibres to the 

RVE stress; 
• the stress transfer along the matrix 

elastic zone, and thus assume that 
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we obtain the closed-form equation 
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which is quite convenient if validated by 
the base model. 
 
 
3. Results and discussion 
 
The developed model is applied below to 
carbon fibre composites. The first 
objective was to evaluate the accuracy of 
the closed-form Eq. (19) in the usual range 
of material properties.  
 
Epoxy resins have tensile moduli between 
3.5 and 4.3 GPa and Poisson ratios from 
0.35 to 0.42. Therefore, one can expect 
shear moduli Gm from 1.2 to 1.6 GPa, 
which a narrow interval. On the other 
hand, tensile strengths σpm vary from 60 to 
100 MPa, but shear strength data is scarce 
and somewhat controversial. The von 
Mises type relation τpm = 0.577σpm has 
often been employed, but there substantial  
evidence that polymers actually undergo 
local tensile failure under shear loadings 
[27-31]. Accordingly, it is assumed here 
that τpm ≈ σpm. 
 
As mentioned above, measuring 
parameters of the statistical fibre strength 
distributions is difficult at small gauge-
lengths. Nevertheless, recent single fibre 
tensile tests on wide variety of carbon 
fibres showed Weibull moduli ρ = 4 to 6 
[21]. For the most common carbon fibres 
(T300, T800 and AS4), ρ ≈ 5 [13,32,33], 
the value that is used here. 
 
Comparison between Eq. (19) and the base 
formulation was first made in 4 cases, 
which correspond to the combinations of 2 
fibres (WF and SF) and 2 matrices (WM 
and SM). The fibres used were: 



 
• WF with df = 7 μm, Ef = 230 GPa and 

σf0 = 3500 MPa for L0 = 15 mm; 
• SF having df = 5 μm, Ef = 300 GPa and 

σf0 = 7000 MPa for L0 = 15 mm; 
properties that bound those of well known 
Toray’s T300 and T800 fibres. The softer 
WM matrix had Gm = 1.2 GPa and τpm = 
40 MPa, while Gm = 1.6 GPa and τpm = 100 
MPa were assumed for the stronger WM. 
 
Fig. 3 shows that Eq. (19) is in very good 
agreement with the base model for all 
cases considered. Therefore, it was used 
for comparison with experimental data. 

 
 

 
 

Figure 3: Errors (%) of Eq. (19) in the 4 
cases considered (see text for details). 

 
 
The present model is now applied to 
Hexcel AS4 and Toray T300 carbon fibre 
composites, since there is considerable 
experimental data in the literature and 
material supplier datasheets (Tables 1 and 
2). Data sources are Cytec, Hexcel, 
Matweb, Qinetic and Soficar. The fibre 
volume fraction Vf was estimated from the 
composite-to-fibre moduli ratio, E1/Ef. 
 
At this stage, the main difficulty in model 
evaluation is the lack of reliable data for 
the fibre characteristic strength σf0. 
Nevertheless, it is possible to evaluate the 
model by the following procedure: 
• use experimental σut1 values and Eq. 

(19) to back-calculate σf0 for some pre-
defined L0; similar values should be 

obtained for the composites with the 
same fibres; 

• apply Eq. (19) with the average σf0 
values obtained previously. 

 
 

Composite Matrix Vf σpm σut1 
design.   [MPa] [MPa] 

A1 828m 0.59 90 1890 
A2 828m 0.64 90 2044 
A3 934 0.54 83 1586 
A4 934 0.60 83 1792 
A5 997 0.57 90 1930 
A6 997 0.63 90 2206 
A7 8551.7 0.63 97 2170 
A8 APC2 0.58 100 2060 
A9 APC2 0.66 100 2297 

 
Table 1: Experimental data of AS4 fibre 
composites used for model evaluation. 

 
 

Composite Matrix Vf σpm σut1 
design.   [MPa] [MPa] 

T1 3601 0.59 60 1575 
T2 3631 0.59 90 1740 
T3 934 0.60 83 1790 
T4 914 0.60 48 1432 
T5 924 0.60 65 1698 
T6 3631 0.57 90 1760 

 
Table 2: Experimental data of T300 fibre 

composites used for model evaluation. 
 
 
Results presented in Fig. 4 for L0 = 10 mm 
confirm that consistent σf0 values could be 
back-calculated. The largest error was 
−11.7 % for an AS4 composite. As 
expected, calculated σf0 values were 
higher than those of single fibre tests 
[32,33]. This is due to the high stress 
transfer effects that lead to premature near 
the grips failure. 
  
Finally, Figs. 5 and 6 show that model 
predictions agree quite well with the 
experimental data of Tables 1 and 2. 
 



 

 
 

Figure 4: Calculated (see text) and 
measured [32,33] characteristic fibre 

strengths. 
 
 

 
 

Figure 5: Errors (%) of Eq. (19) 
predictions relative to experimental data of 

AS4 composites (Table 1). 
 
 

 
 

Figure 6: Errors (%) of Eq. (19) 
predictions relative to experimental data of 

T300 composites (Table 2). 
 
 
 
 

4. Conclusions 
 
A micromechanical model was presented 
in this paper for predicting the longitudinal 
tensile strength of polymer matrix 
composites. The model considered an 
infinitely wide Li-long representative 
volume element (RVE), Li being the so-
called ineffective length. Its value was 
calculated from an elastic-plastic stress 
transfer model previously developed by 
the author. Fibre strength was assumed to 
follow a Weibull distribution and 
therefore, under increasing load, various 
fibres breaks take place in the RVE. 
Tensile strength can be obtained by 
solving numerically an equation for the 
maximum RVE stress. An additional 
closed-form solution was obtained by 
neglecting the contribution of broken 
fibres and the elastic stress transfer length. 
A preliminary parametric study showed 
that the closed-form solution gave very 
good approximations to the base 
formulation. 
 
The present model allowed back-
calculation of consistent fibre 
characteristic strengths from experimental 
data of AS4 and T300 carbon fibre 
composites. Moreover, strength 
predictions agreed quite well with 
experimental values. 
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Abstract 

A micro-mechanical theory of 
macroscopic stress-corrosion cracking in a 
unidirectional glass fibre-epoxy composite 
is proposed.  It is based on the premise 
that under tensile loading, the time-
dependent failure of the composite is 
controlled by the initiation and 
propagation of a crack from a pre-existing 
surface flaw in a glass fibre.  A physical 
model is constructed, based on a model of 
a thermally-activated chemical reaction, 
using the law of Arrhenius.  Emphasis is 
placed on the significance of the size of 
the initial (inherent) flaw and the 
possibility of matrix crack bridging in the 
crack wake.  There exists a threshold 
value of the crack tip stress intensity 
factor below which cracking does not 
occur.  For the limiting case, a simple 
power law to the power of two gives the 
relationship between crack velocity and 
stress intensity factor.  This assumes the 
glass fibre is free of inherent flaws and 
matrix crack bridging is negligible. 
 
 
 
Key words: stress corrosion-cracking; 
composites, micro-mechanical modelling; 
failure prediction 

1. The Path of Physical Modelling 
 
There is a path, which takes us in an 
alternative direction to conventional 
mechanical (or empirical) design, where 
we come upon well-known laws or 
principles of physics and chemistry.  From 
them, are derived the laws of the micro-
mechanics of cracking, which can be 
applied to predictive (intelligent) design.   
 
A physical model, unlike an empirical law 
(e.g., Hooke’s Law), has powers of 
prediction that originate from those 
established rules of physical behaviour.  
But even if we take this route, a complete 
physical treatment of problems of fracture 
isn’t always possible.  Consider, for 
example, a model of a thermally activated 
chemical reaction, based on the law of 
Arrhenius, which has its basis in statistical 
mechanics.  Sometimes the activation 
energy, which enters that law, can be 
predicted from molecular models, but the 
value of the pre-exponential in the 
equation more often than not eludes 
current modelling methods; it must be 
inserted empirically.   
 
Interesting material behaviour, (which is 
frequently dynamic, meaning material 
properties that are time-dependent), 



originates (usually) from a kinetic 
process, diffusion or the rate of a chemical 
reaction, and often contains an empirical 
component.  An excellent example is the 
stress corrosion cracking of glass fibre-
epoxy composites (1), which is the subject 
of this paper. 
 
 
2. Understanding Mechanisms 
 
To understand the consequences of 
damage accumulation in composite 
material systems requires the design 
process at each size level of structure to 
include the dominant (meaning most 
influential) crack growth mechanism(s). 
Making links or connections between a 
material’s fracture resistance and the 
environment and applied stress relies 
critically on understanding the differences 
between the structural changes taking 
place over the entire range of size with 
time. Predicting material behaviour 
demands an intricate knowledge of these 
mechanisms (of which more is said in 
another paper of this Meeting by 
Beaumont and Beaumont). 
 
Choice of designer’s box of tools 
The materials engineer relies upon a box 
of tools, which contain micro-mechanical 
models, (sometimes known as mechanism 
or physical models).  We use these tools 
to create a picture, a representation or 
model of the real thing.  (The model can 
be compared to a 2-dimensional ordnance 
survey map or a 3-dimensional physical 
relief map of geographical landscape). 
Whilst a topographical map clearly 
misrepresents elevations and misleads 
with distances, it elegantly displays the 
connectivity with sufficient precision and 
usefulness.  Although the model is an 
idealization or massive simplification, 
nevertheless it captures the essential 
characteristics and features of what truly 
exists or happens.  The model needs to be 
sufficiently uncomplicated or else there is 
a danger it will lose sight of physical 

reality.  It requires simplicity and with it 
comes elegance.  Physical modelling can 
be thought of as an art form. 
 
 
3. Picture of Stress Corrosion Cracking 
 
The synergistic effect of a stress and 
chemical attack (e.g., from an acid) 
weakens glass fibre-epoxy laminates.  It 
begins when an atomistic defect on the 
surface of a glass fibre under load grows 
into a micron-size flaw.  Failure of the 
fibre progresses as a crack initiates, 
extending slowly with time, finally 
snapping completely as the result of 
unstable (fast) crack propagation.  Under 
increasing load, the crack progresses 
through the composite, fracturing 
neighbouring fibres and the matrix in 
between.  Growth of a macroscopic crack 
thereafter is by the simultaneous fracture 
of fibre and matrix that can be seen using 
an optical microscope.  Observation by 
scanning electron microscopy of a 
fractured glass fibre shows its surface 
characterised by a smooth or "mirror" 
region, (which indicates the initial slow 
cracking regime), interfacing with a 
"hackle" region or rough surface created 
by the fast fracture process (Fig. 1).   
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1 SEM of the fracture surfaces of 
glass fibres 

 
For a slowly propagating stress corrosion 
crack, there is little or no de-cohesion of 
fibre-matrix interface or the pulling out of 
broken fibres.  This means the fracture 
planes of fibre and matrix are 



coincidental.  In conditions of increasing 
crack velocity, however, there is an 
increasing amount of fibre-matrix de-
bonding.  Fibres that fracture at weak 
points below the plane of matrix crack are 
extracted during matrix crack opening.  
Ductile matrix bridges between fibres may 
form in the crack wake when tougher 
polymers are used.  Matrix bridging, as 
well as fibre bridging in the crack wake 
shield the crack tip damage zone from the 
intensification of local tensile stress. 
Crack tip shielding by bridging 
mechanisms is discussed below. 
 
 
4. Micro-mechanical Model: Applying 
the Law of Arrhenius 
 
A micro-mechanical model is set up as 
follows.  In bulk glass, the crack 
propagation rate, da/dt, due to stress-
corrosion cracking can be given by: 
 

expν=
dt
da IQ K

RT
α⎛ ⎞

⎜ ⎟
⎝ ⎠

Δ −−                [1] 

 
In the Arrhenius equation, ΔQ is the 
activation energy of the chemically 
activated process, KI is the crack tip stress 
intensity factor, R is the gas constant, T is 
absolute temperature, and ν  and α  are 
empirical constants.  Application of the 
micro-mechanical model requires 
knowledge of the activation energy, which 
enters the Arrhenius law. 
 
In our model of the growth of a crack in a 
single glass fibre (Fig. 2), the shape of the 
crack front is represented as a circular arc 
of radius r, equal to the radius of fibre rf 
(1).  The average crack propagation rate 
can be written thus (from equation [1]): 
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Fig. 2 Shape of stress corrosion crack in a 
glass fibre (Y is the crack surface area) 

 
Y is the area of the stress corrosion crack 
in the fibre, θ  is half the angle made by 
two fibre radii on the edges of the stress 
corrosion crack, and t is time.  In equation 
[2], the stress intensity factor KI, should 
be interpreted as the average value of KI 
along the entire front of the stress 
corrosion crack tip.  Since the stress 
intensity factor for the crack opening 
mode (designated by the subscript I) is 
constant, more or less, along the larger 
central portion of the circular crack front, 
KI can be represented, approximately, by 
the stress intensity factor at the maximum 
depth of crack: 
 

( ) ( )2I f fF rK θ σ π=                 [3] 

 
σf  is the tensile stress acting on the fibre 
and the geometrical function F(θ ) is: 

{ }21.12 3.4(1 cos ) 13.87(1 cos )( ) 1 cosF θ θθ θ − − + −= −

 
Crack propagation rate and time to 
failure 
The model consists of aligned continuous 
glass fibres distributed, for convenience, 
in a doubly periodic square array. 
 
In a geometrical sense, the spacing, D, 
between neighbouring rows of fibres is 
simply (Fig. 3): 
 

f
f

D c r
V
π=                   [4] 



 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 3 Doubly periodic array of fibres 

(face-centred hexagonal array) 
 
 
Vf  is the fibre volume fraction and c is a 
geometrical constant equal to unity for a 
square fibre array of fibre, (0.7 for a face-
centred square array, and 0.9 for a face-
centred hexagonal array). 
 
According to the laws of linear elastic 
fracture mechanics of an orthotropic 
elastic solid, the local tensile stress at the 
tip of a crack is given by (Fig. 3): 
 

*

2
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y
K

x
σ

π
=                   [5] 

 
*
IK  is the apparent crack tip stress 

intensity factor for a mode I crack and x  
is the rectilinear coordinate axis whose 
origin is located at the crack tip.  We can 
write for the average local tensile stress 
over a small distance D in front of the 
crack tip: 
 

*
*

0

1 2
2

D I
y I

K dx K
D Dx

σ
ππ

= =∫%             [6] 

 
We propose this average local tensile 
stress is shared between fibre and matrix 
according to a law of mixtures.  Hence, 
this average tensile stress yσ%  close to the 
crack front is given by: 
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y f f

f

V E
V

E
σ σ

⎧ ⎫−⎪ ⎪= +⎨ ⎬
⎪ ⎪⎩ ⎭

%                 [7] 

 
The Young’s moduli of fibre and matrix 
are denoted Ef , Em, respectively, and the 
local stress in front of the crack tip carried 
by the fibre is σf. 
 
Hence, the relationship between this 
tensile stress carried by the fibre and the 
crack tip stress intensity factor is given 
by: 
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If the matrix is made of a ductile polymer, 
bridges or ligaments of the polymer may 
stretch between crack surfaces in the wake 
(Fig. 4). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 4 Matrix bridge model with fibres in 

a square array. (δc is the critical crack 
opening and lc is the critical bridge 

length) 
 
 
A bridged crack has a reduced apparent 
crack tip stress intensity factor: 
 

* * *
I Ia IbK K K= +                  [9] 

Glass fiber
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cl
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The first term is due to the remote applied 
stress and the second term is due to crack 
bridging given by (1): 
 

( )* 4 1
2

c
Ib f cK V σ

π
= − − l               [10] 

 
In this bridged zone, we have assumed 
that the polymeric fibrils or ligaments 
stretched between the matrix crack 
surfaces behave according to a cohesive 
force model.  On these ligaments, there is 
a constant cohesive stress cσ σ=  for 
0 cδ δ≤ ≤ , where δ  is the crack opening 
displacement and δc is the opening at the 
edge of the fully developed bridging zone 
of length cl  (for steady-state cracking), as 
shown in Fig. 4.  For a short bridged zone 
compared to the crack length, the 
relationship between δc  and cl  is: 
 

*4
2

c
c IKδ φ

π
= l                [11] 

 
For the plane problem of a rectilinear 
anisotropic elastic solid  
 

( ){ }1/ 2
22 11 22 12 662 2b b b b bφ = + + . 

 
These elastic constants can be expressed 
in terms of the constituent moduli of the 
composite laminate: 
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EL and ET are the Young’s moduli of the 
laminate in the longitudinal and transverse 
directions, respectively; υLT is the 
Poisson’s ratio for transverse strain; and 
GLT  is the shear modulus. 
 

Combining equations (9 and 10) and 
eliminating cl  (equation 11), we get: 

( )* * 2
*

4 1 /

2
Ia Ia f c c

I

K K V
K

σ δ φ+ − −
=  

                 [12] 
 

where ( )* 2 1 /Ia f c cK V σ δ φ≥ − . 

 
Meanwhile, from a consideration of the 
geometry of the stress corrosion crack in a 
single fibre (1), the crack growth rate is 
given by: 
 

2 24 sinf
dY dr
dt dt

θθ=                [13] 

 
Re-call that Y is the area of the stress 
corrosion crack in a glass fibre (Fig. 1).  
Substituting equation [13] into equation 
[2] and combining equations [3, 5], we 
obtain: 
 

( )2 2 2sin *exp
r F rfdt dK Ik RT

αβ θ πθ θ
υ θ

⎛ ⎞
= −⎜ ⎟⎜ ⎟

⎝ ⎠
                 [14] 
 

where exp Qk
RT
Δ⎛ ⎞

⎜ ⎟
⎝ ⎠

= − . 

 
Now the time required for the slow crack 
growth stage of failure, tF, of a single 
glass fibre is obtained by integrating 
equation [14]: 
 

( ) 22sin *exp
0

F rff dK IRT

αβ θ πθ θ θθ θ

⎛ ⎞
⎜ ⎟−∫ ⎜ ⎟⎜ ⎟
⎝ ⎠

                 [15] 
 
(Re-call that θ 0  is half the angle made by 
two fibre radii on the edges of the pre-
existing (inherent) surface flaw, and θ F  is 
the critical value at unstable (fast) fracture 
of the glass fibre).  
 



Unstable fracture takes place when KI
* 

attains the value of fracture toughness KIC 
of glass.  By combining equations [3 and 
5], we obtain the critical angle θF  at fast 
fracture: 
 

1
* 2

IC
F

I f

F K
rKβ

θ
π

−
⎛ ⎞
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              [16] 

 
F-1  is the inverse function of F(θ)  given 
previously.  
 
The brittle fracture (final) stage (of the 
glass fibre) is much shorter than time tF 
given by equation [15].  It follows, 
therefore, that the macroscopic crack 
propagation rate, da*/dt, in the composite 
is approximately given by: 
 

*

F

da D
dt t

=                 [17] 

 
Re-call that D is the distance between 
neighbouring fibres in a doubly periodic 
square array of fibre (equation [4]). 
 
By introducing the following quantities: 
 

2 fr
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RT
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and by combining eqns [15] and [17]: 
 

*da
dt I
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where  
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θ
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Now consider the integrand of the 
integral.  Choose sensible values for the 
following: α  = 0.11 - 0.216 m5/2 /mol;    
Vf = 0.40~0.57; V = 0.5 for a cross-ply 
laminate (where V is that fraction of plies 

of the laminate in which glass fibre is 
perpendicular to the macroscopic crack, 
equal to 1.0 for a unidirectional laminate); 
R = 8.31 J/(mol.K) and T = 298 K.  This 
gives a value of μ  estimated to be within 
the range μ  = 97 ~ 295 (MPa m )-1. 
 
Generally speaking, the range of 
experimentally observed values of stress 
intensity factor KI at the crack tip is 
between 2 and 15MPa m .  It follows 
that the integrand tends to zero, except for 
very small values of θ . 
 
Since the angle θ 0  is small and much 
smaller than θ F , it follows that (1): 
 

( )4 1 *0 exp 0.8 0* * 21.6 1.6
I K I

K KI I

θ
μθ

μ μ
≈ + −

⎛ ⎞
⎜ ⎟
⎝ ⎠

      [21] 
 
Typical values for the Young’s moduli of 
fibre and matrix and fibre volume fraction 
are: 72 GPa, 4 GPa, and 0.5, respectively.  
An apparent value of KI

*  was fixed at 
5MPa m1/2.  For the fracture toughness of 
glass, we used 0.73 MPa m1/2; and for 
SiO2 glass, a fracture energy cγ  = 3.7 
J/m2.  Based on these values, we obtain 
for the angle θF (using equation [16]) 4.3o 

(or 7.5 x 10-2 rad).  
 
Hence, by combing equations [19 and 21], 
the macroscopic crack propagation rate, 
da*/dt, as a function of KI

*  can be written 
in the form: 
 

( )
* 12 *2 *1.25 exp 0.8 0*2 1.6 0
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K KI I

dt K I
ξ μμ θ

μθ
=

+

⎛ ⎞
⎜ ⎟
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      [22] 
 
This equation indicates that the 
macroscopic crack propagation rate is 
independent of fibre radius, r, and fracture 
toughness of glass fibre.  
 
Figure 5 shows a logarithmic plot of 
macroscopic crack propagation rate, 



da*/dt, versus the crack tip stress intensity 
factor, KI

*, for selected values of θ 0  and 
δc. (equation [22]).  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 5 Macroscopic crack propagation rate 
vs apparent crack tip stress intensity factor 
 
 
Values of ξ  and μ  are set at 5x10-15 m/s 

and 115 (MPa m1/2)-1, respectively.  The 
figure indicates a linear log (da*/dt) - log 
KI

*
 relationship over an order of 

magnitude range of da*/dt.  In particular, 
the figure shows that the larger the 
inherent flaw size, the faster the crack 
growth rate.  Furthermore, matrix crack 
bridging effects, which become noticeable 
at lower values of KI

*
, shift the threshold 

value of KI
*
 to higher values. The lowest 

threshold value of KI
*

 indicated by the 
arrow (Fig. 5) is given by: 
 

* (1 )
2 f c c

Iscc

V
K

σ δ
ϕ

−
=    [23] 

 
Verification by experiment 
There is experimental data in the literature 
for a unidirectional laminate of E-glass 
fibre (50% by vol.) in an orthophthalic 
polyester resin matrix.  Crack propagation 
experiments were carried out in 1Normal 
sulphuric acid at room temperature.  

Figure 6 shows a experimental values of 
macroscopic crack propagation rate versus 
the crack tip stress intensity factor KIa

*.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 6 Crack growth rate data vs apparent 

crack tip stress intensity factor 
 
 
The data shown in Fig. 6 is that of 
Aveston and Sillwood, and the reference 
is given in (1).  Comparison between 
experiment and theory can be made by 
setting values of ξ  = 8.5 x 10-14 m/s, μ  = 
118 (MPa m )-1, θ 0  = 0.076o, σcδc =1.85 
kPa.m, and φ = 8.6 x 10-2 (GPa)-1.  The 
solid line shows the prediction of 
macroscopic crack propagation rate, 
which is in good agreement with 
experimental measurement.  This gives 
confidence in the physical soundness of 
the model. 
 
In the special case of θ 0  = 0o and δc = 0, 
the relationship between da*/dt and KIa

* 
(from equations 12, 22), reduces to: 
 

*
2 *20.625 Ia

da K
dt

ξμ     [24] 

 
This is a straightforward Paris law to the 
power of two. 
 



 
 
5. Failure Maps 

In a cross-ply (0/90)n composite, 
resistance to crack propagation is 
determined essentially by the fracture 
toughness of the load bearing (0o) plies. 
The physical model is based on the initial 
phase of stable cracking of fibres followed 
by fast fracture of the individual (0o) ply. 
Macroscopic laminate fracture, then, is 
brought about by a sequence of failed (0o) 
plies.  As a first approximation, this 
ignores any cracking resistance of the 
transverse (90o) ply.  The total time to 
failure, tF, of the cross-ply laminate is 
given by: 
 

( )1.261 1.6 * *exp 0.8*2 *1

n a oFt K daa oF Iiii K KIi Ii

θ
μθ

ξμ μ
= + −∑ ∫
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⎜ ⎟
⎜ ⎟
⎝ ⎠

      [25] 
where  
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ai, is the size of stable inherent flaw or 
initial crack depth at the surface of the 
(n+1-i)th (0o) ply; and aF  is the critical 
length of unstable crack in the (n+1-i)th 
(0o) ply.  In computing the failure map, the 
depth of the pre-existing macroscopic 
surface crack in the (0o) ply is assumed to 
be ai = ao(i =1, 2, 3, 4, 5).  Typically, the 
apparent fracture toughness, KQ, of a 
cross-ply glass fibre-epoxy laminate is 35 
MPa m1/2.  Fig. 7 displays the predicted 
times to failure of a cross-ply (0o/90o)5 
glass fibre-epoxy laminate with working 
(applied) tensile stress for various values 
of ai and θο.   Matrix bridging by stretched  
 

 
 
polymer fibrils or ligaments increases life-
time.  We understand from the second 
map (Fig. 8) that pre-existing flaw size in 
the surface (0o) ply influences the time to 
failure. 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 7 Time to Failure Predictions 
 

 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 8 Time to Failure Predictions 

 
6. Final Remarks  
Successful modelling of physical 
processes can be achieved by following a 
set of steps: identify the physical 
mechanisms; construct the model (using 
previously modelled problems); test the 
model (by comparing with data) and tune 
the model (lumping together empirical 
parameters).  In other words, determine 
the dominant mechanisms; simplify it 
(them); and exploit the modelling 
successes of others in materials science 
and engineering.  But even now the job is 
still incomplete; the last word is iterate. 
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Abstract 
 
Copper (Cu) reinforced with tungsten 
particles (W) has a high potential for 
applications in the field of electronics 
where high strength combined with 
electrical conductivity is required. The 
effects of different scaling parameters 
(tungsten volume fraction, the tungsten 
particle size and the volume of the 
deformation zone) have great effect on the 
forces needed in the machining process of 
the tungsten/copper (W/Cu) particle 
composites. 
W/Cu composites with different fractions 
of the tungsten content (W/Cu-80/20, 
70/30, and 60/40 wt.%) were examined 
under compression tests. The influence of 
the tungsten particle size was also studied. 
Therefore, each volume fraction was 
varied to be 10 and 30µm. Different sizes 
of the compression specimens were tested 
to get a wider scope of the scaling effects. 
The diameter (DS) of the specimens was 
varied with 1, 2, 4, 6, 8 mm, while the 
specimen height (HS) was kept equal to the 
diameter (Do = Ho). The experiments were 
carried out at a wide range of temperature 
between 20 °C and 800°C.  
 
An investigation of the influence of the 
strain rate on the scaling effects was also 
carried out. Therefore compression tests 
were done at strain rates from quasi-static 
(0.001s-1) up to high strain rates (5500 s-1). 
Compression tests at strain rates from 
0.001 s-1 to 100 s-1 were conducted on a 
servohydraulic Universal Testing Machine 
while the experiments in the dynamic 
strain rate range were done using a Split-
Hopkins pressure bar. 
 

A clear dependence of the flow stress on 
the deformed specimen‘s volume, on the 
tungsten volume fraction and the tungsten 
particle size volume has been observed. 
Metallographic investigation has shown an 
obvious effect of the specimens’ size on 
the failure behaviour under compression 
loading. Basic informations which explain 
the influence of the scaling parameters on 
the flow behaviour of the investigated 
composite materials were also revealed 
from the metallographic investigation of 
the deformed specimens under quasi-static 
and dynamic strain rates. 
 
In this paper the quasi-static as well as the 
dynamic flow curves were modelled for 
the different investigated W/Cu 
composites to show the scaling effect on 
the flow stress. A material model based on 
Swift hardening law was applied. A 
further parameter was added as multiplier 
to this material law to take into 
consideration the effect of the deformed 
volume, tungsten particle size and the 
volume fraction of the composite 
component. The effect of the temperature 
on these different parameters was also 
described.  
 
Keywords: Particle composites, W/Cu, 
tungsten, copper, size effects, dynamic 
material behaviour, modelling 



1. Introduction 
 
Size effects play a decisive role in 
manufacturing and deformation processes. 
These effects are divided into physical 
effects and structural effects [1]. The 
physical effects are the absolute volume 
size effects, the surface to volume size 
effects SVS [2] and the forces related size 
effects (e.g. Van-der-Waals-force, surface 
tension and gravitation). In this respect 
Kienzle [3] found out that the geometry of 
the deformed zone has a great influence on 
the value of the required specific force in 
the machining processes. The structural 
effects that could be taken into 
consideration are the grain size to 
deformed part thickness and the surface 
structure resulting from the history of the 
work piece [1]. 
The deformation behaviour of a metallic 
matrix reinforced with hard particles 
depends on volume fraction, size, shape, 
and distribution of the reinforcements [4-
6]. Cleveringa et al [4] have numerically 
investigated the effect of the particles´ 
morphology on the deformation behaviour 
of the particle composite materials. It has 
been concluded that when the 
reinforcements block all the slip planes of 
the matrix, the composite has a high strain 
hardening and there is a significant size 
effect. On the other hand when veins of 
unreinforced matrix or clustering of the 
reinforcement exist [6] the matrix will be 
easily deformed in these zones, the overall 
flow stress of the composite decreases and 
there is no size effect. 
 
2. Test materials and experimental 
work 
 
W/Cu composites in different weight 
percentages (W/Cu-80/20, 70/30 and 
60/40 wt%) were tested under 
compression loading in a wide range of 
strain rate and temperature. These 
composites were studied in two different 
tungsten particle sizes of DP = 10 µm and 
30 µm. Compression tests were carried out 
using cylindrical specimens with ratio of 
diameter (DS) to height (HS) as 1. The 
diameter DS was varied with the values 1 
mm, 2 mm, 4 mm, 6 mm and 8 mm. The 
tests were conducted with strain rates 
between 0.001 s-1 and 5500 s-1. The 
mechanical tests up to a strain rate of 100 
s-1 were conducted on a servo-hydraulic 
universal testing machine, while the higher 

strain rates experiments were done on a 
Split-Hopkinson-bar [7]. The tested 
specimens were metallographically 
investigated to show the deformation and 
fracture behaviour of the tested materials. 
 
3. Experimental results 
 
Influence of strain rate and 
temperature 
At first all six different W/Cu composites 
were investigated at different specimen 
sizes and temperatures in a range of strain 
rate between 0.001 s-1 and 5500 s-1. In 
Figure 1 the strain rate sensitivity of 
W/Cu-80/20 is shown at three different 
specimen sizes with 2x2, 4x4 and 6x6 
mm. A clear transition can be observed 
from the isothermal towards the adiabatic 
material behaviour at high strain rates, 
where the test time is too short for the 
transfer of heat generated by the 
deformation work. The investigation with 
different strain rates was also performed at 
different temperatures between room 
temperature and 800°C. Figure 1 
represents as example the experimental 
results at room temperature (a) and 400°C 
(b). Especially at higher temperatures a 
distinct increase of the level of flow stress 
between the quasi-static and dynamic 
strain rates is visible. 
 
Influence of the specimen size 
Under quasi-static und fast strain rates the 
different composite materials showed a 
definitive scaling effect due to different 
specimen sizes. This scaling effect leads to 
a decrease of the flow stress with rising 
specimen size and concentrates on a 
higher tungsten fraction. 
Figure 2 shows that this scaling effect is 
visible under quasi-static and dynamic 
loading according to different specimen 
sizes. The figure shows exemplary the 
flow curves of three investigated materials 
with a particle size of 10 µm at five 
different specimen sizes (1x1, 2x2, 4x4, 
6x6 and 8x8 mm) at a strain rate of 

110 −=& sε  (a). In Figure 2b three different 
specimen sizes (2x2, 4x4 and 6x6 mm) at 
a strain rate of 13500 −=& sε  are 
represented. For all tested materials the 
stress level increases with decreasing 
specimen size. This effect is getting lower 
with the increase of the copper content in 
the W/Cu composites such as in the 
material W/Cu-60/40. The size effect also 



decreases at higher temperatures resulting 
in lower flow stress of copper [8]. 
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Figure 1: Flow curves of W/Cu-80/20 with a particle size of DP=10 µm at three 
different specimen sizes (2x2, 4x4 and 6x6 mm) and different strain rates at room 
temperature and 400°C 
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Figure 2: Influence of the specimen size of W/Cu-60/40, 70/30 and 80/20 with a particle 
size of DP=10 µm at a strain rate of 110 −=& sε  and 13500 −=& sε  at different temperatures 
 
 
Deformation and fracture behaviour of 
W/Cu composites under dynamic strain 
rates 

In metal/metal composites the contribution 
of the composite components in the 
deformation process has a significant role 
in the overall deformation behaviour of the 



composites. Figure 3 shows the 
deformation degree of the tungsten 
particles in compression specimens 
deformed up to a reduction of height of 
70%. Two specimen sizes were used in 
this investigation (2 mm and 6 mm) with 
stopped Hopkinson-bar-tests at different 
degrees of deformation. A specific area in 
the longitudinal section in the middle of 
the specimen of the deformed specimens is 
documented in Figure 3. A higher 
deformation of the tungsten particles has 
been observed in the small specimen 
compared with the bigger specimen of the 
composite W/Cu-80/20 (Figure 3a). In the 
case of the composite W/Cu-60/40 (Figure 
3b) the higher copper content has absorbed 
the whole amount of deformation with 
minimal sharing of the tungsten particles 
in the deformation process in both tested 
specimen sizes (2 mm and 6 mm). This 
can also explain the relatively lower size 
effect of the composites having a lower 
content of tungsten. 
Furthermore, the dense packing of the 
tungsten particles in the composites 
containing high tungsten contents raises 
the chance of homogeneity of the particle 

distribution. On the other hand the 
probability of occurring particle free zones 
or veins in the composite materials with 
low particle content such as in W/Cu-
60/40 is higher. These zones allow an 
easier way of deformation through the 
matrix resulting in inhomogeneous 
deformation of the specimen [4]. This is 
an additional cause of the lower scaling 
dependence of the composite materials 
with lower content of tungsten W/Cu-
60/40 as in Figure 3b). 
Also the fracture behaviour depends on the 
volume fraction of tungsten and copper. 
The metallographic pictures in Figure 4 
exemplifies the deformation and fracture 
behaviour of W/Cu-80/20 with a particle 
size of 30 µm at two different specimen 
sizes with 2x2 and 6x6 mm. The failure of 
the composites starts at the boundaries of 
the specimens with a very high localised 
deformation also through the hard 
tungsten particles. In contrary to this 
material behaviour the fracture takes place 
in W/Cu-60/40 through the soft 
component with only minimal deformation 
of the hard component. 
 

 
 
 
 
 
 
 
a)   b) 
Figure 3: Influence of the specimen size on the deformation behaviour of W/Cu-80/20 
and 60/40 at two different specimen sizes with 2x2 and 6x6 mm after 70% deformation  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 4: Fracture behaviour of W/Cu-80/20 30 µm at two different specimen sizes with 
2x2 and 6x6 mm after 70% deformation 
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Figure 5: Material behaviour 80/20 in a wide range of strain rate (left) and in the 
dynamic range of strain rate (1000 s-1 to 6000 s-1, right) at different temperatures and 
specimen sizes 
 
Material behaviour over a wide range of 
strain rate and temperature 
Figure 5a shows on the left the material 
behaviour in a wide range from strain rate 
(0.001 s-1 up to 5500 s-1) and temperature 
(RT-800°C) according to the different 
specimen sizes. The true stress is plotted 
over strain rate at a plastic strain of 0.2. 
Especially for W/Cu-80/20 there is a 
distinctive scaling effect with different 
specimen sizes from quasi-static up to 
dynamic strain rates. On the right the true 
stress over the dynamic range of strain rate 
is represented. The stress follows the 
strain rate by a linear relation. This is 
typical for an adiabatic damping 
controlled gliding mechanism at very high 
strain rates [9]. The slope /σ ε∂ ∂ &  remains 
approximately constant for all three 
specimen geometries. However, the flow 
stress level decreases with rising specimen 
size. 
 
4. Modelling of the material behaviour 
 
Description of the quasi-static flow 
curves 
For the numerical simulation of different 
machining or deformation processes of 
such materials, adequate material laws are 
needed. The experimentally determined 
flow curves of all composite materials 
were described (Figure 8). The material 
law from Swift [10] was found to be 
suitable for getting the nearest fitting of 
the experimental results, 
 n ( T )

SK ( T , D )( B )σ = + ε  (1) 
 

where B = 0.001, K and n are material 
parameters, which could be described as a 
function of the temperature (T) in the 
following equations [11].The lowest and 
highest K-value (for DS=8 and DS=1) were 
taken as reference values and described as 
a function of the absolute test temperature. 

 1 1 1
T 293K (T) = a  · exp - b
1356
−⎛ ⎞−⎜ ⎟

⎝ ⎠
 (2) 

 

 8 8 8
T 293K (T) = a  · exp - b
1356
−⎛ ⎞−⎜ ⎟

⎝ ⎠
 (3) 

The parameter K can be described for all 
other specimen geometries (2mm, 4mm 
and 6mm) by 

( )S 8 1 8 SK(T, D ) = K (K K ) 1 D / 8+ − −  (4) 
The parameter n is constant for all 
specimen geometries and was described as 
a function of the absolute test temperature. 

 T 293n(T) c d exp
1356
−⎛ ⎞= − ⋅ −⎜ ⎟

⎝ ⎠
 (5) 
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Figure 6: the parameter n as a function of 
temperature 



Figure 6 shows the relation n(T) for the 
W/Cu composites 60/40, 70/30 and 80/20 
with 10 µm particle size. The parameters c 
and d for the description of n are material 
dependent and were also given in Figure 6. 
The parameter K is represented in Figure 7 
as a function of the temperature and the 
specimen size. A clear increase of K to 

smaller specimen sizes is visible. This 
effect intensifies with a higher fraction of 
tungsten particles. With this parameter 
functions the flow curves were calculated 
and compared with the experimental ones 
(Figure 8). 
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Figure 7: The parameter K as a function of specimen size and temperature for W/Cu-
60/40, 70/30 and 80/20 with a particle size of 10 µm 
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Figure 8: Description of the material behaviour of W/Cu-60/40, 70/30 and 80/20 
according to different specimen sizes and temperatures 
 
 
Description of the dynamic flow curves 
For the numerical simulation under 
dynamic strain rates of W/Cu materials the 
flow stress follows. 
 Sf ( , ,T,D )σ = ε ε&  (6) 
The material law consists of the swift 
hardening function [12] with an additional 
linear viscous damping term. This law was 
used for describing of the experimental 
results of all investigated specimen sizes 
and W/Cu weight fractions. The strain 
hardening exponent n shows a unique 
temperature dependency for all materials 

and specimen sizes, where as the 
parameter K is temperature and specimen 
size dependant. 
 ( )( )n (T)

SK(T, D B ·)σ = + ε + η ε⋅ &  (7) 
 
B is assumed to be constant with a value 
of 0.001. The exponent n can be described 
by a linear function of the temperature 
(Figure 9): 
 
 n(T) 0.0000511 T 0.159= − ⋅ +  (8) 
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Figure 9: the parameter n as a function of 
temperature 
 
Also the parameter K can be described 
with a linear temperature function for all 
materials and specimen sizes in the 
investigated range of temperature. The 
distribution of K is shown in Figure 10. 
 

S 1 2 S 1K(T, D ) = m  · T + (m ·D + b )  (9) 
 
Under dynamic loading conditions, the 
deformation process is no longer 
isothermal, as there is no time for heat 

transfer. The process has to be considered 
as adiabatic. It can be assumed that 90% 
of the deformation work is transformed 
into heat: 
 p Sc T ( , ,T, D )ρ ⋅ ⋅ Δ = κ ⋅σ ε ε ⋅ Δε&  (10) 
 
ρ is the density of the material, cp its 
specific heat capacity, κ = 0.9 the thermal 
efficiency and σ the value of flow stress 
which is already influenced by the 
temperature increase. With eq. 3 the 
temperature increase on the adiabatic flow 
curves can be inculded in the material 
description. All experimentally determined 
flow curves of the composite materials 
W/Cu-60/40, 70/30 and 80/20 were 
described with that material model. 
Figure 11 shows a comparison between 
experimental and computation results for 
the dynamic flow curves of W/Cu-60/40, 
70/30 and 80/20 at all three used specimen 
sizes with 2x2, 4x4 and 6x6 mm and a 
particle size of 10 µm. The description for 
low strain rates the parameter K (Figure 
10) is described as a function of specimen 
size and temperature with a linear decrease 
to higher temperatures.
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Figure 10: The parameter K as a function of specimen size and temperature for W/Cu-
60/40, 70/30 and 80/20 with a particle size of 10 µm 
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Figure 11: Description of the dynamic material behaviour of W/Cu-60/40, 70/30 and 
80/20 according to different specimen sizes and temperatures 
 
 
5. Summary 
 
W/Cu composites have an obvious scaling 
effect on the flow behaviour against the 
volume fraction of tungsten and copper, 
the tungsten particle size, the used 
specimen size, strain rate and temperature. 
Especially at W/Cu-80/20, a composite 
with a very high tungsten fraction, a clear 
scaling effect at different specimen sizes is 
visible, which raises to higher strain rates. 
The deformation and fracture behaviour 
were investigated with stopped split-
hopkinson-bar tests. The quasi-static and 
dynamic material baheviour of the 
composites were modelled in dependence 
to the temperature and the specimen size. 
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Abstract 
 
The ability of a material to dissipate 
vibrational energy can be an important 
parameter when this material is 
incorporated into a structure that is 
exposed to cyclic or random loading.  
This property is called damping and it is 
defined here as the ratio of the energy 
dissipated during a cycle to the 
maximum stored energy.  In addition to 
its value to the engineer, damping has 
long been recognised as providing a 
sensitive tool for studying the structure 
and condition of materials.  In this 
investigation, a polymeric composite, 
consisting of a deformable matrix 
reinforced with relatively rigid 
inclusions was used.  In such advanced 
fibre composites, high modulus, high 
strength fibres are carefully aligned in 
one direction.  These composites are 
anisotropic, not only in their moduli, but 
also in respect of other physical 
properties, among these being the 
damping. 
 
The purpose of the present work was to 
evaluate the effect of the interface on the 
damping and moduli in both flexure and 
torsion.  Unidirectional glass fibre 
reinforced composites were used with a 
range of volume fractions varying from 
0.3 to 0.7.  In addition, the fibre 

diameter was varied from 10 to 50 
microns. 
 
In general, micromechanics can be 
successfully used to predict the 
properties of advanced fibrous 
composites.  It was found that the 
experimentally-measured longitudinal 
Young's modulus fitted the 
micromechanics theory quite well, as 
did the shear modulus and damping. 
 
However, when measuring the 
longitudinal damping (in flexural 
vibration) a significant effect was found 
of fibre diameter.  The values predicted 
by micromechanics seriously 
underestimated the measured values.  
The larger was the fibre diameter, the 
smaller was the damping.  This 
correlated with a reduction in the 
specific area of the composite. 
 
Keywords: 
 
Composites, specific area, damping, 
fibre diameter, volume fraction. 
 



1. Introduction 
 
The ability of a material to dissipate 
vibrational energy can be an important 
parameter when this material is 
incorporated into a structure that is 
exposed to cyclic or random loads.  This 
property is called damping and it is 
defined here as the specific damping 
capacity ψ , where W Wψ = Δ , WΔ  
being the energy dissipated during a 
cycle, and W being the maximum stored 
energy as shown in Fig. 1.  In addition 
to its value to the engineer, damping has 
long been recognised as providing a 
sensitive tool for studying the structure 
and conditions of materials.  It is in this 
sense we are here examining the 
dynamic properties of unidirectional 
composite materials. 
 

 
 
Fig. 1 Definition of specific damping 
capacity 
 
Generally, composite materials consist 
of two phases, a deformable matrix 
which is reinforced with relatively rigid 
inclusions.  Fibre-reinforced materials in 
which the alignment of the fibres is 
closely controlled are highly anisotropic, 
not only in respect of moduli but also 
other physical properties, among these 
being damping. 
 
Several authors have studied the 
damping of fibre-reinforced composites, 
particularly carbon- and glass-fibre-

reinforced plastics (CFRP and GFRP).  
Among the first were Adams et al [1] 
who investigated the effect of the 
volume fraction of fibre, v, in flexure 
and torsion on unidirectional CFRP and 
GFRP: this work was extended by 
Adams and Bacon [2] and new theories 
were given for predicting the damping 
from the properties of the fibre and 
matrix.  The above investigations were 
carried out using fibres of essentially 
constant diameter, 7-10 μm.  Also, in 
none of these predictions was any 
account taken of any dissipation 
associated with the fibre/matrix 
interface. 
 
The well-known law of mixtures 
predicts that 
 

( )1L f mE v E v E= + −  (1) 
 
where EL is Young's modulus, 
 v is the volume fraction, 
and the suffices L, f and m refer to the 
longitudinal direction (parallel to the 
fibres), the fibre and the matrix 
respectively. 
 
It can also be shown that the damping 

Lψ  under direct cyclic stresses and 
strains in the longitudinal direction is 
given by 
 

( )
( )
1
1

f f m m
L

f m

v E v E
v E v E

ψ ψ
ψ

+ −
=

+ −
 (2) 

 
Now since fψ  is very small, compared 

with mψ  [3], Eq. (2) reduces to 
 

 
( )

( )
1

1
m m

L
f m

v E
v E v E

ψ
ψ

−
=

+ −
 (3) 

 
If Ef is much greater than Em (which it is 
for most cases), Eq. (3) reduces to 
 



 1 m m
L

f

Ev
v E

ψψ −⎛ ⎞= ⎜ ⎟
⎝ ⎠

  (4) 

 
Unfortunately, this equation does not fit 
well the experimental data, and it is the 
objective of this paper to investigate the 
discrepancy, and the relative roles of 
composite micromechanics and 
mesomechanics. 
 
Experimental programme 
 
Specimens of unidirectional composite 
were prepared using both glass and 
carbon fibres embedded in a polymeric 
resin.  The carbon fibres are only 
available in diameters of about 8 μm, 
while the glass fibres could be obtained 
with nominal batch diameters of 10, 20, 
30 and 50 μm. 
 
Flexural vibration was used since 
longitudinal vibration would have been 
at very high frequencies and given small 
amplitudes of vibration.  Note that if 
high cyclic stress amplitudes are used at 
high frequency, there would also be a 
serious heating effect which would 
complicate the results.  (The author has 
used such a method to determine the 
damping properties of metals). 
 
One problem with flexural vibration is 
that shear stresses arise which can also 
contribute to the damping.  This is 
discussed later. 
 
Measurements were made not only of 
the longitudinal damping, but also the 
longitudinal Young's modulus (EL) and 
the longitudinal shear modulus (GLT) 
and damping (ψLT).  The shear tests 
were carried out in a torsion pendulum 
specially developed for testing 
composites. 
 
Where conventional micromechanics 
works 
 

For the longitudinal Young's modulus, 
as given in Eq. (1), there is a lot of 
evidence, from the author and others, 
that this equation is robust and accurate 
for predicting EL.  In the case of shear, 
several authors, most notably Adams 
and Doner [6] and Hashin [7] have 
produced predictions of the longitudinal 
shear modulus, GLT.  Adams and Doner 
used a numerical technique, and Hashin 
a correspondence principle.  For 
longitudinal shear, Hashin's expression 
reduces to 
 

( ) ( )
( ) ( )

1 1
1 1

m
LT

G G G v
G

G G v
+ + −⎡ ⎤⎣ ⎦=

+ + −
 (5) 

 
where LTf mG G G= . 
 
Unfortunately, GLTf is not easily 
measured, although the author produced 
some direct results on single carbon 
fibres [3] and showed that GLTf is 
approximately 18 GPa.  For glass, a 
value of about 25 GPa is generally 
accepted.  Thus, LTf mG G  will be of 
the order of 7 ~ 10.  Using these values, 
Hashin's equation fits quite well the 
experimental data.  This is not surprising 
as the composite modulus is heavily 
dominated by the matrix properties. 
 
For the longitudinal shear damping, 
Hashin's theory gives 
 

( ) ( ) ( )
( ) ( )

2 21 1 1

1 1 1 1

m
LT

v G v G

G v v G v v

ψ
ψ

⎡ ⎤− + + −
⎣ ⎦=

+ + − − + +⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦
(6) 

 
This expression is again strongly 
dominated by the matrix damping, and if 
G = 10 and v = 0.5, then LTψ  = 0.8 mψ .  
Although, the experimental data are 
somewhat lower than Hashin's 
prediction, the discrepancy is not large, 
and conventional micromechanics is 
followed reasonably well. 
 



Longitudinal damping – the case 
where micromechanics fails badly 
 
Adams and Bacon [2] showed that when 
testing in dynamic flexure, shear effects 
were not insignificant.  By reducing the 
beam aspect ratio (length/thickness) 
from 90 to 50, there was a significant 
reduction (about 5%) in the measured 
Young's modulus.  The discrepancy 
increased as the proportion of energy 
stored in shear increased. 
 
From this shear energy, they were able 
to calculate the energy dissipated due to 
shear.  Since this was highly matrix 
dependent (as mentioned above), there 
was a significant contribution from 
shear damping. 
 
By measuring the damping as the aspect 
ratio was reduced from 90 to 50, they 
found that the damping increased by 
about a half, as shown in Fig. 2.  The 
law of mixtures prediction, as given in 
Eq. (3), does not allow for this shear 
effect.  However, by calculating the 
energy dissipated in shear from the 
mode shape of their specimen, they 
found that it paralleled the measured 
trend quite well. 
 

 
 
Fig. 2 HM-S carbon fibre in DX-209 
epoxy resin; v=0.5;  measured S.D.C., 
⎯ theoretical shear S.D.C.; ⎯ - ⎯ law 
of mixtures prediction of S.D.C.;  
measured minus theoretical shear S.D.C. 

 
But, when the law of mixtures 
prediction and the shear contribution 
were subtracted from the experimental 
data, it was found that there remained a 
substantial and unexplained contribution 
which was essentially independent of 
the aspect ratio.  The question then 
arises as to the source of this additional 
damping contribution. 
 
The variation of damping with volume 
fraction was also investigated by Adams 
and Bacon.  Fig. 3 gives their results.  A 
different fibre type was used and two 
different matrix materials (both epoxy 
resins) than was the case for the results 
in Fig. 2.  In this experiment, the shear 
damping contribution was quite small.  
Even so, they showed that after 
subtracting the law of mixtures and 
shear contributions, there remained a 
substantial additional term which could 
not be explained, as was also shown in 
Fig. 2. 
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Fig. 3 Variation of flexural S.D.C. with 
fibre volume fraction in vacuo at 35 
MPa maximum surface stress. HT-S 
fibre:  LY558;  F/MNA epoxy 
 
It has often been suggested that the 
presence of fibres affects the nature of 
the resin matrix compared to that of the 
neat resin when cured in exactly the 



same way.  If this is the case, then there 
should be an effect of volume fraction 
beyond that given by the law of 
mixtures prediction for damping.  Also, 
if the fibres have some affect on the 
matrix cure in the vicinity of the fibres, 
then there should be an additional 
damping term which should relate to the 
surface area of the fibres in a given 
volume, i.e. the specific fibre area, Af.  
Considering a unit cube of composite, 
we have N fibres of diameter d.  The 
volume fraction, v, is  
 

 
2

4
N dv π=    (7) 

 
Now the area, A, of these fibres will be  
 
 fA N dπ=    (8) 
 
which is the specific area. 
 
Substituting for N from Eq. (7) gives us 
 
 4fA v d=    (9) 
 
With carbon fibres, it is almost 
impossible to vary the fibre diameter d 
in any coherent manner.  However, with 
glass fibres, no such restriction is 
imposed.  Adams and Short [8] made up 
a series of unidirectional glass fibre 
composites with fibre diameters of 10, 
20, 30 and 50 μm, and with volume 
fractions in the range 0.35 to 0.7.  Their 
results for the longitudinal damping vs. 
volume fraction are given in Fig. 4.  It 
can be clearly seen that there is a 
coherent and significant variation of 
damping with fibre diameter. 
 
Figure 4 shows that ψL decreases not 
only with increasing v but also with 
increasing fibre diameter d.  At the 
higher volume fractions, the measured 
difference in damping values for 50 and 
10 μm fibres was 0.4-0.5% SDC.  This 
was slightly greater than the total 

damping predicted by the law of 
mixtures (0.3-0.4% SDC) at the same 
volume loading.  This indicates that the 
damping contribution from the 
interfacial area is of the same order as 
that from the energy stored in the 
matrix.  Two explanations spring to 
mind.  One concerns the stress 
concentration around the fibre, the other 
concerns the change in matrix properties 
around the fibre. 
 

 
 
Fig. 4 Specific damping capacity in 
flexure ψF, against fibre volume fraction 
v for different diameter fibres: --- law of 
mixtures;  d = 10 μm;  d = 20 μm; 

 d = 30 μm;  d = 50 μm. 
 
Physically, it may be argued that, for a 
given volume fraction, the stress 
concentration in the matrix due to the 
presence of a fibre decreases as the 
diameter d of the fibre increases.  In 
addition, the larger the fibre diameter, 
the fewer will be the number of sites of 
these stress concentrations ( )2dα − .  

Thus, the strain energy per unit volume 
in the matrix close to the fibre will be 
reduced as the fibre diameter is 



increased.  Further, since the surface 
area of the fibres (and hence the volume 
of matrix affected) is inversely 
proportional to d, the total energy stored 
in the matrix adjacent to the fibres will 
be reduced roughly as 3d −  with increase 
in d.  The decrease in strain energy with 
d for a given stress is therefore 
countered to some extent by the increase 
in the interfacial shear stress for a given 
load.  Very roughly, we should therefore 
have that the energy stored in the matrix 
near to the fibre decreases as 1d − .  Since 
the strain energy stored in the matrix is 
not wholly affected by the above, the 
actual change will be as nd − , where 
n<1.  Since the energy dissipated, and 
hence the damping, is directly 
proportional to the energy stored in the 
matrix, then this too will change as 

nd − . 
 
The fibre-affected cure zone behaves in 
a similar way.  The volume in which the 
cure might be changed (in some way) 
will be proportional to the fibre area per 
unit volume, Af.  In other words, 

1
L dψ α − .  However, since the fibres are 

not individuals in a large volume of 
matrix, there will be interactions with 
the zones around adjacent fibres.  As the 
volume fraction increases, this 
interaction will increase.  It is therefore 
likely that the damping is not directly 
inversely proportional to d in a similar 
way to the stress concentration 
argument. 
 
The data from Fig. 4 have been re-
plotted in Fig. 5 to show the variation of 

Lψ  with Af.  The lines were drawn from 
interpolated points.  The results show an 
increase of damping with Af for the 
range of fibre volume fraction 
investigated (0.35-0.7).  There is a 
greater sensitivity to an increase in 
damping with Af at lower fibre volume 
fractions. 
 

 
 
Fig. 5 Specific damping capacity in 
flexure, ψF, against interface parameter 
Af for different diameter fibres:  d = 
10 μm;  d = 20 μm;  d = 30 μm;  
d = 50 μm. 
 
In Fig. 6, the data have been re-plotted 
to show the variation of ln Lψ  with 
ln d .  The trend is similar for all volume 
fractions, and the exponent n is of the 
order of 0.3. 
 

 
 
Fig. 6 Specific damping capacity in 
flexure ψF, against fibre diameter d at 
different values of fibre volume fraction 
v. 
 
Conclusions 
 
By testing a series of unidirectional 
fibre-reinforced plastics in flexural 
vibration, it has been shown that there is 
a significant influence of the fibre 
diameter on the measured damping 
properties.  By subtracting the 'law of 



mixtures' damping, and that due to shear 
(in flexure) it was shown that about half 
the damping could not be explained by 
micro and macro mechanics.  It was 
concluded that there was a strong effect 
of the specific fibre area on the 
damping, due to actions in the matrix 
around the fibre.  This invoked the need 
to consider mesomechanics to explain 
the discrepancy. 
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Abstract 
 
A study is presented focused on the 
dependence of the Resistance-curve (R-
curve) in Norway spruce (Picea abies L.) 
on the specimen size. Fracture (Mode I) 
under displacement control is induced in 
geometrically similar single notched 
beams loaded in three-point bending 
(SEN-TPB) of different sizes, and fracture 
parameters determined from the R-curve. 
Based on experimental data a typical 
configuration of the R-curve in spruce is 
proposed for different characteristic sizes 
h of the tested specimen shape. Size 
ranges relative to the ultimate load and the 
R-curve parameters obtained in the 
experiments are revealed.  
 
Keywords: wood, mode I, R-curve, size 
effect.  

1. Introduction 
 
Though initially introduced by Irwin in the 
fifties [1], the concept of the Resistance-curve 
(R-curve), i.e. the evolution of the crack 
growth resistance R  with the crack length 
increment a∆ , has been more extensively 
treated by Kraft, Sullivan and Boyle [2]. 
Research involving theoretical and 
experimental studies in materials which 
exhibit toughening behaviour as wood 
revealed that the R-curve is not an inherent 
material property but depends on the specimen 
geometry [3], relative crack size [4], loading 
type [5], and specimen size [6]. To the authors 
knowledge the effect of the specimen size on 
the R-curve is not well understood in wood. 
Therefore, a campaign of experiments has 
been got through using Norway spruce (Picea 
abies L.) as testing material, inducing fracture 
(Mode I) in geometrically similar single 



notched beams loaded in three-point bending 
(SEN-TPB). Specimens were prepared 
composing a total of 6 homothetic series with 
the size range of 1:12 and the loading span-to-
depth (L/h) ratio fixed to 6. R-curves were 
obtained according to a recently proposed 
method [7] by means of an LEFM approach 
based on the unloading compliance together 
with FE analysis, using the elastic properties 
of wood. Influence of the specimen size h is 
shown comparing fracture parameters 
determined from the R-curve. 
 
Conclusions are drawn on the typical 
configuration of the R-curve in wood (Picea 
abies L.) for different characteristic sizes h of 
the SEN-TPB. Plotting of size ranges relative 
to the R-curve parameters and the ultimate 
load are made known. 
 
 
2. Experiments 
 
The material examined in the present study is 
cleaned dried (11-13% moisture content) 
Norway spruce (Picea abies L.) sawn to meet 
the nominal dimensions and wood axis 

presented in Fig. 1. Taking due note to the 
reference characteristic structure size (referred 
to as h4 in Table 1) five additional homothetic 
series were machined composing a size range 
of 1:12. Composing parts were stuck on with 
the epoxy adhesive ref. ARALDITE® 
AW106/953U before introduction of starter 
notches (1 mm thick) with total extensions set 
to h/2.  
 

Series 
label h b a0 

h1 280 80 140 

h2 210 60 105 

h3 140 40 70 

h4 70 20 35 

h5 35 10 17.50 

h6 23.33 6.67 11.67 

 
Table 1: Series label and corresponding 
dimensions (in mm). h4 is the reference 
characteristic structure. 
 

 
 
 
 
 
 
 

 
 
Figure 1: Composing parts set-up of the SEN-TPB specimen before bonding. Anatomic 
axis directions in wood: (L) Longitudinal, (R) Radial and (T) Tangential. h : 
characteristic structure size. a0: initial crack length.  b: thickness. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 2: Sketch of TPB test setup. δF: Load-point displacement; δM: Metal bar mid-
span displacement; h: analysed characteristic structure size. Displacement: δ = δF - δM. 
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Figure 3: Superposition of typical load-deflection curves obtained in wood (Picea 

abies L.) fracture tests (under displacement control) for each tested series using 
specimen shape SEN-TPB.  

 
 
3. The R-curve 
 
The procedure proposed by Morel et al. [7] 
was used in this work to determine the 
Resistance-curve in wood. In this approach 
wood fracture behaviour is described on the 
basis of an equivalent linear elastic problem. 
Accordingly, the crack length is understood to 
be the equivalent crack, which agreeing with 
LEFM, gives the same unloading stiffness. 
 
Stiffness evolution as a function of the crack 
length ( )aR  is computed through FEM 
calculations using the elastic properties of 
wood (Table 2). Stiffness dependence with 
crack length a  is determined by means of 
linear elastic (FEM) analysis for different 
values of a  in the interval: haa <≤0 (Fig. 
1). Accounting for scattering always present in 
wood mechanical properties, stiffness 
evolution ( )aR  is corrected for each 
specimen using a multiplicative correction 
factor ( ) ( )0exp0 aRaR=β , with ( )0aR  
representing the initial stiffness given by FEM 
computations, and ( )0exp aR  the stiffness 
obtained experimentally, before propagation 
onset. Factor β  is evaluated once per 

specimen since the only known value of a is 
the initial crack notch extension 0a . Indeed, 
for values of 0aa> , the damage extension 
which develops ahead of the crack tip leads to 
equivalent crack length extents (evaluated 
from the experimental stiffness of the 
specimen) unlike the actual crack length. A 
corrected numerical stiffness function 

)(aRcor  is therefore obtained 
computing β)()( aRaRcor = .  
 
As a result of this stiffness correction 
procedure, the equivalent linear elastic crack 
length a , corresponding to any point of the 
experimental load-deflection curve, is 
evaluated. Hence, for a given point of the 
load-deflection curve (Fig. 4) the unloading 
stiffness )(exp aR  is determined and the 
corresponding equivalent linear elastic crack 
length computed through a dichotomic process 
applied to the corrected numerical stiffness 
function )(aRcor previously evaluated. This 
corrected function enables to perform 
continuous computations of the elastic energy 
release rate for each load-deflection values 
recorded all along the fracture tests.  

 
 

 

 
LE  

(MPa) 

RE  

(MPa) 

TE  

(MPa) 
TLν  RLν  TRν  TLG  

(MPa) 

RTG  

(MPa) 

RLG  

(MPa) 

 9 900 730 410 0.018 0.032 0.306 610 22 500 
 

Table 2: Elastic properties of Spruce (Picea abies L.) according to [8]. 
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Figure 4: Procedure used to assess the elastic energy release rate, 

)()()(R abaWaG δ=  in wood. uP : ultimate load; ua : corresponding equivalent 
crack length.  

 
As represented in Fig. 4, for a given 
experimental equivalent crack length, a , 
the elastic energy release rate, GR, is 
calculated dividing the elastic strain energy 
W(a), released during a small crack 
extension aδ  (dashed area) by the 
corresponding crack surface ab δ  (b: 
specimen thickness). The small crack 
extension aδ  has been set to 1 % of the 
initial notch extension, since it has been 
found as the average value for which the 
estimated R-curves converge to a single 
curve. The strain energy )(aW  was 
evaluated using the experimental load-
deflection curve and the straight lines 
passing through the points corresponding to 
equivalent crack lengths: 2aa δ−  and 

2aa δ+  (both deduced by dichotomy 
from the corrected stiffness values: 

)2( aaRcor δ−  and )2( aaRcor δ+ , 
respectively). 
 
As shown in Fig. 5, for which the energy 
release rate GR has been represented as a 
function of the relative crack length 
( haeq=α ), subsequent to a characteristic 
relative crack length αc (or more precisely, 
an equivalent relative crack length), the R-
curve is levelled off, revealing that the 
energy release rate is independent of the 
relative crack length α. The critical energy 
release rate GRC is the horizontal asymptotic 
value obtained for the GR(α). It has also 
been noted through the experiments, that 
the energy release rate corresponding to the 
ultimate load GR(αu), is always smaller than 
GRC.  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 
Figure 5: Typical R-curve obtained for the SEN-TPB in wood. 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6: Superposition of typical R-curves in spruce (Picea abies L.). 
 
 
4. Results and discussion 
 
Fig. 6 exhibits the superposition of typical 
Resistance-curves got hold of the procedure 
proposed by Morel et al. [7] showing the 
characteristic rising tendency of the R-curve 
GR(α), revealing a quasi-brittle behaviour 
of wood during fracture. This representative 
illustration clearly reports what has been 
noticed by many researching studies 
documented in the literature pointing out 
the dependence of the R-curve on the 
specimen size h.  
 
Based on the set of results obtained for the 
totality of the tested specimens, it has been 
discerned a reduction in the growth rate of 
the resistance to crack propagation on the 

specimen size h, in the first half of the 
ascending branch of the R-curve. 
 
Though denoting scattering in the 
parameters of a few tested series (COV 
assessments higher than 20%), the resume 
of mean values shown in Table 3 turns out 
an obvious upward trend in the R-curve 
parameters on the specimen characteristic 
size h. This tendency has been accounted 
and documented in Figs. 7 and 8 where the 
equivalent crack lengths au and ac follow a 
linear behaviour with h (or D). The growing 
trend exhibited by the characteristic 
equivalent crack length ac (or, which 
equivalent, the characteristic relative crack 
length αc) clearly puts into evidence that the 
critical size of the damage zone in wood 
grows with the specimen size. 

 
 

Series Qtty. Rexp(a0) 
(N/mm) αu 

GR(αu) 
(J/m2) αc 

GRC 
(J/m2) 

h1 5 283.7 (24.0) 0.578 (2.2) 192.4 (14.2) 0.774 (4.3) 372.0 (18.9) 
h2 20 258.9 (23.5) 0.572 (4.0) 220.5 (46.0) 0.724 (8.8) 347.8 (47.8) 
h3 20 167.5 (18.9) 0.543 (2.1) 156.6 (16.1) 0.657 (11.6) 223.3 (30.2) 
h4 20 123.9 (20.3) 0.542 (1.9) 133.3 (14.5) 0.637 (7.5) 171.5 (14.7) 
h5 20 49.2 (16.7) 0.535 (2.1) 146.1 (22.3) 0.629 (9.0) 178.1 (19.4) 
h6 20 45.9 (15.1) 0.529 (2.2) 100.1 (11.7) 0.669 (7.7) 149.5 (15.7) 

 
Table 3: Resume of mean values obtained in performed fracture tests. Rexp(a0): initial 

experimental stiffness; αu: relative crack length corresponding to the ultimate load Pu ;  
GR(αu): energy release rate corresponding to Pu ; αc : characteristic relative crack 

length; GRC: critical energy release rate. Values in parentheses represent the coefficient 
of variation (COV) 
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Figure 7: Linear behaviour revealed by the equivalent crack length corresponding to 
the ultimate load obtained in the experiments, Pu. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 8: Linear behaviour revealed by the characteristic equivalent crack length. 
 
Contrarily, Figs. 9 and 10 denote a clear 
non-linearity in the values of the remaining 
R-curve parameters (i.e., GRC and GR(αu)), 
which has been found not surprising since 
these values are strongly affected by 
scattering (Table 3). 
 
Fig. 11 reveals the dependence of the 
ultimate load on the specimen size, 
revealing a quite acceptable size range 
relative to the scatter of the results. 
 
 
5. Conclusions 
 
Resistance-curves were obtained in spruce 
(Picea abies L.) performing fracture tests 
(Mode I) in SEN-TPB with different sizes. 
Characteristic rising tendency of the R-

curve GR(α) was noticed, revealing an 
evolution of the resistance to crack growth 
as a function of the relative crack length α. 
Typical configuration of the R-curve was 
revealed for the specimen size h (size range 
1:12), denoting a reduction in the growth 
rate of the resistance to crack propagation 
on the specimen size h, in the first half of 
the ascending branch of the R-curve. 
Plotting of size ranges relative to the 
equivalent crack length corresponding to 
the peak load, au, and the characteristic 
crack length ac have been found to behave 
linearly with the specimen size. This fact 
puts into evidence that the critical size of 
the damage zone in wood grows with the 
specimen size. 
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Figure 9: Size ranges relative to the scatter of results of the energy release rate 
corresponding to the ultimate load. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 10: Size ranges relative to the scatter of results of the critical energy release 

rate. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 11: Size ranges relative to the scatter of results of the ultimate load.
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Abstract 
 
A series of molecular dynamics (MD) 
simulations are performed to analyze the 
diffusion bonding at Cu-Al interfaces. 
Embedded atomic method (EAM) 
potential functions are adopted to describe 
the atomic interactions. The results 
indicate that the thickness of the interfaces 
is temperature dependent, with higher 
temperatures yielding larger thicknesses. 
At temperatures below 750 K, the interface 
thickness is found to increase in a stepwise 
manner as a function of time. At 
temperatures above 750 K, the thickness 
increases rapidly and smoothly. The 
bonding process consists of three stages. In 
the first stage, the rough surfaces deform 
under stress, resulting in increased contact 
areas. The second state involves significant 
plastic deformation at the interfaces as 
temperature increases, resulting in the 
disappearance of interstices and full 
contact of the surface pair. The last stage 
entails the diffusion of atoms under 
constant temperature. The bonded 
specimens show very good mechanical 
properties with the tensile strength 
reaching 88% of the ideal Cu/Al contact 
strength. 
 
Keywords: Diffusion bonding, Molecular 
dynamics, Temperature, Tension, Cu, Al  
 
1. Introduction 
 

Diffusion bonding is a solid-state 
welding process wherein contacting 
surfaces are bonded via 
diffusion-controlled processes under 
pressure and at elevated temperatures with 
minimum macroscopic deformation [1]. 
Almost all materials with compatible 

chemical and metallurgical properties can 
be diffusion-bonded [2]. Since unexpected 
phase propagation may appear at the bond 
interface of some advanced materials in 
conventional welding [2-6], diffusion 
bonding has an inherent advantage in this 
respect. Recently, many theoretical and 
experimental studies have been carried out 
on diffusion bonding [1-8]. However, 
investigation of diffusion bonding at 
atomic scale has scarcely been carried out. 
Molecular dynamics (MD) simulations has 
become one of the most widely used tools 
in nanomechanics primarily because it is 
not limited by uncertainties in sample 
preparation and test condition and can be 
used to analyzed a range of issues 
concerning mechanical behavior at the 
nanoscale. Weissmann et al. [9] used MD 
simulations to investigate interface 
amorphization in the Co-Zr system. Their 
analysis showed clear development of 
interface amorphization as temperature 
increases. Chen et al. [10] calculated the 
interfacial energy of an fcc/bcc interface in 
Ni-Cr alloys. Cherne et al. [11] 
investigated the amorphization of the Ni/Zr 
system. The microstructures of a Cu-Ta 
interface [12] and a SiO2/Si interface [13] 
have also been analyzed by means of MD 
simulations. The conditions analyzed in 
these papers are significantly different 
from the conditions of diffusion bonding 
which involve combined high temperature 
and high pressure. As a result, interfacial 
diffusion does not occur and no transition 
regions are seen. Since temperature and 
pressure play important roles in diffusion 
bonding, MD simulations accounting for 
such conditions can provide significant 
new insight into the not obtainable by other 
means. Another factor motivating MD 
analyses of diffusion bonding processes is 



the lack of quantification of the effects of 
surface roughness which also plays an 
important role. MD simulations also offer 
the advantage of extensive parametric 
studies, potentially avoiding the need of 
long and expensive experiments. Recently, 
Chen et al. [14] reported an MD study of 
the pressure effect in diffusion bonding. In 
the present paper, we consider the coupled 
pressure-temperature-roughness effects in 
the diffusion bonding of a Cu/Al surface 
pair. 
 
2. Simulation procedure 
Interatomic potentials play a very 
important role in MD simulations. 
Considerable progress has been made in 
recent years in the development of 
empirical and semi-empirical many-body 
potentials. Well established embedded 
atomic method (EAM) potentials [15, 16] 
have been successfully used in analyzing 
elastic properties, defect formation energy 
and fracture mechanisms of various 
close-packed bulk metals. The modified 
EAM model proposed by Johnson [17,18] 
is adopted in the simulations here.  
As shown in Fig. 1, the system analyzed 
consists of mono-crystal copper (top) and 
mono-crystal aluminum (bottom) slabs. 
The contact surfaces of copper and 
aluminum are both (100) planes. The total 
numbers of Cu and Al atoms in the model 
are 52488 and 46080, respectively. A 
parallel algorithm is used. Periodic 
boundary conditions are implemented in 
the two transverse (i.e., x and y) directions. 
Two layers of atoms at the bottom of the Al 
slab and two layers at the top of the Cu slab 
serve as boundary atoms for the purpose of 
load or displacement application. The 
initial thermal velocities of atoms are 
assumed to follow the Maxwellian 
distribution. The Newton’s equation of 
motion for the atoms is numerically 
integrated using the Leap-Frog algorithm 
[19] with a fixed time step of 2 fs. The 
external transverse pressure is maintained 
at atmospheric pressure, while the vertical 
(i.e. z-axis) pressure is 20 MPa. The 
structures are first equilibrated at the 
temperature of 1 K for 10 ps. Subsequently, 
the structure is heated up from 1 K to a 
desired temperature at a rate of 5×1013 K/s. 
Subsequently, the temperature is kept 
constant at the desired value through the 
scaling of atomic momenta. To achieve 
sufficient interfacial diffusion, all MD runs 
are performed for 600 ps at the desired 

temperature. 
 
3. Results and discussions 
 
3.1 Effect of temperature 
    Atoms on the two sides of the 
interface can diffuse into the opposite sides 
only if temperature is sufficiently high. 
Necessary levels of temperatures are 
usually between 0.6Tm~0.8Tm (where Tm 
represents the melting points of the 
materials involved). Since the melting 
point of Al is 933 K, four different 
temperatures (600 K, 650 K, 700 K and 
750 K) are considered here. 

     
(a) 600K           (b)650K 

      
(c) 700K        (d) 750K 

Fig. 1 A cross-section at (a) 600 K, (b) 650 K, (c) 
700 K, and (d) 750 K after 600 ps, only atoms near 
the interface are shown. Copper atoms are green 
and aluminum atoms are red. 
     Fig. 1 shows a cross-section of the 
structure after 600 ps of diffusion at 
different temperatures. At 600 K, there is 
no observable diffusion between Cu and Al 
which retain their initial fcc structures (see 
Fig. 1(a)). At 650 K (Fig. 1(b)), a few Cu 
atoms have diffused into the Al side. When 
the temperature is higher than 650 K, 
obvious interfacial diffusion of Cu atoms 
into Al is seen, forming an Al-rich 
interfacial region. Figure 1 shows that this 
interfacial region and the Al block with an 
amorphous structural order. This 



observation agrees well with the 
observation by Weissmann et al. [9] of a 
similar disordered interface in a Co-Zr 
system at high temperatures. Figure 1 also 
shows that the diffusion is primarily 
one-way, from the Cu side into the Al side. 
This is because Cu atoms have a smaller 
radius (2.556 Å) than that of Al atom 
(2.886 Å). It is well established that it is 
easier for smaller atoms to diffuse into a 
region of larger atoms [20]. On the other 
hand, the melting point of copper is higher 
than that of aluminum, making it harder to 
break the bonds between copper atoms 
than those between aluminum bonds. The 
effect is to make it more difficult for Al 
atoms to diffuse into the copper lattice. 
Because the bonds in aluminum are weaker, 
vacancies form more easily in Al. All the 
above factors enhance the opportunity of 
copper atoms to diffuse into aluminum, 
and not the other way around.  
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(c) 700K       (d) 750K 

Fig. 2 Concentrations of Cu and Al atoms along the 
z-direction at (a) 600 K, (b) 650 K, (c) 700 K, and 
(d) 750 K after 600ps 
    Figure 2 shows the concentrations of 
Cu and Al atoms along the z direction after 
600 ps at different temperatures. The 
region where the concentrations of Cu and 
Al atoms are both over 5% is defined as the 
interfacial region. These curves allow the 
thickness of this interfacial region to be 
estimated. At 600 K, the thickness is 
approximately 6 Å (Fig. 2(a)), indicating 
very little diffusion across the interface. 
The thickness increases as temperature 
increases, with the values being 11, 19 and 
30 Å at 650, 700 and 750 K, respectively. 
   Figure 3 shows the thickness of the 
interfacial region as a function of time at 
different temperatures. At 600 K, the 
thickness fluctuates between 0~4 Å in the 

initial stage (smaller than two atomic 
layers). After about 400 ps, the thickness 
reaches about 6 Å and does not show 
further increase except for minor 
fluctuations. At 650 K, the thickness shows 
stepwise increases to 11 Å by about 550 ps 
and shows no further increase thereafter. 
The profile for 700 K is similar to that for 
650 K, except that the maximum thickness 
value is higher (18 Å). At 750 K, the 
thickness increases rapidly and 
continuously with no saturation over the 
duration of the calculation. 
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Fig. 3  Thickness of the interfacial region as a 

function of time at different temperatures 
3.2 Effect of surface roughness 
    Experiments have shown that the 
roughness of the contact surfaces has a 
significant impact on the diffusion bonding 
process [21]. In this section, we consider 
three different cases:  

(i). smooth copper surface and rough 
aluminum surface with two 
protuberances of a height of 4 
lattice constants for aluminum; 

(ii). smooth aluminum surface and 
rough copper surface with two 
protuberances of a height of 4 
lattice constants for copper;  

(iii). Both of surfaces are rough. 
In all three cases, the highest temperature 
is 700 K and the applied stress in the z 
direction is 20 MPa. 
    Figure 4 shows a cross-section at 
different temperatures for case (i). 
Obviously, the protuberances on the 
aluminum surface undergo significant 
deformation under the stress (Fig. 4(b)) 
even at 200K. However, interstices remain 
between the two sides. At 300K, the 
protuberances are completely flattened and 
fully intimate contact is achieved. Because 
aluminum is softer than copper, aluminum 
shows more pronounced deformation. 
From Fig. 4(c), it can also be seen that a 
layer of Al close to the interface becomes 
amorphous. The picture at 700 K is similar 



to that at 300 K, with no obvious diffusion 
of atoms between the interfaces. 

    
(a)1K     (b)200K 

     
(c)300K        (d) 700K 

Fig. 4 A cross-section at different temperatures for case (i) 
(the stress is kept at 20 MPa) 

Figure 5 shows the same cross-section 
for case (ii). The smooth aluminum surface 
undergoes significant deformation under 
the applied stress when the temperature is 
increased to 200 K. Some of aluminum 
atoms fill the interspaces of the cooper 
surface (Fig. 5(b)). This process intensifies 
as temperature increases (Fig. 5(c)). At 400 
K, the interspaces on the copper surface are 
fully filled. The image at 700 is similar to 
that at 400 K, with no obvious diffusion 
between the two sides. 
    Figure 6 shows the results for case (iii). 
The top of the aluminum protuberances are 
flattened by the applied stress even before 
temperature is increased. At 200 K, the 
aluminum side shows significant 
deformation, similar to what is seen in the 
previous cases. Some of aluminum atoms 
fill in the interspaces of the copper surface 
(Fig. 6(b)) and the protuberances on the 
copper side show slight deformation. As 
temperature increases, more aluminum 
atoms move into interspaces on the copper 
surface (Fig. 6(c)). At 400 K, the 
interspaces are completely filled.  

    
(a)1K                 (b)200K 

    
(c)300K             (d)400K 

Fig. 5  A cross-section at different temperatures  
for case (ii) (the stress is kept at 20 MPa) 

      
(a) 1K          (b) 200K 

     
(c) 300K      (d) 400K 

Fig. 6  A cross-section at different temperatures for 
case (iii) (the stress is kept at 20 MPa) 

The results in Figs. 4-6 show that 
deformation primarily occurs in the Al, 
regardless of the configuration of the Cu 
surface. This is because Cu has a higher 
strength and a higher melting point. 
    Figure 7 shows the same cross-section 
after 600 ps at 700 K for cases (i) and (ii). 
As pointed previously, the rough aluminum 



surface is flattened during heating before 
diffusion (Fig. 4(d)). Consequently, the 
diffusion pattern in Fig.7(a) at 600 ps is 
similar to that in the situation with 
perfectly smooth surfaces (Fig. 1). The 
diffusion pattern in Fig. 7(b) is very 
different from those in Fig. 7(a) and Fig. 1. 
The difference arises because aluminum 
atoms have previously filled the 
interspaces during heating and the contact 
profile is similar to those in cases (ii) and 
(iii) when the copper surface is rough 
before diffusion (Fig. 5(d) and Fig. 6(d)). 
Specifically, after 600 ps diffusion the 
contact profile is very similar to the initial 
profile of the copper surface, except that it 
has become flatter (Fig. 7(b)).  

    
(a)           (b) 

Fig. 7  A cross-section after 600 ps at 700 K; (a) 
case (i), (b) case (ii) 

The three sets of results show that the 
diffusion bonding process can be divided 
into three stages. In the first stage, the 
rough surface deforms under stress before 
heating causing the contact area to increase. 
In the second stage, the softer (Al) surface 
undergoes significant deformation 
temperature increases, causing the 
interstices to disappear leading to fully 
intimate contact of the surfaces. The last 
stage is diffusion of atoms at constant 
temperature. 
 
3.3 Tensile deformation 
 
    In order to examine the mechanical 
properties of the diffusion-bonded Cu/Al 
sample, tensile loading is applied at room 
temperature to mono-crystal copper, 
mono-crystal aluminum, Cu/Al pair with 
ideal contact and diffusion-bonded Cu/Al 
pair (diffusion bonding condition is as 
follows: temperature is 750 K, stress is 20 
MPa and cooling rate is 5×1013 K/s). Three 
layers of atoms at both the top and bottom 
surfaces are taken as boundary atoms for 
load application. The displacement of the 

boundary atoms is controlled by time step. 
Each increment corresponds to a strain of 
0.25% and is followed by a period of 8 ps 
of equilibration at constant strain. The 
strain rate for the loading step is 
approximately 3×108/s, several orders of 
magnitude higher than the rate in a typical 
tensile test. However, as shown in a 
previous investigation [22], the 
equilibration periods following the load 
step allows the calculation here to 
approximate quasistatic loading. 
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Fig. 8 Tensile stress-strain curves of monocrystal 

copper and aluminum, Cu/Al pair with ideal contact 
and diffusion-bonded Cu/Al pair 

    Figure 8 shows the nominal 
stress-strain curves for monocrystal copper 
and aluminum, Cu/Al pair with ideal 
contact and diffusion-bonded Cu/Al pair. It 
can be seen that the stress reaches a 
maximum of 7.2 GPa at a strain of 11.5% 
for monocrystal copper.  Beyond the 
strain of 11.5%, the stress drops 
precipitously to 2.5 GPa and plastic flow 
occurs at stresses of around 2.5 GPa. The 
curve for monocrystal aluminum has 
similar feature as that for monocrystal 
copper, with a maximum stress of 4.9 GPa 
at a strain of 19.5%.  When strain is over 
19.5%, the stress drops precipitously to 0.8 
GPa and plastic flow occurs at stresses 
around 1 GPa. The curve for the 
ideal-contact Cu/Al pair is different from 
those for monocrystal copper and 
aluminum. A sudden drop of stress appears 
first when strain reaches 8.5%, followed by 
a second drop at a strain of 13%. The stress 
reaches a maximum of 3.6 GPa at a strain 
of 16%. When the strain is over 16%, 
stress drops from 3.6 GPa to 1.6 GPa and 
the sample shows plastic flow. The flow 
stress is about 2 GPa. Finally, the case of 
the diffusion-bonded Cu/Al pair is similar 
to that of the ideal-contact Cu/Al pair, with 
no obvious sudden stress drop as strain 
increases. The stress curve is flatter than 



that of the ideal-contact case. When the 
strain is over 6.5%, the stress shows a 
small drop and then increases as strain 
increases. The curve yields a tensile 
strength of 3.2 GPa which occurs at a strain 
of 10.5%. Since the tensile strength can 
reach 88% of that for the ideal-contact 
Cu/Al case, the diffusion-bonded Cu/Al 
pair demonstrates very good mechanical 
properties in terms of strength. The stress 
drops from 3.2 GPa to 1.5 GPa as strain 
increases from 10.5% to 15%, and the 
increase 15% to 22.5% is very gradual due 
to the plastic flow.  
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(c)      (d) 
Fig. 9 Deformed configurations of the monocrystal 

copper at different levels of stain; 
(a) 0%, (b) 11.5%, (c) 12%, and (d) 15% 

We now turn our attention to the deformed 
structures inside the samples to gain better 
insight into the observed mechanical 
behaviors. 

Figure 9 shows the deformed 
configurations of monocrystal copper at 
different strains. There is no obvious 
change as strain increases from 0 to 11.5%, 
except for the elongation of the sample. 
The situation becomes very different at a 
strain of 12% when many slip bands 
appear on side surfaces. The slip bands on 
the surfaces form an angle of 45° relative 
to the loading axis and the horizontal 
directions (Fig. 9(c)). The formation of 

these slip bands results in the sudden drops 
of stress in the stress-strain curves 
discussed earlier. As strain increases, more 
bands appear (Fig. 9(d)). The deformation 
of monocrystal aluminum is very similar to 
that of monocrystal copper. When strain is 
over 19%, many slip bands appear on the 
side surfaces. 
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Fig. 10 Deformed configurations of ideal-contact Cu/Al 

pair at different strain levels; 
(a)  8.5%, (b) 9%, (c) 16%, and (d) 16.5% 

Figure 10 shows the deformation 
configurations of the ideal-contact Cu/Al 
pair at different strains. Figure 10(a) shows 
that there is no obvious change before a 
strain of 8.5%. When strain increases to 
9%, a few slip bands appear on the side 
surfaces on the aluminum side and the Al 
layer adjacent to copper becomes 
amorphous (Fig. 10(b)). The appearance of 
slip bands on the aluminum side results in 
the sudden drop of stress at a strain of 8.5%.  
Some of the slip bands disappear and new 
slip bands appear as strain increases (Figs. 
10(b)-(d)). When the strain is over 16% 
(Fig. 10(d)), some slip bands appear on the 
copper side, resulting in another sudden 
drop in stress. More and more slip bands 
appear on the copper side (not shown) as 
strain further increases, indicating further 
plastic flow (Fig. 8). 
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Fig. 11 Deformed configurations of diffusion-bonded 

Cu/Al pair at different strain; 
(a) 6.5%, (b) 7% , (c) 10.5%, and (d) 11% 

Figure 11 shows deformed 
configurations of the diffusion-bonded 
Cu/Al pair at different strains. The results 
are similar to those for the ideal-contact 
cases in the following ways. There are no 
obvious changes on the side surfaces 
before the strain of 7% (Fig. 11(a)). A few 
slip bands appear on the side surface on the 
aluminum side when strain increases to 7%, 
and the Al region close to the interface 
becomes amorphous (Fig. 11(b)). The 
appearance of slip bands on the aluminum 
side and the amorphous structure result in 
the drop of stress when the strain is over 
6.5%.  Figure 11(c) shows that the slip 
bands on the aluminum side surfaces can 
not cross the interface. The occurrence of 
additional slip bands are associated with 
only slight stress decreases. The 
interactions between different dislocations 
form a Lomer-Cottrel junction [23] as 
strain increases. Slip dislocations form 
dislocation pile-ups which induce strain 
hardening of the aluminum which causes 
the stress to increase as strain increases 
(Fig. 8). When the strain is over 10.5%, 
obvious slip bands appear on the copper 
side surfaces, resulting in the second drop 

of stress. 
To summarize, the stress-strain curves 

show that the tensile strengths of 
monocrystal copper, monocrystal 
aluminum; ideal-contact Cu/Al and 
diffusion-bonded Cu/Al are 7.2 GPa, 4.9 
GPa, 3.6 GPa and 3.2 GPa, respectively. 
Although these strength values are one 
order of magnitude higher than those from 
experiments [24], their relative magnitudes 
demonstrate the effectiveness of the 
diffusion bonding process. The higher 
strength values relative to experimental 
values is at least partly due to the fact that 
there are no defects (dislocations, voids, 
grain boundaries, etc.) in the model here. 

 
4 Conclusions 

MD simulations of the Cu/Al diffusion 
bonding process and the subsequent 
tension tests are performed. The primary 
findings are: 

(1) Temperature plays a very important 
role in the bonding process. When 
the temperature is lower than 600 K, 
there is no obvious diffusion. The 
higher temperatures yield thicker 
interfacial layers. The thickness of 
the interfacial region increases in 
stepwise manner when the 
temperature is lower than 750 K. 
When temperature is higher than 
750 K, the thickness of interfacial 
region increases rapidly and 
continuously; 

(2) The bonding process can be 
divided into three stages. In the first 
stage, the rough surface deforms 
under stress before heating, 
resulting in increases in contact 
area. In the second stage, the 
surface deforms significantly as 
temperature increases. Also, 
interstices disappear and fully 
intimate contact is achieved in this 
stage. The last stage entails 
diffusion of atoms; 

(3) The diffusion-bonded Cu/Al 
surface pair demonstrates very 
good mechanical properties, with a 
tensile strength of about 88% of the 
ideal-contact Cu/Al pair. The 
deformation mechanism of 
diffusion-bonded Cu/Al interfaces 
is not the same as those for single 
crystal copper and aluminum. The 
interface between the dissimilar 
materials blocks the propagation of 
dislocations from the aluminum 



region into the copper region and 
strain hardening is also observed.  
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Abstract 
 
Oversights in designing with composite 
materials at the micro-structural level of 
size, has resulted in the evolution of 
cracking mechanisms and the catastrophic 
fracture of laminated components under 
cyclic stress.  The fracture micro-
mechanics and underlying physical 
processes of failure in engineering 
composite materials are presented. 
Modelling techniques are described, 
which quantify this accumulation of 
damage over time in terms of the 
important structural features of the 
composite material, constituent properties, 
stress-state, temperature, and 
environment.  Particular emphasis is 
placed on the material internal state 
variable method of modelling, which 
relates failure mechanism and material 
property change.  Proof of identity of 
individual failure processes based on their 
direct observation and an understanding of 
coupling between them are the first steps 
in the formulation of a completely 
physical model of fracture. 
 
 
Keywords: composites, fracture, 
cracking, failure mechanisms, physical 
modelling, fatigue 

1. Introduction 
 
The expectation is for aerospace materials 
to last longer and for structures to operate 
safely and reliably at increasingly higher 
stresses.  In the case of engine 
components, we expect the material to 
work successfully at greater elevated 
temperature and enhanced power.  The 
requirement is to push the performance of 
the structure to its limit thereby stretching 
the composite material to its boundary of 
strength and endurance.   
 
Currently, we see airframes made from 
composites, arriving at the probability of a 
successful outcome of a safe design by 
using intuition and our experience of 
circumstances that we have encountered 
before.  But if we are to imagine the 
future differently, disaster as an act of 
God or of bad luck has to go.  Predictive 
engineering design by intelligent-
informed empiricism is the only “show in 
town”. 
 
 
2. Empiricism vs Predictive Modelling 
 
For half a century, factors that influence 
the limits of performance of engineering 
composite materials and the capability of 



  

large structures and components to sustain 
high stress without failure, have been the 
subject of many analytical and theoretical 
investigations, validated by observations 
and precise measurement of property data.   
 
Yet despite this acquisition of vast 
collections of information and compelling 
evidence, and an experienced designer’s 
intuition based on “feel”, “know-how” or 
“folklore” –  phenomenology - our ability 
to fully understand composite material 
behaviour remains restricted.  This is 
because our knowledge is built on 
empirical observation. 
 
Oversight in design across orders of 
magnitude of size of structure has led to 
undesirable matrix-dominated load paths.  
In composite structures under load, this 
has resulted in the cumulative evolution of 
a complexity of inter-acting small defects. 
This is material failing on the nanometre 
or micron size scale, and we notice its 
consequences at the component level.   
 
An invisible college of continuum 
mechanicians 
There is an invisible college of continuum 
mechanicians, scattered in universities, 
who have for decades studied the 
behaviour of composite materials based 
on an idealization of what behaviour is all 
about, and coming up with countless 
models without any reference whatsoever 
to microstructure; neither do they care 
about mechanisms that act at the small 
end of the size-scale, or structurally-based 
constitutive equations.  Consequently, 
current design codes for composite 
material structures in critical loading 
situations do not take creep, fatigue or 
environmentally-induced crack growth 
into account. 
 
Understanding mechanisms 
To understand the consequences of 
damage in composite material systems 
requires the design process at each size 
level of structure to include the dominant 
(meaning most influential) crack growth 

mechanism(s).  Thus, to predict a result, 
say lifetime or a stress response by a 
numerical method, there must be a self-
evident truth that the mechanism regime 
in which the component is operating must 
be known.  In other words, the important 
design issues must all be embedded in the 
same model of material and component 
behaviour that must also include the 
dominant mechanism(s) of structural 
change over orders of magnitude of size. 
 
Furthermore, what makes for a successful 
and safe application varies from one 
material system to the next.  The diversity 
of failure characteristics stems from the 
differences between fibre-matrix systems 
and the nature of bonding between the 
constituent phases.  It is not surprising 
then, that identifying the dominant failure 
mechanism(s), meaning the one (or more) 
that has the most influence on the 
material's or component’s limit of 
performance is not straightforward and 
sometimes the problem contains several 
sub-problems.  To model each sub-
problem separately and to combine the 
results later, if that is possible, requires 
that phenomenology experience and those 
comprehensive collections of data, etc- a 
knowledge based on intelligent 
observations.  
 
Intelligent-informed empiricism 
Predictive engineering design by 
intelligent-informed empiricism has as its 
principal objective the identification and 
avoidance of all conceivable sources of 
weakness in the material and misfortune 
of structure.   
 
What are needed, of course, are 
constitutive equations for design that 
encapsulate all of those intrinsic (material) 
and extrinsic (experimental or working) 
variables.  The problem is that the 
experimental programme from which 
these constitutive laws are to be devised 
becomes too formidable.  And if that is 
not enough, spatial variation appears 
when stress and temperature or other field 



  

variables are non-uniform.  Worse still, 
when mechanisms of cracking and 
fracture interact, superposition becomes 
important, which can lead to a breakdown 
in the simple constitutive law. 
While simple geometries can be treated 
analytically, using, for example, the 
modelling tools of fracture mechanics, 
more complex geometries require discrete 
methods.  The finite element method of 
modelling is an example.  Internal 
material state variable formulations for 
constitutive laws are embedded in the 
finite element computations to give an 
accurate description of spatial behaviour. 
 
 
3. Hierarchy of Multi-scale Modelling 
Multi-scale problems have to be addressed 
by appropriate inter-disciplinary multi-
scale modelling methods.  The entire 
range of length scale has to be probed if 
we are to understand issues that limit the 
performance of the engineering structure.  
Understanding processes or mechanisms 
that operate in the material at all length 
scales and reconciling them with 
component durability and reliability is one 
of the ultimate challenges.  Of particular 
interest is how damage transfers from a 
lower scale to a higher scale.   
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

The framework upon which the modelling 
processes can be placed, and the 
connections and continuity between them, 
is illustrated in Fig. 1 below.  This size (or 
length) scale, which spans several orders 
of magnitude, provides a framework for 
understanding the failure characteristics of 
the material on the one hand and 
performance limitation of the component 
on the other.   
 
We observe the hierarchy of structural 
scales from the nanometre to the micron 
to the metre (or greater) level of size.  
Also, the discrete methods of analysis 
ranging from micro-mechanical 
(mechanism) modelling to the continuum 
levels of mathematical prediction of the 
complete design process.  Almost always, 
behaviour at one level can be passed to 
the next level up as one or more 
parameters or as a simple mathematical 
function.  The methods shown in Fig. 1 
provide us with scope for optimisation, 
where composite material properties vary 
continuously with some internal 
parameter that relates to composite 
architecture in some way.   
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Figure 1 Hierarchy of 
structural scales from 
the single fibre to the 
fully assembled 
structure, and discrete 
methods of analysis in 
design methodology 
from micro-mechanics 
to the higher structural 
levels of modelling. 
 



  

Then, when a set of properties is 
specified, it should be possible to select a 
particular lay-up or weave of an 
appropriate composite material system, 
and processing conditions, to meet that 
specification.  This is to follow the path of 
intelligent design in a functional direction.   
 
Problem posing and solving are essential 
components of modelling studies, adding 
value to our current understanding of the 
application of predictive modelling of 
composite material behaviour.  The style 
and level of modelling depends on the 
problem, and they must all have that right 
degree of sophistication for the task in 
hand.  The model must be simple but not 
too simple (Albert Einstein).  There is 
elegance in successful physical modelling. 
 
Physical-based damage and failure models 
can be incorporated into empirical or 
continuum methods of modelling that 
would lead to more efficient and reliable 
experimental programmes and the safe 
design of composite structures. 
 
 
4. Physical Modelling 
There is a direction, a path, which, if 
taken, we come upon the well-known laws 
or principles of physics and chemistry. 
This is to move in the direction of 
physical modelling, applying the laws of 
micro-mechanics in the process of 
formulating a route map called predictive 
design.  In an engineering context, at first 
attempt, the physical model could describe 
concisely a body of fatigue or fracture 
stress data.  But a better model, however, 
would be one that captures the essential 
physics of the engineering problem of 
cracking and fracture.  By identifying the 
dominant microscopic process(es) 
responsible for failure in the first place, 
we can then model it (them) using the 
tools of micro-mechanics and our 
understanding of the theory of defects, of 
reaction rates, diffusion (and so forth).  
This time, such modelling does have 
powers of prediction derived from those 

established rules of physical behaviour.  
But even then, a complete physical 
treatment isn’t always possible.  
 
For example, a model of a thermally 
activated chemical reaction, using the law 
of Arrhenius, has its basis in statistical 
mechanics. Sometimes the activation 
energy, which enters that law, can be 
predicted from molecular models, but the 
value of the pre-exponential in the 
equation more often than not eludes 
current modelling methods; it must be 
inserted empirically.  An example is stress 
corrosion cracking of glass fibre-epoxy 
composites (of which more is said in 
another paper of this Meeting by Sekine 
and Beaumont). 
 
But most importantly, the physical model 
would illuminate the basic principles that 
underline the key elements of the total 
fracture process.  By these means, the 
micro-mechanical model establishes a 
physical framework on which empirical 
descriptions of the behaviour of some of 
the intrinsic and extrinsic variables could 
be attached.  However, a physical model 
points to something else, and it is of the 
greatest value; it suggests the proper form 
that constitutive equations should take and 
for the significant groupings of the 
variables that enter them.  Empirical 
methods can then be used to establish the 
precise functional relations between these 
groups.  The result is a constitutive 
equation that contains the predictive 
powers of physical modelling with the 
precision of ordinary curve-fitting. 
 
 
5. Constitutive Models: The Internal 
State Variable Method 
 
Constitutive models are best derived using 
the internal state variable method.  
Briefly, the key ideas are based on the fact 
that constitutive models have two aspects: 
response equations and structural 
evolution equations. The response 
equation describes the relationship of 



  

(say) current modulus, Ec, of the laminate, 
(a measure of the effect of damage), to the 
applied stress, σ,  or stress range, Δσ, load 
cycles, N, and to the current value of the 
internal state variable, D.  We call the 
internal state variable damage because it 
describes a change in the state of a 
material, brought about by an applied 
stress or by load cycling.  It (meaning D) 
uniquely defines the current level of 
damage in the material, for a given set of 
test variables.  
 
The response equation describes this 
change of (damage) modulus, Ec, to the 
stress magnitude, temperature, time 
(number of load cycles), and to the current 
value of the internal state variable D:  
 
Ec = f(σ, Δσ, λ, T, ΔT, t, νσ, νΤ , D, 
material properties, environment) (1) 
 
Consider for example, matrix cracking 
only: D is usually defined as D = 1/s, 
where s is matrix crack spacing.  Damage 
due to de-lamination, on the other hand, 
can be defined as total (meaning actual or 
measured) de-lamination crack area 
normalised with respect to the total area 
available for de-lamination, i.e., D = A/Ao.  
Or it might be useful to couple matrix 
crack spacing, s, with de-lamination crack 
length ld,  (i.e., s/ld ), because more 
often than not these two mechanisms are 
inseparable, the former triggers the latter. 
 
Since the internal state variable, D, 
evolves over time with the progressive 
nature of the damaging processes, its rate 
of change can be described by: 
 
D' = g(σ, Δσ, λ, T, ΔT, t, νσ, νΤ , D, 
material properties, environment) (2) 
 
Competing mechanisms 

Where several mechanisms contribute 
simultaneously to the response, (e.g., 
where modulus degradation is the result of 
de-lamination and matrix cracking 
combined), this time there are two internal 

state variables, one for each mechanism. 
Consequently, the model suggests a 
constitutive equation having a completely 
different form than before.  Instead of 
trying to characterize the modulus, Ec, as a 
function of the complete set of 
independent variables (although we 
could), we now seek to fit data to a 
coupled set of differential equations, one 
for the modulus Ec', and two (or more), 
depending on the number of damaging 
mechanisms, for damage propagation, 
namely D1' and D2': 
 
Ec' = f(σ, λ, T, D1, D2,  etc, material 
properties, environment)  [3a] 
 
D1' = g1(σ, λ, T, D1, D2,,  etc, material 
properties, environment)  [3b] 
 
D2' = g2(σ, λ, T, D1, D2,  etc, material 
properties, environment)  [3c] 
 
D1 describes the damage due to one 
mechanism and D2 describes a different 
damaging mechanism that, when 
combined with the first, eventually lead to 
composite failure.  E', D1' and D2' are their 
rates of change with time (or numbers of 
load cycles); f, g1, g2 are simple functions 
yet to be determined. 
 
There are now three independent 
variables, (σ, Τ, and stress-state, λ), 
whereas before there were eight.  These 
equations can be integrated to track out 
the change of modulus with the 
accumulation of damage, and ultimately 
used to predict fracture of a component or 
the design life in fatigue.  Thus, the 
modulus-time (cycles) response is found 
by integrating the equations as a coupled 
set, starting with E = Eo (the undamaged 
modulus) and D = 0 (no damage).  Step 
through time (cycles), calculating the 
increments, and the current values, of Ec 
and D, and using these to calculate their 
change in the next step.  Equation [3a] can 
now be adopted as the constitutive 
equation for fatigue, and empirical 



  

methods can be used to determine the 
functions f, g1, g2.   
 
 
6. An Example: Physical Model of 
Cracking in GRP 
 
Consider the fatigue of a cross-ply glass 
fibre-epoxy composite.  With increasing 
numbers of cycles (at low applied stress), 
the modulus falls slowly as the result of 
progressive transverse ply matrix cracking 
(Fig. 2).  (This is called high cycle 
fatigue).  As the stress amplitude, Δσ 
increases, a noticeable change in slope of 
the modulus degradation curve designates 
the onset and domination of de-lamination 
(inter-laminar) cracking.  And if the stress 
amplitude increases even further, (now 
called low cycle fatigue), the 
overwhelming mode of failure becomes 
fibre fracture. 
 
Modelling coupled mechanisms 
For the cross-ply (0o/90o)ns glass fibre-
epoxy laminate, under monotonic (or 
cyclic) tensile loading, failure is first and 
foremost by the evolution of a multiplicity 
of cracks in the matrix of each transverse 
(90o) ply.  These closely spaced cracks lie 
parallel to one another, and in a plane that 
is perpendicular to the direction of 
applied stress; and they span the thickness 
and width of every transverse ply. 
 
More often than not, a microscopic-sized 
de-lamination crack, (sometimes called an 
inter-laminar crack), nucleates by de-
cohesive failure of the (0o/90o) interface, 
in front of the tip of an advancing matrix 
crack.  This de-lamination crack extends 
by mode II (shear) deformation and stable 
interfacial fracture.  There are two 
possible alternative reactions to the 
localised stress field surrounding the 
matrix crack tip: either, the de-lamination 
crack forms, blunting the matrix crack tip 
and thereby reducing the tip stress 
intensity, or the interfacial bond remains 
intact and there is no de-lamination.   
 

Figure 2(a) A model of the composite 
laminate subjected to repeated load 
cycling, with transverse ply cracks, de-
lamination cracks, and fibre fractures – 
state variable D1, D2, D3, measure the 
extent of these damaging mechanisms;  
(b) the response E with the dominant 
failure mechanisms identified on the map. 

Figure 3 Transverse ply (matrix) cracks 
and fibre breaks in the outside 
longitudinal plies.  De-lamination cracks 
can form at the tip of the transverse crack. 
 
If the latter prevails, the magnification of 
local tensile stress can initiate the 
breakage of fibres, (in the adjacent load 
bearing (0o) ply), on or close to the matrix 
crack plane. 
 

 



  

The physical model 
Figure 4 shows the physical picture, a 
matrix crack intersecting a de-lamination 
crack (shown circled).  Spacing between a 
pair of adjacent matrix cracks is depicted 
2s (D = 1/2s); de-lamination crack length 
is l d. 
 
This model of a “damage zone” consists 
of two parts: that portion of material that 
is cracked, designated (a) (shown circled 
in Fig. 4), and that portion between two 
adjacent matrix cracks where the (0o/90o) 
interface remains intact, designated (b).   

 
 
Fig. 4 A damaged (0o/90o)s cross-ply 
laminate under tensile load P (edge view). 
The geometry shows two neighbouring 
transverse ply cracks (of spacing 2s) 
interacting with local de-lamination (inter-
laminar) cracks of length 2ld. (b is the 
thickness of the (outside) longitudinal ply; 
d is the thickness of the transverse ply). 
 
In effect, as damage accumulates the 
matrix crack spacing gets smaller, while 
the de-lamination crack gets longer.  
Consequently, the distribution of load 
between portion (a) and portion (b) 
continuously re-adjusts.  
 
Estimating the damage modulus Ec 
To begin with, let us assume matrix 
cracking only; ignore for the time being 
the possibility of de-lamination cracking. 

From knowledge of the elastic strain in 
the longitudinal ply, and, consequently, 
the mean stress in the longitudinal ply 
with respect to distance x, from the matrix 
crack, we determine the following 
expression for damage (reduced) modulus, 
Ec, of a matrix-cracked laminate: 
 

( )
⎥
⎦

⎤
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛⎥
⎦

⎤
⎢
⎣

⎡

+
=

s
s

Eb
EdE

Ec

λ
λtanh1

1

0

20
 [4] 

 
It is convenient to make equation [4] 
dimensionless by normalising Ec with 
respect to the undamaged modulus Eo.  
Roughly speaking, the modulus of an 
undamaged laminate, (meaning there are 
no matrix cracks), can be determined 
using a simple rule of mixtures:  
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E1, E2  are the moduli of (0o) and (90o) 
plies, respectively. 
 
We extend this model to include 
microscopic de-lamination cracking at the 
matrix crack tip as follows.  Begin with 
the assumption that the reduced or damage 
modulus, Ec, of that de-laminated portion 
of laminate, (designated (a) in Fig. 4), 
depends essentially on the modulus of the 
longitudinal ply only: 
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(As before, equation [6] is made 
dimensionless by normalising Ec with 
respect to the undamaged modulus, Eo, of 
the laminate (equation [5]). 
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matrix crack intersects a delamination 
crack at the interface 
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Next, consider that the damage zone now 
has an “effective” matrix crack spacing (s-
l d).  Thus, when we substitute (s-l d) into 
equation [4], we obtain for the modulus of 
that portion of (undamaged) laminate 
(designated (b) in Fig. 4):  
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     [7] 
 
Finally, for a given applied tensile stress, 
the longitudinal modulus of the damaged 
laminate is calculated by using a rule of 
mixtures for (Ec/Eo)a and (Ec/Eo)b:  

( )

( ) ( )

0 0

0 m

0 0

E Ec c
s

E EEc a b
E E Ec cla

s d d
E Eb a

⎡ ⎤
=⎢ ⎥
⎡ ⎤⎢ ⎥⎣ ⎦ ⎢ ⎥− +
⎢ ⎥
⎣ ⎦

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

l l

                                                           [8] 
 
Mapping stiffness change 
Adaptation of the transverse ply cracking 
model to include de-lamination cracking, 
(equation [8]), is shown in Fig. 5.  
Contours of (normalised) damage 
modulus, Ec, as a function of de-
lamination crack length, dl , (normalised 
with respect to matrix crack spacing, s), 
are computed for selected spacing of 
matrix cracks for different ratio of s/d.  In 
the absence of de-lamination cracking, the 
damaged modulus is indicated on the left 
axis.  Thus, the modulus of a laminate, in 
which the de-lamination crack has 
extended completely between two 
neighbouring matrix crack tips, is 
equivalent to there effectively being a 
multiplicity of closely spaced matrix 
cracks. In this case, the damaged modulus 
would be given by equation [6].  We see 
that the damaged modulus is a non-linear 
function of de-lamination crack length for 
all crack geometries.   

Figure 5 Reduced (damage) modulus 
change of glass fibre-epoxy laminate with 
the coupling of matrix and de-lamination 
cracking (eqn (8)). 
 
This is pronounced in laminates having 
“thick” transverse plies, (meaning more 
than two plies).  Similar behaviour exists 
for both glass fibre and carbon fibre-
epoxy laminates. 
 
 
6. Final Remarks 
 
Knowing more about materials in modern 
design is becoming increasingly more 
important.  This knowledge is partly 
contained in the constitutive equations of 
continuum design, in empirical “know-
how”, and experience.  There are three 
possible routes towards an engineering 
solution to a complex design problem 
involving materials: the route of improved 
empiricism, that of physical modelling, 
and the coupled route of model-informed 
empiricism.  The last appears to be the 
most promising.  Furthermore, multi-scale 
modelling has emerged where multi-
function materials can be designed from 
the microstructure upwards to satisfy 
several design criteria simultaneously.  
There is more scope for optimisation of 
when material properties vary 
continuously with some internal 
parameter.  Composites are the obvious 
example. 
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Abstract 
 
The crack nucleation and propagation 
processes in nanoscale materials are 
studied using the ab initio constraint 
molecular dynamics (c-MD) method and 
the lattice Green’s Function method. We 
investigate the strength and fracture 
behaviors of carbon related nanoscale 
materials, especially the graphen sheets in 
comparison with those of carbon 
nanotubes (CNT). The linear elastic 
parameters, nonlinear elastic instabilities, 
thermal lattice expansion and fracture 
behaviors are studied in detail. We will 
show that the thermodynamic and 
strength properties of the nanoscale 
materials exhibit characteristic features 
and they are different from those of the 
corresponding bulk materials.  
 
Keywords: Lattice Green's function 
method, molecular dynamics, nanoscale 
material, carbon nanotube, fracture, crack 
 
 
1. Introduction 
 
Recently, there has been a great interest 
in the study of nanoscale materials since 
they provide us a wide variety of 
academic problems as well as the 
technological applications [1-6]. Now, it 

has been observed that the introduction of 
lattice defects and mechanical 
deformation influence quite significantly 
on the electronical properties of 
nanoscale materials [7,8]. CNT's have 
been thus identified as one of the most 
promising building blocks for future 
development of functional 
nanostructures. 
 
The purpose of the present paper is to 
investigate the strength and fracture 
behaviors of nanoscale materials using 
the ab initio tight-binding molecular 
dynamics method [9,10] and the 
temperature Lattice Green's function 
method [11-14]. We calculate the atomic 
configurations and strength properties of 
nanocrystals including extended defects 
(dislocations and cracks) using the new 
version of the molecular dynamics 
method, constraint molecular dynamics 
(c-MD) method, on the basis of the 
analysis of the Lattice Green's function 
theory.  
 
In the present study, we also study the 
temperature effects on the fracture 
behavior of nanoscale materials using this 
temperature Lattice Green’s function 
method [15-22]. To derive the force 
constant matrix and non-linear cohesive 
forces at the finite temperature T, we use 



the statistical moment method [23-25]. 
We go beyond the quasi-harmonic 
approximation of the lattice vibration and 
apply the formalism of statistical moment 
method to the fracture problem.  
 
 
2. Principle of Calculations 
 
For treating mechanical properties of 
nanoscale materials we will use the ab 
initio tight-binding molecular dynamics 
methods [7,8], which have been very 
successful in the calculations of various 
chemical and physical properties of 
nanoscale materials. In the present article, 
we also use the lattice Green’s function 
(LGF) approach to study the mechanical 
properties of nanoscale materials, like 
graphene sheets, nanographites and 
nanotubes. In the treatment of LGF, we 
generalize the conventional LGF theory 
to take into account the temperature 
effects by including the temperature 
dependence of force constant matrices 
and non-linear cohesive forces. 
 
 
2.1. Lattice Green's Function Methood 
We will start with the equilibrium lattice 
equation is given in terms of force 
constant matrix Φ by 
 .u FΦ =   (1) 
Then, Green’s function is defined from 
(2) as the inverse of the force constant 
matrix, 

 ( ) 1 .G −= Φ   (2) 

This is the Green’s function for the 
perfect lattice and can be found by 
conversion to reciprocal space in the 
standard manner. 
 
The force constant matrix Φ* of the 
cracked lattice is obtained from that of 
the perfect crystal by introducing the 
force terms on the cleavage surface that 
annihilate the bonds there. Thus one can 
write the change in the force constant 
matrix Φ* as 

  [ ]crack forces
*= - ,    = .δ δΦ Φ Φ Φ Φ  (3) 

The formal solution of the problem is 
then given by the Dyson equation, 
 * *,G G G Gδ= + Φ  (4) 

together with the “master equation” for 
the Green’s function, 
 * .u G F=   (5) 
 
The crack geometry of the present study 
is taken to be a “double ended” crack of 
length 2Lx+1. The crack is periodic in the 
z direction, with repeat distance, which 
allows us to work with an infinite crack 
in the z direction. The kinks are 
symmetrically disposed at the ends of the 
crack on the x axis and repeated in the z 
direction. The kink pairs are each 2Lk+1 
in length. Another special feature of the 
problem in the double ended crack is that 
the “real” external force distribution is a 
single force dipole situated at the origin 
and repeated along the z axis with the 
repeat distance. If the kink length Lk is 
small compared to the half crack length 
Lx, then a stress intensity K field is well 
defined over the entire kink region, so the 
crack problem is well defined. After the 
appropriate Lattice Green’s functions of 
the cracked lattice are obtained, it is 
straightforward to investigate the crack 
extension events, i.e., kink nucleation and 
kink migration processes, by solving the 
coupled linear equations, with 
temperature dependent force constants, 
nonliniear cohesive forces and surface 
tensions.  
 
For treating the discrete crack, all 
quantities must be Fourier analyzed in 
order to obtain the Green's functions. 
Because of the periodicity in the z 
direction, reciprocal space in that 
direction will be a Brillouin zone with a 
finite number of points, while q space in 
the other directions will be continuous. 
Thus we have a mixed Fourier 
representation, which we write for any 
function f in the form. 
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/ zQ Lπ= .   (8-c) 
In these equations we have used a 
notation in which bold face characters 
represent vectors in the full 3-D space 
and Fourier decompose the 2-D space in 



x-y, where the q space is continuous, 
separate from the z decomposition. We 
shall always distinguish the function in 
real space and its transform in q space by 
nothing its independenct variable. 
Variables in real space will be labeled l, n, 
etc., while variables in reciprocal space 
will be labeled q, p, etc. 
 
2.1.1 LGF Treatment at finite 
temperature. The present LGF theory 
includes the temperature effects on the 
defect properties: For the LGF treatment 
at finite temperatures, we take explicitly 
account the changes in the lattice spacing 
(thermal lattice expansions), interatomic 
force constants and non-linear cohesive 
forces near the crack tip region, 
simultaneously. To derive the 
temperature dependent ingredients in the 
LGF theory, we use the statistical 
moment method (SMM) in the quantum 
statistical mechanics [21-23]. This 
method allows us to take into account the 
anharmocicity effects of thermal lattice 
vibrations on the thermodynamic 
quantities in the analytic formulations. 
Using the SMM, one can get the 
Helmholtz free energy of the system in 
the following form 
 0 0 1UΨ = + Ψ + Ψ  (9) 
where Ψ0 denotes the free energy in the 
harmonic approximation and Ψ1 the 
anharmonicity contribution to the free 
energy. We calculate the anharmonicity 
contribution to the free energy Ψ by 
applying the general integral formula  

,ˆ
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λ

λ
dVU ∫+Ψ+=Ψ  (10) 

where V̂λ  represents the Hamiltonian 
corresponding to the anharmonicity 
contribution. Then the free energy of the 
system is given by 
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where the second term denotes the 
harmonic contribution to the free energy.   

 
With the aid of the "real space" free 
energy formula Ψ=E-TS, one can find the 
thermodynamic quantities of given 
systems (including nanoscale materials). 
The thermodynamic quantities such as 
specific heats and elastic moduli at 
temperature T are directly derived from 
the free energy Ψ of the system. 
 
 
3. Results and Discussions 
 
3.1 Temperature dependence of 
material parameters  
Recently, the extensive experimental and 
theoretical studies have been done for the 
mechanical properties of carbon related 
nanotubes and nanomaterials and some 
information on the dislocation nucleation 
and plastic flows have been demonstrated 
[2]. For instance, in the strained 
nanotubes at high temperatures one 
observe the spontaneous formation of 
double pentagon-heptagon defect pairs 
[26-28]. Firstly, we study the 
thermodynamic and elastic properties of 
single wall carbon nanotubes (CNT), 
using the statistical moment method 
[11-14]. 
 

 
Fig.1: Temperature dependence of bond 
stretching force constants of diamond 
cubic semiconductors C, Si and Ge. 
 
 
In Fig.1, we show the temperature 
dependence of bond stretching force 
constants of diamond cubic 
semiconductors C, Si and Ge, calculated 
by using the generalized TB and the 
SMM scheme. One can see in Fig.1 that 
the bond stretching force constants are 
decreasing function of the temperature 
and the strongest decreasing 
characteristics are observed for Ge crystal, 
while the modest ones for C crystal, Si 



crystal being the intermediate. The 
temperature dependence of the force 
constant matrices is the important 
ingredients in the analysis based on the 
"temperature Lattice Green's Function" 
method, as will be discussed in the 
subsequent section 3.6. 
 

 
Fig.2: Thermal lattice expansion 
coefficientsα and the Young's moduli of 
CNTs. 
 
 
The calculated thermal expansion 
coefficients and Young’s moduli of 
CNTs are shown in Fig.2. One sees in 
Fig.2 that the thermal and elastic 
properties depend strongly on the type of 
CNT. It is interesting in Fig.2 that the 
Young’s moduli of CNT containing a 
pair of edge dislocations (characterized 
by 5/7 defects), dot-dashed lines, are 
smaller than those containing no 
dislocations and SW defects. 
 
 
3.2. Constraint-MD method 
In the present study, we will focus on the 
properties of cracks with atomistically 
smaller sizes, because the "large" 
macroscopic cracks are non-exsistence in 
the nanoscale materials. We have 
calculated the atomic configurations 
around the crack tips in the graphen 
sheets, using the constraint molecular 
dynamics and the lattice Green's function 
(LGF) method. In these calculations, the 
small double ended cracks are introduced 
by annihilating the interatomic bonds 
across the cleavage plane both for the 
c-MD and LGF treatments. 
 

 
3.3. SW defects and nucreation of 
micro cracks 
Firstly, we calculate the formation 
energies of the Stone-Wales defects in the 
graphen in the application of the tensile 
strain. We have obtained the negative 
values in the tensile strain as in the case 
of CNT. In this respect, we note that, in 
the strained nanotubes at high 
temperatures one observe the 
spontaneous formation of double 
pentagon-heptagon defect pairs [26-28]. 
We have found that the transverse arrays 
of SW defects is the most stable 
compared to those of the vertical and 45º 
declined arrays [13]. 
 
We now present our calculation results of 
dislocations in carbon related 
nanomaterials. Whe have calculated 
atomic configurations of pair of edge 
dislocations in two-dimensional (2D) 
graphen sheet, and found that bond 
switching defects dissociate into a pair of 
edge dislocations. In a pristine 
nano-molecule and graphen, the 5/7 
dislocations have to first emerge as a 
dipole, by a prime SW transformation. 
Topologically, the Stone-Wales (SW) 
defect is equivalent to either one of the 
two dipoles, each formed by a ~ a/2 slip. 
The core structure of the edge dislocation 
is characterized by the five- and 
seven-membered rings in the 2D small 
carbon crystallites. The excess energies 
due to introduction of the edge 
dislocation are also estimated by 
comparing the energies of carbon 
nanocrystals with and without the edge 
dislocations. We have found that there 
are no marked differences in the stability 
between the nanographens with and 
without edge dislocations. 
 

 
Fig.3: Initiation of micro cracks from SW 
defects in 2D graphen sheets under mode 
I loadings. 
 
 
We have also studied the crack opening 
processes initiating from SW defects in 
graphen sheets using the c-MD method. 



In Fig.3, we present the calculated atomic 
configurations around the micro cracks in 
the graphen sheets: Figures 3a and 3b 
show the atomic configurations of cracks 
before and after the opening atomic 
displacements, respectively. The micro 
cracks initiated in the core region of the 
SW defects open under mode I loading 
and the "constraint" of bond breaking at 
the initial MD stage. Figure 3c shows the 
atomic geometry of the micro crack after 
increasing the mode I loading about 2% 
in the crystallites. We have found that the 
further increase of the mode I loading 
does not extend the cracks, and the crack 
length remains constant. In other words, 
quite large lattice trapping occurs for this 
type of "impotent" micro cracks. Terefore, 
in order to extend the micro crack it is 
necessary to accumulate further the SW 
defects in the crack plane.  
 

 
 Fig4 
 
For comparison, we have also calculated 
the atomic configurations of SW defects 
in the (10,10) carbon nanotubes and 
presented the results in Fig.4. In Fig.4a 
and 4b, we present the (10,10) CNT 
structures including the SW defects 
without and with twisting deformations 
(by /10θ π= ), respectively. In both 
figures, we see that the SW defects are 
stable and do not induce the crack like 
defects, in contrast to the deformed 
structures of graphen sheets under the 
shear loadings. 
 
 
3.4. Micro crack nucleation from 
vacancy defects 
 

 
Fig.5: Atomic configurations of vacancy 
type micro cracks introduced by 
removing certain number of atoms in the 
graphen sheets. Nucleation of 
dislocations is observed for at the both 
ends of double ended crack. 
 
 
We have also studied the properties of 
double ended cracks introduced by 
removing lines of vacancies, "vacancy 
type" cracks, in the nanoscale materials. 
The calculated atomic configurations of 
the "vacancy type" double ended cracks 
are shown in Fig.5. The double ended 
cracks shown in Fig.5a and 5b are 
necleated by introducing the 10 and 12 
vacancies, respectively. In Fig.5a, it can 
be seen that the edge-type dislocations, 
characterized by pentagon-heptagon pair, 
are nucleated at both ends of the cracks. 
Here, it is remarkable that dislocation 
nucleation occurs without sizeable 
external shear loadings. The nucleation of 
dislocations at the end of the cracks 
depends on the atomic configuration of 
the unrelaxed vacancy defects, and the 
relative crack size with respect to the 
crystallite dimensions. Therefore, we do 
not find for instance the dislocations at 
the both ends of the cracks in Fig.5b. 
 
 
3.5. Micro cracks in the cleavage plane 
 



 
Fig.6: Atomic configurations of micro 
cracks in the cleavage plane: (a), (b), (c), 
(d), (e), (f), (g) and (h) are atomic 
configurations of MD steps 10, 20, 30, 50, 
100, 150, 200 and 250, respectively. 
 
 
Finally, we present in Fig.6 the atomic 
configurations around the double ended 
cracks in the cleavage plane of the 2D 
graphen sheets, under applied tensile 
stresses. In this calculation, we have 
assumed that the certain bonds across the 
cleavage plane are broken at the initial 
stage of MD relaxation processes. Near 
the end of MD simulation, however, no 
assumptions on the bond breakings are 
made for the whole crystallites. Using 
such MD procedure, i. e. so-called 
constraint MD (c-MD), one can get the 
stable equilibrium cracks in the 
crystallites, which are essentially the 
similar results as those obtained by the 
analytic LGF method. As in the infinite 
three dimensional crystals, the double 
ended cracks are trapped in the small 
crystallites at certain mode I loadings. 
However, upon the increase of the mode I 
loading to some extent, the micro cracks 
do extend, by one atomic distance, to the 
next stable positions (as shown in Fig.8h). 
This is in marked difference to those of 

the "impotent" nonpropagating cracks in 
the previous subsections. 
 During the c-MD calculations, 
the change (reduction) in the "strain 
energy" of 2D graphen sheets habe been 
monitored. The strain energies of graphen 
sheets including the cleavage crack are 
reduced rapidly at the initials stage of the 
MD processes. Here, it is important to 
note that the surface excess energies � 
due to the cleaved surface in the 
crystallites are approximately constant 
during the c-MD calculations, even when 
the crack opening displacements are 
nearly zero, since the "bond annihilation" 
operations are active from the beggining 
of the calculations. This is one of the 
advantages of the c-MD approach in the 
analysis of crack problems. 
 
 
3.6. Kink pair nucleation and 
migration processes in 3D system 
 

 
Fig.7: Atomic geometry of the kinked 
crack. 
 
In the three dimensional (3D) crystals 
(including nanocrystals), the fundamental 
process of the crack extension events is 
composed of kink pair nucleation and 
kink migration processes, as 
schematically shown in Fig. 7. This type 
of crack extension process is a thermally 
assisted ones and it can be analyzed 
successfully with the use of the Lattice 
Green's Function method. To derive the 
Green's functions of the kinked crack at 
the absolute zero temperature, we follow 
the procedure developed by Thomson, 
Tewary and Masuda-Jindo [19]. We place 
the nonlinear bonds only at the kink sites, 
and all the other bulk atoms in their linear 
regimes. 
 



 Then the master equations for 
determining the (vertical opening) 
displacements at the origin u0 and the 
displacements at the kink sites uk are 
given by 

( )0 0 ,oo ok k
k

u g F g f u= −∑   (11) 

( )0 ' '
'

,ock kk k
k

u g F g f u= −∑   (12) 

where F0 deuotes the external force 
dispole, excerted on the central atom 
sites. 
 

 

 

 

 

 
Fig.8: Kinked crack Green's functions of 
the geometry with lx=10, lz=15 and lk=3. 
 
 
After the appropriate lattice Green's 
functions of the cracked lattice are 
obtained, it is straighforward to 
investigate the crack extension events, i.. 
e.., kink nucleation and kink migration 
processes, by solving the coupled linear 
equations, with temperature dependent 
force constants, non-linear cohesive 
forces and surface tensions. In Fig. 8(a), 
we present the atomic geometry of kinked 
crack in simple cubic lattice with 
dimensions of lx=10, lz=15 and lk=3. The 
lower figures 8b, 8c, 8d, 8e, and 8f are 
the kinked crack Green's functions 
originated from the atomic sites of the 
external loadings, kink sites k1, k2, k3 and 
k4, respectively. It is noted that  the 
atomic displacements due to the external 
force dipoles F0 are much smaller and 
more localized in the perfect lattice than 
those in the cracked lattice. Figure 9 
shows the atomic displacements, 
self-consistently solved, both for the 
atomic sites of external loadings and for 
the kink sites. We have found, for model 
Si crystal (by the ratio between the bond 
stretching and bending force constants) 
that both kink formation and migration 
energies have the weak temperature 
dependence, decreasing function of the 
temperature and nucleation energies are 



predominant for the whole temperature 
range. The ratio of the nucleation energy 
to migration energy is less than ~0.05, 
and also decreasing function of the 
temperature. 
 

 

 
Fig.9: Atomic displacements u0, uk1, uk2, 
uk3 and uk4 as a function of the external 
loadings. 
 
 
4. Conclusions 
 
Using a minimal parameter ab initio 
TBMD scheme we have studied the 
properties of lattice defects and cracks in 
the nanoscale materials, i.e., quasi-1D 
and 2D carbon related materials. In the 
analysis of the crack opening and 
extension events, we have introduced the 
new c-MD (constraint Molecular 
Dynamics) method. It has been shown 
that there are two kinds of cracks in the 
nanoscale materials, i. e., strongly lattice 
trapped "impotent" cracks and the 
propagating cleavage cracks under the 
modest external loadings. 
 
In the 3D crystallites, we have studied the 
crack extension events through the kink 
pair nucleation and migration processes 
using the temperature Lattice Green's 
Function method. We have shown that 

the kink pair nucleation and migration 
energies have negative temperature 
dependence and nucleation energies are 
predominant for the whole temperature 
range. 
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Abstract  
 
A micromechanics-based model is 
proposed to describe unstable damage 
evolution in microcrack-weakened brittle 
rock material. The influence of all 
microcracks with different sizes and 
orientations are introduced into the 
constitutive relation by using the statistical 
average method. Effects of microcrack 
interaction on the complete stress-strain 
relation as well as the localization of 
damage for microcrack-weakened brittle 
rock material are analyzed by using 
effective medium method. Each 
microcrack is assumed to be embedded in 
an approximate effective medium that is 
weakened by uniformly distributed 
microcracks of the statistically-averaged 
length depending on the actual damage 
state. The elastic moduli of the 
approximate effective medium can be 
determined by using the dilute distribution 
method. Micromechanical kinetic 
equations for stable and unstable growth 
characterizing the ‘ process domains ’ of 
active microcracks are taken into account.  
These ‘process domains’ together with 
‘open microcrack domains’ completely 
determine the integration domains of 
ensemble averaged constitutive equations 
relating macro- strain and macro-stress. 
Theoretical predictions have shown to be 
consistent with the experimental results. 
 
Key words: Microcrack interaction, the 
complete stress-strain relation, localization 
of damage, uniaxial tensile loads. 

 
 
1. Introduction 
 
Determination of the strength and 
constitutive relation of rock subjected to 
uniaxial tensile loads is important in 
analyzing the damage of a rock structure, 
and hence for designing of rock support. 
In rock materials, countless microcracks 
are generally distributed over the bulk of 
rock material and propagate under loading. 
Through scanning electron microscope 
(SEM) and acoustic emission (AE) 
examinations, it is revealed that the 
growth and nucleation of these cracks 
dominate the failure and the macroscopic 
mechanical properties of rock 
material[1,2].The estimation of 
constitutive relation of rock material is the 
most important problem in 
micromechanics. This is not only because 
constitutive relation are needful for the 
simulation of mechanical response of rock 
materials, but also because constitutive 
relation is often applied as the description 
of stability of rock structure. 
 
Various methods have been proposed to 
describe the effective moduli of crack-
weakened rock. Simplest method is the 
approximation of noninteracting 
microcracks, which is referred  to as dilute 
distribution method. In the limit of the 
dilute distribution of microcracks, the 
Taylor model(sometimes referred to as the 
dilute distribution model), which 
completely neglects the microcrack 
interaction, offers a simple and efficient 



path for the determination of effective 
moduli[3]. When damage consists of 
weakly interacting microcracks, 
estimations of the effective moduli of rock 
with stationary microcracks may be 
obtained using the self-consistent 
method[4] [5], Mori-Tanaka method[6-7] , 
differential  method[8], generalized self-
consistent method[9], and other such 
“effective medum” approaches[10,12,13]. 
The statistical micromechanical damage 
theory in [11], and some other theories can 
be adopted to take strong microcrack 
interaction into account. If the strong 
interaction among cracks is considered, a 
rigorous solution can be sought 
numerically, but the final numerical results, 
which may be very accurate, are of limited 
use. 
 
However, investigations on the effective 
constitutive relation of brittle materials 
with evolutionary damage are still very 
limited. Some effective medium models 
have been suggested to describe stable 
damage evolution in brittle solids[12-13]. 
Neglecting effects of microcrack 
interaction, the damage and constitutive 
relation of brittle rock materials under 
uniaxial tensile loading, dynamic uniaxial 
tensile loading, compressive loads, 
dynamic compressive loads and unloading 
were developed[14-18]. To the author’s 
knowledge, no micromechanical model 
has been presented to describe the 
effective constitutive relation with 
microcrack interaction for brittle rock 
material with localization of damage under 
unaxial tensile loading or dynamic 
uniaxial tensile loading. Therefore, it is the 
intent of this paper to develop such an 
approximate micromechanical model for 
implementing effects of microcrack 
interaction on the complete stress-strain 
relation as well as localization of damage 
for brittle rock material under unaxial 
tensile loading. 
 
 
2. Theoretical model 
 
Establish the global coordinate system 
(x1,x2)and corresponding local coordinate 
system ( 21, xx ′′ ) ,in which 2x′  –axis is 
parallel to the normal vector n. It is 
assumed that the preexisting microcrack 
sizes is 02c , its normal forms an angle 

θ with respect to the 2x  -axis as depicted 
in Fig.1. 
 
Under static uniaxial tensile loading ,the 
stress intensity factors at the crack tip take 
the following form 
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where IK  and IIK is the mode I and II 
stress intensity factors , respectively. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Since Eq.(1) contains the SIFs for mode I 
and mode II, the strain energy density 
theory [19, 20] is applied to solving the 
mixed mode problem.The criterion of 
microcrack growth under static uniaxial 
tensile loading in a stable fashion is[19,20] 
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is the critical strain energy density factor 
at weak plane , KIC  is the mode I critical 
stress intensity factor at weak plane.The 
crack growth angles can be obtained from 
the strain energy density factor 

22σ

Fig.1 microcrack-weakened rock subjected 
to uniaxial tensile stress 
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criterion[19,20]. It is assumed that the 
crack tends to run in the 0ϕ -direction for 
which minS prevails.  
 
Once a microcrack satisfies the 
criterion(2), it will propagate increasing its 
radius from the initially statistically-
averaged value 0c  to a certain 
characteristic value 1c  and then being 
arrested by energy barriers with higher 
strength than interfaces. The radius 

1c depends on the microscopic structures 
of rock materials, such as size  and shapes 
of grains or aggregates. Because the 
contribution of a micrcrack into the 
effective compliance tensor is proportional 
to the second power of its radius, the 
average radii 0c  and 1c  are determined by 
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where 0N  is the total number of 
microcracks in the RVE at the initial 
undamaged state, 1N  the number of 
micrcracks that have propagated, and the 
subscript )(β signifies the −β th  
microcrack. The critical domain of 
unstable microcrack growth can be 
defined by Eqs(1) and (2). All microcracks 
whose orientations is defined by Eqs(1) 
and (2) must have propagated and have the 
radius 1c . 

 
With a further increase in the applied 
stresses, some microcracks normal to the 
tension direction  may pass through the 
higher energy barriers and experience the 
secondary growth. Similar to Eq.(2), the 
criterion of secondary growth of a 
microcrack may the following form[19,20] 
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is the critical strain energy density factor 
describing the resistance of  rock material 
against microcrack growth, ICCK  is the 
critical value of mode I describing the 
resistance of  rock material against 
microcrack growth. 

 
In this paper, an approximate scheme is 
applied to estimate the effects of 
microcrack interaction on constitutive 

relation of rock material subjected to 
uniaxial tensile loads. It is assumed in the 
approximate scheme that all microcracks 
are in an infinite, damaged effective 
medium, whose elastic moduli are 
different from those in the self-consistent 
method and can be calculated 
approximately from the actual damage 
state by using the dilute distribution 
method[13]. 

 
To determine the influences of microcrack 
interaction on the constitutive relation, the 
effective medium surrounding the 
microcracks is here approximate to be 
isotropic. Thus, its effective moduli can be 
expressed by Young’s modulus E and 
Poisson’s ratio v , the following 
expression can be obtainted 
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The effective compliance tensor of the 
approximate effective medium is 
calculated by assuming that the number of 
density of microcracks in it remains the 
actual value,but all micrcracks are  with 
the same radius, c , which is  related to the 
actual damage state. 

 
Since the contribution of a microcrack to 
the compliance tensor is proportional to 
the second power of its radius, c is defined 
as the average of radii of all actual 
microcracks, that is  
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where N denotes the total number of 
microcracks in RVE, and )(βc the radius of 
the β -th microcrack. 
 
The radius of all microcracks that have not 
propagated are 0c , and those having 
propagated have the radius 1c , then, c can 
obtained as 
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where Ω is domain of microcrack 
propagation, )(θp  and )(cp  are the 
probability density function describing the 
distribution of orientations and sizes of 
microcracks in rock material, respectively. 



If all microcracks are uniformly 
distributed in the orientation space, Eq.(7) 
is rewritten as 
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Thus, the effective moduli of the assumed 
effective medium surrounding 
microcracks are approximated by those of 
an isotropic rock material in which 
microcracks with the same radius c are  
uniformly distributed with the number 
density of ρ  . They can be readily 
obtained by using the dilute distribution 
method. For such a medium subjected to 
uniform traction on its external surfaces, 
the results from dilute distribution method 
are as follows 
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where 0E is Young’s modulus of intact 
rock, 0v is Poisson’s ratio of intact rock, 

2cρω = being the conventional scalar 
microcrack density parameter. 

 
The total strain tensors may be splitted 
into the elastic strain part 0

ijε , which is the 
strain in the rock material if there are not 
cracks, and the inelastic strain part m

ijε , 
which accounts for the inelastic 
deformation of the pre-existing cracks and 
their preferential growth, i. e. 

m
ijijij εεε += 0                                 �11� 

According to Eq.(11), the compliance 
tensor can also be decomposed by  

m
ijijij SSS += 0                          (12) 

where 0
ijS  is the compliance tensor of the 

matrix, and m
ijS  the contribution of all 

microcracks to the effective compliance 
tensor. Similarly, m

ijS  can be splitted into 
two parts 
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where 1m
ijS denotes the isotropic 

component of m
ijS and is defined in Eq.(5), 

and 2m
ijS denotes the difference between 

m
ijS  and 1m

ijS . Then, Eq.(13) can be 
rewritten as 
                   210 m

ij
m
ijijij SSSS ++=               (14) 

As the key assumption of the suggested 
scheme, the compliance tensor of the 
postulated effective medium surrounding a 
microcrack is approximated by  

               10 m
ijijij SSS +=                    (15) 

 
All microcracks in the microcracked rock 
material are assumed to be in the isotropic 
effective medium with compliance ijS  in 
Eq.(15), and then used to compute the 
anisotropic overall compliance tensor ijS  
in Eq.(12) of the actual damaged rock 
material. 
 
For an open microcrack in the iosotropic 
effective medium with Young’s modulus 
E  and Poisson’s v ,the compliance tensor 
induced by the elastic deformation of the 
β -th microcrack of length c2  and 
orientation θ  is obtained as 
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where 0A is the representative element 
area of rock material , ijg are the 
components of the transformation matrix 
between the two coordinate system[14]. 
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The strains induced by a single microcrack 
are 
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If the tensile stress 22σ is less than the 

critical value 
011

)(22 ca
Scc

c π
σ = , no 

microcrack has propagated in the rock 
material, all microcracks are open. In such 
a case, the average microcrack length 

0cc= . The constitutive relation is  
          ( ) jk

b
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where 1b
ijS denotes the contribution to the 

compliance tensor due to all open 
microcracks that have not propagated, 
     θθθρπ dccSpS b
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Once the tensile stress 22σ reaches the 
critical value )(22 cσ  and it is less than 

111
)(22 ca

Scc
cc π

σ = ,where )(22 ccσ is the 

maximal tensile stress the material can 
bear, some microcracks will propagate 
increasing their length from 02c to 12c . 
The microcrack length c2 as well as the 
contribution of a single microcrack to the 
compliance tensor, ),( 1 ccS b

ijkl , can be 
easily  determined from Eq.(8) and 
Eq.(16), respectively. Then, the effective 
constitutive relation can be obtained as 
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where 2b

ijS  denotes the contribution of 
elastic deformation of microcracks with 
length 12c to the compliance tensor, and 

θθθρ

θθθρ
π

dccSp

dccSpS
b

ij

b
ij

b
ij

sin),()(

sin),()(

0

0

2

0

1

∫
∫

Ω

−=
     (22)               

∫=
Ω

θθρ dccSpS b
ij

b
ij ),()( 1

2                (23) 

 
If )(2222 ccσσ = ,that is ,the stage of rapid 
stress drop, some microcracks nearly 
normal to the tension direction propagate 
in an unstable fashion.As mentioned above, 
the distribution of sizes and orientations of 
microcracks in rock material can be 
described by the probability density 
function )(cp  and )(θp  , respectively. If 
the number of microcracks normal to 
tensile direction is zero, it is assumed that 
microcracks whose orientations are within 
a small orientation scope ccθθ ≤≤0  
propagate in an unstable fashion. 
 
Once Eq.(4) is satisfied by microcracks 
whose orientations are within a small 
orientation scope ccθθ ≤≤0 , they will 
experience the secondary unstable 
growth ,which may cause a transition from 
the distributed damage to the localization 

of damage and a rapid stress drop at the 
transition strain )(22 ccε .During the 
stage ,only microcracks whose 
orientations are within a small orientation 
scope ccθθ ≤≤0 propagate further and other 
microcracks undergo elastic unloading. 

 
The relation between the microcrack 
length 2c  and the tensile stress 22σ  can be 
obtained approximately from the criterion 
Eq.(4) ,we have 
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During the stage of stress drop, the 
average microcrack length c2  an be easily 
obtained as  

∫

∫
∫

−

+−

+=

Ω

cc dccpcp

dccpcp

dcpcpc

θ

π

θθθ

θθθ

θθθ

0

2
1

2
2

2
0

2
1

2
0

2
0

2

sin))(()(

sin))(()(

sin)()(

      (25) 

During the stage of stress drop, the 
effective constitutive relation can be given 
as  
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where 3b
ijS  denotes the contribution of 

elastic deformation of unstable 
propagating microcracks with length 

22c to the compliance tensor, and 

∫

∫
∫

−

−=

Ω

cc dccSp

dccSp

dccSpS

b
ij

b
ij

b
ij

b
ij

θ

π

θθθρ

θθθρ

θθθρ

0 0

0

0

2

0

1

sin),()(

sin),()(

sin),()(

      (27)   

θθρ

θθρ

θ
dccSp

dccSpS

cc b
ij

b
ij

b
ij

),()(

),()(

10

1
2

∫

∫ −=
Ω                  (28)   

θθρθ dccSpS cc b
ij

b
ij ),()( 20

3 ∫=                    
(29) 

During the stage of stress drop, the strain 
maintains constant, we have 

)(2222 ccεε =                                              (30) 



where )(22 ccε  is the axial strain at peak 
loads )(22 ccσ , 22ε is the axial strain during 
stage of stress drop. 
 
According to Eq.(30),the magnitude of the 
stress drop can be determined. It is 
assumed that the stage of rapid stress drop 
intersects that of tension softening at the 
point where the value of stress is )(22 scσ . 
 
If )(2222 scσσ ≤ ,that is, the stage of strain 
softening. During the stage of strain 
softening, some of the microcracks which 
have undergone the secondary growth will 
propagate further, while other microcracks 
will simultaneously experience unloading. 
Meanwhile the growth criterion Eq.(4) 
must be satisfied by microcracks whose 
orientations are within a small orientation 
scope ccθθ ≤≤0 . The compliance tensor 
due to the microcracks experiencing the 
secondary growth unstable microcracks 
and stable microcracks  32 , b

ij
b
ij SS  can be 

evaluated by Eq.(28)and 
Eq.(29),respectively. The compliance 
tensor due to open microcracks can be 
computed by Eq.(27). 
 
During the stage of strain softening, the 
effective constitutive relation can be given 
as  
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b
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b
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It is assumed that all microcrack are 
distributed uniformly in the orientations 
and sizes space.  The stress-strain relation 
for microcrack - weakened rock under 
uniaxial tensile loading can be expressed 
as 
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3.Comparison with experimental results 
 
In order to illustrate the four stages of the 
stress-strain relation predicted by the 
theoretical model, experimental results 
[21,22] for Sanjome andesite and Inada 
granite specimens subjected to uniaxial 
tensile loading is selected. Sanjome 
andesite and Inada granite is a relatively 



homogeneous and nearly brittle, compact 
rock.The following material parameters 
were used in computations for Sanjome 
rock: 

                                                          
(33)   

The following material parameters were 
used in computations for Inada granite 

πθ

θρ

σ

/1)(,85.0

,1.0,105.4

,7.6,23.0
,10.0,100.5

,105.7,37600

05

)(220

3
1

4
00

==

=×=

−==
=×=

×==
−

−

pmMPaK

MPav
mMPaKmc

mcMPaE

ICC

cc

cc

IC

            

�34� 
In Eqs(33)and (34), the numerical values 
of  E0 , 0v  , )(22 ccσ  were read off from the 
tests [22]. 10 ,, ccρ were estimated by SEM 
observations , ICK � ICCK were estimated 
by the three-point bend tests. The solid 
curves depicted in Fig.2 and Fig.3 
represent the stress-strain relation 
predicted by the present model, while dots 
are the experimental results [22].It can be 
seen in Fig.2 and Fig.3 that the agreement 
between theoretical and experimental 
results is fair good. 
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4. Conclusion 
 

An approximate scheme is proposed to 
determine the complete stress-strain 
relation of brittle rock materials weakened 
by uniformly distributed microcracks that 
may propagate in an unstable fashion. The 
influence of all microcracks with different 
sizes and orientations are introduced into 
the constitutive relation by using the 
statistical average method. Effects of 
microcrack interaction on the complete 
stress-strain relation as well as the 
localization of damage and deformation 
are taken into account by assuming that  
all microcracks are embedded in an 
approximate, isotropic effective medium. 
The effective moduli of the approximate 
effective medium are easily determined by 
using dilute distribution method. The 
present effective medium model can be 
applied to study the complete stress-strain 
relation and the localization of damage 
and deformation for a statistically 
homogeneous brittle rock material 
containing a low-to-mediate density of 
microcracks. 
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Abstract 

The analytical solution of an elliptical 
cavity in an infinite piezoelectric medium 
under remotely applied combined 
mechanical-electric loading is obtained 
under exact boundary conditions by Stroh 
formalism. Based on the solution and the 
self-consistent method, the exact solution 
for a crack is derived. The strain energy 
density factors of mode I and II cracks are 
calculated for different mechanical and 
electric loadings, as well as under 
different electric boundary conditions. It 
is demonstrated that the widely used 
impermeable crack and permeable cracks 
are two extremes, and the value of the 
minimum strain energy density factor of 
the real crack model considering the crack 
opening is between those of the 
impermeable and permeable crack models. 
The minimum strain energy density factor 
of impermeable crack is larger than that of 
permeable crack for positive applied 
electric field, but is less than that of 
permeable crack for negative 
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applied electric field.                                   

Keywords: Piezoelectric medium, 
Elliptical cavity, Crack, Exact solution, 
Strain energy density factor. 
 
  
1. Introduction 
 
Due to the mechanical-electrical coupling 
phenomenon, piezoelectric materials are 
widely used in advanced technologies 
such as high power sonar transducers, 
electromechanical actuators, etc. The 
fragility is the inherent weakness of the 
piezoelectric ceramic. Therefore, fracture 
study of this kind material has been 
attracting many efforts. A lot of work has 
been done, which can be referred to the 
review articles [1-5]. Generally speaking, 
there are two key problems in fracture 
mechanics. One is the setting up and 
solving of the boundary value problem. 
And the other is the fracture criterion. 
With regard to the insulating crack in 
piezoelectric materials, several electric 
boundary conditions, e.g., electrically  

 
 



  

impermeable, electrically permeable and 
exact boundary conditions, are frequently 
used. The first two commonly used 
conditions are only two extremes to treat 
the crack as an electrically impermeable 
or permeable slit [3]. In general, different 
electrical boundary conditions result to 
different solutions. For a Griffith crack 
under remotely uniformly applied 
combined mechanical-electric loadings in 
an infinite piezoelectric material, the 
stress intensity factors are only related to 
the mechanical loadings, while the 
electric displacement intensity factor is 
only related to the electric loading under 
the impermeable conditions. Under the 
permeable conditions, however, the stress 
factor intensity and electric displacement 
intensity factors are all related to the 
mechanical loading. The electric 
displacement intensity factor is produced 
through the piezoelectricity effect. So, the 
intensity factors are not appropriate to be 
used directly as fracture criterion as for 
the conventional elastic material. Both of 
the energy release rate and the J- integral 
increase with the absolute value of 
electric field increasing, which contradict 
to the experimental results for condition 
of negative electric field [3]. The 
researches [6-8] demonstrate that the J- 
integral is not path independent because 
of the electric field in the crack cavity. 
The energy density factor criterion for 
piezoelectric ceramics is studied [9-13], 
and show that this criterion takes greatly 
advantages in explaining the failure 
behavior under combined 
mechanical-electrical loadings. In these 
studies, only the impermeable condition is 
used. In this paper, the crack in a 
two-dimensional piezoelectric medium is 
analyzed under combined 
mechanical-electrical loadings and 
different electric boundary conditions.  

2. Stroh formalism 
 
For a two-dimensional piezoelectric 
medium in the ox1x2 plane, the general 
solution of the generalized displacement 

vector T
321 )( ϕuuu=u  and the 

generalized stress function vector 
T

4321 )( φφφφ=Φ  can be expressed 

as 

)()( zz fAAfu +=         (1) 

)()( zz fBBfΦ +=         (2) 

where A and B are two 44× matrixes 
related to the material constants, and 
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21 xpxz ηη +=  with 1 ~ 4η = , and ηp is 

the eigenvalue with positive imaginary 
part [1,3].  
Then, the stress vectors are  

,12 ΦΣ == T
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,21 ΦΣ −== T
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3. Solution for an elliptical cavity 

 
Consider an elliptical cavity with the semi 
major-axis of a and semi minor-axis of b 
in an infinite piezoelectric plane under 
remotely uniformly combined 
mechanical-electric loading of 

,∞
ijσ ∞

iD (or ∞
iE ), as schematically shown 

in Figure 1. The center of the cavity is 
located at the origin of the coordinate 
system.  



  

 
The solution is given by [3] 
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where Yij is the element of the matrix Y. 
 
It can be seen that the solution is not only 
related to the mechanical loading and the 
size of the elliptic cavity, but also to the 
dielectric coefficient cκ  of the medium 
in the elliptic cavity.  
 
 
4. Exact solution of the real crack 
 
If b approaches zero, the cavity is shrunk 
to a crack. From Eq. (8) one has, 

( )TDa ∞∞∞∞∞ Δ= 2232221 σσσp   (10) 

where the first three components are 
applied mechanical loadings, and the last 
one will be determined by self-consistent 
method. This component is the function 
of the mechanical loadings, material 
constants, and the two non-dimensional 
parameters   α and β. If b approaches 
zero, α is a small parameter. On the other 
hand, the dielectric coefficient cκ  of the 
medium in the crack cavity is generally 
several magnitudes smaller than that of 
the piezoelectric media. So, β is also a 
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Figure 1 Elliptic cavity in an infinite 
piezoelectric medium. 



  

small parameter. Then, ∞Δ 2D is related 

to βα / , which can be written as 

βα /1
)/](Re[ 44

22 +
−=Δ

∞
∞∞ 24 ΣY Y

DD       (11) 

When 0→b , from Eq. (7) we have for 
the upper and lower center points 

 i±=ς                (12) 

where the sign “+” and “-” denote, 
respectively, the “upper” and “lower” 
crack faces. Substituting Eq. (12) into Eq. 
(6) and then into Eqs. (4) and (1) leads to 
the displacements of the upper and lower 
center points 
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(13) 
The self-consistent method requires the 
displacement u2 of the upper center point 
equal the semi minor axis of the elliptical 
cavity, which leads to 
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where ∞Δ 2D is a function of α , as 

expressed in Eq. (11). 
  
Combining Eqs. (11) and (14) obtains    
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Solving Eq. (15) gives the real crack 
opening 
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5. Strain energy density factor  
 
According to the definition of stress 
intensity factor and electric displacement 
intensity factor on the right crack tip 
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From the solution obtained in Section 3, it 
is not difficulty to get the intensity factor 

( )T
2232221
∞∞∞∞ Δ= Da σσσπK  (19) 

The stress intensity factor is the same as 
classical material one, but the electric 
displacement intensity factor is  
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The electric displacement intensity factor 

is related to βα / . Substituting the real 

crack opening in Eq. (17) into (20) gives 
the electric displacement intensity factor 
of the real crack.   

As an extreme of ∞→βα / , Eq. (20) is 

reduced to  
∞= 2DaK D π         (21) 

which is the electric displacement 
intensity factor of the impermeable crack. 

While 0/ →βα , Eq. (20) becomes  
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which is the electric displacement 



  

intensity factor of permeable crack.  
 
Moving the origin of the coordinate 
system to the right crack tip and 
introducing new variables 

)sin(cos* θθ ηηη prazz +=−= , as 

shown in Fig.2, we can express the stress 

and displacement fields near the right 
crack tip in terms of the intensity factor 
[3] 
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The strain energy density function is 
given [9-11] 
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Finally, the strain energy density factor S 
is obtained 
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The strain energy density factor S is only a 
function of angle θ  and independent of r. 
Then, the strain energy density factors of 
different models can be calculated. 
 
 
6.Numerical results and discusion 
 
The used piezoelectric material is PZT-4, 
with the material constants given below: 

Elastic constants )/10( 29 mN×  

6.30,6.25,113
3.74,8.77,139

664433

131211

===
===

ccc
ccc

 

Piezoelectric constants )/( 2mC  

84.13,98.6,44.13 333115 =−== eee  

Dielectric constants )/10( 9 mF−×  

3
3311 1085.8,47.5,0.6 ×=== cκκκ                  

The applied loading at infinity is  

( )1 0 0 0 0 T∞ =Σ     

( )2 11 22 20
T

Dσ σ∞ ∞ ∞ ∞=Σ    (28) 

The strain and electric field at infinity are 
determined by the constitutive equation  
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Introduce the following parameters to 
present the calculated results 

Crack 

x1

x2 

 

 
Figure 2 The polar coordinate system 
at the crack tip. 
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Influence of stress on strain energy 
density factors 
 
Figure 3 displays the strain energy density 

factor for 021 =∞σ , where the strain 

energy density factor S  is normalized as 
*S  

122
22

*

10)( −∞ ×
=

σa
SS       (31) 

It can be seen that the strain energy 
density factor of impermeable crack is 
larger than that of permeable crack, while 
the strain energy density factor of the real 
crack is between those of the 
impermeable and permeable cracks. In 
this mode I case, the strain energy density 

factor take the minimum value *
minS  at 

θ=0°. 
 
Plotted in Figs. 4 and 5 are the normalized 

minimum energy density factors *
minS  

versus the mechanical loadings for a 
given positive and negative electric fields, 
respectively. The value of strain energy 
density factor of impermeable crack is 
larger than that of permeable crack for 
positive applied electric field, but is less 
than that of permeable crack for negative 
applied electric field. The relative error 

between the values based on the 
permeable crack and the real crack is 
about 23% for the positive electric field, 
and about 20% for negative electric field. 
The discrepancy between the minimum 
strain energy density factors calculated by 
the impermeable crack and the real crack 
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Figure 3 The strain energy density factor 
versus the angle for 01.0,0 == ERRσ .   
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Figure 4 Normalized energy density 
factor *

minS  verse the stress σR  for 
01.0=ER . 
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Figure 5 Normalized energy density 
factor *

minS  verse the stress σR for  
01.0−=ER . 



  

is not very large, and the gap decreases 
with the shear mechanical loading 
increasing.   
 
Figure 6 shows the strain energy density 
factor variation of the real crack. The 
maximum of the minimum value 
increases with the shear mechanical 
loading increased.    

 
Influence of electric field on strain 
energy density factors 
 
For a given mechanical loading, the 
minimum strain energy density factor 
versus the electric field is depicted in 
Figure 7.     
 
The maximum of minimum of strain 
energy density factor of the permeable 
crack is independent of the applied 
electric field. The results of the 
impermeable crack are very close to those 
of the real crack, but the discrepancy 
increases with the absolute value of 
electric field increasing. 
Figure 8 displays the variation of 
normalized energy density factor of the 

real crack with the angle for different 
electric field. The larger the electric field 
is, the larger the maximum of minimum of 
strain energy density factor is.  
 
 

 
 
7. Concluding remarks 
 
The exact solution is obtained and the 
strain energy density factors are 
calculated for mode I and II cracks in a 
piezoelectric medium under different 
combined mechanical-electric loadings. 
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Figure 7 Normalized minimum energy 
density factor *

minS  versus the electric 
field RE for Rσ=0.01.  
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S* of the real crack verse the angle for 
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The results show that the impermeable 
and the permeable crack models are the 
upper and lower bounds of the real crack 
and the impermeable crack model is very 
close to the real crack model in the used 
applied loadings. The minimum strain 
energy density factor of impermeable 
crack is larger than that of permeable 
crack for positive applied electric field, 
but is less than that of permeable crack for 
negative applied electric field.   
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Abstract 
 
Functionally graded materials are a class 
of advanced materials where the 
mechanical and thermal properties in one 
direction can be tailored so that its 
variation is gradual. The gradient nature of 
properties can avoid failure by 
delaminations due to the absence of 
interfaces as in laminated composites. 
 
An interesting application of such 
materials are functionally graded plates 
obtained from combination of metals and 
ceramics (i.e. aluminum and zirconia). 
Metals provide stiffness and ductility 
whereas ceramics provide mainly thermal 
protection. This combination of properties 
may be very useful for aerospace 
applications. 
 

In this paper we perform the analysis of 
static deformations and free vibrations of 
functionally graded plates by a recent 
meshless method, based on the 
combination of pseudospectral methods 
and radial basis functions [1,2]. 
 
The method is quite stable and allows 
excellent accuracy in terms of transverse 
displacements and natural frequencies. 
 
Keywords: Numerical methods, meshless 
methods, pseudospectral, radial basis 
functions, functionally graded plates.  
 
 
1. Introduction 
 
Vibration of thick and thin composite 
plates is an important subject in the design 
of mechanical, civil and aerospace 
applications. The thickness of most parts 



of composite plates makes the transverse 
shear and the rotatory inertia not 
negligible as in classical theories. 
Therefore the first-order shear deformation 
theory for plates should be considered in 
general analysis. The analysis of free 
vibration of isotropic and composite plates 
is best performed by numerical techniques. 
The differential quadrature method by 
Bert [3], the boundary characteristic 
orthogonal polynomials by Liew [4] and 
the pseudospectral method by Lee [5] 
were used in recent years. More recently 
the free vibration analysis of Timoshenko 
beams and Mindlin plates by Kansa's non-
symmetric radial basis function (RBF) 
collocation method [6,7] was performed 
by Ferreira [8]. 
 
In the present work we illustrate the 
application of the combination of radial 
basis functions and pseudospectral 
methods to the static and eigenvalue 
analysis of functionally graded plates.  
 
 
2. The RBF- pseudospectral method 
 
Pseudospectral (PS) methods (see [9] for 
an introduction to the subject) are known 
as highly accurate solvers for PDEs. 
Generally speaking, one represents the 
spatial part of the approximate solution  uh  
of a given PDE by a linear combination of 
certain smooth basis functions, ( i , j  
represents the  N  grid points). 
 

 
   
uh(xi ) = cj j (xi )

j=1

N

, i = 1,…, N  (1) 

 
or in matrix-vector notation 
 
   u = Ac  (2) 
 
with 

    
c = c1,…,cN

T
and 

  
Ai j = j (xi )  

Traditionally, polynomial basis functions 
are used. In this paper, however, we will 
use radial basis functions (RBFs). The 
inverse multiquadric we use is of the form: 
 

 
  

j (x) = (r) =
1

r 2
+

2
 (3) 

where  r  is the euclidian norm between 
grid points,   r =|| x ||and  is a shape 
parameter. 
The derivatives of  uh are easily computed. 
For example, 
 

    u = Axc = Ax A 1u Du  (4) 

 

with 
  
Ax =

d
dx j (xi )  

where matrix D  is the differentiation 
matrix. Details about this formulation can 
be found in [1,2]. 
 
 
3. First-order shear deformation plate 
theory (FSDT) 
 
Equations for Reddy's (FSDT) are 
presented bellow and are derived by using 
the dynamic version of the principle of 
virtual work. Further details are presented 
in [10] 
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where  q  is the external distributed load 
and 
 

 

 



 
  

N

M
=

1
zh / 2

h / 2

dz  (6) 

 

 
  

Q{ } = z 1{ }
h / 2

h / 2

dz  (7) 

 

 
  
Ii =

(k ) (z)i

k

k+1

k=1

N

dz, i = 0,1,2  (8) 

 
 
4. Homogenization of material 
properties 
 
We assume that the plate is made of two 
randomly distributed isotropic 
constituents, the macroscopic response of 
the composite is isotropic, and the 
composition of the composite varies only 
in the  z direction. Qian and Batra [11] 
have studied free vibrations of a FG plate 
with material properties varying smoothly 
in two directions. 
 
The volume fraction of constituent  1  is 
given by: 
 

 
  
V1 =

1
2
+

z
h

p

 (9) 

 

Thus   V1 = 0  at the bottom surface 

  z = h 2  and   V1 = 1  at the top surface 

  z = h 2  of the plate. Two homogenization 
techniques are used to find the effective 
properties at a point. According to the rule 
of mixtures, the effective property P , at a 
point is given by 
 
   P = P1V1 + P2V2  (10) 
 
where   V1  and   V2 = 1 V1  are the volume 

fractions of constituents 1 and 2 
respectively, and   P1  and    P2  are values of 

 P  for the two constituents. 
 

According to the Mori-Tanaka [12] 
homogenization method the effective bulk 
modulus,  K , and the effective shear 
modulus,  G , of the composite are given 
by 
 

 

  

K K1

K2 K1

=
V2

1+ 1 V2( )
K2 K1

K1
4
3 G1

 (11) 

 

 

  

G G1

G2 G1

=
V2

1+ 1 V2( )
G2 G1

G1 + f1

 (12) 

 

where

  
f1 =

G1 9K1 + 8G1( )
6 K1 + 2G1( )

.  

The effective values of the Young's 
modulus,  E , and the Poisson's ratio, , 
are found from: 
 

 
  
E =

9KG
3K + G

, =
3K 2G

2 3K + G( )
 (13) 

 
Fig. 1 shows the variation of volume 
fraction,   V1 , along the plate thickness,  z , 
for different  p  parameters. 
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Figure 1: Volume fraction 
variation in the z direction. 

 
 



5. Numerical examples 
 
We use functionally graded square plates 
of length  a  and total thickness  h  to 
present some numerical examples. 
 
Static analysis 
We first compute the central deflection for 
a simply-supported FG aluminum/zirconia 
plate, with material properties: 

 
  

E1 = 70 GPa, 1 = 0.3
E2 = 151GPa, 2 = 0.3

 

A convergence study is made for various 
values of p , and compared with a 
meshless solution by Qian and colleagues, 
based on the meshless local Petrov-
Galerkin method (MLPG) [13], and a 
meshless Kansa collocation using a 
multiquadric (MQ) [13]. Results are 
presented in Table 1, with 
normalization w = w h . 
 
n (points/side)   p = 0    p = 0.5    p = 1  
9 0.0086 0.0110 0.0124 
11 0.0271 0.0368 0.0405 
13 0.0201 0.0269 0.0298 
15 0.0205 0.0275 0.0305 
17 0.0208 0.0279 0.0309 
19 0.0208 0.0279 0.0309 
21 0.0208 0.0279 0.0309 
[13] MQ 0.0208 0.0279 0.0309 
[13] MLPG 0.0212 / 0.0315 
n (points/side)   p = 2  metal  
9 0.0139 0.0184  
11 0.0431 0.0584  
13 0.0322 0.0433  
15 0.0329 0.0443  
17 0.0334 0.0449  
19 0.0333 0.0448  
21 0.0333 0.0448  
[13] MQ 0.0333 0.0448  
[13] MLPG 0.0334 0.0458  
 
Table 1: Central deflection w , for 
various  p  parameters, with 
  a h = 20 , = n 2 . 

 
As seen in Table 1, results are in close 
agreement with other meshless methods, 
the meshless local Petrov-Galerkin method 

(MLPG) and the multiquadric radial basis 
function (MQ). In fact, our formulation 
gives similar results to the MQ-RBF 
formulation. 
 
Free vibration analysis 
A free vibration analysis is made using a 
simply supported FG aluminum/zirconia 
plate with the following material 
properties: 

  

E1 = 70 GPa, 1 = 0.3, 1 = 2702
E2 = 200 GPa, 2 = 0.3, 2 = 5700

 

All presented values are adimensionalized 

by:
  

= a2 h( ) 1 E1( ) . 

The first natural normalized frequencies, 
are presented in Table 2 and Table 3, 

for different ratios  a h  (Table 2) and 
different  p  parameters (Ttable 3). 
 
In Fig. 2, the first four flexural vibration 
modes are represented, for   a h = 20  
and  p = 0 . 
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Figure 2: Vibration modes for 

  a h = 20, p = 0, = n 2  
 
 
 
 
 
 
 
 



n  
(points/side) 

  

a
h
= 5  

  

a
h
= 10  

  

a
h
= 20  

11 5.5077 5.8135 5.3699 
13 5.5494 6.0027 6.1732 
15 5.5455 5.9894 6.1626 
17 5.5426 5.9776 6.1042 
19 5.5429 5.9787 6.1081 
[14] 5.4806 5.9609 6.1076 
 
Table 2: Convergence of first natural 
frequencies  for various a h , 
with  p = 1 , = n 2 . 

 
n 
(points/side) 

  p = 2    p = 3    p = 5  

11 5.5448 5.5936 5.6333 
13 5.5844 5.6320 5.6706 
15 5.5806 5.6283 5.6670 
17 5.5779 5.6257 5.6644 
19 5.5782 5.6260 5.6647 
[14] 5.4923 5.5285 5.5632 
 
Table 3: Convergence of first natural 
frequencies  for various  p  
parameters, with  a h = 5 , = n 2 . 

 
From Tables 2 and 3 we can conclude that 
our formulation agrees well with the exact 
solution of Vel and Batra [14]. The 
agreement is higher for thinner plates, as 
the exact solution has higher order modes 
that our formulation does not consider, in 
particular in the thickness direction. In 
Table 3 for   a h = 5 (thick plate) the results 
are quite comparable. Again, differences 
lie in the higher-order theory used in both 
cases. 
 
 
6. Conclusions 
 
This paper considers the analysis of 
functionally graded plate with an hybrid 
formulation. In this formulation we 
consider radial basis functions (RBFs) 
with pseudo spectral (PS) to form a new, 
accurate meshless solution for functionally 
graded composite plates. 
 
We briefly presented the formulation and 
tested it in static deformation and free 
vibration of simply supported functionally 
graded plates. 
 

Results show very good accuracy for 
moderately thick plates and thin plates. 
For very thick plates differences with 
exact solution increases, proving the need 
of higher-order shear deformation 
theories. 
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Abstract: By the approaches of the 
theory of complex functions, dynamic 
propagation problems on the surfaces of 
mode single direction crack subjected 
to moving loads were studied. Analytical 
solutions are very readily attained by 
application of the methods of self-similar 
functions. The problems researched can 
be facilely changed into Riemann-Hilbert 
problems, and analytical solutions to 
single direction crack under the actions of 
constant moving loads and unit-step 
moving loads respectively, are obtained. 
Key words :  mode  single direction 
crack, dynamic problem, self-similar 
functions, analytical solution 
1. Introduction 
Dynamic problems play an important role 
in modern fracture mechanics. They will 
play a still greater role in the future, in 
connection with the possibility in 
principle of using dynamic stress waves 
generated by internal local fracture for 
detection of the power and nature of a 
fracture focus. Only an adequate theory 
of such a focus, whose development is 
one of the missions of fracture mechanics, 
can help to resolve this great problem [1]. 
Single direction crack often occurs in 
factual engineering structure; and a 
number of researchers studied its statics 

problems on edge crack and only gained 
numerical solutions[2-4]. However, many 
engineering machineries work under the 
conditions of dynamic loadings, and 
statics researches can’t effectually settle a 
series of dynamic problems appearing in 
the dynamic conditions, so it is essential 
to investigate their fracture dynamics 
problems. On account of the difficulty in 
mathematics, numerical solutions and 
half analytical solutions were attained by 
literatures [5-10], moreover analytical 
solutions were obtained much less 
[11-12]. Therefore it is necessary to study 
mode І single direction crack dynamic 
extension problem. General expressions 
of solutions are given by the approaches 
of the theory of complex functions in this 
article. The problems considered can be 
changed into a Riemann-Hilbert problem 
by application of this method, which is 
very readily resolved by the usual 
Muskhelishvili’s measures[13-14]. 
2. The correlative representations of 

self-similar functions 
In order to resolve availably fracture 
dynamics problems concerning single 
direction crack, solutions will be obtained 
under the condition of variable loads for 
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mode  Ⅰ single direction crack. In terms 
of the theorem of generalized functions, 
the unlike boundary condition problems 
researched will be easily transformed into 
Keldysh-Sedov mixed boundary value 
problem by the methods of self-similar 
functions, and the correlative solutions 
will be attained. 
Postulating at 0=y  there are any 
number of loaded sections and 
displacement sections along the x-axis, 
and the ends of these sections are running 
with different constant velocity. At the 
initial moment t=0 the half-plane is at 
rest. In these segments the loads and 
displacements are arbitrary linear 
combination of the undermentioned 
functions [1, 11, 15-17]:

⋅k
k

k

dx
xfd )(

1

s
s

s

dt
tfd )(

1       (1) 

Where   
⎩
⎨
⎧

= iif
ξ

ξ
0

)(
0
0

>
<

ξ
ξ

     (2) 

Here k ,  k and s ,   1s  are arbitrary 
integer positive numbers.  
An arbitrary continuous function of two 
variables x  and t  may be represented 
as a linear superposition of Eq.(1), 
therefore solving loads or displacements 
with the modality of Eq.(2) will possess 
significance in principle. Let us introduce 
the linear differential operator as well as 
inverse: 

nm

nm

tx
L

∂∂
∂

=
+

 inverse: nm

nm

tx
L

−−

−−
−

∂∂
∂

=  (3) 

Here +m+n, -m-n and 0 denote the 
(m+n)th order derivative, the (m+n)th 
order integral and function’s self. It is 
facile to testify that there exist constants 
m  and n , when L  is put into Eq.(3), 
homogeneous functions of x and t  of 
zeroth dimension (homogeneous) are 
attained. The coefficients m , n  will be 
called the indices of self-similarity [1,11].  
Utilizing correlative representations of 
elastodynamics equations of motion for 
an orthotropic anisotropy [1,11,15-17]: 
for the case when functions Lu  and Lv  
are homogeneous 

Lu   ,u =0   Lv ,v =0   yy Lσσ =0   (4) 
for the case when functions yLσ and 

xyLτ  are homogeneous  

   Lu
t

u
∂
∂

=0 ,        Lv
t

v
∂
∂

=0 ,   

   yy L
t

σσ
∂
∂

=0 ,          (5)  

The relevant self-similar functions are as 
follows [15-17] : 

)(Re)/1(0 τσ Fty = , )(Re0 τWv = ,  (6) 
)()](/)([)( 1 ττττ FDDW =′        (7) 

where:   tx /=τ   )(τF  and )(τW  are 
self-similar functions. The values of 

)(/)(1 ττ DD  can be ascertained from 
Appendix 1 of literatures [15-17], shown 
only here: )(/)(1 ττ DD  at the interval of 
the subsonic speeds is purely imaginary 
for the values which we are considering. 
Thus, elastodynamics problems for an 
orthotropic anisotropic body researched 
can be translated into seeking the single 
unknown function problems on )(τF  
and )(τW sufficing the boundary-value 
conditions. In the universal case this is 
Riemann-Hilbert problem in the theory of 
complex functions (in the simplest cases 
we have Keldysh-Sedov or Dirchlet 
problem), this kind of problem is facilely 
solved by the usual methods, for example, 
in the books by Muskhelishvili [13-14]. 
Fracture dynamics problems will be 
investigated for an infinite orthotropic 
anisotropic body. Assume at the initial 
moment 0=t  a crack occurs at the 
origin of coordinates and begins running 
at constant velocity V  (for the subsonic 
speeds) along the positive direction of 
−x axis; and at 0<t , the half-plane was 

at rest. The surfaces of the crack are 
subjected to the unlike types of loads 
under the plane strain states.  
3. Basic modality of the solution to 

single direction crack propagation 
problem 

Postulate at the initial moment 0=t , a 
micro-crack abruptly appears at an 
orthotropic anisotropic body, we shall 
choose the Cartesian co-ordinate axes to 
be coincident with the axes of elastic 
symmetry of the body, and the problems 
considered are restricted to motion in the 

−− yx plane. The crack is propagating 
with constant velocity V  in the positive 
direction of x -axis, the problem studied 
will be translated into the following 
boundary condition problems as:  

),(),0,( 1 txftxy =σ  Vtx <<0  
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,0),0,( =txv            Vtx >      (8) 
Introducing the formula tx /=τ . By 
application of the above corresponding 
expressions and )/()( txxt δδ =  in the 
theory of generalized function[18-20], the 
previous boundary conditions can be 
transformed into the following boundary 
value issues:  

)](,[)(Re 2 τδττ fF = ,   V<<τ0  
0)(Re =′ τW            V>τ     (9) 

According to the relationship of )(τF  
and )(τW ′  in Eq. (7) and the above 
conditions, the format of single unknown 
function )(τW ′  can be confirmed:  

)](,[()( 3 τξττ fW =′       (10) 
Then the problem researched can be 
come down to Keldysh-Sedov problem: 

0)(Re =τξ ,     V>τ  
0)(Im =τξ ,  V<<τ0    (11) 

Considering synthetically asymmetry and 
the conditions of the infinite point of the 
plane corresponding to the origin of 
coordinates of the physical plane as well 
as singularities of the stress at the crack 
tip[21-22], the modality of the solution of 
the above problems can be attained:  

]),[()( τττξ −= VT          (12) 
Then utilizing Eqs. (6) or (7), we will 
easily deduce the stress, the displacement 
and the stress intensity factor under the 
conditions of single direction crack 
propagation problems.  
4. Solutions to idiographic problems 
In order to resolve efficiently dynamics 
problems on an orthotropic anisotropic 
body, solutions will be gained under the 
action of the concentrated force for mode 
I moving single direction crack. In terms 
of the theorem of generalized functions, 
the dissimilar boundary condition 
problems investigated will be changed 
into Keldysh-Sedov mixed boundary 
value problem by the methods of 
self-similar functions, and the correlative 
solutions will be acquired. 
1)  Postulate at the initial moment 0=t , 
an single direction crack suddenly occurs 
and begins to run with constant velocity 
V  along the positive direction of x -axis. 
The surfaces of the crack are subjected to 
normal point force P , moving at a 
constant velocity V<β  along the 
positive direction of x-axis. On the 

half-plane at 0=y , the boundary 
conditions will be as follows:   

)(),0,( txPtxy βδσ −−=  Vtx <<0  
,0),0,( =txv         Vtx >    (13) 

In this case the displacement will 
obviously be homogeneous functions, in 
which 1=L , Utilizing tx /=τ , the 
theory of generalized function[18-20] as 
well as Eqs. (4) and (6), the first of Eq. 
(13) can be rewritten: 

)()()(Re βτδβδτ −−=−−= PtxPtF  
V<<τ0             (14) 

In terms of Eq. (7) , boundary conditions 
(14) will be further rewritten as : 

)()](
)(
)(Re[

1

βτδτ
τ
τ

−−=′⋅ PW
D
D

, 

 V<<τ0  
0)(Re =′ τW    V>τ      (15) 

Deducing from the above formulas, the 
solution of )(τW ′  must have the format: 

)/()()( βττξτ −=′W        (16)  
In the formula )(τξ  has no singularity 
in the extension of V<<τ0 ,while 

)(/)( 1 ττ DD  is purely imaginary for the 
subsonic speeds, therefore )(τξ  must be 
purely real in the area of V<<τ0 .Thus, 
question (15) becomes: 

0)(Re =τξ        V>τ  
0)(Im =τξ        V<<τ0   (17) 

According to dissymmetry and the 
conditions of the infinite point of the 
plane corresponding to the origin of 
coordinates of the physical plane as well 
as singularities of the crack tip [21-22],
the unique solution of the Keldysh-Sedov 
problem (17) can be obtained: 

ττ
τξ

)(
)(

−
=

V
A         (18) 

Where A is an unknown constant.  
Substituting Eq. (18) into Eqs. (16) and 
(7), we can gain: 

ττβτ
τ

)()(
)(

−−
=′

V
AW       (19) 

ττβτ
τττ

)()(
)(/)()( 1

−−
=

V
DADF       (20) 

Then putting Eq. (20) into Eq. (14), at 
βτ → , constant A  can be confirmed: 

)](/)(Im[
)(

1 ββπ
ββ

DD
VP

A
−

−=         (21) 

Substituting Eqs. (20) and (19) into (6) 
and (4), at the surface 0=y , we will 
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attain the stress, the displacement and the 
stress intensity factor, respectively:  

ττβτ
τττσ

)()(
)(/)(Re1)(Re1 1

−−
==

V
DAD

t
F

ty  

ττβτ
τ

)()(
]

)(
)(Im[

1 Vtx
A

D
D

−−
⋅=     

    Vtx >     (22) 

τ
ττβτ

τ d
V

AWvv
tx

∫∝ −−
===

/0

)()(
Re)(Re 

l
V

tx
ltxxVt

l
A

2
2)(

ln β
β

+
+

−
+−−

=       

 tVx <<0    (23) 
Where: 2ββ −=Vl , the result is gained 
by making use of integral formulas in 
Literature [23]. 

VtV
VDVDAtK

)(
)](/)(Im[2)( 1

β
π

−
⋅=Ι     (24) 

Known from Eq. (24), dynamic stress 
intensity factor )(1 tK  decays inchmeal 
to slow and has obvious singularity on 
account of sole variable t  in the 
denominator, and the rest quantities are 
all real constants. 
2) With all conditions remaining the same 
as those in the above example, a unit step 
load is applied along the positive 
direction of x-axis starting at the point 

tx β=  where β  is the speed of the 
moving load. The boundary conditions 
will be as follows: 

)(),0,( txPHtxy βσ −−=  Vtx <<0  
,0),0,( =txv      Vtx >       (25)  

where )(xH  is Heaviside function, with 
)()( xxH δ=′ . 

In this case the stress will evidently be 
homogeneous functions, in which 1=L . 
Applying Eqs. (5) and (6), the first 
expression of the boundary conditions 
(25) can be written as follows:  

)()()(Re βτδβτ −−=−′−= PtxHPtF  
   V<<τ0             (26) 

According to Eq.(7), Eq.(26) will be 
further rewritten as: 

1

( )Re[ ( )] ( )
( )

D W P
D

τ τ δ τ β
τ

′ = − − , V<<τ0  

0)(Re =′ τW   V>τ     (27) 
From the above formulas, the solution of 

)(τW ′  can be easily deduced: 
)/()()( βττξτ −=′W      (28) 

In the formula )(τξ  has no singularity 
at the interval of V<<τ0 ,while 

)(/)( 1 ττ DD  is purely imaginary for the 
subsonic speeds, therefore )(τξ  must be 
purely real in the range of V<<τ0 .Thus, 
question (27) takes: 

0)(Re =τξ     V>τ  
0)(Im =τξ        V<<τ0   (29) 

In terms of asymmetry and the conditions 
of the infinite point of the plane 
corresponding to the origin of coordinates 
of the physical plane as well as 
singularities of the crack tip [21-22], the 
unique solution of the Keldysh-Sedov 
problem (29) can be attained: 

2/3])[(
)(

ττ
τξ

−
=

V
A        (30) 

Where A is an unknown constant.  
Then substituting Eq. (30) into Eqs. (28) 
and (7), we can obtain: 

2/3]))[((
)(

ττβτ
τ

−−
=′

V
AW     (31) 

2/3
1 ]))[(()(

)()(
ττβττ

ττ
−−

⋅=
V
A

D
DF    (32) 

Putting Eq. (32) into Eq. (26), at βτ → , 
constant A can be ascertained: 

)](/)(Im[
])[(

1

2/3

ββπ
ββ
DD

VPA −
−=        (33) 

In an orthotropic isotropic body, the 
disturbance range of elastic wave can be 
denoted by the circular area of radius tc1  
and tc2 . In an orthotropic anisotropic 
body, the disturbance range of elastic 
wave is not the circular zone and can not 
exceed threshold value ρ/11CCd =  of 
elastic body, where 11C  is an elastic 
constant of materials. At tCx d> , with 

0)](/)(Im[ 1 =ττ DD , thus the stresses 
and the displacements are zero; and this 
depicts that disturbance of elastic wave 
can not overrun tCd .  
Now putting Eq. (32) into (6) and (5), at 
the surface 0=y , the stresses and the 
dynamic stress intensity factor are gotten: 

∫∝ −−
=

x

y dt
V

DAD
t 2/3

1

]))[((
)(/)(Re1
ττβτ
ττσ  

∫ −−
−= t

x

Cd

d
V
DDA τ
ττβττ
ττ

2/3
1

]))[((
)](/)(Im[Re  

   Vtx >     (34) 
yVtx

VtxtK σπ ⋅−=
→

)(2lim)(1  

2/5
1

)(
)](/)(Im[22

VV
VDVDAt

β
π

−
⋅=     (35) 

The limit of Eq.(35) remains with the 
format ∞⋅0 , which should be changed 
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into the modality of ∞∞ / , then its result 
can be worked out by the measures of 
L’Hospital theorem[24]. Dynamic stress 
intensity factor )(1 tK  gently increases 
from zero and trends to a constant in 
virtue of only variable t  in the 
numerator of the above expressions, so 
the rest quantities are also regarded as 
real constants. 
For the sake of expedience, we postulate:  

2)( ττττ −=−= VVX         (36) 
Known from the above: 0=a ,  Vb =

1−=c ,  
224 VbacD −=−= 

Denominator in Eq. (31) has this item 
2/3)( Xβτ − , computation is not fulfilled 

by application of integral formulae, so 
integral format must be changed into 
integral which can be performed. By 
variable substitution: βττ −=1 ,Eq. (36) 
can be rewritten as: 

2
11

2 )2()( ττβββττ −−+−=−= VVVX  
  (37) 

From Eq. (37), the following relation is: 
2

1 ββ −=Va ， β21 −=Vb , -1 −=c     

1
22

114 DVbcaD =−=−=  
Integrating Eq. (31), we obtain )(τW : 

∫∫ =
−

= 2/3
1

1
2/3)(
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AdW
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ττ
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ln1[
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aXD
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XD
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XD
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2
1

1

11 22[]2
+

−−
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C
a

baX
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++
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− ]
2

ln1

1

11

1 βτ
     (38) 

Eq. (38) is gained by relevant formulae in 
Literature [23].The crack runs along the 
x-axis, so )(τW can be calculated in the 
definite integral, we take constant 0=C . 
Then putting Eq. (38) into Eqs. (5), (6), 
the displacement v  is attained: 

ττ
τ

τ dWxdtWv
txt

)(Re)(Re
/

20 ∫∫ ∞
−==  

XD
b

XD
bbD

a
Ax tx τβ

τ
11

2
1

/

2
1

22[1Re +
−−−

= ∫∞                                   

τ
βτ

d
a

baX
a

]
2

ln1

1

11

1

+
−
+

−       (39) 

Appling integral formulas in Literature 
[23], we can acquire the following: 

ττ
τ

b
X

X
d 2

−=∫ ,   ( for 0=a )   (40) 

)
3

1(2
22 τ

τ
τ
τ

τ
τ −

+
−

−=∫
VV

VX
d     (41) 

Where 0=a , Eq. (41) is deduced by this 
relationship: θτ 2sinV= . 
The integral of the second term of Eq. (39) 
without coefficient can be written: 

τ
βττ

d
a

baX
a 1

11

1
2 2

ln1
+

−
+

−∫  

)1(
2

ln1
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11

1 τβτ
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−
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1

−

+−−⋅
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1
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1 2
ln1

a
baX

a
+

−
+

=
βττ

 

)(22
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X

d
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baX
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1

11

1 βττ
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X
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2
ln1

1

11

1
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+

=  
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ln1

1

11

1 a
bXa

a
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−
−

+
βτ

        (42) 

Then inserting Eqs. (40), (41) and (42) 
into (39), the displacement v  will be 
obtained:  

τ
τβ −
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−−−
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bbD
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where   0=a   Vb =   1−=c  
224 VbacD −=−= , 2

1 ββ −=Va 
β21 −=Vb , 1

22
114 DVbcaD =−=−=  

5. Description of dynamic stress 
intensity factor with crack velocity 

In terms of real case of concrete problems, 
variations of the normalized dynamic 
stress intensity factor as a function of 
crack velocity should be described better 
when time t  is ascertained. The relevant 
parameters are put into Eqs. (24) and (35) 
to plot )(1 tK  with crack velocity rcV /  
respectively, and the numerical solutions 
of them are facilely attained. Consider a 
composite solid made of a unidirectional 
rein-forced material. The corresponding 
parameters are given as follows[25-26]: 

GpaC 25.14911 = ;   GpaC 202.1222 = ;  
GpaC 9047.312 = ;   GpaC 45.566 =   

33108.9478.1 −⋅××= mNρ ; V4.0=β  
1

66 40.613/ −⋅== smCcr ρ ; NP 200= ;    

rcV < ;  sec100.1 4−×=t .   
Where rc  is Raleigh wave velocity of elastic 
body. 

Known from Eq. (24), the effect of crack 
speed on )(1 tK is displayed graphically in 
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 Figure.1: Dynamic stress intensity factors with 

crack velocity . 
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Figure 2:  Dynamic stress intensity factors 

with crack velocity . 
 
Table.1  Relevant numerical values 

between )(1 tK  and rcV /  
 

rcV /    0.1 0.2 0.3 0.4
21

1 10)( ×tK
2/3/ −⋅mN  

6.698 4.588 3.545 2.827

rcV /    0.6 0.7 0.8 0.9
21

1 10)( ×tK
2/3/ −⋅mN  

1.747 1.283 0.843 0.418

 
Table.2  Relevant numerical values 

between )(1 tK  and rcV /  

rcV /    0.1 0.2 0.3 0.4
17

1 10)( ×tK
2/3/ −⋅mN  

3.215 2.202 1.702 1.357

rcV /    0.6 0.7 0.8 0.9
17

1 10)( ×tK
2/3/ −⋅mN  

0.838 0.616 0.405 0.200
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Fig.1 at sec100.1 4−×=t . It is seen that 
dynamic stress intensity factor decreases 
gradually with crack velocity and reaches 
zero when the crack velocity coincides 
with the Rayleigh wave speed, i.e., 

rcV = . According to Eq. (35), variations 
of )(1 tK  with crack velocity rcV / are 
similar to the above-mentioned cases 
when time also equals sec100.1 4−× . 
This illustrates that dynamic stress 
intensity factor tends to reduce in 
magnitude with the crack velocity until it 
vanishes at the Rayleigh wave speed 
when time is finite. Hence, in the time as 

∞→t  and 0→V , no comparison 
between the static and dynamic results 
can be made [21,27]. The numerical 
values between )(1 tK  and crack velocity 

rcV / are represented in Tables.1, 2 in 
terms of curves in Figs.1, 2, respectively. 
6. Conclusion  
Analytical solutions to mode dynamic 
single direction crack extension problem 
were obtained by the measures of the 
theory of functions of a complex variable. 
The approach based on the methods of 
the self-similar functions makes it 
possible to attain the idiographic solution 
of the dynamic single direction crack 
propagation problem. This is regarded as 
the analogous class of dynamic problem 
of the elasticity theory. The measure of 
solution is based exclusively on 
techniques of analytical-function theory 
and is straightforward and concise. By 
making some observations regarding the 
solution of the mixed boundary value 
problem we have reasonably decreased 
the amount of the computational work 
needed to settle such a single direction 
crack propagation problem.  
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Abstract 
 
In the past decade there has been an 
increasing interest in multi-scale 
approaches for predicting the macroscopic 
constitutive response on the basis of the 
underlying microstructure. The overall 
physical behavior of micro-heterogeneous 
materials depends strongly on the size, 
shape, properties and spatial distribution 
of the microstructural constituents.  
 
In polymeric materials, the microstructure 
is influenced by processing and material 
type (e.g. amorphous or semi-crystalline). 
There is also a structural hierarchy in the 
mechanical behavior: the macro-scale 
response is related to the local 
microstructure, which in turn depends on 
the structure at the nano-scale. In this 

work, a three level multi-scale approach 
has been employed to investigate the 
mechanical properties of polymeric 
materials. The approach couples finite-
element modeling (continuous milieu) and 
molecular dynamics (discrete milieu) in an 
iterative procedure. 
 
This approach does not lead to closed-
form overall constitutive equations, but it 
computes the stress-strain relationship at 
every analysis point of the macro 
component by detailed modeling of the 
underlying micro- and meso-scale 
deformation phenomena.  
 
Keywords: multiscale modelling, polymer 
mechanics, molecular dynamics, FEM, 
computer simulations, structure-properties 
relationships, nanocomposites.  



 
1. Introduction 
 
Being able to understand the deformation 
mechanisms and behavior of a polymer 
under an external load is not only of 
interest from the academic point of view 
but also from the industrial standpoint. 
Much of the process optimization, for 
example in injection molding, is still being 
achieved based on empirical data. These 
methods create problems when something 
as simple as a change of material batch 
occurs. Moreover, understanding the 
behavior of polymers is of interest to the 
society in general, since ultimately we all 
depend on the reliability and performance 
of plastic parts. 
 
This paper follows previous simulation 
work at the meso-scale to study the crack 
formation and propagation phenomena [1], 
deformation mechanisms at the nano-scale 
[2], true stress development [3], and the 
influence of the loading conditions on the 
material behavior [4]. 
 
One of the main issues with polymers is 
their complex structure at multiple length-
scales. For example, semi-crystalline 
polymers form molecular arrangements 
(crystalline lamellas), which combine to 
give rise to supralamellar structures, such 
as spherulites and shish-kebab 
arrangements, which in turn constitute the 
morphology at the microscopic level. The 
size, shape, and other features of these 
microscopic structures determine the 
behavior at the macro-scale.  
 
There are several advantages to a 
Computational Materials Science and 
Engineering approach: (1) minimizing the 
cost of trial-and-error experiments, 
occasionally termed the “Edisonian” 
approach; (2) increased confidence on the 
materials’ properties, which also means 
easier scale-up from the laboratory scale; 
(3) new knowledge-based structures can 
be devised and tested in comparatively 
shorter times; (4) ability to study 
phenomena which are inaccessible 
experimentally due to current technology 
limitations. 
 
While there are emerging experimental 
techniques that allow the manipulation of 
structures at the micro- and nano-scale, 
allowing for example the measurement of 

electrical current through a single nano-
tube, there are still many unknowns and 
uncertainties regarding the response of 
materials at those levels. Conversely, 
computer simulations require input data 
which is typically obtained experimentally 
(although theoretically on occasion). 
Furthermore, simulation results must be 
validated through experimental testing. 
Even if the micro- and nano-scale models 
cannot be validated individually, the 
macro-scale results must be representative 
of the real material behavior. 
 
The goal of this work is thus to 
concomitantly employ simulation and 
experiments to increase our knowledge 
about the polymeric material properties 
and the key phenomena responsible for 
their behavior.  
 
 
2. Multiscale approach 
 
The developed multiscale approach is 
based on three hierarchical levels. These 
levels span from the mesoscale (polymer 
macromolecular chains) to the macro-scale 
(test specimen or part). The methodology 
employed in this work is described next. 
 
Conceptual methodology. 
A schematic representation of the 
methodology is shown in Figure 1. The 
lowest scale level (hierarchical level 3) 
corresponds to the mesoscale, where 
amorphous or semi-crystalline regions can 
be studied. Each region is comprised of 
individual polymeric chains, with each 
chain consisting of a set of statistical 
segments. This scale level is simulated 
using the molecular dynamics method. In 
molecular dynamics, a statistical segment 
represents a series of repeating units of a 
real polymer chain.  

 
Figure 1 – Schematic representation of the 
conceptual methodology used in this work. 



 
Hierarchical level 2 corresponds to the 
micro-scale, where it is possible to find 
specific microstructural features such as 
spherulites in semi-crystalline polymers, 
or highly oriented and coiled chain 
arrangements in amorphous polymers. 
 
The highest length scale (hierarchical level 
1) corresponds to the macroscopic molded 
test specimen or part. For a molded 
component it is possible at this scale to 
distinguish between regions of high 
molecular orientation (skin) and lower 
orientation (core) in the specimen (skin-
core microstructure). However, typical 
simulations performed at this level are 
unable to discern and take into account the 
effect of the local microstructure. 
Although macroscopic FEM model can 
model the mechanical response of 
laminated structures (such as the skin-core 
microstructure), it is further necessary to 
study the local response at a lower length 
scale (hierarchical level 2). For that, it is 
necessary to know the local morphology 
of each element in the model. 
 

 
Figure 2 – Schematic representation of the 
practical implementation of the employed 
methodology. 
 
 
Implementation. 
The macro-scale and micro-scale 
simulations are performed using the Finite 
Element Method (FEM). The coupling 
algorithm was implemented on a 
commercially available software package 
(Abaqus), using the open subroutines 
available for material definition. The 
molecular dynamics code was developed 
by the authors, as was the meso-scale 
visualization software. A schematic 
representation of the implemented 
methodology is shown in Figure 2. 
 

As previously mentioned, while the lowest 
scale level (HL3) is simulated using a 
discrete approach, the two highest scale 
levels are simulated using a continuum 
approach. It is therefore necessary to 
bridge between hierarchical levels 2 and 3. 
This is done by creating a record of the 
mechanical behavior of a variety of 
structures at the mesoscale level (HL3), 
through simulation of each of those 
structures under different loading modes 
(tension, compression, shear). Each of 
these structures represents a specific 
constituent at the microscopic level (HL2).  
 
The HL3 simulations can be performed a 
priori, and the results stored for later 
retrieval (offline approach). Thus, the 
simulation at the HL2 level can obtain 
information from that record regarding the 
specific response associated with each 
microstructural arrangement. The response 
under complex loading modes, which will 
be the typical case, can be inferred from 
combining simple loading modes.  
 
Analogously, gathering mechanical 
information from HL2 performs the 
simulations at the HL1 level. However, the 
HL1-HL2 coupling strategy is executed 
recursively during the simulation, with the 
mechanical problem being solved locally 
at a smaller length scale for each time (or 
deformation) increment. This incorporates 
the microstructural diversity into the 
model. The coupling is implemented in the 
user material subroutine UMAT, starting 
from a HL1 perturbed elastic solution. The 
kinematical variables (displacement field 
gradient) are passed to HL2 in each 
material evaluation point of HL1 (Gauss 
Points) and are an input for the 
microstructural (HL2) model assigned to a 
particular element of HL1. The response 
from HL2 is the complete Cauchy stress 
tensor response in the material point. This 
approach enables an implicit form for the 
stress response.  
 
 
3. Molecular dynamics simulations 
 
The molecular dynamics (MD) method 
has been employed to simulate the 
response of the polymeric materials at the 
mesoscale. At this level, three main types 
of structures are considered: (a) coiled 
chains in amorphous polymers; (b) 
interlamellar regions in semi-crystalline 



polymers; and (c) nano-filled polymers. 
Further details and some results at this 
length scale are presented in the next 
sections. 
 
Model details. 
The MD method was developed by Alder 
and Wainwright at the Lawrence 
Livermore Laboratory, initially with the 
purpose of studying systems of hard 
spheres. Other commonly used simulation 
methods for polymeric materials include 
the Monte Carlo method, the Brownian 
dynamics (BD) and the kinetic model of 
fracture. A detailed description of all these 
methods, along with comparative analysis 
in terms of applications and limitations, 
has been provided by Fossey [5].  
 
In the MD method, the system is 
comprised of a set of statistical segments 
in three-dimensional space. These 
segments can be individual or linked as 
part of a macromolecular chain. Each 
segment is characterized at any instant by 
its three Cartesian coordinates and three 
momentum components along the main 
axes. These six variables are calculated at 
every time step of the simulation, using a 
leap-frog algorithm, effectively describing 
the time-dependent response of the 
system.  
 
As time is an explicit variable in MD 
simulations, all particles are moved 
simultaneously at each time step. Thus, the 
method can be employed to simulate not 
only equilibrium properties but also time 
dependent ones. This is a particularly 
important feature when dealing with 
viscoelastic materials. 
 
Segments interact according to a set of 
interaction potentials, which are function 
of the inter-segmental distance. Different 
potentials are defined for the different 
types of interactions present in the 
material. In single-phase polymeric 
systems there are two types of 
interactions: intra-chain bonds (primary 
chemical bonds in the polymeric chain), 
and inter-chain bonds (secondary bonds 
between chains), the later also termed non-
bonded interactions. In the case of nano-
filled polymers, there are additional 
interactions: between the fillers and the 
polymeric chains, and between fillers. 
 

Before performing a simulation, a model 
representative of the polymeric system 
under study must be created. The 
procedure used to create the computer 
generated material (CGM) is described in 
the next section. In the case of on-lattice 
creation, and before performing the 
simulation, all segments are perturbed 
from their original ideal lattice positions 
by a small displacement (on the order of 
one-hundredth of the equilibrium inter-
segmental distance). After this stage, the 
simulation begins with an equilibration 
step with no external force applied. 
 
As in previous work, a coherent 
dimensionless system of units was 
employed. The length of a non-strained 
bond corresponds to a unit of length, the 
mass of a single statistical segment 
corresponds to a unit of mass, and the 
energy needed to dissociate a bond 
corresponds to a unit of energy. All other 
quantities can be derived from these; e.g. a 
unit of force is given by the ratio of one 
unit of energy to one unit of length. 
 
A detailed description of the MD model, 
including the main simulation parameters, 
has been provided elsewhere [2]. 
 
Material generation. 
The creation of amorphous and semi-
crystalline regions follows a lattice-based 
approach, whereas nano-filled regions are 
created off-lattice. Notice however, that 
even when the creation of the CGM is 
done on-lattice, the simulation itself is 
always performed off-lattice. 
 
In the case of on-lattice generation, all 
segments are initially positioned at the 
equidistant lattice positions, each segment 
representing a polymeric chain of length 1. 
These chains then grow similarly to the 
step-wise polymerization process. The 
system is searched for neighboring end-of-
chain segments that can be bonded, 
resulting in larger chains. This procedure 
is repeated until no more such segments 
exist. 
 
At the earlier generation stages, there are 
many available neighboring end-of-chain 
segments that can be bonded. When that 
happens, one such pair is randomly 
selected for bonding, giving rise to 
systems of coiled chains that exhibit no 
preferential orientation. Alternatively, 



systems can be created with a specified 
preferential orientation with a certain 
chain growth direction.  
While this is a relatively simple procedure, 
it results in systems with several realistic 
features, such as molecular weight 
distribution and the presence of chain 
entanglements. 
 
In the case of the off-lattice generation, 
used for nano-filled systems, the first stage 
is to create the nano-fillers (either nano-
particles or nano-fibers) inside the CGM 
bounding box. For the nano-fibers, a 
random position is first selected for one 
end of the fiber. Then, a random direction 
is assigned, which defines the position of 
other end of the fiber. It is also possible to 
predefine a preferential direction for the 
fiber vector, which allows the creation of 
systems with different degrees of nano-
fiber orientation along a particular axis. 
The length of the fibers can be set as a 
fixed value or a random value within a 
certain range.  
 
After the nano-fillers have been placed in 
the bounding box up to a specified 
concentration, the box is filled with 
individual statistical segments, by random 
sequential addition. Each of these 
segments represents a polymeric chain of 
length 1. The procedure then employed for 
chain growth is equivalent to that 
previously described for on-lattice 
generation. 
 
Naturally, the off-lattice procedure results 
in a lower degree of packing of the 
bounding box, with many bonds extended 
beyond their equilibrium configuration. 
Therefore, during the first stage of the 
simulation procedure it will be necessary 
to equilibrate the system for a substantially 
longer time than in the case of on-lattice 
generation. 
 
A detailed description of some of the 
procedures used for creating the CGMs 
and a detailed analysis of the resulting 
systems has been provided before [6]. 
 
Simulation of amorphous polymeric 
systems. 
Amorphous polymeric systems comprised 
of coiled chains are one of the main types 
of structures relevant to the present work. 
In these systems it is possible to study the 

influence of chain orientation, loading 
conditions, and loading mode.  
 

 
Figure 3 – Deformation of materials with 
different initial preferential orientation of 
the chains with the external load direction. 
 
The degree of preferential orientation of 
the chains with a specific axis can be 
controlled during the material generation 
process, and the evolution of the 
orientation along time can be established 
[7]. It is also possible to study the 
influence of the loading conditions for a 
fixed material structure [4], including the 
deformation (or force increase) rate, the 
magnitude of creep force (deformation 
under constant load), and the time during 
which the external load is maintained. An 
example of the deformation of two 
materials with different preferential chain 
orientations is shown in Figure 3. 
 
Simulation of semi-crystalline 
polymeric systems. 
In the case of semi-crystalline polymers, 
the model attempts to represent the 
phenomena taking place at the lamellar 
level, specifically the interface between 
the crystalline lamella and the amorphous 
region. The lamellae are comparatively 
rigid with respect to the flexible 
amorphous chains. 
 
Aside from the variables that were already 
mentioned for the amorphous regions, it is 
also possible in these materials to study 
the influence of the lamella thickness, 
amorphous region thickness, and the 
degree of packing (free volume) of the 
amorphous region [8].  
 
The material can also be deformed under a 
variety of loading modes, including 
uniaxial tensile load or simple shear; see 
Figure 4).  



 
Figure 4 – Deformation of a sample 
material under different loading modes: 
(a) initial geometry; (b) deformation under 
shear; (c) deformation under tensile load. 
 
Simulation of nano-filled polymers. 
When considering two-phase systems, 
such as nano-filled polymeric materials, 
the number of variables that can be studied 
increases considerably. This is obviously 
related to the fact that the fillers are 
dispersed in an amorphous matrix, which 
in itself can have several parameters. In 
nano-filled systems, additional material 
parameters include the filler concentration, 
filler orientation, type of filler, filler size 
(fiber length and width, and particle 
diameter), and filler spatial dispersion.  

 
Figure 5 – Deformation of a sample 
material containing approximately 2 vol-% 
of randomly distributed nano-particles 
(each with a diameter three times that of 
the statistical segments). 
 

There are also model parameters that can 
be studied, such as the extent of 
interaction between the fillers and the 
polymeric chains, which is related to the 
type of bonds (chemical or physical) that 
form in the material.  
 
An example of the deformation of a 
sample material reinforced with nano-
particles is shown in Figure 5. 
 
 
4. Macro-micro coupling 
 
The macro-micro coupling is performed 
assigning at each particular zone of the 
macro model HL1 the corresponding 
microstructural architecture. This implies 
that finite elements that are on each 
assigned zone have a FEM HL2 model of 
the underlying microstructure, and the 
stress response will be obtained from the 
solution of the corresponding HL2 model. 
The response is obtained starting from an 
elastic perturbed solution of the HL1 
model, enabling the calculation of the 
kinematic field variables that will be 
passed for the solution of HL2 models.  
 
The perturbed solution is only a starting 
method for the coupled problem. The core 
methodology is coded using the available 
subroutine for generic material behavior in 
Abaqus. The process works as follows: in 
each material point of each element of the 
HL1 mesh the subroutine UMAT is called 
and the kinematical variables are 
transformed in boundary conditions for the 
microstructural model HL2 assigned to the 
material point. The corresponding model 
is then launched and the stress response is 
obtained.  
 
In UMAT, the material Jacobian matrix 
for this material implicit response is also 
calculated, enabling the correct integration 
in the non-linear solution algorithm for 
higher-scale model.  
 
An example of a deformed microstructural 
model is presented in Figure 6. The 
framework for this approach to macro-
micro coupling can be found in [9] and 
[10]. 
 
 
 
 
 



 
Figure 6 – Deformation profile (top) and 
strain mapping (bottom) of a HL2 
microstructural model. 
 
 
5. Preliminary results  
 
Validating the developed methodology is a 
three-stage process. First, it is necessary to 
create the models at each length scale. 
Then the models must be simulated 
individually to verify their adequacy to the 
envisioned analyses. This is particularly 
critical for the molecular dynamics models 
since they will determine the response of 
the material at the lowest length scale. 
Finally, the macroscopic-microscopic 
iterative routine must be tested for simple 
geometries. 
 
The molecular dynamics simulations have 
shown that the material behavior is 
particularly affected by some structural 

aspects, while other parameters have small 
or negligible influence.  
 
As an example, the concentration of a 
rigid second-phase dispersed on the 
flexible matrix was found to affect 
considerably the stiffness of the material 
[1]. However, the distribution of that 
second-phase only affects the material 
response at large deformations, namely the 
crack initiation and propagation 
phenomena. 
 
In semi-crystalline polymers, the thickness 
of the lamellas appears to be the most 
significant factor determining the 
mechanical response [8], while the 
thickness of the amorphous phase as well 
as its degree of orientation have smaller 
impact on the material response. 
 
The degree of preferential orientation of 
the macromolecular chains with respect to 
the axis of external loading was also 
shown [7] to greatly influence both the 
stiffness and the deformation at break of 
the simulated systems. 
 
Also, the rate at which an amorphous 
material is forced to deform was found [4] 
to be a critical factor in both the nature of 
the mechanical response (localized 
deformation) and the mechanical 
properties (stiffness and deformation at 
break).  
 
 
6. Concluding remarks 
 
The predictive capability of the simulation 
of polymers at the macro-scale is limited 
by their complex structure at different 
length scales. Furthermore, commercial 
software has not been developed 
specifically for the study of these 
materials, ignoring for example the 
morphology developed at a local level.  
 
A hierarchical approach to the multiscale 
simulation of polymeric materials has 
been developed coupling FEM 
(continuous milieu) and MD methods 
(discrete milieu). The macroscopic part 
can be divided into regions with a 
characteristic local microstructure (which 
can be predicted from mold-filling 
simulations), and each of those regions 
can be simulated in more detail at the 
micro-scale. The properties and behavior 



of each morphological feature at the 
micro-scale are obtained from molecular 
dynamics simulations at the mesoscale.  
 
Although this methodology still needs to 
be validated, it has a strong potential to 
solve one of the critical issues in 
multiscale simulations – the seamless 
bridging between length scales.  
 
Results of the developed methodology 
(with the three coupled hierarchical levels) 
will be presented at the conference. 
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Abstract  
 
Nanobeams are used in several 
engineering applications either  as 
components of  nanoelectromechanical  
systems or to strengthen composite 
materials. The mechanical properties of 
such small structures determine their 
utility and are therefore of considerable 
interest.  
Based on nanometer scale tests, a 
theoretical model to predict the bending 
strength of  a  nanobeam is proposed.  
A fracture approach which takes into 
account imperfections on the beam surface 
and crack growth is employed.  
 
 
Keywords: Nanobeam, atomic force 
microscope, fracture mechanics, strain 
energy density function, failure.  
 
 
1. Introduction 
 
The rapid advances in nanotechnology, 
nanomaterials and nanomechanics will 
make manufacturing technologies and 
infrastructure more sustainable in terms of 
reduced energy usage and environmental 
pollution. Recent advances in the research 
community on this topic have stimulated  
research activities in science and 
engineering devoted to their development 
and their applications.  
A macroscopic and microscopic material 
damage description ahead of a crack in a 

single formulation that satisfies the 
continuum mechanics axioms with 
consistency has been made by Sih & Tang 
[1,2,3]. Different order and strength of 
singularity are uniquely associated with 
the boundary conditions, loadings and 
geometries of the defects under 
consideration. The character of the volume 
energy density function was found to be 
fundamental in scale shifting. To this end, 
the energy density function for the dual 
scale model has been determined and 
discussed in connection with what was 
emphasized.  
The salient features of the model can be 
summarized as follows:  
• Singularity representation is applied to 
simulate the effects of loading, boundary 
constraint and geometry at each scale 
level. 
• Equilibrium mechanics is used in each 
segment of scaling such that the error of 
approximating non-equilibrium can be 
controlled. 
• Connection can be made from segment 
to segment by a scale invariant criterion 
that corresponds to the quantity of “force”. 
• The one-dimensional line crack model 
can be extended to two-dimensions by 
application of the volume energy density 
function in conjunction with the 
introduction of a length or area parameter. 
Recently,  the analysis of validity of the 
continuum beam models for the 
constitutive behaviour of carbon 
nanotubes and nanorods, and other nano-
beams of non-carbon materials has been 



presented by Wong et al.[4] and Harik [5], 
among others. It is a common notion that  
small whiskers have strengths 
considerably greater than those observed 
in  macroscopic crystals. The increase in 
strength is normally attributed to a 
reduction in the number of defects that 
lead to mechanical failure. The crystal 
may indeed contain more defects but if 
they are distributed uniformly the strength 
can be high. The strength depends upon 
the degree of system homogeneity  that 
can be represented by a characteristic 
length parameter [3 ]. 
In this paper, the scale invariant criterion 
is applied to cracked nanobeams to 
describe material damage. It makes use of   
the strain energy density factor, S, which 
is a function of the stress intensity factors 
[10]. As stated above, the strain energy 
density theory provides a more general 
treatment of fracture mechanics problems 
by virtue of its ability in describing the 
multiscale feature of material damage and 
in dealing with mixed mode crack 
propagation problem. A simple method for 
obtaining approximate stress intensity 
factors is also applied [7]. It takes into 
account the elastic crack tip stress 
singularity while using the elementary 
beam theory. Some basic loading 
conditions  can be studied. 
 
 
2. Nanometer-scale testing 
 
A method for the direct determination of 
the bending force in small SiC whiskers as 
a function of displacement has been 
proposed by Wong at al. [4]. Atomic force 
microscope (AFM) was used on carbide 
(SiC) nanorods pinned at one end to 
molybdenum disulfide surfaces. The 
determination of the Young’s modulus has 
been performed in the framework of beam 
theory. A cantilever beam model was 
adopted for nanorod subjected to a point 
load and a distributed friction force. 
Besides, the force-displacement plots 
allowed the determination of  the strength 
and toughness. Different failure 
mechanisms were observed. In the 
determinations of  the strengths, it was 
observed that the nanorods fractured  
either at the pinning site or at some 
distance from the pinning site. It was 
argued that defects can limit the strengths 
of such nanorods. In a recent paper, 
Sundararajan et al.[9] described 

nanometer-scale quasi-static bending tests 
performed on fixed single-crystal silicon 
(Si) and silicon dioxide (SiO2) nanobeams 
with widths ranging from 200 to 800 nm 
using atomic force microscope (AFM). 
Typical load-displacement plots were 
derived. All the beams showed linear 
elastic behaviour until abrupt failure. In 
reference to a fixed elastic beam loaded at 
the centre of the span, the Young  modulus 
and the maximum tensile stress have been 
calculated. The values of Young modulus 
calculated for the Si ranged between 171 
and 195 Gpa which approximate the bulk 
value of 169 Gpa. The values for SiO2  
ranged between 72 and 98 Gpa, which 
approximate  the bulk value of 73 GPa. 
From the SEM images of the broken 
beams it was observed that the beams 
fractured near the fixed ends and values of 
the bending strength calculated are an 
order of magnitude higher than bending 
strengths reported for larger micrometer 
and millimeter scale  silicon and silicon 
dioxide beams, confirming a size effect. 
Since surface roughness were observed on 
the beam surfaces, a comparison was 
made between the critical value of the 
edge crack length calculated by Griffith 
theory and the peak-to-valley distances 
measured by AFM. The calculated values 
are smaller than measured ones. However 
it was concluded that the surface 
roughness affects the value of the bending 
strength. 
As well known, fracture mechanics is 
widely used to describe many aspects of 
crack behaviour. Knowledge of the stress 
intensity factors plays an important role in 
fracture control. In structural applications, 
combined standard loading conditions 
often involve simultaneously KI, KII and 
KIII. Within the framework of  fracture, the 
well-known strain energy density factor 
theory [10] allows to predict stable and 
unstable crack growth in mixed mode. The 
strain energy density function is positive 
definite and the rapid decay character of 
energy density next to a crack can best 
describe the multiscale feature of material 
damage. 
In this paper, the  scale invariant criterion 
for describing the failure of such a beam is  
employed. If the total energy is used as the 
scale invariant, then the ratio of the 
volume energy densities at two different 
scales depend upon a parameter defining 
the degree of system inhomogeneity. It 
can be found analytically by defining the 



degree of system inhomogeneity. For a 
homogeneous system the parameter is 
equal to 1 and dW/dV versus l is a perfect 
hyperbola. 
Stress intensity factors for many 
configurations are available. In most cases 
the results were obtained by means of 
analytical and numerical methods. In 
many cases the results were obtained by 
finite element methods and boundary 
element methods. Experimental methods 
have been applied to simple cases in order 
to determine the fracture toughness KIC of 
engineering materials. Solutions for many 
structural configurations are not available 
in the handbooks. Simple engineering 
methods which allow a fast but 
approximate determination of the stress 
intensity factors are highly valued to a 
design engineering. Remarkably simple 
methods for close approximation of stress 
intensity factors in cracked or notched 
beams were proposed by Gao and 
Herrmann [6] and by Nobile [7,8]. The 
former has been based on elementary 
beam theory estimation of strain energy 
release rate as the crack is widened into a 
fracture band, the latter has been based on 
elementary beam theory equilibrium 
condition for internal forces evaluated in 
the cross-section passing through the crack 
tip, taking in account the stress singularity 
at the tip of an elastic crack. The derived 
simple formulas for stress intensity factors 
are in reasonable agreement with the more 
accurate calculations in literature. In this 
paper the latter method [7] is applied to 
compute stress intensity factors for basic 
loading condition. 
 
 
3. Approximate evaluation of stress 
intensity factors 
 
Consider a straight beam of constant 
cross-section. The z-axis coincides with 
the geometrical axis, and the x- and y-axes 
coincide with the principal axes of the 
cross-section. The stress components due 
to stress resultants are well known. 
Suppose that the presence of an edge crack 
of initial length a does not alter the stress 
resultant on the cross-section passing 
through the crack tip. The singular stress 
distribution at the crack tip takes the form 
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with the condition that σij
s acts at a 

distance r=b from the tip. The nominal 
stress is evaluated by the known stress 
distribution on the reduced solid cross-
section passing through the crack tip 
(ligament). The stress distribution does not 
take into account the presence of the 
crack. Then, the equivalent condition 
between singular stress and nominal stress 
resultant at the crack tip determines Ki 
approximately. Note that Ki-values are 
better approximated for b<a such that the 
elastic singularity governs stresses at a 
distance from the tip lower compared to 
the geometric dimension of crack length. 
 
3.1 Pure bending 
The distribution of normal stresses on the 
reduced cross-section passing through the 
crack tip is 
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where Mx is the bending moment and Ix

* is 
the moment of inertia for the reduced part 
of the cross-section. The singular stress 
component is related to the mode I stress 
intensity factor as follows: 
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The stress resultant arising at the crack tip 
is equal to 
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According to the condition that σz=σz

s at 
r=b, KI can be expressed as 
 
 byyzI bK −== |2 σπ  (5) 
 
The distance b can be determined from the 
equivalence condition for forces in the 
direction of the geometrical axis z: 
 
 ∫∫ −
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where y  is the distance from the neutral 
axis of the reduced cross-section to the tip.  
Introducing b into Eq. (5), the approximate 
intensity factor KI can be obtained.  
Consider the case when a cracked 
trapezoidal beam (Fig.1) is subjected to a 
bending moment Mx.  
The equivalent condition between singular 
stress and nominal stress resultant at the 
crack tip determines KI approximately: 
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A plot of geometric function FI as function 
of a/h is shown in Fig.2. 
 
 
4. Scale invariant criterion 
 
Based on experimental evidence, the 
behaviour can be assumed brittle and 
described in terms of coincidence of local 
and global failure. According to Griffith 
criterion the condition of incipient brittle 
fracture has been calculated in [9] as 
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where γf is the specific surface energy at 
nanometer scale and E is the Young 
modulus. It was observed  that the values 
σf obtained are an order of magnitude 
higher then bending strengths reported in 
literature for micrometer scale. 

Force and total energy are quantities that 
can be used to bridge the gap between 
different material damage models. 
The description of high stress 
magnification at the crack tip can be 
conveniently characterized by the ratio of 
the local stress σl  to the global stress σf 
[11] 
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The quantity ∆L/∆l represents the ratio of 
lengths at different scales. It is clear that 
the specific surface energy γl at the smaller 
scale is higher than the specific surface 
energy γf at the bigger scale This explains 
the measurements of a in [9] that are 
higher than the calculated values. 
The S-theory is applied to determine crack 
initiation and direction for the trapezoidal 
fixed centrally loaded beam.  
It makes use of the so called strain energy 
density factor S which is a function of the 
stress intensity factors 
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with ν being the Poisson’s ratio and µ the 
shear modulus of elasticity. 
The stress resultant at both the ends are Mx 
=fl/8 and Vy= f/2. 
Mixed mode crack growth on the top 
surface at both ends can be determined 
according to the fundamental hypotheses 
The edge crack will spread in the direction 
of maximum potential energy density. 
The critical intensity Scr of this potential 
field governs the onset of edge crack 
propagation. 
Although the plane normal to the 
geometric axis has a surface energy higher 
as compared to the plane oriented at 35o 
from it, crack has been observed to run in 
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its own plane [9]. In this case, it is 
reasonable to consider only mode I. 
Setting KII=0 and KIII=0 and referring to 
Eq.(10 ), S becomes 
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The relative minimum of S corresponds to 
θ =0 which implies that the edge crack 
runs in its own plane.  
A plot of normalized strain-energy-
density-factor as a function of θ for 
constant ν is shown in Fig.3.  
Crack instability is then assumed to take 
place when Smin equals the critical value Sc 
that depends only on the material and is 
related to KIC and γf as 
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In particular, the relation 
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allows the determination of Sc from the 
area under the true stress-strain curve, 
being rc the critical ligament. 
The critical load can be determined as 
 
 
 ( ) I

c
c lF

hSf
2

5

21
16

ν
πµ
−

=  (15) 
 
Thus the critical crack length obtained 
using Eq.(15) can be compared to the 
values measured by AFM. 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2 : Stress intensity factors versus a/h 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3 : Normalized strain energy density factor versus angle θ
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Abstract 
 
A multiaxial constitutive damage-
enhanced creep model for orthotropic 
polycrystalline ice is presented within the 
framework of the thermodynamic theory 
of irreversible processes. This paper 
formulates material anisotropy and 
damage anisotropy to describe the 
importance of the directional nature of 
material behavior. Many deformation 
mechanisms operate at the microstructural 
scale to induce flow and damage due to 
microcracking, and depend highly on 
loading rate, temperature and crystalline 
structure. Flow is attributed to the motion 
and production of dislocations and an 
interaction between the basal and non-
basal systems of a constituent single 
crystal ice. The local internal stresses 
cause many stable microcracks under far 
field compression. Several mechanisms 
are involved in microcracking. These 
include dislocation pile-up, grain 
boundary sliding and elastic anisotropy; 
the dominant mechanism depends on 
loading conditions. Experimental results 
under various loadings show the 
occurrence of microcracking, which 
enhances the inelastic deformation of 
polycrystalline ice during the damage 
process. A multiaxial dissipation potential 
for the inelastic deformation is proposed 
for kinematic hardening, isotropic 
hardening and damage due to microcracks. 
Finally, comparison of the model with 
available experimental data shows good 
agreement and demonstrates the 
effectiveness of the model. 

 
Keywords: Polycrystalline ice, Creep, 
Damage, Microcracking, Inelastic 
deformation, Kinematic hardening, 
Isotropic hardening  
 
 
1. Introduction 
 
In most engineering problems, 
polycrystalline ice exists at homologous 
temperatures exceeding 0.9TM. At these 
high temperatures, the creep of 
polycrystalline ice cannot be completely 
suppressed even at relatively high loading 
rates. Many constant stress or constant 
strain-rate tests and studies of deformation 
mechanisms have characterized 
polycrystalline ice behavior during the last 
several decades [4, 11]. Most of these 
studies have emphasized the stress 
dependence of the steady-state creep rate 
under constant stress following the 
empirical power-law creep. 
 
Both the elastic and inelastic behavior of 
polycrystalline ice are of great importance 
in broad range of ice engineering problems. 
Sinha [16] has studied the transient creep 
of ice, since engineering applications 
invariably involve complex thermal and 
mechanical histories. 
 
Constitutive models for polycrystalline ice 
based on internal state variables have been 
developed for monotonic constant stress. 
These internal state variables are used to 
describe phenomenologically various 
states of intracrystalline processes 



associated with dislocation activities. 
Internal state variables have been used in 
constitutive models for metallic materials. 
 
The present study presents a multiaxial 
damage-enhanced creep of polycrystalline 
ice. The most significant aspect of the 
proposed model is the formulation of 
kinematic equations which are firmly 
based on physical processes that reflect 
salient microstructural aspects. In this 
study, the primary mechanism is 
considered to be the motion and 
production of dislocations and the creep 
anisotropy of single crystal ice. Major 
features of the model include the 
hardening and recovery processes within 
evolution functions of kinematic stress and 
of isotropic drag stress. The damage 
effects due to microcracking are taken into 
account mainly for the enhancement od 
creep properties. The information obtained 
from experiments for the cracking 
activities during the deformation are used.  
 
 
2. Creep model 
 
This section describes a mathematical 
representation of the elastic and inelastic 
responses of polycrystalline ice. Following 
the contracted Voigt notation, vector 
notation is used instead of tensor notation. 
The total strain rate vector &εij  is 
decomposed as follows  
                      c

ij
e
ijij εεε &&& +=                       (1) 

where &εij
e  and &εij

c  are the elastic and 
inelastic strain rate "vectors" (in the sense 
of the contracted Voigt notation), 
respectively. The elastic strain rate vector 
is written as  
                      & &ε σij

e
kl= S                            (2) 

where σ  is the applied stress vector and 
S is the elastic compliance matrix of 
polycrystalline ice [15]. The vector form 
of the strain and stress components are 
written as [ ]T

ij 1121323332211 εεεεεεε =  and 

[ ]σ σ σ σ σ σ σij
T

= 11 22 33 23 13 12 , where 

superscript T denotes the transpose 
operation.  
 
Flow Equation  
The mechanical behavior of crystalline 
solids at high temperatures is controlled by 
activated rate processes. Thus, the 
inelastic behavior of polycrystalline ice is 
very sensitive to rate and temperature 
variations. Experimental observations 
suggest that the deformation of 
polycrystalline ice without microcracks is 
controlled by several processes, such as 
the motion and production of dislocations 
on slip planes within grains, and grain 
boundary sliding. The resistance to shear 
on the basal plane is at least 60 times less 
than that on the non-basal planes, such as 
prismatic and pyramidal planes at -10 Co . 
This great difference in resistance is 
known as creep anisotropy, which plays a 
major role in controlling the macroscopic 
behavior of polycrystalline ice.  
 
The flow equation describes the 
dependence of the inelastic strain rate on 
applied stress, temperature, and internal 
stresses. In particular the macroscopic 
inelastic strain rate in the incremental form 
is a function of applied stress, isotropic 
drag stress is related to isotropic hardening, 
and kinematic back stress is related to 
kinematic hardening. The change in 
microstucture is described by the 
evolution equations of these internal 
stresses.  
 
In the rate-dependent context, there is no 
yield/failure fuction and an inelastic 
dissipation function serves in deriving 
constitutive relations. If inelastic flow in 
polycrystalline ice is taken to follow 
Glen’s power law, a scalar-valued 
dissipation potential Φ( , , , )σ ij ijX B T  of 
the Norton-Hoff type can be defined as 
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where n is the stress exponent, taken as 3 
in the experimental literature, the internal 
variable B represents the isotropic drag 



stress, and &ε0  is a temperature-dependent 
reference strain rate. The effect of 
temperature on the reference strain rate is 
represented by an Arrhenius relationship: 
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where A0  is a temperature-independent 
constant, Q is the activation energy, R is 
the universal gas constant, and T is the 
absolute temperature in degrees Kelvin. 
The reduced equivalent stressσd eq,  may be 
expressed in matrix notaion as 

 ijd
T
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3 σσ
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σ G=            (5) 

where β = +a a1 2  and the matrix G  
transforms stresses into their deviatoric 
components [15]. The reduced stress is 
defined as  
 σ σd ij ij ijX, = −           (6) 
and the internal variable Xij  represents the 
kinematic back stress. Normality between 

c
ijε&  and ijd ,σ  requires   
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The inelastic strain rate is determined by 
substituting Eq. (3) into Eq. (7): 
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Isotropic drag stress  
Since isotropic hardening is a result of the 
way dislocations interact and trap each 
other and thus depends on the statistics of 
their distributions and motion, the 
processes contributing to isotropic 
hardening are dipole formation, Forest 
hardening, the formation of kink bands of 
cell boundaries, and combinations of these. 
The dislocation density in ice increases in 
transient creep during constant stress 
loading; thus the isotropic hardening effect 
of the average dislocation density 
describes the characteristics of the 
resistance to inelastic flow. The following 
evolution equation of isotropic drag stress 
B is proposed  

 ( )& &
,

B
h E

B B
d eq

sat eq
c= −2

σ
ε      (9) 

where h2  is the isotropic hardening 
constant, Bsat  is the saturated value of B, 
and &εeq

c  is the equivalent strain rate 
expressed in matrix form as [15] 

                 & & &ε ε εeq
c
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ij
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3
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where the matrix H  transforms strains 
into their deviatoric components. 
 
Kinematic back stress  
Kinematic hardening is attributed to the 
directional internal stress caused by the 
creep anisotropy of single crystal ice, the 
great difference in resistance to creep 
between the basal plane and non-basal 
planes. When ice is unloaded, this internal 
stress is responsible for recoverable strain. 
For monotonic increasing deformation, the 
back stress increases from zero, and 
saturates when the creep strain rate 
reaches its steady-state value. The increase 
of the back stress results in kinematic 
hardening. The following evolution 
equation of kinematic back stress X is 
proposed  
                  ( )n

ijijij XrEhX 11 −= ε&&           (11) 
where E is the isotropic Young’s modulus, 

1h  is the kinematic hardening constant, 
and 1r  is the recovery constant.  
 
 
2. Damage-enhanced creep model 
 
In metals, microcracks have some 
influence on inelastic strain rate, but this 
influence is generally weaker than the 
influence of microcracks on the elastic 
properties of the material. Unlike the case 
of metals, however, the effect of 
microcracks in polycrystalline ice on 
inelastic creep can be too large to ignore.  
This influence is taken into account in the 
ensuing discussion of the formulation of a 
dissipation potential function. 
 
In the following formulation, the 
kinematic and isotropic hardenings as well 



as the damage due to microcracks are 
taken into account. In order to incorporate 
damage due to microcracks into inelastic 
flow, the following form of dissipation 
potential for damage-enhanced inelastic 
flow is considered:  
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  (12) 

where 0Φ  is the dissipation potential for 
inelastic flow without microcracks, n  is 
the stress exponent, the scalar function F  
is described below, D is a measure of 
damage, and Y is a measure of stress states.  
 
Rodin and Parks [13] suggested a similar 
form of dissipation potential for inelastic 
flow in which hardening effects due to 
dislocations are ignored. The description 
of the material includes the construction of 
a scalar function ),,( YDnF of three 
dimensionless variables: the first variable 
describes the matrix response, the second 
is the averaged characteristic of the 
microstructure, and the last identifies a 
measure of stress state. For the dissipation 
potential to be convex, F  must satisfy the 
condition 

                0
1
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where a prime denotes partial derivative of 
F  with respect to Y . The later symbol is 
defined in Eq. (14) A variety of forms for 
F  have been proposed for isotropic 
porous metals experiencing void growth 
and for isotropic material with cavitating 
grain-boundary facets. 
 
Previously published experimental results 
[12, 17] in ice indicate that microcracks 
occur mainly in the direction of the 
maximum principal compressive stress. 
Considering material damage due to a 
population of aligned microcracks, it can 
be argued that under proportional load 
histories the material preserve isotropy. 
We consider microcracks by specifying a 
scalar microcrack density )( ω=D . The 
damage anisotropy, however, can be 
implicitly taken into account by the 

introduction of the maximum principal 
stress 1σ into the dissipation potential with 
the following relation: 
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For the enhancement of creep due to 
microcracks in polycrystalline ice, the 
following function F  is considered, 
according to Rodin and Parks [13]: 
             ( ) 2/)1(2),(1 ++= nYWnF α          (15) 
The function ),( Wnα reflects material 
behavior and is independent of stresses at 
a point. The following forms, which 
satisfy convexity of the potential Eq. (12), 
are given as  
                   ωπα 2/12),( nWn =              (16) 
for slit microcracks in columnar-grained 
S2 ice and   
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for penny-shaped microcracks in 
equiaxed-granular ice. The theoretical 
basis for these forms is discussed for slit 
microcracks by He and Hutchinson [8], 
and for penny-shaped microcracks by 
Rodin and Parks [13].  
 
The inelastic strain rate is obtained by 
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For the given dissipation potential in Eq. 
(12), the inelastic strain rate is determined 
as  
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For the case of isotropic polycrystalline 
ice under uniaxial stress, Eq. (19) reduces 
to 
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And for the case of isotropic 
polycrystalline ice where there is no 



damage (i.e., 1),0,( == YnF ω ), Eq. (19) 
reduces further to the well-known relation 
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where ijσ ′ is the deviatoric stress. It is 
worth noting that a wide variety of 
specific microstructural damage process 
for different materials can be described by 
similar mathematical expressions of the 
material damage. 
 
Microcrack Density 
We characterize the microcracks only by 
specification of their density ω defined as 
[1] 

                     
P
AN 22

π
ω =                   (22) 

where N is the number of microcracks per 
unit volume, A is the area of the 
microcrack, P is the perimeter, and the 
angle brackets denote an average. 
Experimental results indicate that the size 
of microcracks are of the order of the grain 
size [3]  
 
Consider columnar-grained S2 
polycrystalline ice containing a population 
of aligned slit cracks of width 2c and 
length l, with a constant aspect ratio l/2c 
>> 1, under compressive loading. Noting 
that A is 2cl and P is approximately 2l, Eq. 

(24) results in lcN 24
π

ω = . Assuming 

the average microcrack size, 2c, to be 
equal to the length of the average grain 
facet and assuming the cross-sectional 
geometry of the grain to be hexagonal, it 
can be calculated by equating the area of a 
circle of the average grain diameter d with 
the area of the hexagon: c≈0.275d. The 
microcrack density is written as  

                     ldN 2

39.10
=ω                 (23) 

We now consider equiaxed-granular ice 
and a population of aligned penny-shaped 
cracks of diameter 2c under compressive 
loading. Noting that A is 2cπ and P is cπ2 , 
Eq. (22) results in 3cN=ω . Assuming 

the volume geometry of the grain to be 
dodecahedron, and assuming the average 
diameter of microcracks, 2c, to be equal to 
the diameter of a circle inclosed by the 
pentagon surface of a dodecahedron, it can 
be shown that c≈0.354d, where d is the 
average grain diameter, having the same 
volume 3)2/()3/4( dπ  as that of the 
dodecahedron. The microcrack density is 
written as  

                     3

54.22
dN=ω                 (24) 

 
Microcrack Evolution 
Microcrack activity in ice has been 
monitored both visually and acoustically. 
Visual examination of microcrack 
formation during uniaxial compression has 
been performed in both columnar-grained 
freshwater ice [12, 17] and equiaxed-
granular freshwater ice [7, 10]. These 
experimental results show that the 
majority of microcracks are oriented 
parallel to the maximum principal loading 
axis [6, 17].   
Gold [5] first monitored acoustic 
emissions for microcracking in columnar-
grained freshwater ice under constant 
compressive stresses at -10 Co . Gold's 
results showed that the rate of microcrack 
formation is dependent on duration time 
and on the magnitude of applied stress. 
Later, extensive studies on acoustic 
emissions were conducted in both 
columnar-grained freshwater ice [6, 16] 
equiaxed-granular freshwater ice [3] under 
a range of temperatures, stress levels and 
grain sizes. These studies showed that 
when the applied stress is greater than the 
critical stress, microcracks form. Plotting 
the strain dependence of microcracking 
density shows that microcrack density 
increases with applied stress. According to 
the results of these acoustic emissions for 
constant strain rate loading, the rate of 
microcracking is highest when the stress 
reaches its peak, and then diminishes 
significantly. These results demonstrate 
that microcracking is highly rate-sensitive 
and depends strongly on grain size. 



 
In order to describe the microcracking 
dependence on stress and time, the 
following equation for the number of 
microcracks is proposed as a result of a 
study of the literature: 
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where 0N is a reference constant, cσ is the 
critical stress for microcrack nucleation 
defined in Eq. (26) and 0σ  is the reference 
stress, defining the sharpness of the 
transition. Microcrack nucleation is a 
fundamental phenomenon in the failure 
process of polycrystalline ice, since it 
occurs in both the ductile and brittle 
domains of deformation. The experiments 
of Gold [5, 6], Cole [3], and Schulson [14] 
suggest a form for microcrack nucleation 
as: 
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where μσσ ,,, 21 ICcc K are material 
constants depending on the type of ice 
(equiaxed-granular or columnar-grained). 
For a range of grain sizes (d=1~8 mm) and 
temperatures (T=-2~-40 C0 ), the measured 
microcrack nucleation stress lies between 
0.5 and 1.5MPa. 
 
 
3. Model Parameters and Predictions 
 
Creep Parameters 
The values of material parameters n, A, Q, 

0B , 1k , 2k , 1h , 2h and 1r  for any given 
material may be determined from 
isothermal constant stress tests [2]. The 
model parameters 1c , 2c and 6c are used to 
represent the creep anisotropy of ice single 
crystals. Without loss of any generality, 

2c  can be taken as 1. Thus only two 
parameters need to be determined from 
constant stress tests on single crystal ice. 
 

Damage Parameters 
The damage parameters 0N , cσ , oσ and 
m may be estimated from experimental 
measurements.  However, due to a lack of 
data for ice, the parameters are determined 
by fitting the model response to data.  
 
In Table 1, a summary of the damage-
enhanced model parameters is given for 
the different ice examined by Jordaan and 
MeKenna [9], Mellor and Cole [11]. 
 

Parameter 
Jordaan and 
MeKenna 
[9] 

Mellor and 
Cole [11] 

E(MPa) 9000 9000 
n 3 3.43 
Q( 1−kJmol ) 67 67 
A( 13 −− sMPa ) 61057.3 ×  61023.2 ×  

)( 1
0

−sA  1 1 
)(0 MPaB  31073.1 −×  31092.7 −×

1k  0.15 0.27 
2k  3.2 1.30 
1h  1/10 1/70 
2h  1/1.5 1/10 

1r ( 13 −− sMPa ) 51021.5 −×  51073.1 −×  

0N ( 3−m ) 2500 400 

cσ  0.5 0.5 

oσ  1.0 3.0 
m 2.0 2.0 

 
Table 1: Model parameters 

 
Model Comparisons 
Jordaan and McKenna [9] measured the 
stress strain curve of granular 
polycrystalline ice in compression at -
10 Co  under an applied strain rate of 

410− 1−s . The strain softening response 
due to microcracks without strain 
hardening is observed at this high strain 
rate. Figure 1 compares the prediction of 
the model with the data of Jordaan and 
McKenna [9]. The model prediction is in 
excellent agreement with the data, when 
the parameters in Table 1 are used.  
 



 
 
Figure 1: Stress-strain curve under 
constant strain-rate: the model prediction 
is compared with the data of Jordaan and 
McKenna [9] 
 

 
 
Figure 2: Stress-strain curve under 
constant strain-rates: the model prediction 
is compared with the data of Mellor and 
Cole [11] 
 
Figure 2 shows the comparison of the 
model predictions and experimental data 
of Mellor and Cole [11] under applied 
strain rate tests. The model predictions 
using the parameters in Table 1 show quite 
good agreement with the data. The stress-
strain curves exhibit strain hardening as 
well as strain softening behavior. It is 
worth noting that the model response 
slightly overpredicts the data at the strain 

rate of 5.30 710−× 1−s . This might be due 
to recrystallization at very low loading 
rates, which is not modeled. 
 
 
4. Conclusions 
 
A comprehensive damage-enhanced creep 
model for orthotropic polycrystalline ice is 
formulated within the framework of 
thermodynamics theory of irreversible 
process. In this model, highly rate- and 
temperature-dependent mechanical 
behavior is described by the changing 
microstructures due to the movement and 
production of dislocations and 
microcracking. The proposed damage-
enhanced model can simulate the 
distributed damage process due to 
microcracking under compressive loading.  
 
Constitutive equations are proposed to 
help bridge the physical processes within 
the material and the macroscopic behavior 
observed in experiments. The evolution 
functions of internal stresses are 
formulated with hardening and recovery 
functions due to the production and 
annihilation of dislocations, respectively. 
The damage effects due to microcracking 
are taken into account mainly for the 
enhancement of creep properties. The 
information obtained from experiments for 
the cracking activities during the 
deformation are used in this damage-
enhanced creep formulation. The response 
of the model captures the experimentally 
measured stress-strain and strain-time 
curves. 
 
As mentioned by Duval et al. [4], a 
detailed analysis is necessary to determine 
how microcracking really affects the creep 
rate. Much work remains to be done to 
develop fully anisotropic damage 
evolution equation which accounts for 
microcrack growth, coalescence, and 
brittle fracture at high strain rates. The 
proposed orthotropic model, however, is 
useful for simulation of creep deflection of 
ice sheets under static loading and slow 



fracturing processes in ice-structure 
indentation. 
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Abstract 
 
Present work aims to exploit recent 
advancements on methodologies for the 
accurate and reliable measurements of 
nano- and meso-hardness measurements, 
in order to measure the evolution of the 
surface hardness of 2024 aluminum alloy 
specimens subjected to high cycle fatigue 
loading with increasing number of fatigue 
cycles. The fatigue tests were interrupted 
at specified percentages of the fatigue life 
for each stress level. With the aid of 
nanoindentations, on the specimen’s 
surface, hardness increase at the meso-
scale due to fatigue has been measured at 
different areas of the specimens. As 
expected, with increasing the number of 
fatigue cycles the superficial hardness 
increases. The dependency of hardness 
increase on the number of fatigue cycles is 
not linear and seems to tend to a hardness 
saturation value. The entire process is 
accelerated at higher fatigue stress 
amplitudes. 
 
 

Keywords: Fatigue loading, surface 
hardness increase, nanoindentations, 
fatigue damage accumulation, 2024 
aluminum alloy.  
 
 
1. Introduction 
 
Failure by fatigue continues to remain the 
most serious concern for structural failure 
of aircraft components despite the 
exhaustive amount of past research. 
Fatigue life of a material can be divided 
into a number of subsequent fatigue 
damage phases, characterized by cyclic 
slip, crack nucleation, micro-crack growth 
and macro-crack growth up to the final 
material failure. Yet, although 
considerable progress has been made in 
understanding the mechanisms of fatigue 
failure, an accurate fatigue failure 
prediction is difficult because the different 
physical processes which prevail to the 
gradual fatigue damage accumulation 
during the fatigue life of a metallic 
component are complex and interrelated, 
develop with increasing number of fatigue 
cycles from atomic, over nano-, meso- and 
micro-, to macro-scale damage 



 

 

mechanisms and also entail a host of 
material, geometric and loading 
parameters [1]. Their interaction cannot be 
easily assessed in quantitative terms. 
Mechanistically, the fatigue damage 
phases mentioned above maybe 
summarized to a crack initiation and a 
crack growth period, with the latter 
starting once cracks become visible. 
Different parameters are essential to assess 
crack initiation or crack growth 
respectively, which for the former period 
of relevance is the severity of stress 
concentration, while crack growth is 
dominated by the intensity of the crack-tip 
stress distribution. As a consequence, 
different fatigue prediction methods have 
been suggested for the two periods [e.g. 
2]. Damage tolerance which is the present 
day design concept for modern metallic 
aircraft structures [2], relies on fracture 
mechanics, i.e. accounts for fatigue 
damage accumulation after the structure 
under consideration involves fatigue 
macrocracks. It is at this stage that the 
fatigue crack growth models in fracture 
mechanics become valid. Yet, growth of a 
fatigue macrocrack represents the last 
stage of the entire fatigue damage 
accumulation process. This stage of 
fatigue damage refers to a small 
percentage of the material’s fatigue life 
and decreases further with decreasing 
fatigue stress level.  
It is known that cyclic loading of metals 
leads to the formation of bands of 
concentrated slip. Cyclic slip occurs 
almost immediately after a cyclic stress 
above the fatigue limit is applied. The 
occurrence of surface slip markings lying 
along traces of the active slip planes is a 
general feature of cyclic plastic 
deformation. 
Cyclic plasticity of engineering 
polycrystalline alloys is complex and 
depends on a host of parameters including 
type of unit cell, value of stacking fault 
energy, heat treatment, grain size, 
precipitate geometry, distribution and 
coherence to the matrix etc., [e.g. 3-7], 
thus making the prediction of the 

mechanisms of cyclic damage and the 
associated cyclic hardening or softening 
difficult. A vast amount of empirical 
information could be gathered to date on 
the cyclic stress-strain behaviour of a wide 
spectrum of engineering alloys [e.g. 3-10]. 
With regard to the engineering alloy under 
consideration and the aims of the present 
study the following observations are of 
importance: 
- Experiments on FCC single crystals 
subjected to fully reversed fatigue loading, 
have shown a rapid hardening already in 
the initial few cycles [4]. 
- In [3] cyclic hardening was observed for 
annealed pure polycrystalline aluminum 
subjected to cyclic strains.  
- The high value of stacking fault energy 
favors the activation of multiple glide 
systems and the formation of three-
dimensional dislocation structures, which 
result in cyclic hardening during plastic 
deformation. 
- Microhardness measurements by means 
of Vickers micro-hardness tests conducted 
on 2024 T42 alloy specimens fatigued at 
reversed bending have confirmed the 
increase of hardness at the microscale 
following fatigue loading [11]. Yet, as the 
changes are limited within a narrow 
surface material layer classical hardness 
measurements lack the necessary 
sensitivity to reliably quantify this 
phenomenon. Recall that, the depth of 
penetration for the square pyramid 
indenter used for the Vickers micro-
hardness test is more than 0.5mm. The 
lack on sufficient sensitivity of the 
performed hardness measurements has 
been reflected into appreciable scatter of 
the experimental data presented in [11] 
thus making it difficult to exploit the 
technique for practical purposes.  
The primary objective of this work was to 
exploit the ability of measuring material 
hardness changes at the nano- and meso-
scale in order to develop a concept for the 
early detection of fatigue damage 
accumulation for the aircraft aluminum 
alloy 2024 T3. To accomplish the goal, 
interrupted fatigue tests followed by 



 

 

nanohardness measurements were 
performed. The convection adopted in the 
present investigation for the scales is: 

4101 −⋅  to 3101 −⋅  atomic-scale, 3101 −⋅  to 
1101 −⋅  nano-scale, 1101 −⋅  to 10  meso-

scale, 10  to 200≈  micro-scale and 200〉  
macroscale. The determination of the 
specimen hardness was carried out 
accurately by means of nanoindentations 
[12]. Up to now nanoindentation 
measurements were used widely for the 
determination of elastic and plastic 
properties of thin films and coatings 
[13,14]. The nanohardness measurement is 
a precise indentation method to register 
continuously the course of the applied 
force versus the occurring penetration 
depth.  
 
 
2. Experimental Investigation 
 
The experiments were conducted for the 
2024 alloy and included fatigue tests 
which were interrupted at predefined 
number of fatigue cycles to carry out 
surface hardness measurements. The alloy 
was received in the form of 3mm thick 
bare sheets in T3 condition. For the 
experiments, fatigue specimens as shown 
in Fig. 1, were prepared according to the 
ASTM E466-96 specification. Machining 
of the specimens was made according to 
the specification ASTM E466-96. All 
specimens were cut in longitudinal (L) 
orientation relative to the rolling direction.  
 
 
 
 
 

Figure 1: Fatigue specimen geometry. 
 
The fatigue tests were performed 
according to the ASTM E466-96 
specification. An overview of the 
performed fatigue tests is given in Table 1. 
The tests were performed for constant 
stress ratio 1.0=R  for three different 
applied fatigue stresses. The frequency 

used was 25Hz while all tests were 
conducted at constant room temperature 
( )C0325 ± .For the mechanical testing two 
servohydraulic MTS machines of 100 and 
250kN were used. 
 

Maximum Applied 
Stress σmax [MPa] 

Direction/Number of 
tests performed 

180 L3 
200 L3 
250 L3 

 
Table 1: Fatigue tests performed on 2024 

T3 aluminium alloy specimens. 
 
In order to investigate the hardness 
increase during fatigue loading, the fatigue 
tests were interrupted at certain numbers 
of fatigue cycles which refer to different 
percentages of the fatigue life and surface 
hardness measurements were carried out at 
different specimen locations. Each fatigue 
test has been interrupted 6 times to 
conduct nanohardness measurements. The 
selected numbers of cycles for interrupting 
the fatigue tests are given in Table 2; they 
refer to different percentages of the 
consumed fatigue life of the specimens. 
 

σmax 
[MPa] 

Cycles for 
interrupting 
fatigue tests 

[x103] 

Expected 
fatigue life 

according to 
[15] 

180 150, 300, 450, 
700, 1050, 1250 1000000 

200 60, 120, 180, 
280, 420 400000 

250 15, 30, 45, 70, 
105, 125 100000 

 
Table 2: Selected numbers of cycles for 

interrupting the fatigue tests. 
 
The determination of the specimen 
hardness can be carried out accurately by 
means of nanoindentations [12]. The 
nanoindentation is a precise method of 
registering continuously the course of the 
applied force on a diamond indenter 
versus the occurring penetration depth. 
This measurement consists of two steps, 
the so-called loading stage and the 
unloading one. During the loading stage, a 
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load forces the diamond indenter to 
penetrate into the specimen. The load is 
gradually applied and at the same time the 
indentation depth is measured. When the 
load is fully removed, there remains, as 
the result of material plastic deformation, 
a depth hp that is dependent on the 
material properties as well as on the 
applied load and the indenter geometry 
[12]. 
 
 
3. Results and Discussion 
 
3.1 Results of the Fatigue Tests 
The fatigue lives obtained for the 
performed interrupted fatigue tests are 
summarized in Table 3.  
 

σmax [MPa] Experimental fatigue life - 
Nf [cycles] 

5000000 (interrupted) 
1577460 180 

5000000 (interrupted) 
428600 
919865 200 
1349290 
208692 
184582 250 
182365 

 
Table 3: Experimental fatigue lives. 

 
The S-N curve corresponding to the data 
of Table 3 is displayed in Fig. 2. The 
fitting curve has been calculated using the 
Weibull equation: 
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where C1, C2, C3, C4 are the fatigue 
strength amplitude, tensile strength 
amplitude and regression coefficients, 
respectively. The derived coefficients for 
the fitting curve are given in Table 4. 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 

Figure 2: S-N curve resulted from the 
interrupted fatigue tests. 

 
Fitting Coefficient Value 

C1 182.60 MPa 
C2 425 MPa 
C3 5.09 
C4 7.29 

 
Table 4: Derived fitting coefficients for 

the S-N curve. 
 
3.2 Results of the Hardness Measurements 
The specimens used were thoroughly 
investigated concerning initial 
nanohardness deviations on various areas 
before the fatigue loading procedure. 
These measurements were exploited to 
provide a reference for deriving hardness 
changes after certain numbers of applied 
fatigue cycles at the different fatigue 
loads. Nanoindentation results on the 
unloaded area 1 for one of the specimens 
used are shown in Fig. 3.  
 
 
 
 
 
 
 
 
 
 
 
             
           (a)                                  (b) 

Figure 3: Nanoindentation results 
conducted in area 1 before specimen 

loading. 
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Displayed in Fig. 3(a) has been the course 
of the applied indentation load versus the 
corresponding penetration depth for one 
measurement. hmax and hp in Fig. 3(a) 
stand for the maximum penetration depth 
corresponding to the maximum applied 
load and hp for the remaining penetration 
depth after the load is fully removed, 
respectively. Previous investigations [14], 
have shown that in order to derive the 
average value of the maximum penetration 
depth with confidence a number of 
approximately 15 nanoindentations in the 
same specimen region is sufficient. In the 
present study all values given for the 
penetration depth are average of 30 
nanoindentations. 
Plotted in Fig. 3(b) is the average value of 
the maximum penetration depth hmax as a 
function of the number of measurements 
involved to derive this average value. As it 
can be seen by a number of measurements 
exceeding 20 the average hmax value 
remains practically constant and equal to 
5.154μm. Nanoindentation results 
performed in area 1, for all specimens 
used, show that the indentation depth 
fluctuation in area 1, does not exceed 60 
nm. This scatter can be considered as 
sufficiently low. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4: Measurement areas and 
corresponding nanoindentation results for 

one specimen prior to fatigue loading. 
 
Fig. 4 shows nanoindentation results, 
obtained in various regions in the axial 
direction of one of the specimens, before 

cyclic loading. It can be observed that the 
indentation depth remains practically 
constant all over the specimen surface, 
within a small scatter of 20 nm, indicating 
a uniform superficial material structure. 
Nanoindentations were conducted on all 
specimens and the scatter of results had 
approximately the same value. The 
registered nanoindentation results over the 
surfaces of the unloaded specimens, are 
considered in the followings as reference 
values. The derived nanoindentation 
depths after certain operational cycles are 
compared to the corresponding reference 
values and the related indentation depth 
alterations are monitored. 
The hardness change with the number of 
applied fatigue cycles is shown in Figs. 5-
7 for the maximum applied stresses 180, 
200 and 250MPa, respectively.  
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5: Nanoindentation depth results 
for σmax=180MPa at various percentages 

of the consumed fatigue life for all 
specimens used. 

 
Displayed in the figures has been the 
indentation depth as a function of the 
percentage of the consumed fatigue life. 
All figures involve measurements obtained 
for three different specimens subjected to 
the same fatigue conditions (Table 3). As 
it can be seen in the figures a clear 
hardness increase with increasing number 
of applied fatigue cycles could be 
monitored for all specimens investigated. 
At the early stages of fatigue, a rapid 
hardness increase is observed. With 
increasing number of applied fatigue  
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Figure 6: Nanoindentation depth results 
for σmax=200MPa at various percentages 

of the consumed fatigue life for all 
specimens used. 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 7: Nanoindentation depth results 
for σmax=250MPa at various percentages 

of the consumed fatigue life for all 
specimens used. 

 
cycles the material’s hardness continues 
increasing yet with a decreasing rate. The 
indentation depth alteration with 
increasing percentage of consumed fatigue 
life for all loading cases investigated can 
be seen in Fig. 8. In the figure, a clear 
decrease of the indentation depth change, 
corresponding to a lower increase of 
hardness, can be observed with increasing 
number of applied fatigue cycles. By 
consumed percentages of fatigue life of 
the order of 50% the observed hardness 
increase becomes marginal but still occurs. 
The absence of Persistent Slip Bands on 
fatigued pure aluminum [5,7], which if 
present, would favour the localisation of 
cyclic plasticity within these bands formed 

by the transformation of the saturated 
matrix dislocation structure [9], may 
explain the decreasing but present 
hardness increase also at percentages of 
consumed fatigue life where mechanisms 
such as crack nucleation or even micro-
crack growth are expected to be dominant.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 8: Indentation depth alteration 
versus the percentage of consumed fatigue 

life. 
 
The comparison of the results in Figs. 5-7 
makes the dependency of the observed 
hardness increase on the applied fatigue 
stress evident. As shown also in Fig. 9 a 
higher applied fatigue stress causes also a 
higher hardness increase. The penetration 
depth hp50% values displayed in Fig. 9 refer 
to the maximum penetration depth value 
observed experimentally at a consumed 
fatigue life of 50% by the respective value 
of the maximum fatigue stress at the areas 
2, 3 and 4 for all specimens investigated.  
 
 
 
 
 
 
 
 
 
 
 
 
Figure 9: Penetration depth value at 50% 

consumed fatigue life. 



 

 

The plotted hp50% values represent average 
values and scatter is indicated. As 
expected, the hardness increase at the 
various locations of the specimen’s 
surface depends on the stress applied on 
this location. The hardness increase along 
the x-direction of the specimen has a 
maximum at area 4, which is the area of 
maximum applied fatigue stress and 
decreases gradually to reach a minimum at 
area 2, which is the area of minimum 
applied fatigue stress. The results confirm 
the expectation that the degree of 
hardening increases with increasing 
applied fatigue stress. Noticeable is the 
observed increase in scatter with 
increasing maximum applied fatigue stress 
σmax at area 4 (Fig. 9). 
 
 
4. Conclusions 
 
From the above investigation the 
following conclusions can be drawn: 
- The surface hardness of the alloy 2024 
increases when the material is subjected to 
fatigue loading. 
- With increasing number of applied 
fatigue cycles, the surface hardness 
increases. The dependency of hardness 
increase on the number of applied fatigue 
cycles is non-linear and can be expressed 
by involving experimental functions. 
Further experimental investigation is 
needed to derive reliable fitting equations 
of the evolution of hardness increase with 
the number of applied fatigue cycles. 
- The surface hardness increase process is 
accelerated at higher fatigue stress 
amplitudes. Further experimental 
investigation is needed to derive the 
dependency of hardness increase on the 
applied fatigue stress value. 
- It is remarkable that the increase of 
hardening at two material volumes 
subjected to the same local applied fatigue 
stress for the same number of fatigue 
cycles but lying at different locations of 
two different specimens which are 
fatigued by different fatigue loads may 
deviate significantly. 
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Abstract 
 
Structural materials in practice are most 
widely used in polycrystalline form, i.e. as 
an agglomerate of a large number of 
crystallites, or grains, each possessing its 
own distinct orientation and separated 
from its neighbours by grain boundaries. 
Both elastic and plastic deformation 
properties of these crystallites depend on 
their orientation, leading to complex load 
transfers and interaction within the solid. 
While classical treatments of solid 
deformation achieve remarkable success 
even ignoring these aspects, this neglect is 
likely to become unacceptable if the issue 
of crack initiation is to be addressed. The 
present paper discusses the application of 
energy-based crack initiation criteria to the 
prediction of crack initiation in 
polycrystalline solid, using a particular 
implementation of finite element-based 
modelling scheme that does not represent 
grain boundaries explicitly, but assigns 
crystal orientation at the level of 

integration points on a simple fixed mesh. 
This has implications for both elastic and 
plastic deformation behaviour that in the 
present approach are accounted for within 
a fully three-dimensional formulation. 
Modelling results are compared with 
neutron diffraction measurements of 
orientation-specific diffraction strains, 
obtained during in situ cyclic loading of a 
sample of a nickel-base superalloy. The 
advantages and limitations of the 
modelling approach are discussed. 
 
 
Keywords: Polycrystal deformation, 
crystal plasticity, neutron diffraction, 
crack initiation, fatigue prediction criteria, 
microscopic dissipated strain energy. 
 
1. Introduction 
 
Modern engineering often applies 
phenomenological laws to describe the 
physical phenomena that govern fatigue 
failure of industrial components. All 



classical fatigue criteria can be expressed 
in the form [1, 2]: 

 ( , , ,...) b
pl fN cΦ ε ε σ =  (1) 

where b and c are material parameters, Nf 
is the number of cycles to failure1 and 

, andplε ε σ  are strain, plastic strain and 
stresses respectively. 
 
However, in these criteria, instead of being 
in the form of a functional (i.e. a function 
of deformation history, an expression 
depending on stresses and strains at all 
previous points in time), Ф becomes a 
function, i.e. an expression depending only 
on certain values of stress and strain. 
These values are usually taken at the 
extreme points in a stabilised fatigue 
cycle. The alternative proposed here arises 
from the analysis of classical criteria that 
reveals that they are all in some way 
related to the dissipated energy per cycle, 
as they combine products of strains and 
stresses. Therefore, following the 
explanations offered in [1] and the work of 
Skelton and co-workers (e.g. [3]), the 
functional form Ф may be written as: 

 ( ) ( , ) : ( , )
cycle

x x t x t dtΦ σ ε= ∫ &  (2) 

where the stress and strain fields should be 
considered at the stabilized cycle and x is 
the field point where the elastic quantities 
are computed. It is proposed to regard the 
dissipated energy per cycle as the damage 
indicator. It can be interpreted as an upper 
bound of the energy dissipated on damage, 
and is proportional to the damage 
parameter itself, if a fixed fraction of 
dissipated energy actually contributes to 
the decrease of the material’s load bearing 
capacity. The authors are fully aware that 
this represents an approximation, as yet 
unverified, and intend for this assumption 
to be confirmed or refuted through 
                                                 
1 Note that for the material considered in this work, 
the number of cycles to crack initiation is larger 
than that for propagation. Therefore the number of 
cycles to failure will be used instead of the number 
of cycles to initiation (more difficult to determine) 
to formulate crack initiation prediction laws. 

comparison with experimental 
observations. Within the proposed 
framework quantitative assessment of 
localised energy dissipation at the 
microscopic level (i.e. the scale at which 
cracks initiate and failure begins) plays a 
fundamental role in fatigue durability 
prediction. 
 
In order to assess the energy dissipated at 
the microscopic level it is necessary to 
consider only a representative volume 
element (RVE) of material and to use 
polycrystal micro-mechanics to model the 
details of grain morphology and elastic-
plastic anisotropy induced by the 
crystallographic orientation. In this way, 
the relationship between the macroscopic 
stress state and the stress state at the grain 
level can be investigated in detail. The 
model adopted in this work is briefly 
introduced here.  Furthermore, the use of 
diffraction measurements is discussed for 
the validation of the proposed numerical 
modelling employed for the development 
of microscopic energy-based fatigue 
prediction criteria. 
 
Finally, a preliminary investigation of the 
capabilities of micro-level energy-based 
criteria for the prediction of crack 
initiation within the crystal plasticity 
framework are also presented. 
 
 
2. Modelling crystal plasticity using 
finite elements 
 
The plasticity formulation implemented 
within the finite element (FE) framework 
used to reproduce the stress-strain fields 
induced by external loading is similar to 
that developed by Manonukul and Dunne 
[4]. The model has been extended to three-
dimensional RVEs and anisotropic 
elasticity has been included. The choice of 
the finite element method to solve the 
considered boundary value problem also 
requires the design of a finite element 
mesh discretising the geometry of the 



microstructure. A straightforward and 
systematic way for representing the 
interfaces is by using Voronoï polyhedra 
for 2D and 3D free meshing techniques 
[5]. Crucially, in order to obtain an 
implementation that is efficient both in 
terms of numerical solution and input 
preparation, the grain structure of the RVE 
is prescribed by way of assigning crystal 
orientation at the level of integration 
points within a fixed regular hexahedral 
mesh. 
 
The crystal orientation properties at a 
given integration point are inherited from 
the nearest ‘seed’ point which notionally 
represents the source of a growing grain 
during crystallisation. This is equivalent to 
specifying Voronoï polyhedra ‘centred’ at 
seed points. In the current implementation 
the polyhedra can be specified at any 
chosen resolution, defined by the size of 
the three-dimensional domain (cubic 
RVE). The simplest way to distribute the 
centres of polyhedra is to use a Poisson 
process. In this case, points are 
independently distributed, leading to 
uniform spatial density. The grain shape 
can be adjusted by varying the density of 
the distribution along different axes, 
leading to the average grain shape 
changing from sphere to oblate or prolate 
ellipsoids. 
 
Texture is the term used to describe the 
statistics of grain orientation distribution 
function (ODF). Texture of the polycrystal 
is reflected in the specific orientations 
prescribed at ‘seeds’, and can be varied 
from random to strong by selecting 
appropriate generating functions.  
A particular set of ‘seed’ point positions 
together with prescribed crystal 
orientations will be referred to as 
‘microstructure implementation’. 
 
Once the microstructure implementation 
has been generated within the RVE, the 
polycrystalline volume is next discretised 
using a regular cubic mesh, with material 
properties associated with each Gauss 

point.  The main advantage of this 
technique is that a flexible description of 
the polycrystalline structure is obtained, 
and automatically an arbitrary number of 
microstructure implementations can be 
readily generated.  Periodic microstructure 
can also be generated using this technique 
as shown in Fig. 1(a).  Furthermore, once 
the model has been calibrated, a number of 
structural realisations can be studied 
without further experimental input. In this 
way statistical analyses might be carried 
out within the crystal plasticity 
framework. 
 
Viability of the solution for damage 
studies at meso/microscopic level 
As a result of this approach to 
discretisation, grain boundaries become 
‘smeared out’ (see Fig. 1(a)).  However, 
this does not constitute a problem when 
computing average values within the 
grains, and may only present a limitation 
for the computation of the localisation of 
deformations at grain boundaries. This 
methodology is perfectly suitable for 
meso-scale analyses, in that the model 
allows computing physical quantities at 
the grain level. An example of distribution 
of accumulated plastic slip within the RVE 
during the stabilised cycle, also 
highlighting the presence and the 
formation of persistent slip bands is shown 
in Fig. 1(b). 
 
Damage initiation in heterogeneous 
materials is not driven by the mean values 
of stress and strain in each constituent but 
by some maximum values reached at a 
specific location of the heterogeneous 
microstructures. The computation of 
explicit microstructures also provides 
these local data and can be coupled to 
damage criteria or damage evolution 
equations to predict initiation and 
propagation of damage or cracks. 
 
However, the model needs to be calibrated 
at a microscopic level. X-ray or neutron 
diffraction can therefore be employed to 



correlate the finite element results for 
specific grain sub-sets. 
 

Shear strain 
localisation 

 a) 

 b) 

 
 
Figure 1. (a) Periodic microstructure: grain 
boundaries are smeared out due to the 
characterisation of the grain orientation at 
integration points; (b) Accumulated plastic slip 
within the RVE after 3 loading cycles. 
 
 
3. Diffraction Measurements 
 
In diffraction measurements (either X-ray 
[6] or neutron [7] diffraction) elastic 
lattice strain components in chosen 
directions can be determined during 
uniaxial in situ loading. 
 
In situ measurements were made of the 
lattice plane response of C263 Nickel 
based superalloy during uniaxial tensile 
loading using the ENGIN-X strain 
measurement instrument at the ISIS 

spallation neutron source at Rutherford 
Appleton Laboratory. The instrument has 
two detector banks that are centred on 
horizontal scattering angles of ±90º. The 
detectors measure time-resolved spectra, 
each Bragg peak being produced by 
reflection from a different family of 
grains, oriented such that the {hkl} plane 
normal lies at ±45º to the incident beam 
(to within a few degrees). The load axis 
was aligned horizontally at +45º to the 
incident beam, allowing simultaneous 
measurement of lattice strains in directions 
both parallel and perpendicular to the 
applied load. Cyclic strain controlled 
fatigue loading was carried out using a 
50kN horizontal servo-hydraulic 
INSTRON stress rig. A clip extensometer 
was used to obtain accurate record of the 
macroscopic total strain during loading. 
Conventionally measurements of 
diffraction strains are performed at fixed 
externally applied load. However, it 
frequently leads to relaxation effects that 
are particularly prominent under the 
conditions of plastic deformation. 
Therefore in the present series of 
experiments measurements were made 
during constant rate continuous straining, 
using count times of approximately 6 min 
per point. 
 
TOF patterns contain large numbers of 
diffraction peaks, each representing the 
scattering from a group of grains sharing 
the orientation of a normal to a set of 
lattice planes. The analysis of the relative 
peak shift during loading with respect to 
the initial position provides a highly 
sensitive method of evaluating the 
mesoscale (grain sub-group average) 
elastic lattice strains. The diffraction 
spectra were analysed by single peak fits 
of individual {hkl} reflections and by 
Rietveld refinement of the complete 
spectrum, using the GSAS software 
package [8]. 
 
 
4. Model tuning and comparison with 
experimental results 



 
One of the central challenges of model 
validation for complex constitutive laws 
arises from the fact that acceptable 
agreement with macroscopic stress-strain 
data can be obtained using different and 
distinct combinations of material 
parameters, such as the yield stress, 
hardening rate, ratio between latent and 
self-hardening of slip systems, etc. The 
motivation for the use of diffraction 
measurement of orientation-specific 
elastic strains is to utilise this mesoscopic 
scale information to determine optimal 
values of system parameters [9]. If it is 
discovered that not only the macroscopic 
strains and stresses, but also the elastic 
lattice strains for several Miller indices are 
adequately predicted by the model, then it 
may be reasonably assumed that the 
plastic strains associated with energy 
dissipation are also captured accurately, 
and confident prediction of fatigue 
durability can be attempted. 
 
Figure 2 shows a comparison between the 
experimental data (markers) for the first 
fatigue cycle with the model prediction 
(continuous curve). It is interesting to note 
that the hardening slope of the real 
material’s stress-strain curve is 
overestimated by the model. We believe 
this effect to be associated with the 
fundamental nature of the finite element 
solution that is equivalent to Rayleigh-Ritz  
potential energy minimisation  across the 
family of piecewise continuously 
differentiable statically admissible 
displacement fields. Excessive ‘stiffening’ 
observed in the simulation is the 
consequence of displacement shape 
functions being forced to maintain 
continuous differentiability between 
neighbouring dissimilar grains. Note that 
the hardening law used at the level of 
individual slip system was elastic-ideally 
plastic. 
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Figure 2.  Comparison between experimentally 
measured points on the stress-strain curve 
during the first fatigue cycle (markers) with the 
prediction of the 3D anisotropic polycrystal 
plasticity-based finite element model 
(continuous curve). 
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Figure 3. Comparison between orientation-
specific elastic lattice strain measured 
experimentally by neutron diffraction (markers) 
and the predictions of the finite element model 
(continuous curves). 
 



Consideration of Fig. 2 and Fig. 3 in 
combination suggests that the elastic strain 
partitioning between differently oriented 
grains is adequately captured by the 
existing model. However, this cannot be 
said about the plastic strain, that is 
invisible in the diffraction experiment, but 
has a particularly prominent effect on the 
macroscopic stress-strain curve. Further 
improvement of the agreement between 
model and experiment should be sought 
through better choice of displacement field 
representation. 
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Figure 4. Illustration of dissipated energy 
evolution during fatigue cycling as a function of 
time. Note the significant difference observed 
between locations that display most significant 
and least dissipation. 
 
 
5. Energy dissipation and prediction of 
fatigue crack initiation  
 
Based on any particular polycrystal 
plasticity model it is possible to evaluate 
the rate of energy dissipation by plastic 
slip at any chosen location (integration 
point) within the model. Dissipation rate 
can be defined as the sum total of plastic 
work of shear stresses on slip 
displacements in an increment over all 
active slip systems. It is then discovered 
(e.g. Figure 4) that all points are not equal 
in this respect: some points appear to 
dissipate significantly, while others show 
negligible dissipation rate, i.e. primarily 
deform elastically. This is an explicit 
manifestation of the inhomogeneity of 
damage in real materials that serves as the 
starting physical premise for some fatigue 

criteria (e.g. Dang Van), but is rarely 
utilised directly in the prediction of life to 
fatigue crack initiation. 
 
In the approach utilised by the authors this 
aspect of the problem is tackled directly, 
i.e. crack initiation prediction is based on 
the local estimate of energy dissipation – 
although in principle other parameters of 
the local fatigue loop can also be used. 
 
Table 1. (a) Experimental data and (b) life 
prediction 
a) 

Experiment 
number εmin (%) εmax (%) Δεtot(%) 

1 -0.635 0.635 1.27 

2 0 1.05 1.05 

3 -0.42 0.42 0.84 

4-Calibration -0.307 0.308 0.615 
b) 

Experiment 
number Nf Predicted Nf 

1 1218 1321 

2 4216 4038 

3 9670 9533 

4-Calibration 34877 34877 
 
Here we state that the functional form Ф 
in Eq. (1) corresponds to the spatial 
maximum of the energy dissipated during 
a loading cycle, Ecycle, within the studied 
RVE.  Therefore the lifing Eq. (1) can be 
written in terms of the maximum across all 
points of the sum of energy dissipation 
over each of the M slip systems, i.e.: 

1
( ) ( , ) ( , )

=

=∑ ∫ &

M

cycle
j cycle

E x x t x t dtτ γ ,

ˆ max ( )cycle cycle
x

E E x=  

ˆ =b
cycle fE N c  (3) 

where the material constant c is extracted 
from a single calibration test as follows: 

 ( )ˆ= b
cycle f

calibrationtest
c E N , (4) 



and b is obtained as best fitting parameter 
for the available experimental data. 
 
The 3D anisotropic polycrystal finite-
element model was used to calculate the 
maximum energy dissipated during a 
stabilised loading cycle for a range of 
applied macroscopic strain amplitudes and 
load ratios (see Table 1) using the 
microstructural model for C263 described 
in section 2.  Only data for low cycle 
fatigue (LCF) tests at 300ºC will be 
considered here as an example application 
of how to perform life predictions using 
the proposed methodology. 
 
Test data are reported in Table 1(a) and 
the comparison between experimental and 
predicted lives (obtained using Eq. (3)) for 
the tested specimens is tabulated in Table 
1(b). A plot comparing the predictive 
trend and the experimental results is also 
shown in Fig. 5.  The data points align 
well according to a simple power law 
represented graphically by the linear 
relationship between log(Ecycle) and 
log(Nf). Good agreement between the 
prediction and the experimental data is 
observed. It is worth noting that the lifing 
data used for comparison span almost two 
decades of the numbers of cycles to 
failures, suggesting that the proposed 
approach captures well the underlying 
damage mechanism, and that the latter 
mechanism is likely to remain unchanged 
across this range of cyclic lives. 
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Figure 5. Comparison between experimental 
and predicted cycles to failure with maximum 
energy dissipated per cycle. LCF tests carried 
out at 300ºC (see Table 1). 
 

 
6. Discussion 
 
The preliminary results obtained in this 
study suggest that the combination of 
three-dimensional, FE-based, elastically 
anisotropic polycrystal plasticity 
modelling, in combination with energy 
based fatigue criteria provide a viable 
route for the development of improved life 
prediction approaches for structural 
design. 
 
A particular feature of the proposed 
approach is its ability to address the 
probabilistic and statistical aspects of 
structural strength. The numerically ‘lean’ 
formulation allows numerical simulation 
of cyclic loading of significant numbers of 
distinct ‘implementations’ of the 
microstructure. This in turn provides a 
measure of the spread of behaviour as a 
function of particular grain arrangement 
within the highly stressed regions of the 
sample. 
 
It is the authors’ hope that once the model 
has been tuned up using e.g. fatigue lifing 
data for a randomly textured sample, the 
predictions can then be obtained without 
any further parameter adjustment for other 
textures. This expectation is based on the 
hypothesis that single crystal plastic slip 
response is not affected by the changes in 
the overall texture; and that the model 
adjustment carried out for an untextured 
sample provides sufficiently accurate and 
reliable estimates of the parameters. Of 
course, this hypothesis requires 
verification by comparison with sufficient 
experimental data on fatigue durability of 
samples possessing different textures. 
 
One of the difficulties encountered in the 
implementation of the finite element 
plasticity model involving crystal 
orientation assignment at integration 
points turned out to be excessive 
‘stiffening’ of the polycrystalline 
response. This phenomenon is ascribed by 
the authors to the particular choice of trial 



displacement fields within the 
formulation. This problem may be 
overcome by allowing greater 
discontinuity between displacements at 
neighbouring nodes within a single finite 
element. Although the authors have not 
attempted to develop such a formulation, 
they are aware of several approach found 
in the literature that aim to achieve such a 
solution. 
 
 
6. Conclusion 
 
The use of polycrystal deformation models 
for the prediction of crack initiation has 
been investigated. In particular, a three 
dimensional anisotropic elastic-plastic 
material model has been implemented 
within the FE framework in order to study 
failure mechanisms at mesoscopic level. 
 
The formulation based on crystal plasticity 
theory was validated both at macro- and 
mesoscopic level.  The proposed model 
calibration at mesoscopic level was 
performed via comparison with neutron 
diffraction data obtained experimentally.  
In order to compare the numerical 
predictions of the FE model with these 
experimental data, the corresponding 
mesoscale average elastic strains were 
extracted from the results of the 
simulation. 
 
Comparisons between the FE model and 
experimental results show that the elastic 
strain partitioning between differently 
oriented grains is adequately captured by 
the proposed model. However, the FE 
polycrystal formulation does not produce a 
rigorous match of the elasto-plastic 
behaviour of the material at all levels. 
Advantages and limitations of the present 
methodology have been thoroughly 
discussed and solutions to overcome the 
limitations of the FE implementation have 
been proposed. 
 
Finally, the capabilities of micro-level 
energy-based criteria for the prediction of 

crack initiation have been assessed.  The 
proposed approach seems to capture well 
the underlying damage mechanism, hence 
providing good agreement between 
experiments and predictions. 
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A MULTISCALE APPROACH OF HIGH CYCLE
FATIGUE OF METALS INCLUDING PLASTICITY

AND MICROVOIDS GROWTH

V. Monchiet, E. Charkaluk & D. Kondo

LML, UMR8107 CNRS, USTL, Lille, France

ABSTRACT : A micro-macro ap-
proach of multiaxial fatigue in unlimited
endurance is proposed. It allows to take
into account plasticity and damage mech-
anisms which occur at the scale of Per-
sistent Slip Bands (PSB). The damage
is modelled as the consequence of mi-
crovoids growth along PSBS and so can
be coupled or uncoupled with plasticity.
The proposed macroscopic fatigue crite-
rion, which corresponds to microcracks
nucleation at the PSB-matrix interface,
is derived for different homogenization
schemes (Sachs, Lin-Taylor and Kröner).
The role of a mean stress and of the hy-
drostatic pressure in high cycle fatigue is
shown; this dependence is related here to
the damage micro-mechanisms. Finally,
the particular case of affine and out of
phase loadings are presented as an illustra-
tion. Comparisons between the predictions
of the coupled and uncoupled plasticity-
damage models are shown and allow to il-
lustrate the relevance of the approach.

Keywords : Fatigue, Micromechanics, Un-
limited endurance, PSB.

1 Introduction
Structures and mechanical components
submitted to cyclic loadings can fail after
a finite number of cycles, even the macro-
scopic response remains elastic. Fracture
is the result of fatigue macrocracks nucle-
ation and growth. Classically, in uniaxial
experiments, a fatigue limit can be distin-
guished, i.e. there is a maximum value
of the stress amplitude under which no fa-
tigue crack can be observed whatever the

applied number of cycles.
It has been earlier recognized that, un-
der high cycle fatigue loadings, metals
fracture is the result of the cyclic plastic
strain; at the microscale, some grains (in
very low proportion), favorably oriented,
undergo plasticity. This local plasticity
is however confined and has no signifi-
cant effect on the macroscopic response
which remains elastic. Dang Van and
Papadopoulos (see [(2)]) formalized this
multiscale framework. The resulting cri-
terion is based on the consideration that a
sufficient condition for non nucleation of
fatigue cracks is to ensure elastic shake-
down at all the scales. Nevertheless, plas-
tic activity alone is not able to account for
the role of pressure on the fatigue crite-
rion. In order to take into account the mean
stress effect, Papadopoulos [(2)] postu-
lated a ”generalized multiaxial fatigue cri-
terion” (which corresponds to the elastic
shakedown limit) depending on the hy-
drostatic pressure. But in fact, the phe-
nomenon of grain level plasticity is accom-
panied with the development of localized
damage.
The explicit incorporation of damage in
HCF modelling has been the subject of
several recent studies among which [(7)].
Although this work allows to account for
the role of the pressure in fatigue, the
principal criticism is that the concept of
a scalar variable d, used to describe dam-
age, cannot be explicitly related to a par-
ticular physical micro-mechanism. More-
over, in the two scale model proposed by
[(7)], no plasticity occurs at the grain scale



below the macroscopic fatigue limit, and
this does not correspond to experimental
observations [(1)].
Based on experimental results obtained in
the context of faced-centered-cubic struc-
tures (FCC) [(3)], and following the multi-
scale approach of Dang Van [(2)] in HCF,
we propose a new micromechanical ap-
proach of HCF criterion in which plastic-
ity and damage are coupled at the grain
scale (section 2). Considering such cou-
pled micro-mechanisms, the present study
aims to provide a fatigue criterion in which
an explicit dependence on the pressure and
on the mean stress is shown (section 3).
Finally, through an application to affine
and out of phase cyclic loadings, we in-
vestigate the role of the homogenization
scheme and the local hardening rule in
the qualitative predictions of the approach
(section 4).

2 Cyclic plasticity and damage at grain
level

2.1 Basic principles of the modelling
Let us introduce σ and ε respectively the
microscopic (i.e. at the grain level) stress
and strain fields. As classically, an ad-
ditive decomposition of the total strain ε
into elastic strain, εe, and plastic strain, εp,
at the microscopic scale is adopted : ε =
ε
e + εp. Plastic activity at the grain scale

is classically characterized by the activa-
tion of slips systems defined by a unit nor-
mal vector nr and a slip direction mr. The
microscopic plastic strain tensor reads :

ε
p =

r=N∑

r=1

γr
∆

r; ∆
r = nr

s

⊗mr (1)

Where N is the number of slip system ac-
tivated. We assume that the plastic strain is
described, as classically, by Schmid’s law :

f r = |τ r −Xr
g | − τ0 − hrsRs (2)

where Xr
g is the kinematic hardening vari-

able; a linear law is chosen : Xr
g = cγr.

The isotropic hardening variable, Rr, is
function of the cumulated plastic strain
γr
cum =

∫ t

0
|γ̇r|dt′. Either a linear and a

non linear isotropic law are considered in
the following :

Rs =





R0γ
s
cum

Rs {1− exp(−r0γs
cum)}

(3)

where R0, Rs and r0 are three model pa-
rameters.
hrs is the interaction matrix classically in-
troduced in order to take into account la-
tent hardening and supposed defined by :
hrs = h + (1− h)δrs. Under low macro-
scopic loading as in the context of HCF, in
the case of FCC structures, the plastic be-
havior is generally characterized by the ac-
tivation of a predominant slip system and
more precisely by the formation of strain
localization band which are the potential
sites for microcracks nucleation.
This predominant slip system activated is
denoted by the use of the notations : r = p
(for ”predominant”). The strain localiza-
tion into the PSBs is also accompanied
by a dislocations annihilation mechanism
which lead to the formation of vacancies
along PSBs. A phenomenological model
for points defects production by disloca-
tions annihilation has been already pro-
posed by Essmann et al. [(3)]. The poros-
ity associated to this mechanism, denoted
ηa, is function of the cumulated plastic slip
strain on the predominant system activate,
γp
cum, and is given by :

ηa = A0

{
kaγp

cum − 1 + exp(−kaγp
cum)

}
(4)

Unfortunately, the transition from vacancy
production to the formation of microvoids
or microcracks along the PSBs is not yet
well understood. Nevertheless, we assume
that the formation of these microvoids is
the result of the agglomeration and the
growth of vacancies formed by the dislo-
cation annihilation process. It follows that
damage along PSBs is the result of both
two mechanisms : vacancies production
and voids growth which is the result of
the combined effect of the slip-like plastic
activity and pressure. The total porosity
at the grain scale, η, is then decomposed
into two terms corresponding respectively
to nucleation and the growth part as fol-
lows :

η = ηa + ηg (5)



As it have been pointed out by [(4)], void
growth in single crystal is the result of the
activation of multiple slip activity around
the circumference of the void. More pre-
cisely the deformation state takes the form
of angular slip sectors in which only one
slip system is activated. As voids growth
induces volume change, the plastic strain
at the grain scale can be decomposed in the
following form, 1 being the second order
identity tensor :

ε
p = γp

∆+ εph 1 (6)

in which the volumetric plastic strain εph

+

γp εph

Figure 1: Considered cell : Additive
decomposition of the microscopic plastic
strain

due to the voids growth is related to ηg by
using mass balance equation :

ηg = 1− exp(−3εph) (7)

It appears that the determination of the to-
tal porosity η requires the calculation of
εph. For this purpose two approach of void
growth in single crystal, a non coupled and
a coupled model, are considered for the
present study. Comparisons between the
prediction of these two models will be pre-
sented in section 4.

2.2 An uncoupled plasticity-damage
model (UPDM)

In order to derive a void growth model,
single crystal is replaced by an equiva-
lent von Mises materials. A first step of
the modelling consists to consider a single
void growth in an infinite perfectly plas-
tic medium using the well known Rice
and Tracey approach [(10)]. Plastic activ-
ity is assumes to be decomposed into an
homogeneous plastic strain (the predomi-
nant slip system activated) and a heteroge-
neous symmetric plastic strain which ac-
counts for multiple slip activity around the

circumference of the void. The volumetric
plastic strain εph, is the result of the com-
bined action of pressure and the predomi-
nant slip plastic strain activity and is given
by (see [(8)] for more details) :

ε̇ph = η
1

2
√
3
sinh

{√
3

2

σh

τ0

}
γ̇p
cum (8)

where σh is the hydrostatic part of the mi-
croscopic stress tensor and γp is described
here by Schmid’law (2). Two limitations
must be pointed out in this type of mod-
elling. First it does not take into account
the hardening in the void growth law. The
second shortcomings is that the yield func-
tion is not coupled with damage. That’s
why a more elaborated model is due.

2.3 A coupled plasticity-damage model
(CPDM)

For this purpose we consider a single void
(of radius a) embedded in a sphere (of ra-
dius b) defining a porosity η = a3/b3. As
in the previous section, single crystal is re-
placed by an equivalent von Mises materi-
als. Adapting the limit analysis proposed
by [(5)], in the context of rigid ideally hol-
low sphere, leads to the following yield
function :

f =
τ2

τ2
0

+ 2η cosh

{√
3

2

σh

τ0

}
− 1− η2 (9)

It is worth noticing that for η = 0 the
Schmid’law (2) in the particular case of
rigid ideally plastic single crystal is recov-
ered. An extension of the original Gurson
model to isotropic and kinematic harden-
ing has already been performed by [(6)].
Following their approach we propose an
extension of (9) to single crystal harden-
able behavior. Similarly to [(6)], the crit-
ical shear stress τ0 is replaced by τ1 and
τ2, into the square and the hyperbolic co-
sine in order to take into account isotropic
hardening. Kinematic hardening rule is in-
troduced by replacing σ by B = σ −X
where X denotes the center of the elastic-
ity domain, which includes an hydrostatic
part, Xh, and a deviatoric part such that :
X = 2Xg ∆+Xh1. Taking into account



this change, (9) reads :

f =
(B :∆)2

τ2

1

+ 2η cosh

{√
3

2

Bh

τ2

}
− 1− η2

(10)
The identification of those different hard-
ening variables require the knowledge of
the matrix hardening in the hollow sphere.
As in [(6)], the hardening parameters are
identified by considering two particular
loading cases, the first is the purely devia-
toric loading (obtained by putting σh = 0)
for which no void growth may occur; plas-
tic activity is then only constituted of the
predominant slip system. The second is
the purely hydrostatic loading (obtained by
putting τ = 0) for which plastic activity is
then only constituted of the heterogeneous
slip activity around the circumference of
the void. This procedure allows to iden-
tify Xg, Xh, τ1 and τ2 (see [(9)] for more
details), which read :

Xg = (1− η)cγp; Xh =
2c√
3
β

Rd = R(γp
cum) + hR

(αcum

1− η
)

Rh = hR(γp
cum) +R

(
− βcum

ln(η)

)
(11)

where α and β are such that :

α =
2√
3

{
(1− ηg) ln(1− ηg)

+ηa ln(ηa)− η ln(η)
}

β =
2√
3

{
dilog

{
ηa
η

}

−dilog(1− ηg)
}

(12)

αcum and βcum are respectively the cumu-
lated value of α and β and defined by :
αcum +

∫ t

0
α(t′)dt′ and βcum +

∫ t

0
β(t′)dt′.

dilog is the dilorithm function defined by :

dilog(x) =
∫ x

1

ln(x′)

1− x′dx
′ (13)

The slip and volumetric plastic strain rate,
γ̇p and ε̇ph are obtained by using the nor-

mality rule associated to f :

γ̇p = 2Λ̇
B :∆

τ 2
1

(i)

ε̇ph =
Λ̇√
3

η

τ2
sinh

{√
3

2

Bh

τ2

}
(ii)

(14)

Λ̇ is the plastic multiplier. It is de-
duced from (i), in (14) : Λ̇ = γ̇p τ2

1

2B:∆
=

γ̇p
cum

τ2

1

2|B:∆|
. Reporting the expression of Λ̇

into (ii), one obtains :

ε̇
p
h =

η

2
√
3

τ2

1

τ2|B :∆| sinh
{√

3

2

Bh

τ2

}
γ̇p

cum (15)

2.4 fatigue crack nucleation criterion
A local approach of fatigue crack nucle-
ation at the PSB-matrix interface consists
in introducing a critical value of the
porosity, ηc :

ηa + ηg = ηc (16)

The damage-dependent criterion (16) is
the threshold below which no crack nu-
cleation could be observed. From (4) and
(7), it is readily seen that this criterion
depends explicitly on the cumulated slip
plastic strain γp

cum and on the volumetric
plastic strain εph.

3 Micro-macro based determination of
the fatigue criterion

3.1 The local fatigue criterion.
For the determination of the fatigue cri-
terion, following [(2)], we assume that a
necessary condition for non nucleation of
cracks is that the monocrystal shakedowns
elastically. In our HCF approach, elas-
tic shakedown is a necessary but not a
sufficient condition for non nucleation of
cracks : in the elastic shakedown regime,
a crack may nucleate if a critical poros-
ity along the PSB-matrix interface is at-
tained (see condition (16)). Therefore, as
the grain shakedowns elastically, γp

cum is
bounded and so the porosity is very low;
the following approximations can then be
done : ηg ¿ 1, then mass balance equa-
tion (7) reads : ηg ' 3εph. The local fatigue
criterion, deduced from (16), reads :

A0(kap− 1 + exp(−kap)) + 3εp
h < ηc (17)



Since γp
cum and εph are defined at the grain

scale, in order to establish a macroscopic
expression of the fatigue criterion, a non
linear homogenization approach is due.

3.2 The macroscopic fatigue criterion
Let us first recall that the macroscopic
behavior remains elastic. Therefore, the
macroscopic stress tensor, Σ, and the
macroscopic elastic strain tensor, E, are
given by : Σ = C : E where C is the stiff-
ness tensor of the aggregate. For simplic-
ity, C is assumed isotropic : C = 3kJ +
2µK, k and µ being respectively the bulk
and shear modulus of the matrix, J= 1

3
1⊗

1 and K = I − J with I the fourth order
symmetric identity tensor. In the particu-
lar case of high cycle fatigue, the plastic
strain being confined into a few number of
grains embedded in the elastic matrix, the
overall behavior is close to the one of poly-
crystal near the yield limit. For such situa-
tion, three homogenized schemes, namely
Lin-Taylor, Sachs and Kröner models, are
considered; they can be written in the fol-
lowing general form :

σ = Σ−C∗ : εp (18)

where the fourth order tensor C∗ reads for
the different homogenized scheme : C∗ =
0 for Sachs model, C∗ = C for Lin-Taylor
scheme and C∗ = C : (I− P : C) for the
Kröner estimation. P is the Hill tensor; de-
fined for a spherical inclusion, as :

P = a
3k

J+ b
2µ

K

with : a = 3k
3k+4µ

and b = 6

5

k+2µ

3k+4µ

(19)

It follows that the hydrostatic pressure σh

and the shear stress τ , which enter into the
local criterion, (16), are given by :

τ = Σ :∆− µ∗γp

σh = Σh − 3k∗εph
(20)

with µ∗ = µ(1− b), k∗ = k(1− a). Lin-
Taylor estimate is obviously recovered for
a= b= 0 and the Sachs model for a= b=
1.
As previously shown, the transition from

microscale to macroscopic level of the fa-
tigue criterion (17) requires the expression
of γp

cum and εph as function of the macro-
scopic fields.
For the UPDM, γp

cum is related to τ by
means of the Schmid’s law f = 0 (2) and
then to the macroscopic shear stress by the
interaction law (20), son one has :

f = |Σ :∆−X∗
g | − τ0 −R(γp

cum) (21)

with : X∗
g = (c + µ∗)γp. εph is obtained

from (8) in which the expression of σh,
given by (20), is used :

ε̇
p
h = η

1

2
√
3
sinh

{√
3

2

Σh − 3k∗ε
p
h

τ0

}
γ̇p

cum (22)

For the CPDM, γp
cum and εph are related to

τ and σh by means of the yield function f ,
and the normality rule associated to plastic
criterion f . Their relation with the macro-
scopic stress is then given by the interac-
tion law (20), reads :

f =

(
Σ :∆−X∗

g

τ1

)2

+2η cosh

{√
3

2

Σh −X∗

h

τ2

}
− 1− η2

ε̇
p
h =

η

2
√
3

τ2

1

τ2|Σ :∆−X∗

g |
×

sinh

{√
3

2

Σh −X∗

h

τ2

}
γ̇p

cum

(23)

with : X∗
g = Xg + 2µ

∗γp and X∗
h = Xh +

3k∗εph. In a general case, the macroscopic
stress tensor Σ is a time dependent func-
tion which describes a closed curve in the
stress space corresponding to the cyclic
loading path. γp

cum and εph can be deter-
mined by using a numerical procedure in
order to determine the elastic shakedown
state and the critical condition correspond-
ing to crack nucleation (17). For an illus-
tration purpose, we consider now the par-
ticular case of affine and out of phase load-
ings.

4 Applications
4.1 Applications to affine loadings
The macroscopic stress tensor, Σ(t), asso-
ciated to an affine loading is decomposed
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Figure 2: Fatigue criterion in the plane Ta,
Pm : a) for non coupled model (UPDM), b)
for coupled model (CPDM), using a linear
isotropic hardening rule.
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Figure 3: Fatigue criterion in the plane Ta,
Pm : a) for non coupled model (UPDM),
b) for coupled model (CPDM), using a non
linear isotropic hardening rule.

into an alternative and a mean part :

Σ(t) = Σa sin(ωt) +Σm (24)

The macroscopic shear stress, C(t), and
the hydrostatic pressure, P(t), associated to

(24), are defined by :

C(t) = Σ(t) :∆ = Ca sin(ωt) +Cm

P (t) = Σh(t) = Pa sin(ωt) + Pm

(25)

with : Ca = Σa :∆, Cm = Σm :∆, Pa =
Σa : 1/3 and Pm = Σm : 1/3.
When the grain shakedowns elastically,
numerical resolution shown that the cen-
ter of the elastic domain coincide with the
mean stress component. This implies for
the UPDM model that :

Cm = X∗
g = (c+ µ

∗)γp

Ca = τ0 +R(γ
p
cum)

(26)

In the UPDM, the γp
cum is related to the

alternated part of the macroscopic shear
stress Ca; εph is deduced by integrating (8).
For Lin-Taylor and Kroener’s models, nu-
merical resolution of equation (8) shows
that, for moderate values of the pressure,
εph reaches a saturation state corresponding
to ε̇ph = 0 and then to Pm = 3k

∗εph.
Similarly, for the CPDM we have :

Cm = X∗
g = (c+ µ

∗)γp
m

Pm = X∗
h =

2c√
3
β + 3k∗εph

C2

a

τ2

1

+ 2η cosh

{√
3

2

Pa

τ2

}
− 1− η2 = 0

(27)

It can be observed that the fatigue criterion
is independent of γp

m and then independent
of the mean shear stress Cm. This is con-
sistent with experimental data provided by
[(11)]. Considering now the CPDM, the
same remarks concerning the mean shear
stress can be done. However, in this ap-
proach, γp

cum depends not only on the al-
ternated shear stress tensor Ca but also on
the alternated part of the macroscopic hy-
drostatic pressure Pa. Contrarily to the
UPDM, εph is deduced from shakedown
condition (Pm = X∗

h). As a first illustra-
tion let us consider the following particu-
lar affine loading, Cm = Pa = 0. Different
parameters are taken as k = 200000MPa,
µ = 75000MPa, c = 500MPa, R0 =
20MPa, τ0 = 60MPa,A0 = 4.10

−4, ka =
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Figure 4: Fatigue criterion in the plane Ca,
Pa.

2, ηc = 0.006. The fatigue criterion is plot-
ted in the plane Ca, Pm, on figures 2a and
3a (for UPDM, using linear and non lin-
ear isotropic hardening) and figures 2b and
3b (for CPDM, using linear and non lin-
ear isotropic hardening) and for the differ-
ent homogenization schemes (Lin-Taylor,
Sachs and Kröner). Besides the influence
of the homogenization scheme and of the
hardening rule, the results show a remark-
able effect of the pressure on the fatigue
criterion. However, for negative pressure,
the results of Sachs approach for UPDM
seem to be physically inconsistent.
Let us consider now an alternated torsion
with an alternated pressure,Cm = Pm = 0 :
P (t) = Pa sin(ωt) and C(t) = Ta sin(ωt).
Parameters used are the same as previ-
ously. It is worth noticing that the UPDM
is unable to account for the effect of an al-
ternated pressure on the fatigue criterion.
The results obtained in the context of the
CPDM are reported on figure 4 in the plane
Ta, Pa. It can be observed that all homog-
enized schemes coincide for this particular
loading case. However it can be shown a
clear influence of the isotropic hardening
rule on the fatigue criterion (linear or non
linear rule).

4.2 Application to out of phase loadings

The great majority of non affine fatigue
tests in the relevant literature corresponds
to the out of phase sinusoidal loading :
Σij(t) = Σa,ij sin(ωt + ψij) + Σm, in
which the summation convention on re-
peated indices may not be applied. ψij

are the out phase terms associated to

each stress components Σij . We pro-
pose here an another notations, using
the following identity : sin(ωt + ψij) =
sin(ωt)cos(ψij) + cos(ωt)sin(ψij). Σ(t)
can therefore be defined, for out of phase
loadings, by introducing two second order
tensors, denoted Σ

1
a and Σ

2
a :

Σ(t) = Σ
1

a sin(ωt) +Σ
2

a cos(ωt) +Σm (28)

where Σ
2
a = 0 and Σ

1
a =Σa when ψij = 0.

The macroscopic shear stress and the hy-
drostatic pressure reads :

C(t) = C1

a sin(ωt) +C2

a cos(ωt) +Cm

P (t) = P 1

a sin(ωt) + P 2

a cos(ωt) + Pm

(29)

with : C1
a = Σ

1
a :∆, C2

a = Σ
1
a :∆, Cm =

Σm : ∆, P 1
a = Σ

1
a : 1/3, P

2
a = Σ

2
a : 1/3

and Pm = Σm : 1/3. Expression (29) can
be rewritten as :

C(t) = C̃a sin(ωt+ φg) +Cm

P (t) = P̃a sin(ωt+ φh) + Pm

(30)

with :

φg = arccos

(
C1

a

C̃a

)

C̃a =
√
(C1

a)
2 + (C2

a)
2

φh = arccos

(
P 1

a

P̃a

)

P̃a =
√
(P 1

a )
2 + (P 2

a )
2

(31)

Using now the following change of vari-
able : t= t′−φg/ω and Φ = φh−φg, (30)
reads :

C(t) = C̃a sin(ωt
′) +Cm

P (t) = P̃a sin(ωt
′ +Ψ)+ Pm

(32)

Numerical resolution of equation (23) for
out of phase loading (32) shown that :
- as in the context of affine loadings, the
UPDM is not able to take into account the
role of the alternated pressure (P̃a). The
fatigue criterion associated to this model
is only dependent of C̃a and Pm.



- The CPDM is not only dependent of C̃a

and Pm but also on P̃a and Ψ. Numeri-
cal resolution of (23) shows that, when the
grain shakedown elastically, one has :

Cm = X∗
g = (c+ µ

∗)γp
m

Pm = X∗
h =

2c√
3
β + 3k∗εph

(33)

C̃2

a

τ2

1

+ 2η cosh

{√
3

2

P̃a cos(Ψ)

τ2

}
− 1− η2 = 0

As an application let us consider an alter-
nated torsion (Ta) with an alternated pres-
sure (Pa) : P (t) = Pa sin(ωt + ψ) and
C(t) = Ta sin(ωt). Then the different
quantities introduced previously are de-
fined by : C̃a = Ca, P̃a = Pa, Ψ = ψ. The
influence of the dephasing term ψ on the
fatigue criterion is clearly shown.
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Figure 5: Fatigue criterion in the plane Ta,
Pa for different values of ψ.

5 Conclusion
A multiscale approach for the determi-
nation of a High Cycle Fatigue criterion
has been proposed. It allows to take
into account, not only plasticity activity
in some grains, but also damage due to

microvoids growth along PSB-matrix in-
terface. An uncoupled plasticity-damage
model (UPDM) and a coupled plasticity-
damage model (CPDM) are develloped at
the grain scale. The proposed criterion, as
non crack nucleation condition at the PSB-
matrix interface, shows a significant effect
of the pressure which is due to the con-
sidered damage mechanism. For a com-
plete validation of the approach a compar-
ison with experimental existing data will
be done.
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Abstract  
 
In general, fatigue cracks in ductile 
materials grow thorough plastically 
deformed material. Material ahead of the 
crack will be left with a residual strain 
after a cycle of loading and this strained 
material will remain as the crack tip passes 
it. Elber [1] found out that this 
phenomenon gave rise to crack closure. At 
the microscopic level, crack tip 
deformation takes place through 
dislocation motion on appropriate glide 
planes. In the present work a 
mesomechanics approach is used to 
capture the underlying microscopic 
processes without modelling them 
explicitly. An analytical model developed 
by Nowell formulated with dislocation 
dipoles will be used to describe the crack 
tip deformation at a macroscopic level 
making use of continuum elasticity and 
plasticity. In addition some finite element 
analysis work is presented. FE Analysis is 
one of most successful techniques which 
have been used to quantify the closure 
effect. However, there are many 
difficulties associated with this modelling 
work, since the results depends on a 
variety of input parameters such as mesh 
refinement, node release scheme and 
modelling of the contact between the crack 

faces etc. Even after a great deal of 
modelling work, an arbitrary decision 
usually has to be made concerning the  
technique employed for assessing the 
opening and closing stresses. Many 
techniques have been developed along the 
last few years. This work will assess and 
compare techniques such as the nodal 
displacement method, the change in 
stresses at the crack tip and the weight 
function technique. These techniques will 
be used in conjunction with a finite 
element model of a plane stress 
propagating crack. The analytical 
‘mesomechanics’ model will then be used 
to discuss the accuracy of the different 
methods. 
 
Keywords: Finite elements, Opening 
stresses, Closing stresses, Weight 
function. 
 
 
1. Introduction 
 
The aim of this work is the understanding 
of different techniques often used to assess 
the level of plasticity-induced crack. The 
plastic deformation of a growing crack is 
studied using an analytical mesomecanics 
model [2] and a finite element simulation 
of the same problem, a crack under cyclic 



loading (σ0/σyield=0.5 and R=0) for plane 
stress conditions. At a microscopic scale 
the plastic deformation at the crack tip 
occurs due to the breaking and reforming 
of atomic bonds in a material. The 
breaking and reforming of bonds allows 
dislocations to slide through crystalline 
materials, the slippage causes permanent 
deformation and ultimately failure [3]. In 
the present work both analytical and 
numerical model are used to describe the 
crack tip deformation at a macroscopic 
level making use of continuum elasticity 
and plasticity. This approach captures the 
underlying microscopic processes of 
plastic deformation without modelling 
them explicitly. After modelling the 
deformation mode of the crack the closure 
behaviour is quantified. Usually three 
different techniques are used to assess the 
closure level in plasticity-induced crack 
closure: the displacement method, the 
contact stress method and the change in 
stress at the crack tip. Most researchers 
using FEM to simulate crack closure have 
used the first node behind the crack tip to 
assess the crack opening stresses [4-7]. An 
alternative technique consists of using the 
contact stresses along the crack faces to 
compute the opening stresses [8]. Sun and 
Sehitoglu [9] introduced an alternative 
criterion to estimate the crack opening 
based on the assumption that when the 
stress at the crack tip node changes from 
compressive to tensile, the crack is fully 
open. This technique has subsequently 
been adopted by other researchers [10-13]. 
Wu and Ellyin [11] defined the opening 
stress as the remote applied stress for 
which the stresses perpendicular to the 
crack plane change from compressive to 
tensile at the crack tip node. Similarly, 
during unloading the load at which the 
tensile stress at the crack tip changes from 
tensile to compressive is taken as the 
closing stress. The results obtained with 
this approach can differ significantly from 
those obtained by other methods. The 
general trend exhibits higher closing 
stresses than opening stresses.  Moreover 
the opening stresses themselves are larger 

than the predictions made by the contact 
stress and nodal displacement approaches 
[10, 13]. 
In the present work the analytical 
mesomechanics model developed by 
Nowell [2] will used to show some of the 
limitations inherent to the finite element 
approach. It will be shown that 
displacement method, contact stress 
method and change in stress at the crack 
tip (for crack opening) are equivalent 
provided that the displacement and stress 
at the crack tip are assessed accurately. 
 
 
2. Finite element modelling 
 
Geometry and material model 
 
Figure 1 a) presents the geometry of the 
problem modelled. It consists of a square 
plate with a finite central crack, W=45mm 
and a0=1mm. An elastic perfectly plastic 
material model was used with isotropic 
hardening and the von Mises yield 
criterion. The material properties used 
were appropriate to the titanium alloy Ti-
6Al-4V. The yield stress is 1000 MPa, 
Young's modulus 110 GPa and Poisson's 
ratio is 0.34. 
 
 
Mesh and boundary conditions 
 
Figure 1 b) and c) presents the mesh of a 
quarter of the plate modelled. An 
increasing level of mesh refinement was 
used towards the crack region. Four node 
quadrilateral linear displacement elements 
were used in the present study, since 
Dougherty et al. [14] have observed a saw 
tooth pattern of the residual stresses on the 
crack faces of quadratic elements, 
whereby corner nodes were subjected to 
compressive stresses whereas mid-side 
nodes were carrying tensile stress. 
Symmetry boundary conditions were used 
(along both axes x and y). A cyclic remote 
applied load was applied. Along the crack 
plane a rigid line was created and contact 
conditions between this an the elements 



along the crack plane were prescribed. The 
rigid line does not simulate any real 
surface but only accounts for symmetry 

and the prohibition of crack face 
interpenetration.  

 
a) 

 
b) 

 
 

c) 

Figure 1. a) Geometry and boundary conditions; b) Mesh; c) Mesh detail (minimum element size 10 μm). 
 
 

 
Figure 2. Crack growth scheme. 

 
Crack growth modelling 
 
The simulation of crack growth was 
performed by sequential node release of 
the nodes ahead of the initial crack. Recent 
work has shown that satisfactory results 
are obtained, irrespective of whether the  
nodes are released at minimum or 
maximum load, provided a suitable mesh 
refinement is used [15]. In the current 
study, the node release takes place at 
minimum load and the increment of crack 

growth was defined by the element size. 
Figure 2 presents the crack growth scheme 
adopted. One node is released every two 
cycles; the first load cycle is applied to 
stabilize the plastic region close to the 
crack tip. During the second load cycle the 
opening and closing stresses are measured. 
In order to reach steady state closure 
behaviour it is required to grow the crack 
for some distance, necessitating the 
simulation of a significant number of load 
cycles. 



Crack opening and closing stresses, 
description of the different techniques 
 
The opening and closing stresses were 
calculated using the displacement method 
(based on the displacement of nodes 
behind the crack tip, see Figure 3); the 
change in stress at the crack tip; and the 
weight function method based on the 
contact stress along the crack surfaces. 
These methods are described in the 
following subsections. 
 

 
Figure 3. Elements close to the crack tip. 

 
Nodal displacement method. This 
method is the most popular method for 
computing opening and closing stresses. It 
consists of monitoring the displacement of 
a node (either the first or second node 
behind the crack tip) as the load is applied 
(see Figure 3). The opening stresses are 
found when the displacement of the node 
monitored becomes positive during the 
loading stage of a load cycle and the 
closing stresses are found when the 
displacement of this node is zero during 
the unloading stage. 
 
Change in stress at the crack tip. The 
change in stress at the crack tip was first 
proposed by first introduced by Sehitoglu 
and Sun [16] for studying plane strain 
fatigue crack closure. In a later work Sun 
and Sehitoglu [9] defined crack opening 
stress as the external applied stress for 
which the stress at the crack tip node 
changes from compressive to tensile, at 

this stage the crack is fully open. An 
extension of this technique was proposed 
by Wu and Ellyin [11].  In addition to 
using the definition of crack opening, they 
proposed that the closure stress could be 
obtained from the point in the unloading 
cycle where the crack tip stress changes 
from tensile to compressive. The 
analytical model presented in the next 
section shows that this technique has some 
limitations, indeed the closing stresses 
should not be estimated by this approach. 
Nevertheless, in order to compare the 
results obtained by the different 
techniques both opening and closing 
stresses will be calculated using this 
method. 
 
Weight function technique. In the 
presence of closure after unloading, a 
compressive stress state exists along part 
of the crack faces. This residual stress can 
be used to calculate a (negative) residual 
stress intensity factor using a simple 
method such as the weight function 
method, introduced by Bueckner [17]. A 
negative residual stress intensity factor 
does not make any physical sense on its 
own, but by employing a superposition 
argument it may be equated to the change 
in (nominal) opening stress intensity Kop 
needed to overcome the residual stress 
field along the crack faces and open the 
crack to the tip. For R=0, the required 
opening stress intensity factor can be 
expressed as follows, 

0

( ) ( , )
a

op resK K x h x a dxσ= − = ⋅∫  (1) 

For more general R ratios, the opening 
stress, σop, may therefore be calculated as 
follows: 

minres
op

K C a
C a
σ πσ
π

+ ⋅
=

⋅
   (2) 

where C is the usual geometric factor in 
the stress intensity expression (equal to 1 
in the geometry studied here). This 
technique is simple and does not rely on 
measurements performed at a single point 
(or node). It is not particularly mesh 



dependent since the approach is not over-
dependent on a measurement taken close 
to the crack tip. 
 
 
FEM results 
 
Figure 4 and Table 1 present some of the 
FEM results obtained for σ0/σyield=0.5 and 
R=0. Pictures a) and b) show the evolution 
of the opening and closing stresses 
(respectively) as the crack grows. As 
expected, the opening stresses give 
slightly different results depending on the 
technique adopted. The closing stresses 
obtained with the tensile tip stress method 
are differ a great deal from those estimated 
using the displacement of the 1st and 
second nodes behind the crack tip. Picture 
c) shows the variation of stress σyy at the 

Gauss point GP1 (see Figure 3) throughout 
a complete load cycle for a/a0=2. The 
opening load is taken to correspond to the 
point (O) where σyy changes from 
compressive to tensile (loading stage) and 
similarly, the closing load is estimated 
from the unloading stage when the stress 
at the crack tip changes from tensile to 
compressive (C). Picture d) shows the 
variation of displacement (uy) for the first 
and second nodes behind the crack tip for 
a/a0=2. Here, the opening load 
corresponds to the point where the 
displacement becomes greater than zero 
and the closing load when the 
displacement becomes zero during the 
unloading stage. Table 1 summarises the 
results obtained by the different 
approaches.
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Figure 4. Finite element results for σ0/σyield=0.5 and R=0: a) Opening stresses; b) Closing stresses; c) 
Stress σyy at GP1 and a/a0=2.0; d) Displacement of the 1st and 2nd nodes behind the crack tip, a/a0=2.0. 
 
Table 1. Steady state closure results (a/a0=2.2), FE modelling 

Method σop/σmax σcl/σmax 
Tensile tip stress 0.514 0.855 
Weight function technique 0.485 --------- 
1st node uy 0.460 0.373 
2nd node uy 0.433 0.373 

O 
C 

O 

C 



3. Analytical modelling 
 
The analytical mesomechanics model used 
was developed by Nowell [2] for crack 
closure under plane stress conditions. The 
model is formulated using dislocation 
dipoles making use of continuum elasticity 
and plasticity. In the present work only 
cracks growing under constant amplitude 
loading will be addressed. The model is 
formulated by defining an object function 
which incorporates the required boundary 
conditions. This is minimized, subject to 
constraints, using a standard quadratic 
programming approach. Full details are 
presented in [2]. In the model, a crack of 
length 2a exists in an infinite plate under 
conditions of plane stress. Three different 
sets of dislocation dipoles are used. The 
first represents the crack itself, the second 
represents the yield zone, ahead of the 
crack along a thin strip from x = a to x = d 
(see Figure 5). The third set of dipoles is 
used only for growing cracks, and 
represents the plastic wake which arises 
from the crack growing through the plastic 
zone. 

x

y

yield 
zone

crack

a d-a-d  

x

y

ci

ei

collocation
    point

Figure 5. Nowell's model: a) co-ordinate system; b) 
displacement discontinuity dislocation dipoles. 
 
 
Analytical model results 
 
Figure 6 compares the results obtained for 
a growing crack under a remote applied 
load of σ0/σyield=0.5 and R=0. Pictures a1, 
b1 and c1 were obtained by placing the first 
collocation point very close to the crack 
tip (equivalent to 0.001 μm in the FE 

model). Picture a2 was obtained by placing 
the first collocation point ahead the crack 
tip, corresponding to the position of the 
first gauss point in the FE model (2.5 μm 
from the crack tip (see Figure 3)).  
Similarly, b2 is obtained by placing the 
collocation point 2.5 μm behind the crack 
tip. The results presented in Figure 6 b2 
have the same trend as the FE results  
presented in Figure 4c. It will be seen that 
the distance of the reference point from 
the crack tip means that yield does not 
occur immediately after opening (Figs 4c, 
6a2. In contrast, Fig 6a1 shows an 
immediate onset of yield. 
Figure 6c shows the variation of residual 
stress intensity factor (Eq (1)) with applied 
load.  Comparing with Fig. 6b1 it can be 
seen that the sharp change in gradient 
makes identification of the opening and 
closing loads particularly straightforward.  
It is also clear that closure occurs earlier in 
this plot than is apparent in Fig 6b1.  This 
is due to initial contact taking place 
remote from the crack tip itself. 
Comparing Figure 6 a1 and a2 it may be 
seen to conclude that the opening load 
obtained from typical Gauss point 
locations overestimates the true opening 
load. Moreover it is clear that the closure 
load should not be calculated using the 
crack tip stress technique since the stresses 
at the crack tip are compressive during the 
whole unloading stage. In addition the 
analytical model shows that all these 
techniques of calculating opening and 
closing stresses are equivalent provided 
that the stresses and displacement fields 
are assessed sufficiently close to the crack 
tip, as presented in Table 2. 
 
 
Conclusions 
 
The results of the mesomechanics model 
presented here have shown that tensile tip 
stress method, node displacement method 
and the weight function technique are 
equivalent for predicting crack opening 
load, provided that the displacement and 
stresses are valuated at a very small 

a) 

b) 



distance from the crack tip. It was also 
shown that as soon as a crack opens the 
implied elastic stresses at the crack tip are 
singular and tensile yielding is therefore 
predicted. The closing stresses should not 
be calculated using the tensile tip stress 

technique since compressive yield stresses 
are predicted during the whole unloading 
stage. Similar results have been obtained 
for other levels of remote applied loading, 
but space constrains preclude their 
presentation here.  
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Figure 6. Analytical model results, σ0/σyield=0.5 and R=0. In a1 and b1 the first collocation point is at 
0.0001 μm from the crack tip; in a2 and b2 the first collocation point is at 2.5 μm from the crack tip. a1 and 
a2 – stress at the crack tip as a function of the applied stress; b1 and b2 - crack tip opening displacement as 
a function of the applied stress; c shows the residual stress intensity factor (caused by the contact stress) 
as a function of the applied stress. 
 
Table 2. Closure steady state results, analytical model 

Method σop/σmax σcl/σmax 
Tensile tip stress 0.437 -------- 
Weight function technique 0.438 0.350 
Displacement method uy 0.439 0.350 
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Abstract 
 

 

The influence of fatigue cycling on the 
oxidation kinetic and crack initiation of 
a Cr-Mo steel has been studied. For this 
purpose, high temperature low cycle 
fatigue tests were performed in both the 
absence and presence of mechanical 
cycling. Then the number of cycles to 
crack initiation has been determined 
using two methods based on the 
evolution of the oxide penetration and 
the crack length, and the activation 
energy. Based on microscopic 
observations and experimental results, 
a new criterion assimilating the average 
thickness of the oxide layer to a 
microcrack is proposed. It appears that 
the number of cycles to crack initiation  
corresponds to a microcrack equivalent 
to the average size of the grain. 
 
Keywords:  
Low cycle fatigue;Temperature; Oxide 
film; Crack initiation; Life duration 
 
1. Introduction 
Several works devoted to oxidation 
phenomena [1-7] showed that from a 
temperature higher than 550°C, steel 
oxidation in air contributes, at 

gas/metal interface, to the formation of 
three oxide compact layers Fl2O3, Fe3O4 
and FeO. 
The tests performed by the last authors 
pointed out that oxide films take place 
with the aid of a diffusive dual flow 
from the steel towards the exterior and 
from the oxygen towards the interior. 
The oxidation kinetics of many metals 
and alloys, capable to develop oxide 
layers at high temperatures, are 
essentially of linear, parabolic or 
logarithmic form. 
The parameters needed for the 
formulation of different equations are: 
Di (i=1-3): diffusion coefficients, 
t: time, and 
Xi: oxide layer thickness. 
The linear law is defined by the 
following equation: 

tDX 11 =  (1) 
The parabolic law is applied at high 
temperatures and is formulated as: 

tDX 2
2
2 =  (2) 

In low temperature domain, the 
oxidation of a large number of materials 
respects the following logarithmic 
evolution: 



 

( )1log33 += tBDX  (3) 
where B is a constant. 
The diffusion coefficient D follows the 
Arrhenius law, given by: 

⎟
⎠
⎞⎜

⎝
⎛−= TR

QDD exp0  (4) 

where D0 is the diffusion coefficient, Q 
the activation energy characterizing the 
oxidation, R the universal gas constant 
and T the absolute temperature. 
If we plot log D vs. 1/T, for different 
temperatures, a linear curve is obtained 
whose slope enables to determine Q. 
In the case of steel materials, Paidassi 
and Bernard [8] found an activation 
energy of 36000 cal/mole, for a 
temperature range varying from 400 to 
600°C. However, Birchenal [9] found a 
higher activation energy of 45000 
cal/mole for the same temperature 
range. 
According to Tikhomirov et al. [10], 
the mass increase mΔ (mg/cm2) in 
isothermal conditions, follows a 
parabolic law of the form: 

tkm =Δ 2  (5) 
The growth constant k, function of the 
diffusion coefficient value D and the 
effect of temperature, is formulated as: 

)/(exp0 TRQkk −=  (6) 
where k0 is a constant. 
 
At high temperature, the environment 
plays an important role in crack 
initiation. The oxidation in air, at 
temperatures varying from 500 to 
1000°C, encourages the diffusion 
kinetic of the oxide inside the metal 
causing, in the case of a mechanical 
loading, a crack initiation. The latter 
occurs at the specimen surface. 
The microstructural embritlment of 
grain boundary due to the environment 
(oxidation during high temperature 
fatigue) leads to the formation of 
initiation sites especially privileged as 
the strain is important according to 
Boettner, Laird and Evily [3], Vernault 
et al. [11] and Molins et al. [12]. 

According to Levaillant et al. [13], the 
detailed examination of crack initiation 
in low cycle fatigue comes up against 
the definition of even a microcrack 
length, which is directly related to the 
resolution of the microscopic means 
used. So, in the absence of a general 
agreement on the crack initiation 
definition, it is preferable to report the 
number of cycles to crack initiation Na 
for a crack conventional length. This 
length might be of 25 mμ , which 
corresponds to a defect size comparable 
to the grain size. 
 
2. Experimental procedure 
2. 1. Testing apparatus description 
The real working conditions of the 
components here investigated are T= 
610°C and tεΔ =0.74%. Traction-
compression tests were performed on a 
10 t servo-hydraulic testing machine. 
The heating system of the specimen is 
ensured by a resistance furnace and the 
temperature measurement is controlled 
by a thermocouple fixed on the 
specimen by means of an asbestos cord.  
2. 2. Material 
The tests were performed on chromium 
steel material whose grain mean 
diameter is 18 mμ . The chemical 
composition of this material is given in 
Table 1 while the mechanical properties 
at room temperature, are illustrated on 
Table 2. 
 
Steel C Cr Mn Mo Si 

wt.% 0.27 0.98 0.53 0.98 0.26 

 
Table 2: Chemical composition of the 
material used (in wt.%). 

 
Material chromium steel 

σR (MPa) 769 
σe (MPa) 350 

 
 Tableau 2: Material mechanical     

properties at room temperature. 



 

The tests were achieved at imposed 
total strain amplitude %74.0t =Δε  and 
a strain rate of 3.2 x 10-3 s-1. The 
imposed signal is triangular ensuring 
thus a constant strain rate. Specimens 
are assumed to be fractured if a 50% 
rapid drop of the load recorded at the 
first cycle is observed.  
3. Results and discussion 
3. 2. Determination of oxidation 
parameters 
3. 2. 1. In the absence of mechanical 
cycling 
The oxidation of specimens was 
performed at three different 
temperatures, namely 610, 800 and 
1000°C and various durations in order 
to manifest the effect of oxidation in air 
at high temperature of the chromium 
steel. This purpose enabled to quantify 
the average thickness of the oxide film 
at the material-oxide interface and the 
growth kinetic of the material. 
Observations made on the cross section 
of three specimens showed the nature 
of oxide penetration inside the material. 
Fig. 1, related to an oxidation duration 
of two hours at 610°C, shows no 
penetration of the oxide into the 
material. 

 
Fig. 1: Oxide layer evolution for two 
hours at T= 610°C in the absence of 
mechanical loading.  
 
Afterwards, five tests were performed 
at various temperatures in order to 
determine: 
• the kinetic law of the specimen 

mass evolution, 
• the activation energy Q0, (Eq. 6). 
From (Eq. 6), the plot of lnk versus 1/T 
for different temperatures and various 

cycles is characterized by a straight line 
whose slope enables to calculate the 
activation energy Q of the phenomenon.  
 
The activation energy value, in the 
absence of cycling denoted Q0, is 40100 
cal/mole.  
3. 2. 2. In the presence of mechanical 
cycling 
In the case of isothermal tests, with 
external loading, the oxidation kinetic 
may be written as: 

)/(exp I01
2

1 TRQtDtDX −==  (7) 
The activation energy QI is assumed to 
be variable and to evolve at each cycle, 
see Table 3. This evolution of the 
activation energy may be formulated as: 

)1(0I
αNAQQ −=  (8) 

where A and α are constants, and N is 
the number of cycles. 
The evolution kinetic of the specimen 
mass, at each cycle, is a law of the form: 

)/exp( I0I
2
I TRQtktkm −==Δ  (9) 

The values of A and α are found to be 
18x10-4/cycle and 0.77, respectively. 
The study of the kinetic and oxidation 
laws for the steel material of the present 
investigation was completed by 
microscopic observations. 
The evolution of the oxide during 
mechanical cycling has been achieved 
with respect to the following conditions: 
• the virgin specimen is placed into 

the oven at a temperature of 610°C 
during a constant period of two 
hours. No oxide penetration in the 
material was revealed (Fig. 1). It is 
observed that for the chromium steel 
the oxide saturation time is around 
one hour, 

• the virgin specimen is then cycled 
and tests are stopped regularly at 
100, 200 and 500 cycles. The oxide 
growth during cycling is observed 
by means of slight microscopy. The 
results are shown in Figs. 2, and 

• at 550 cycles, the crack initiates in 
the oxide and advances inside the 
material over a depth of 0.21 mm. 



 

 
Fig. 2: Influence of the oxide on the 
chromium steel in the presence of 
mechanical cycling. 
 
Three stages are observed: 

• a first stage where the oxide 
presence is abundant, which proves 
its harmfulness in the beginning of 
cycling and shows the significant 
role of the chemical damage in the 
initiation phenomenon: the aspect 
of stage I is analogous to an 
intergranular cleavage, 

• a second stage where the growth of 
an oxidized crack is observed. This 
growth is due to two mechanisms, 
one mechanical and the other 
chemical. The interaction between 
the two last phenomena is 
characterized by an acceleration of 
the crack growth: the aspect of 
stage II is mixed between the first 
and the third stage that are locally 
juxtaposed, 

•  a third stage, where the presence 
of the oxide is not so considerable, 
the effects of mechanical cycling 
are predominant and the crack 
propagation is very fast: the aspect 
of stage III is characterized by the 
formation of fatigue striations 
whose convexity is turned in the 
propagation direction.  

 
4. Proposition of a new criterion 
taking into account the oxide 
thickness preceding the cycling onset 
Based on the previous experimental 
results, a new approach which 
determines the number of cycles to 
crack initiation was developed. This 

number of cycles is defined as that 
corresponding to stage I and 
characterized by the oxide film growth 
and fracture. This criterion is based on 
two assumptions: 
The first takes into consideration the 
presence of an adhesive oxide layer from 
the first cycle. This layer will crack 
when the loading is reversed 
(compressive stage). A new penetration 
of the oxide takes place during the 
mechanical cycling. This phenomenon is 
assumed to evolve during each 
mechanical cycling. 
For the second, the average thickness of 
the adhesive oxide layer is assimilated to 
a microcrack. 
Beyond a thickness X* corresponding to 
the time necessary for the crack 
initiation, the mechanism is modified. A 
mechanical crack strongly oxidised will 
be then substituted for the crackled 
oxide. 
 

T  
C° 

k0 
g2/cm4.s 

k 
g2/cm4.s 

D0 
cm2/s 

D 
cm2/s 

924  2.63x10-8  1.056
x10-7 

795  3.872x10
-9 

 1.4x1
0-8 

704 0.516 6.36x10-

10 
 2.45x

10-9 
610  7.1x10-11 1.89 2.78x

10-10 
560  1.8x10-11  6.65x

10-11 
Table.4:The different diffusion parameters 
in the absence of mechanical cycling. 

 
Four fatigue tests were carried out at a 
temperature of 610°C for a total strain 
amplitude of tεΔ =0.74%. Then, the tests 
were stopped at a number of cycles 
determined for each test, namely 100, 
200, 400 and 550 cycles. The objective 
consists in measuring the length 
evolution of the largest crack and 
computing the oxide penetration (Eq. 
10).  

( )
2/1

1exp 0
02 ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −−= t
TR

NAQDX
α

(10 



 

with Q0=40100 cal/mole, 
R=2cal/mole/K, D0=1.89 cm2/s, 
α =0.77, A=18x10-4/cycle and N 
indicates the number of cycles. 
To take into account the preliminary 
holding temperature of one hour and 
before the starting of the test, the initial 
thickness of the oxide layer will be 
assimilated to a microcrack of length 

maX μ64.900 == , as justified by Fig. 
3. 
For various numbers of cycles N, the 
crack length a will be the sum of the 
crack length ai measured after N cycles 
increased by a0. 

( )Naaa i+= 0  (11) 
where ai(N) indicates the crack length 
measured after N cycles. 
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Fig. 3: The growth of the oxide layer 

and crack length at T=610°C for stages 
I and II. 

 
The evolution of both the crack length 
and the oxide penetration shows a 
nonlinear behaviour. Moreover, this 
curve shows that from a number of 
cycles greater than 100, the crack 
growth is faster than oxide penetration. 
A first method for the determination of 
the number of cycles to crack initiation 
consists in detecting the separation 
point between the two curves of Fig. 3. 
This separation occurs at 17 mμ , which 
corresponds to a number of cycles to 
crack initiation of 70 cycles. 
The second method consists in plotting 
the variations of the activation energy 

Q as a function of the applied load. The 
curve fitting of data at low and high 
loading regimes shows a transition point 
of coordinate (18420 N, 38525 cal/mole). 
From the value of the activation energy 
corresponding to the previous point, the 
number of cycles to crack initiation of 
64 cycles, corresponding to 16 mμ , is 
derived (Fig. 15b). It is important to note 
that the two methods give similar results. 
Moreover, the length of crack initiation 
corresponds to the mean grain diameter 
(~18 mμ ). 
The hypotheses take into account: 

• the presence of an oxide layer since 
the first cycle. This layer increases 
by the mechanism of oxygen 
diffusion with the preliminary 
holding time, 

• the average thickness of the oxide 
layer is assimilated to a microcrack. 

These two hypotheses, completed by the 
application of an Arrhenius growth law 
of the oxide layer permitted to illustrate 
the variations of the oxide film during 
the mechanical cycling. 
During the stage initiation (stage I), 
these two curves are similar. However, 
beyond the number of cycles to crack 
initiation Na, the crack growth is faster 
than that of the oxide. 
Fig. 4 depicts the evolution of the crack 
length during three stages. Right from 
the first cycles (stage I), the oxide film 
growth follows a parabolic law. The 
diffusion coefficient obeys the Arrhenius 
law. The cracking is then triggered by 
the failure of the oxide film which 
evolves until reaching a critical size 
equivalent to the average grain size of 
the material. The number of cycles 
corresponding to this grain size is 
considered to be the number of cycles to 
crack initiation. 
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Fig. 4:Crack length evolution during 

the three stages. 
 
 Considering the oxide thickness X, the 
crack length a and the number of cycles 
to failure Na: 
N=0, X=X0=a0=the initial thickness of 
the oxide film,  
during the test: N < Na and a=X, 
at the initiation stage: N = Na, X=X*≈ 
the average grain size of the material. 
Stage II is governed by the interaction 
between the oxide film and the 
mechanical loading. The crack growth 
is due to the external mechanical loads 
applied to the specimen and the 
oxidation chemical phenomena. After 
each cycle, the oxide film cracks and 
propagates on the order of XΔ  value. 
The penetration rate of the cycled oxide 
layer (per cycle) is then written: 

X
dN
da Δ=  (12) 

In stage III, the crack growth 
propagation is so high that the oxide 
influence is minimized. This stage is 
controlled by the only effect of the 
mechanical loading. 
An equation that defines the crack 
growth propagation is suggested by 
Tomkins [14] under the following 
formulation: 

a
dN
da

p
T

ε
σ

σβ Δ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ Δ=
2

 (13)

  
where: 
β  = 1+2n, with n indicating the work 
hardening coefficient; here n=0.2,  

σΔ = the variation of the applied load, 
Tσ = the ultimate strength, 

pεΔ = plastic strain amplitude, and 
a = the crack length. 
According to [14], Tσ  may be equal to 
the ultimate load [5] or the cyclic tensile 
strength [13]. 
 
Concerning the steel here studied, the 
crack growth rate has the following 
form: 

a
dN
da

p
cyc

s ε
σ
σβ Δ⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
=

2

 (14) 

sσ  = the monotonic yield stress, 

cycσ  = the cyclic elastic stress. 
 
5. Conclusion 
Fatigue tests at a temperature of 610°C 
and a strain range of 0.74% were carried 
out on comercial steel. The effect of the 
oxide on the life time reduction 
prompted us to propose a criterion based 
on the existence of a microcrack having 
the same size as the thickness of the 
mean oxide layer. 
The parameters that define the diffusion 
such as the activation energy and the 
initial coefficient of diffusion are 
determined. 
An evolution law of the activation 
energy was given in order to take into 
account the deterioration of the material 
during the mechanical cycling. 
Afterwards, the values of the oxide 
penetration were derived. 
The real crack length and oxide 
penetration, during cycling, are 
compared and allowed to define the 
number of cycles to crack initiation. 
Another method, based on the variations 
of the activation energy as a function of 
the number of cycles, is proposed. 
We show, for the material here 
investigated, that the number of cycles to 
crack initiation calculated from the two 
methods, namely 64 and 70 cycles, 
corresponds to a crack of 17 mμ length 
which matches the average grain size. 



 

Fig.5 depicts the crack growth 
propagation as a function of the number 
of cycles. This curve grows linearly 
with respect to a weak slope in a first 
stage until 544 cycles. Then, it 
increases abruptly until the failure. 
Furthermore, the crack growth 
propagation in stage III is around 43 
times that of stage II. 
The evolution of crack growth 
propagation during stage III is found to 
be in good agreement with results 
predicted by Eq. (14). 
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Figs. 5 Crack growth propagation as 

function of the number of cycles. 
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Abstract  
 
Friction stir welding (FSW), a solid-
state welding process developed and 
patented by the TWI in 1991, is finding 
increasing use. It emerged as a welding 
technique to be used for high strength 
alloys that were difficult to join with 
conventional techniques. The process 
was developed initially for aluminium 
alloys, but since then FSW was found 
suitable for joining a large number of 
materials. 
In the aircraft manufacturing industry, 
riveting is currently the preferred 
manufacturing process for fuselage 
structures. 
Nevertheless, FSW is emerging as an 
appropriate alternative technology due 
to low distortion, high strength of the 
joint and high processing speeds.  
In this work a study of the influence of 
the FSW technique on the fatigue life of 
the aluminium alloy 6063-T6 is carried 
out. Fatigue tests on notched specimens 
were carried out further to examination 
of microstructure and microhardness 
measurements. Scanning electron 
microscopy (SEM) is used to identify 
microscopic features, as striations and 
welding defects.  
 
Keywords: Friction Stir Welding, 
Fatigue life, Scanning electron 
microscopy, Microstructures. 

 
1. Introduction 
 
In order to evaluate the influence of 
friction stir welding (FSW) on the 
fatigue life of notched aluminium 6063-
T6 specimens, similar base material and 
welded specimens were fatigue tested at 
several stress levels. Specimens were 
loaded perpendicular to the rolling 
direction and fatigue life was defined as 
the number of cycles to failure. 
Hardness tests were also performed and 
scanning electron microscopy (SEM) 
analysis was performed in order to 
identify welding defects and 
metallurgical details of fatigue cracks 
such as fatigue striations.  
 
 
2. Specimens 
 
Welded specimens 
Aluminium alloy 6063-T6 plates were 
friction stir (FS) welded with the 
parameters: 1000rpm pin-tool rotation 
speed; 9.17mm/s welding speed; 4.5kN 
axial force. The welded sheet 
dimensions are 300 x 100 x 3 mm. From 
this sheet 13 fatigue specimens, Fig. 1 
were machined. To ensure that a fatigue 
crack initiates and propagates through 
the specimens middle line two notches 
were introduced in the specimens. The 
notch machined in the specimens 



introduces a stress concentration factor 
of 2.82, calculated using the Dual 
Boundary Element Method software 
“Cracker” [1].  
 

 
Figure 1: Specimens geometry, 3mm 

thickness 
 
Unwelded specimens 
To estimate the influence of FSW on 
the fatigue lives, base material 
specimens, without welding, were 
manufactured. The 6063-T6 alloy was 
only available as a rectangular tube with 
4mm of thickness. To compare the 
results of the welded and unwelded 
specimens the thickness of the 
specimens machined from the tube had 
to be reduced to 3mm.  
 
 
3. Material characterization 
 
The material used in this study is the 
aluminium alloy 6063-T6 with Mg and 
Si as major alloying elements. T stands 
for products that had an increase in 
strength due to thermal treatments, with 
or without supplementary strain-
hardening operations and the digit 6 
after the T means that it is a solution 
heat-treated and artificially aged, [2]. 
The mechanical properties of the 
aluminium alloy 6063-T6 can be found 
in [3]. 
 
 
4. Hardness tests and metallographic 
analysis 
 
Friction stir weld visual analysis 

The nomenclature shown in Fig. 2 was 
used to identify the different surfaces of 
specimens. 
 

 
Figure 2: Specimens surface definition. 
 
The first step was the visual analysis of 
the FS weld. Flaws or defects were not 
detected on the top and back surface of 
the weld, as shown in Fig. 3. 
 

 
Figure 3: Visual inspection of FSW 

joints, front and back surfaces. 
 
Since the sheet side faces perpendicular 
to the weld line were cut by guillotine it 
is possible to identify the different hard 
zones in each face, Fig. 4. This type of 
examination is well documented by 
several authors, e.g. [4, 5]. 
 

 

 
Figure 4: The two side surfaces of the 

plate, cut by guillotine. 
 
In both figures the darker zone, in the 
centre of the image, indicates the 
material that was affected by the 
welding process. The increase in the 
darker area in the weld region is 
expected to be a characteristic of lower 
values of hardness when compared to 
those of the base material. 
 



Hardness tests 
The hardness profiles can assist in the 
interpretation of the weld microstructure 
and mechanical properties. Since the 
welded and unwelded specimens were 
machined from material from different 
sources, welded sheet and 4mm 
thickness tube respectively, hardness 
tests were performed in all sources of 
material. The results of hardness Brinell 
(HB) tests performed with parameters F 
= 62.5kg and diameter φ= 2.5mm and 
hardness Vickers (HV) with 1kgf are 
presented in Table 1. Results of these 
measurements are in the range of 
properties presented in the literature. 
Also, when comparing HV results, 
material of tube 3mm thick and welded 
sheet material present quite similar 
values of hardness. 
 

 HB HV 
Tube 3 mm thick 72.9 77.2 
Tube 4 mm thick 70.2 73.8 
Welded sheet 78.2 76.2 
Table 1: Al 6063-T6 hardness test 

results. 
 
After the hardness characterization of 
the material, microhardness tests were 
performed in order to characterize the 
hardness profile in the vicinity of the 
weld affected area in the FSW 
specimens. The microhardness tests 
were performed with a 200gf load. The 
microhardness tests were performed in 
the top surface and in the side surface at 
half of the specimen thickness after 
polishing the specimen. The HV 
microhardness results are presented in 
Fig. 5. Hardness drastically decreases in 
the weld-deformed zone; the average 
hardness of the nugget zone being 
significantly lower than the hardness of 
the base alloy. It was also possible to 
identify higher hardness values when 
measuring the hardness at the side 
surface. 

 

 
Figure 5: Microhardness profile. 

 
Metallographic analysis 
The aim of this work is the analysis of 
microstructural changes due to the FSW 
process. A specimen of the welded 
material (MW) and another from the 
base material (MB) were analyzed. 
Microstructures were acquired 
according to the scheme presented in 
Fig. 6. 
 

 
a) welded material specimen 

 
b) base material specimen 

Figure 6: Scheme of microstructural 
analysis. 

 
Microstructures of the FS welded 
specimen. Microstructures MW1, MW2 
and MW3 of the FS welded specimen 
were acquired in the side surface and 
microstructures MW4, MW5 and MW6 
were acquire in the top surface, as 
presented in Fig. 2. Microstructures 
MW2, MW4 and MW6 correspond to 
zones of transition between material 
affected by the welding and base 
material. Microstructures MW3 and 
MW5 represent the base material. 



Microstructures MW2 and MW3 are 
shown in Fig. 7. In microstructure 
MW2 it is possible to identify the 
transition between the zone affected by 
the welding process and the base 
material, delimited by the black line. 
The material affected by the welding 
process presents a fine stir grain 
structure, and the material near the heat 
affected zone (HAZ) presents regular 
grains. In the FS welded zone very fine 
recrystallized grains are present due to 
the high deformation and high 
temperature during the process. 
Microstructure MW3 shows larger 
grains near the plate free surface and 
smaller grains outside this layer. 
 

 
a) microstructure MW2 

 
b) microstructure MW3 

Figure 7: Welded specimen 
microstructures, surface perpendicular 

to the top surface. 
 

To determine the grain size diameter, 
microstructure MW3 was divided in 

two zones, zone 1 near the plate edge 
and zone 2 outside the plate edge. In 
each zone the grain diameter was 
measured in 5 grains. In each grain an 
average of three measurements was 
calculated. The results obtained are 
presented in Table 2. 
 
zone 1 Diameter [mm] 
grain 1 2 3 average

1 125.4 187.4 167.6 160.1 
2 94.8 103.4 132.8 110.3 
3 107.2 174.7 125.8 135.9 
4 262.3 193.7 109.6 188.6 
5 124.0 136.1 114.4 124.8 

average  144.0 
 

zone 2 Diameter [mm] 
grain 1 2 3 average

1 67.2 82.7 72.8 74.2 
2 66.6 77.2 84.0 76.0 
3 50.4 60.2 57.5 56.0 
4 71.0 79.1 68.8 72.9 
5 77.1 73.1 65.5 71.9 

average  70.2 
Table 2: Grain size in microstructure 

MW3. 
 
Microstructures of the base material 
specimen. Microstructures MB1, MB2 
and MB3 of the base material specimen 
were acquired near the plate free edge 
in the side surface and microstructure 
MB4 was acquired in the top surface 
near the middle width plane, as 
presented in Fig. 6. Fig. 8 presents the 
microstructures MB2 and MB3. 
 
To determine grain size diameter in 
microstructure MB2, the microstructure 
was divided in two zones, zone 1 near 
the plate edge and zone 2 outside the 
plate edge. The results obtained are 
presented in Table 3.  
 



 
a) microstructure MB2 

 
b) microstructure MB3 

Figure 8: Base material specimen 
microstructures, side surface. 

 
zone 1 Diameter [mm] 
grain 1 2 3 average

1 269.8 226.2 257.2 251.1 
2 193.8 179.0 171.5 181.5 
3 211.4 184.1 158.3 184.6 
4 252.2 248.0 245.7 248.6 
5 289.6 197.6 204.0 230.4 

average  219.2 
 

zone 2 Diameter [mm] 
grain 1 2 3 average

1 97.4 68.1 90.8 85.4 
2 70.9 71.9 62.6 68.5 
3 76.0 67.9 74.5 72.8 
4 64.5 45.3 47.7 52.5 
5 130.8 53.9 73.5 86.0 

average  73.1 
Table 3: Grain size in microstructure 

MB2. 
 

The grain size diameter obtained in 
microstructure MB3 is presented in 
Table 4. 
 

 Diameter [mm] 
grain 1 2 3 average

1 112.2 130.5 110.6 117.8 
2 76.7 42.1 67.7 62.2 
3 117.4 80.8 100.3 99.5 
4 38.1 38.9 42.4 39.8 
5 42.4 42.4 104.9 63.2 

average  76.5 
Table 4: Grain size in microstructure 

MB3. 
 

Notes on the microstructural analysis. 
Although base material microstructures, 
MB, were obtained from a rectangular 
tube, and FS welded plate was supplied 
in a sheet form, it was verified that the 
grain size diameter on top or back 
surface has similar average diameters, 
between 70.2mm and 76.5mm, in all 
microstructures. Middle thickness grain 
diameters of 219.2mm and 144.0mm 
were measured in the unwelded 
specimen, and in the base material 
region of the welded specimen, 
respectively. This difference is 
explained by the different fabrication 
processes. Grains at surface of extrusion 
have recrystallized because of more 
working and heating, while grains in the 
interior of the extrusion are 
unrecrystallized [6]. FS welded 
specimens were supplied in sheet shape 
with the thickness of 3mm. Base 
material specimens were machined from 
a rectangular tube profile with an initial 
thickness of 4mm that was reduced to a 
final thickness of 3mm. 
 
Interpretation of hardness results. An 
increase of the hardness profile when 
measuring the hardness at the side 
surface was identified in Fig. 5. This 
difference is identified in the zone not 
affected by the welding process, base 



material. It is concluded that this 
difference is due to the different grain 
size of these two regions. The grain near 
the top or back surface has average 
diameters between 70.2mm and 76.5mm. 
Grains near the external surfaces have 
an average diameter of 144.0mm in the 
FS welded specimen, and 219.2mm in 
the base material specimen. 
 
 
5. Tensile tests 
 
Tensile tests were performed to 
determine the mechanical properties of 
the material. Five welded specimens 
were tested. In the first three welded 
specimens, strain was measured in an 
area which includes welded and 
unwelded material (area with 25mm 
length). Since the welded zone is 14 mm 
wide, in the other two welded 
specimens strain values were only 
acquired in a 6mm range, only inside 
the welded material area. This 
procedure was carried out to obtain the 
material behaviour of only the welded 
material. Six specimens of unwelded 
material were tested, three with 3mm 
thickness, and three with 4mm thickness.  
The tensile test specimens were 
identified with three letters followed by 
two numbers separated by a dot. The 
first letter is a T which indicates that it 
is a tensile test specimen; the other two 
letters, UW for the unwelded specimens 
and FW for the FS welded specimens, 
indicate the specimen type. The first 
number after the letters indicates the 
specimen thickness. In the case where 
strain values were acquired in a 6mm 
length zone, the reference '.6' was 
included at the end of the numbering. In 
FS welded specimens the rupture 
occurred in the external part of the weld 
line, in a transition between welded and 
unwelded material zone. Also, a 

decrease in resistant area in the other 
side of the weld line was noticed. 
To identify the influence of FS weld on 
the specimen tensile properties, the s vs 
e records of all tensile tests are plotted 
in Fig. 9. Similar results were obtained 
in tests of base material with 3 and 4mm 
thickness. It can be concluded that the 
operation of thickness reduction did not 
affect the material properties. Yield 
stress and rupture stress of FS welded 
specimens have lower values than 
unwelded specimens. The welding 
process leads to a decrease of the 
material mechanical properties.  
 

 
Figure 9: Tensile test results of 

unwelded and welded specimens. 
 
 
6. Fatigue tests 
 
The fatigue tests were carried out in a 
MTS servo-hydraulic machine of 250kN 
capacity. Fatigue tests were performed 
at several different percentages of the 
minimum yield stress welded material. 
In fatigue tests the following parameters 
were used: smin/smax=R = 0.1 and 
frequency f = 8Hz. Due to the lack of 
availability of larger amounts of welded 
material and since the objective was to 
obtain a S-N plot for each stress level a 
few specimens of each type of material 
(unwelded and welded material) were 
tested, making a total of 25 tests. The 
parameters used for each level are 



presented in Table 5 [% sy refers to 
material properties of welded material 
yield stress (sy=113MPa)]. As example, 
the chosen values of remote stress used 
in tests 90%, 75% and 60% correspond 
to 53.1%, 44.2% and 35.4% of the base 
material sy stress.  
 

sy 
sremote 
[MPa] sy 

sremote 
[MPa] 

140% 158.2 80% 90.4 
100% 113.0 70% 79.1 
90% 101.7 60% 67.8 

Table 5: Fatigue tests parameters. 
 
In the fatigue tests carried out it was 
found that FSW specimens displayed 
longer fatigue lives than similar non-
welded specimens tested under the same 
loading conditions, Fig. 10. Even at 
158.2MPa maximum stress level, 140% 
of the sy of the FS welded specimens, 
FS welded specimens presents longer 
fatigue lives. Biallas et al. [7] found in 
their study for another aluminium alloy 
that using high welding speeds similar 
fatigue lives were obtained testing FS 
welded specimens and base material 
specimens. 
 

 
Figure 10: Fatigue life results. 

 
 
 
7. Scanning electron microscopy 
analysis 
 

SEM was used to identify microscopic 
features, as welding defects and 
metallurgical details of fatigue cracks 
such as fatigue striations. Two welded 
specimens and two unwelded specimens 
were analysed. Notwithstanding the 
good properties obtained in welded 
specimens fatigue tests, some defects 
were identified. Inner defects, such as 
cavities, cannot be seen on the surface 
though it was revealed that a defect 
linearly exists along the joint line by 
SEM inspection, Fig. 11. The defects 
are regularly spaced in a distance 
similar to the advance per revolution. It 
can be speculated that the pin shape is 
not optimum for such a high advance 
per revolution, leading to a cavity or 
groove-like defect caused by 
insufficient heat input. Defects are 
situated at mid thickness so they are not 
a root flaw or lack of penetration. 
Defects are formed outside the optimum 
FSW conditions. Studying FS welded 
specimens of aluminium 2024-T6, 
Biallas et al. [7] concluded that this 
defect don’t affect the tensile strength as 
well as high cycle fatigue performance.  
 

a) specimen FFW2, crack surface 



 
b) inner welding defect, specimen FFW10 
Figure 11: SEM analysis of a crack 

surface on a friction stir welded 
specimen. 

 
In the FS welded specimens, due to the 
stir effect, the crack propagation area is 
harder to identify. The fatigue crack 
growth area of the unwelded specimen 
UW6 is presented in Fig. 12. 
 

 
Figure 12: SEM analysis of an 

unwelded specimen (specimen UW6). 
 
Metallurgical details of fatigue cracks 
such as fatigue striations were identified 
in both welded and unwelded specimens, 
Fig 13. Nevertheless, due to the more 
heterogenic fracture surface, fatigue 
striations were difficult to be identified 
on the welded specimens. 
 

 
a) fatigue striations, welded specimen FFW10 

 
b) fatigue striations, unwelded specimen UW5 

Figure 13: SEM analysis of crack 
surfaces, fatigue striations identification. 
 
 
8. Conclusions 
 
This study quantifies the influence of 
the FSW technique on the fatigue life of 
aluminium alloy 6063-T6 notched 
specimens. SEM analysis was 
performed in order to identify welding 
defects and metallurgical details of 
fatigue cracks such as fatigue striations.  
To study the influence of FSW on the 
fatigue strength, specimens with and 
without welding were fatigue tested at 
different stress levels. It was found that 
hardness drastically decreases in the 
weld-deformed zone; the average 
hardness of the nugget zone is 
significantly lower than the base alloy. 
It was also possible to identify an 
increase of the hardness profile when 



measuring the hardness at the side 
surface due to the different grain size 
diameter of both surfaces. 
FSW specimens displayed longer 
fatigue lives than similar non-welded 
specimens tested under the same 
loading conditions. Despite this good 
performance, defects were identified in 
the SEM inspection of the weldments. 
These inner defects, such as cavities, 
that cannot be seen on the outside 
surface were caused by insufficient heat 
input. 
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Abstract 
 
A study on the effects of surface dents 
on rolling contact fatigue (RCF) of a 
bearing steel has been undertaken on a 
twin disc machine with both grease and 
oil lubrication. In order to select the 
adequate type of dent, a previous study 
was performed. After it, dents were 
artificially introduced in one of the 
contacting disc surfaces, and the 
damage process was monitored by 
means of surface video microscopy. At 
the end of the tests surface perfilometry 
analysis was used to characterize 
eventual spall craters, and scanning 
electron microscopy (SEM) was used to 
identify crack propagation under the 
surface layer. Finally, the damaging 
mechanism due to the dent is discussed 
and conclusions are also taken on the 
influence of grease and base oil 
lubrication in RCF.  
 
Keywords: rolling contact fatigue, 
artificial dents, video-microscopy, 
scanning electron microscopy.  
 
 
1. Introduction 
 
It is widely known that rolling contact 
fatigue (RCF) affects the performance 
of several machine elements such as 
gears, roller bearings, railway wheels 
and rails, etc. Many factors influence 

the mechanism of failure. Among those, 
the presence of surface defects is known 
to be an important one. These defects 
are usually originated from the 
entrainment of debris in the lubricant 
supply. Their presence changes the 
contact conditions, leading to high 
stress concentrations that may result in 
a significant reduction in the life of the 
component. Different types of shapes 
can be found for these defects, although 
the conical dent shape is often the one 
that better characterizes them. These 
dents have been shown to modify 
significantly the formation of 
elastohydrodynamic lubricant films 
between rolling elements [1]. 
Furthermore, when they are overruled 
high pressure peaks are generated. 
Consequently, the maximum shear 
stress moves closer to the surface 
contributing to a premature damage.  
 
Several workers [2-8] have created 
artificial defects on contact surfaces and 
studied the effect that these have on 
contact fatigue. Most studies are based 
on observation and analysis of failed 
specimens.  
 
This work is aimed at investigating the 
effect of surface defects on RCF both 
under oil and grease lubrication. 
Experiments are based on twin-disc 
simulation of the rolling contact. Prior 
to the tests, artificial dents were 



introduced on one of the contacting disc 
surfaces. To choose the adequate type 
of dent, a previous study was carried 
out. During the experiments, periodic 
stops were programmed and the dents 
damage evolution was monitored using 
video-microscopy. At the end of the 
tests surface perfilometry analysis was 
used to characterize eventual spall 
craters, and scanning electron 
microscopy (SEM) was used to identify 
crack propagation under the surface 
layer. 
 
 
2. Artificial dent analysis 
 
Various authors [2-8] tested different 
types of artificial defects such as conical, 
spherical and diamond dents, among 
others. For this work, the Rockwell C 
type of dent (Fig. 1) was the chosen one 
for several reasons: its dimensions can 
be controlled by the indent load, the 
stress level concentration is high due to 
a high plastic strain and they are easily 
reproducible. Furthermore, Rockwell C 
dents are useful for modeling due to 
their symmetrical morphology. 
 

 
 

Figure 1: Initial aspect of a Rockwell C dent. 
 
As shown in Fig. 2, the dent is 
analytically characterized by its depth 
denoted hd, its diameter D, the diameter 
between peaks D’ and the height of its 
shoulders hs. Another important 
parameter that should also be 

considered is the shoulder sharpness Ss 
given by: 
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Figure 2: Profile of a Rockwell C dent. 

 
To generate dents on the discs surface, a 
diamond Rockwell C penetrator was 
manufactured and adapted to a tensile 
test machine. The design of the 
penetrator was such that the location of 
the dent and the applied load were 
controlled with great accuracy. The disc 
was fastened on a rotable and adjustable 
plate so that the penetrator could be 
pressed at the required location on the 
discs surface. The necessary indent load 
for getting the required dent could be 
adjusted by the load cell of the test 
machine. 
 
To choose the adequate indent load, 
several tests with indent loads from 
1500 N to 5000 N were performed in 
order to evaluate the dent size 
characteristics. Fig. 3 presents the 
obtained dent profiles while Figs. 4 to 6 
respectively present the evolution of the 
diameter D, the depth hd and the 
shoulder height hs. As it can be 
observed, D and hd growth tendencies 
change after 3000 N and recover it after 
3500 N. On the other hand, hs increases 
till 3500 N and then decreases till 4500 
N after which a small increase can be 



observed. The evolution of Ss (Fig. 7), 
which depends on the shoulder height, 
accompanies the growth tendency till 
3000 N after which reaches an almost 
constant value, and then decreasing 
after 4500 N.   
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Figure 3: Comparison of the dent profiles for 
different loads. 
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Figure 4: Evolution of the diameter D with the 

indent load. 
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Figure 5: Evolution of the depth hd with the 

indent load. 
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Figure 6: Evolution of the shoulder height hs 

with the indent load. 
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Figure 7: Evolution of the shoulder sharpness 

Ss with the indent load. 
 
These tests at different loads helped in 
choosing the load that produces the 
most suitable dent for the fatigue tests. 
The best dent is the one that gathers the 
following characteristics: 
 
・ small diameter (it must be as small 

as possible when compared with the 
contact ellipse); 

・ low depth (a big depth might 
produce an exaggerated plastic 
deformation); 

・ a sufficiently high shoulder height 
and consequent shoulder sharpness 
(the stress concentration is highly 
affected by the dent’s shoulder 
height). 



Analyzing the results for different loads, 
one can conclude that the preferable 
loads are the 2500 and 3000 N loads. 
The choice was the 2500 N load 
because, even having a slightly lower 
shoulder height and shoulder sharpness 
than the 3000 N load, it produces a dent 
with a smaller diameter (and also a 
smaller depth). This fact is very 
important because the dent area 
dimension must not approach in size the 
elliptical contact area.  
 
 
3. Experimental procedure 
 
3.1. Disc machine test apparatus 
 
A twin disc testing machine was 
utilized to carry out the rolling contact 
experiments. The machine was designed 
to perform surface contact fatigue and 
wear resistance tests. Its principle 
consists of two discs normally loaded 
and rolling against each other under 
pure rolling or rolling and sliding 
conditions (see Fig. 8). In the used 
machine, the discs can be oil or grease 
lubricated and permanent feeding of the 
lubricant is ensured. 
 

 
 

Figure 8: Working principle of the twin-disc 
machine. 

 
3.2. Test specimens 
 
The discs were manufactured in AISI 
52100 bearing steel. The chemical 
composition and mechanical properties 
are given in Tables 1 and 2 respectively. 

Chemical Composition 
(wt %)  

C 1.00 
Si 0.25 
Mn 0.30 
Cr 1.50 

 
Table 1: Chemical composition of the AISI 

52100 steel. 
 
Mechanical Properties 
(units)  

Average Hardness (HRc) 58 
Yield Stress (MPa) 1747 
Rupture Stress (MPa) 2106 
Young modulus (GPa) 207 

 
Table 2: Mechanical properties of the AISI 

52100 steel. 
 
3.3. Lubricants used 
 
The lubricants used were a grease and 
its correspondent base oil (see 
properties in Table 3).  
 
Grease properties  
NLGI number 3 
Thickener Lithium 
Soap concentration (%) 12 
  
Base oil properties  
Chemical form Naphthenic 
Cinematic viscosity 40ºC (cSt) 124 
Cinematic viscosity 100ºC (cSt) 18 

 
Table 3: Properties of the lubricants used. 

 
3.4. Contact severity 
 
To assess the severity of the contact, the 
film thickness ratio λ (Eq. 2) was 
calculated for the lubricants tested.  
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In Eq. 2, h0 is the minimum film 
thickness in µm, calculated using the 
Hamrock and Dowson equation [9], σA 
and σB are the RMS surface roughness 
of body ‘A’ and ‘B’ respectively in µm 

Lubricant 
N 

w2 

w1 



and ФT is the thermal effects correction 
factor. 
 
In Table 4, the relationship between λ 
and the lubrication regime, in 
elastohydrodynamic lubrication for 
rolling bearings, is presented. 
 
λ Lubrication regime 
λ ≥ 1.5 Full film 
1.0 < λ < 1.5 Mixed film 
λ ≤ 1.0 Boundary film 

 
Table 4: Regimes of EHD lubrication [10]. 

 
Grease film thickness was calculated 
under fully-flooded using Eq. 3, which 
is the result of previous research from 
workers that attempted to estimate the 
film thickness of greases [11]. 
 

baseoilhh 00 5.1=                   (3) 
 
The results of λ for the grease and 
correspondent base oil are presented in 
Table 5.  
 
Lubricant h0 σ  λ Lubr. regime 
Grease 5,4 1,6 1,9 Full film 
Base oil 3,6 1,5 1.3 Mixed film 
 

Table 5: Contact severity for the grease and 
base oil. 

 
3.5. Operating conditions 
 
The tested discs were loaded to achieve 
a maximum contact pressure of 2 GPa. 
Due to their geometry, when the discs 
are loaded against each other, an 
elliptical contact area is generated (see 
Fig. 9). The dimensions of the ellipse 
can be determined using the Hertzian 
contact theory (see for instance Johnson 
[12]) and in this case are: a = 0.52 mm 
and b = 0.83 mm.  
 
The discs rolled against each other 
under pure rolling conditions with a 
rotational speed of 3000 rpm. 

 
 

Figure 9: Contact geometry of and surface 
contact area. 

 
3.6. Test procedure 
 
Three dents separated 120º from each 
other were manufactured on the 
spherical discs. Following the dent 
analysis, the chosen and applied indent 
load was 2500 N.  
 
Fully-flooded conditions were assured 
for both lubricants during the tests. Oil 
lubrication was assured by permanent 
oil injection into the contact zone and 
grease lubrication was assured by a 
reservoir installed around the discs that 
supplies grease into the contact. 
 
Tests were planned for a total duration 
of 12 million cycles with regular 
interruptions. At each interruption the 
discs were removed from the machine, 
their surfaces were cleaned and 
analyzed by video-microscopy. 
 
In the end of the tests, perfilometry was 
used to characterize the profile of the 
damaged site. Discs were also cut into 
samples to be observed using SEM.  
 
 
4. Characterization of the dents 
damaging mechanism  
 
The test under grease or base oil 
lubrication showed similar behaviors on 
the dents damage mechanism. 



Fig. 10 shows a series of micrographs 
from the grease lubricated test captured 
at different stages during the test. 
 

 
  
Figure 10: Sequence of micrographs of the dent 
damage process for the grease lubricated test (a) 
at the start of the test, (b) after 5×105 cycles, (c) 
after 4×106 cycles, and (d) after 12×106 cycles. 

Rolling direction is from left to right. 
 
The initial dent is rapidly reduced in 
size during the first few cycles. This 
process occurs by plastic flow of the 
dent side walls. The dent shoulders and 
the side walls collapse under contact 
loading. The dent then shakes down to a 
stable shape and little further 
deformation occurs (see Fig. 11). 
 
A fatigue crack initiates at the trailing 
edge of the dent (Fig. 12) and later 
propagates to a spall (Fig. 13). A finite 
element simulation of the indent process 
showed that the highest stress values are 
found in that site [13]. Additionally, the 
pressure distribution is modified by the 
dent shoulders [1] and high pressure 
spikes appear leading to an increasing 
stress concentration. The pressure peak 
is higher at the trailing edge due to the 
slope change which is more favorable 
for generation of fluid pressure. This 

location then suffers a higher stress and 
is consequently the initiation point. 
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Figure 11: Cross section Contact geometry of 

and surface contact area. 
 

 
 

Figure 12: Cross section through the running 
surface observed using SEM. 
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Figure 13: Profile of a spall obtained using 
perfilometry. 

 
If the oil is used as the lubricant, a 
similar process takes place (see Fig.14). 
Again the dent is deformed but this time 
the damaged area propagation does not 
lead to a spall in the end of the tests. 
This can be justified on the value of 

 (a)  (b) 

 (d)  (c) 



film thickness ratio λ that under fully-
flooded conditions is expected to be 
smaller for the test using oil than for the 
one using grease (see Table 5). 
Therefore, the loss of material due to 
wear is higher, as presented in Fig. 11. 

 

 
 

Figure 14: Sequence of micrographs of the dent 
damage process for the oil lubricated test (a) at 
the start of the test, (b) after 5×105 cycles, (c) 

after 4×106 cycles, and (d) after 12×106 cycles. 
Rolling direction is from left to right. 

 
 
5. Conclusions 
 
A study on the effects of artificial dents 
surfaces on RCF has been undertaken 
on a twin disc machine with both grease 
and oil lubrication. The surface 
damaged area around the dents was 
monitored by means of video-
microscopy throughout the tests.  
 
It was found that either the contact is 
grease or oil lubricated, a similar 
damaging mechanism takes place. In a 
first phase, the dent shoulder is flattened 
by the high pressure spikes generated 
when the contacting surface moves on 
the dent edge. The shoulder height 
decreases very quickly and becomes 

quite stable long after. Then, due to the 
accumulated plastic strain resulting 
from the high pressure spikes and the 
high stress concentration beneath the 
edge dent, cracks are initiated on or 
close to the surface at the dent edge. 
 
Under grease lubrication cracks 
propagate to form a spall in the end of 
the tests. However, when oil is used as 
the lubricant, cracks propagation does 
not lead to a spall in the end of the tests. 
This can be justified on the value of λ 
that under fully-flooded conditions is 
expected to be smaller for the test using 
oil than for the one using grease. The oil 
lubricated contact runs under a mixed 
film lubrication regime while the grease 
lubricated contact runs under a full film 
lubrication regime. Therefore, the 
amount of material removed by wear in 
the case of the oil lubricated contact is 
higher and the formed cracks that 
tended to propagate to form a spall are 
consequently worn out.  
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Abstract  
 
This communication discusses the fatigue 
behaviour of specimens with different 
levels of geometrical and mechanical 
complexity, including the effects of 
residual stresses due to the cold-working 
process of rivet holes, load transfer and 
stress intensity factor calibration of riveted 
lap-joints, and finally the problem of 
multiple site damage. 
A finite element analysis of the different 
structural details was performed in order 
to model the residual stresses, the stress 
intensity factor, the load transfer and 
finally fatigue crack propagation. 
Analyses of fracture surfaces were carried 
out in order to measure the location and 
extent of fatigue damage and the spacing 
between fatigue striations.  
 
Keywords: cold-working, crack growth, 
fatigue striations, finite element analysis, 
load transfer, multiple site damage, open 
hole, residual stress, riveted lap-joint, 
SEM analysis. 
 
 
1. Introduction 
 
Aircraft manufacturers aim at lighter 
structures, possibly susceptible to multiple 
site damage (MSD) and widespread 

fatigue damage (WFD). The improvement 
of the fatigue behaviour of these structures 
includes techniques such as the cold-
working of rivet holes [1]. WFD, as an 
effect MSD, can be regarded as the major 
structural problem of ageing aircraft, 
comprising three stages: 1) the initiation of 
MSD, which determines the initial damage 
scenario, 2) the crack growth stage of 
MSD, when cracks grow simultaneously at 
different sites, and 3) the residual strength 
in the presence of MSD and possible 
further deteriorating effects like corrosion, 
debonding or manufacturing defects, [2]. 
This communication gives an overview of 
studies on open-hole specimens, single 
rivet lap joints, and riveted panels: 
(i) firstly, the influence of residual stresses 
due to the cold-working process on the 
fatigue behaviour of 2024-T3 Al open hole 
specimens is discussed. 
(ii) secondly the fatigue behaviour of a 
single rivet lap joint is studied. This 
specimen can be regarded as a slice of a 
riveted lap joint with various columns of 
rivets, for a specific pitch. The stress 
intensity factor calibration of 
symmetrical/asymmetrical cracks was 
quantified using three-dimensional finite 
element analysis (FEA) and equivalent 
initial flaw size (EIFS) results are 
presented. The estimation of rates of crack 



propagation based on fatigue striation 
measurements is presented. 
(iii) the third part consists on the analysis 
of a riveted lap joint panel with 3 rivet 
rows and 15 rivet columns. At this stage, 
the problem of MSD is discussed and an 
approximate predictive model for fatigue 
crack propagation, initially proposed by 
Silva et al. [2] and based on the 
FRANC2D/L [3] finite element 
programme is presented. 
The emphasis of the communication is on 
the present authors’ own experimental or 
modelling work. 
 
 
2. Fatigue behaviour of open-hole 
specimens 
 
Residual stresses due to the cold-
working process 
Fastener hole fatigue strength may be 
increased by creating compressive residual 
circumferential stresses around the hole. 
Research has been concentrated on 
modelling the residual stress field using 
analytical [4, 5] or numerical two- or 
three-dimensional (2D or 3D) methods [6-
8], and on the experimental measurement 
of the residual stress field [9, 10]. 
A study of in-service fatigue failures in 
aircraft structures revealed that seventy per 
cent of fatigue cracks originated from the 
holes of riveted or bolted joints [11]. Most 
of the experimental observations suggest 
that cold expansion can increase fatigue 
life to failure by a factor ranging from 3 to 
10, depending upon the fatigue stress level 
[13, 14]. 
 
Specimens characterization 
Figure 1 shows the 2mm thick specimen 
configuration. The holes were reamed 
after drilling and were subsequently 
expanded (4.5% of the hole diameter) 
using a mandrel. 
In prior studies [17, 18] the residual 
stresses resulting from hole expansion 
were determined by X-ray diffraction. The 
aluminium alloy used in this work is the 
2024-T3 Alclad. The yield and tensile 

strengths are 312MPa and 440MPa 
respectively, the Young's modulus and 
Poisson's ratio are 78GPa and 0.33 
respectively.  
 

 

Figure 1. Open hole specimen, geometry. 

Fatigue tests 
In the fatigue test program a total of 45 
open hole specimens (24 with and 21 
without residual stresses) were tested. The 
fatigue tests were carried out at an R ratio 
of 0.1 (R = min. load/max. load) in air at 
room temperature and at a frequency of 
10Hz. In the fatigue test program constant 
maximum stress levels of 120, 140, 160, 
180 and 200MPa were used. 
The results presented in Figure 2 agree 
with expected trends [13, 14]. 
 

 
Figure 2. S-N curves for open hole specimens with 
and without cold expansion, after [19]. 
 
Scanning electron microscopy 
The fracture surfaces of four of the 
specimens tested were examined by 
scanning electron microscopy (SEM). 



Two of these specimens had normal holes 
– ie, non cold-worked - and two had cold-
worked holes. The maximum stress used 
in the fatigue tests was σmax=140MPa and 
σmax=200MPa. A SEM equipped with a 
Field Emission Gun (FEG) was used to 
measure the fatigue striations spacing (s); 
details concerning the techniques involved 
can be found in [20, 21]. The fatigue 
striations spacing measurements were 
made in two different directions: one in 
the direction of crack growth (see Figure 
3a), and the other in the transverse 
direction, 0 to 2mm from the edge of the 
hole, in an attempt to estimate the crack 
nucleation site. Figure 3b) shows the right 
side of the fatigue crack measured by 
SEM, where the dashed line represents the 
fatigue crack area. Figures 3 c) and d) 
show some fatigue striations measured in 
the specimens tested at σmax=140MPa for a 
fatigue crack length of 0.580mm. For both 
directions, five measurements of striations 
spacing were made in each SEM screen 

and the average value was calculated for 
purposes of plotting the results. 
Figure 4 presents some quantitative 
measurements of the fatigue striation 
spacing along the crack length and crack 
depth. Along the crack length the space 
between fatigue striations decreases due to 
the effect of the residual stresses induced 
by the hole expansion. Along the crack 
depth the measurements trend is not as 
clear as along the crack length. Moreover, 
in the specimens tested at σmax=200MPa it 
seems that the fatigue crack nucleated at 
the surface of the specimen since the 
fatigue striations spacing increases along 
the crack depth from 0 to 2mm (it is again 
mentioned that specimen thickness is 
2mm). Fatigue striation spacing can be 
directly related to the rate of crack 
propagation [22, 23], therefore these 
measurements indicate a braking effect in 
the rate of crack propagation due to the 
residual stresses. 
 

 
a) 

 
b) 

 
c) 

 
d) 

Figure 3. a) Fratography analysis; b) Fracture surface; c) Fatigue striations along the crack length 
σmax=140 MPa, normal hole a=0.580 mm; d) Fatigue striations along the crack length σmax=140 MPa, 
cold-worked hole a=0.580 mm, de Matos et al. [24]. 
 
 



 
a) σmax=140 MPa 

 
b) σmax=140 MPa 

 
c) σmax=200 MPa 

 
d) σmax=200 MPa 

Figure 4. Fatigue striation spacing measurements. 
 
3. Single-rivet lap-joint 
 
Several geometric configurations are used 
to study riveted joints, such as those 
discussed in [25]. Load transfer (LT) is 
defined as the percentage of the applied 
load which is transferred from one plate to 
the other by means of the fasteners and 
friction between the plates [26]. 
A lap splice with three rivet rows and one 
rivet column is one of these 
configurations, consisting of a “slice” of 
an aircraft lap joint. This specimen was 
tested in for the development of statistical 
data on the fatigue behaviour of single-
shear joints. Detailed analyses involving 
crack propagation require a stress intensity 
factor (SIF) calibration which is not 
commonly available. A 3D FEA of the 
load transfer behaviour as a function of 
crack length, and a SIF calibration is 
presented. 
 
Specimens characterization 
The specimen is a lap splice with three 
rivet rows and one rivet column, subjected 
to tensile load. Two cracking scenarios 
were studied - a single crack and two 

symmetric cracks – for the critical cross 
section, which contains the first rivet as 
shown in Figure 5. 

 
Figure 5. Single rivet lap-joint geometry. 

Fatigue tests 
Forty five specimens were tested at 
σmax=160MPa, R=0.05 and at a frequency 
of 10Hz. An average value of 77688 
cycles to failure with a standard deviation 
of 18320 cycles was obtained.  
 
SEM analysis 
The fatigue crack in the right side of 



specimen #224 is schematically 
presentedin Figure 6. 
 
 

 
Figure 6. Fatigue crack area and crack length 
measurements. 
 
 
Measurements of the fatigue striations 
were carried out on four specimens. The 
measurements were done in the 
longitudinal and transversal directions 
considering the origin at the bottom side 
of the hole. Fatigue striation spacing for a 
given point (coordinate value) was 
obtained by the average of five 
measurements along a line perpendicular 
to striation orientation. Figure 7 present 
the striation spacing versus crack length 
and crack depth respectively for specimen 
224. 
According to [20] the longitudinal crack 
growth rate can be fitted with reasonable 
correlation using an exponential 
approximation, and this was confirmed in 
the present work. The exponential fit and 
the corresponding correlation factor for 
the longitudinal and transverse crack 
growth are presented in Figure 7. Fatigue 
striations give useful information on the 
rate of crack propagation [22, 23] as they 
offer a potential basis for the fractographic 
reconstitution of fatigue crack 
characteristics in terms of growth kinetics 
[27, 28] as well as in terms of crack front 
geometry [29], particularly in the mid-
regime of fatigue crack propagation. 
Based on fatigue striation measurements it 
is possible to perform the fatigue life 
reconstitution of structural components; 
some examples are given in [22, 24, 30]. 
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Figure 7. Fatigue striation spacing measurements. 
 
Finite element analysis 
The finite elements package ABAQUS 
was used to perform a 3D stress analysis. 
The joint was modelled with no 
interference (perfect fit joint). Friction 
between the lap joint components was not 
taken into account. Several contact 
surfaces were modelled: contact between 
the two plates to avoid the interpenetration 
due to bending; contact between the rivet 
and the plates; and contact between the 
rivet head and each plate. 
The load transfer problem is a key point in 
the study of riveted lap-joints since the 
stress intensity factor calibration depends 
on the level of applied load transmitted by 
each rivet, [32]. According to [33], for 
typical lap joints with three rivet rows, it is 
expected that 37% of the load is carried by 
the first rivet and 63% of the load is the 
by-pass load, a result approximately 
verified in the 3D FEA of the present 
specimens, where the load carried out by 
the first rivet was found to be 38%.  
 
Stress intensity factor evaluation 
Following techniques discussed for 
example in [34], the node nearest to the 
crack tip of each element was moved to 
quarter point position in order to model 
the 1/r singularity at the crack tip. The 



results are obtained in two consecutive 
moments. Firstly, SIF results for 5 
coordinates along the thickness were 
obtained. 
Afterwards, using the three results of SIF 
for each element, and equation (1), an 
average value of SIF is calculated, as 
specified in [34]. 

4
6

A B C
average

K K KK + +
=  (1) 

where A, B and C are three nodes along 
the element edge (and along the crack 
front). Since this is a mixed mode 
situation, the effective stress intensity 
factor Keff , as suggested in [35], is used: 

2
2 2

21
III

eff I II
KK K K
ν

 
= + + − 

 (2) 

The SIFs KI, KII and KIII were calculated 
using the J-integral [36]. It was concluded 
that KI is dominant, and KII and KIII have 
values which are one order of magnitude 
smaller, with the only exception of KIII in 
the vicinity of the faying surface. The 
results in terms of the non-dimensional Keff 
for several crack lengths are presented in 
Figure 8. The results, published in detail in 
[37], show that the SIF is maximum at the 
faying surface and minimum at the outside 
surface, for all crack lengths. This result is 
related with the bending of the plate, 
which tends to open more the edge of the 
crack located at the faying surface than the 
edge of the crack located at outside 
surface. For a symmetric crack, the major 
difference between the stress intensity 
factor at the faying and outside surfaces is 
17%, and occurs for a crack length of 4 
mm. For an asymmetric crack, the major 
difference is 21%, also occurring for a 
crack length of 4mm.  
It can be concluded that, for a given crack 
length and surface, the SIF of a symmetric 
crack is always higher than the one of an 
asymmetric crack.  
 

 
Figure 8. Keff/[σ√(πa)] of symmetric and 
asymmetric cracks, for several crack lengths, after 
[37]. 
 
Using the Paris law the fatigue crack 
growth propagation between the EIFS and 
the rupture moment was rebuilt, as shown 
in Figure 9. A statistical analysis of the 
IFS distribution is presented in Figure 10. 
The distribution that best fitted the EIFS 
results was the Weibull two parameters. 
The probability density function (PDF) is 
presented in Figure 10. 
 

 
Figure 9. Fatigue crack propagation according to 
the Paris law. 
 

 
Figure 10. EIFS probability density function. 



SEM analyses could not confirm these 
EIFS values, a fact that is not unexpected, 
given the approximate nature of the crack 
growth law used (Paris) and of the SIF 
solutions (for through cracks). In the 
present circumstances, EIFS was found to 
lack real physical significance, being just 
another way of presenting the distribution 
of fatigue test results. 
 
 
4. Lap joint panel 
 
The last part of this paper deals with 
fatigue crack propagation in a more 
complex structural detail, consisting of a 
riveted lap joint panel with three rows of 
15 columns of rivets. The fatigue analysis 
of this type of structural component has 
received special attention since the Aloha 
Airlines accident in 1988, e.g. [38-41]. 
According to Schmidt and Brandecker [38, 
39], an aircraft structure containing 
multiple cracks can be categorised into 
one of three different classes of damage: 
Widespread Fatigue Damage (WFD), 
Multiple Site Damage (MSD) and 
Multiple Element Damage (MED). It 
should be noted that in general WFD, 
MSD and MED may act simultaneously 
on aircraft structures, and therefore it is 
difficult to establish a boundary between 
these interactive phenomena.  
Problems such as loading and stress 
distribution, crack initiation, crack growth 
and residual static strength play an 
important role on this type of structural 
component. These topics have been 
addressed in detail by Eastaugh et al. [42] 
and Schijve [32]. 
One of the major issues is the calculation 
of stress intensity factors representative of 
the state of stress in this type of structural 
detail. It is known that fatigue cracks start 
at riveted lap joints of the fuselage skin 
[32]. Under such conditions, the analysis 
of fatigue riveted lap joints is difficult 
because: 1) the load transmission in 
riveted lap joints is a highly complex 
phenomenon as it involves load 

transmission by friction, fretting, 
secondary bending and residual stresses, 
and 2) the relevance of stress intensity 
solutions for small part through cracks in 
riveted joints is questionable in view of 
the complex nature of the load 
transmission and failure modes [32]. A 
flavour of the level of complexity of this 
type of problems was presented in section 
3 for the case of a single rivet lap joint, 
which is representative only of a “slice” of 
the riveted lap joint panel.  
This final part of the paper addresses the 
modelling of the crack growth process in a 
riveted lap joint panel, for a given multiple 
site damage scenario obtained 
experimentally by Cavallini and Lazzeri 
[43]. The crack growth modelling was 
done using the finite element program 
FRANC2D/L and the Paris law, following 
a methodology proposed by Silva et al. 
[2]. FRANC2D/L is a finite element 
program for the small deformation 
analysis of two dimensional structures. As 
such, a lap joint is modelled in two 
dimensions, without considering the 
bending effect. Linear Elastic Fracture 
Mechanics (LEFM) analyses can be 
performed with automatic re-meshing as 
crack grows. The layered capability allows 
the user to model riveted and adhesively 
bonded structures, such as lap joints and 
bonded repairs. 
 
Specimen geometry and details of the 
experimental work 
The geometry of the lap joint panel 
modelled is presented in Figure 11 a). The 
sheets are 1.6 mm thick and made of 
aluminium alloy 2024-T351. The rivets 
used were the MS 20426D5-6 in Al 2017-
T31. The lap joint panel contains three 
rows and fifteen columns of rivets. The 
two columns of holes at each side of the 
specimen were cold-worked to avoid early 
nucleation of fatigue cracks. The lap joint 
panel (BJ3) was fatigue tested at σmax=110 
MPa and R=0.1. 
Crack growth was measured using the 
Image Analysis Technique described in 



[46]. The sites inspected are marked from 
1 to 22 in Figure 11 b). No crack growth 
was recorded at positions A, B, C, D, E 
and F because these holes were cold 
expanded in order to delay the fatigue 
crack propagation, a subject discussed in 
section 2 of this paper. 
The growth of fatigue cracks was 
monitored from 132450 cycles until 

rupture at 138450 cycles. Figure 11 b) 
shows schematically the crack scenario at 
different stages of the fatigue test.  
Cavallini and Lazzeri [43] reported that 
fatigue cracks in this  structural detail 
grow with quarter ellipse shape. 
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Figure 11. a) Riveted lap-joint panel, and rivet detail (rivet type MS 20426D5-6); b) Crack scenario at 
different stages of the fatigue test. 
 
 
 
MSD crack growth modelling 
The crack growth problem was performed 
using the Paris Law [44]. The Paris Law 

constants were taken from reference [45], 
C=7.46×10-8 and m=3.333 (Paris law with 
da/dN in mm/cycle and ∆K in MPa m1/2). 
The Young's modulus and Poisson's ratio 



are 70 GPa (approximately) and 0.33 
respectively. 
A layered structure, such as a riveted lap-
splice joint or a bonded lap joint, is 
actually a three-dimensional structure. A 
three-dimensional finite element or 
mathematical modelling of such a 
structure involves several degrees of 
complexity. In FRANC2D/L simplifying 
assumptions are made allowing us to 
capture the essential features of the 
response [3]. The assumptions include: 
• each layer is considered as an individual 
two-dimensional structure under a state of 
plane-strain; 
• cracks are approximated as through 
cracks along a line passing exactly through 
the rivets; 
• individual layers can be connected with 
rivets or adhesive bonds; 
• a rivet is treated as an elastic shear 
spring between two nodes of each layer (in 
our case P/δ = 33052N/mm). 
An algorithm based on the Paris Law was 
used to model the crack propagation, as 
used by Silva et al. [2]. The crack 
propagation modelling was done from 
132150 cycles until rupture at 138450 
cycles. 
A new crack was included in the FEM 
model after being experimentally detected. 
Figure 11 compares the experimental 
measurements with the predictions from 
the model previously described. The 
numerical results presented in Figure 12 
are in good agreement with experimental 
measurements. The largest differences 
were noticed for cracks 3, 5 and 8, 
although cracks 5 and 8 show the same 
trend than the experimental measurements. 
 

 
Figure 12. Crack growth in the lap-joint panel 
(bullets are experimental results and continuous 
lines are predicted results). 
 
MSD crack growth - comments 
Good agreement was found between the 
experimentation and the prediction using 
the FE package FRANC2D/L. However 
there are important limitations that must 
be mentioned: 
• The cracks were modelled as through 
cracks, although it was found 
experimentally that they grow with a 
complex shape (e.g., quarter of ellipse or 
half ellipse); 
• The rivets are treated as spring 
elements. It is only a simplification that 
has some limitations. The problem 
actually solved is in fact closer to a lap 
joint fastened by welded points than to a 
riveted lap joint. The typical stress 
distribution of a hole is not considered; 
• FRANC2D/L allows only a 2D model 
ignoring the secondary bending expected 
in a typical lap joint. There is no doubt 
that a 2D model gives a good indication of 
the lap joint stresses but there is stills 
controversy about how important the 
bending stresses in the joint are and how 
they affect the crack growth. Secondary 
bending may not be required for an 
approximation of the stresses, and 
consequent fatigue life or strength. 
 
 
5. Concluding remarks 
 
The fatigue behaviour of different types of 
specimens with increasing level of 



complexity (geometrical and mechanical) 
was discussed. Selected testing data of 
open-hole, single column rivet lap-joint, 
and lap joint panel specimens was 
surveyed, and some key lessons were 
drawn for each one of these types of 
specimens. 
The residual stresses induced by the cold-
working process improve significantly the 
fatigue life of structural details. This 
improvement in life might be up to 10 
times, depending on the level of applied 
stress. The residual stresses due to the 
cold-working decrease the space between 
fatigue striations, which indicates a 
braking effect on the rate of crack 
propagation. 
Single rivet lap joint geometry were tested 
and analysed. SEM examination and 
conversion of striation spacing into crack 
growth rate da/dN, showed that the 
longitudinal crack growth rate can be 
fitted with reasonable correlation using an 
exponential approximation; transversal 
crack growth rates were almost constant 
and similar to the longitudinal rates for 
small cracks. 
A detailed stress analysis of a single 
column rivet lap joint was conducted using 
three-dimensional elastic finite element 
analysis. The stress intensity factors for 
this geometry with through symmetric and 
asymmetric cracks were determined. It 
was concluded that KI is dominant, and KII 
and KIII have values which are one order 
of magnitude smaller, with the only 
exception of KIII in the vicinity of the 
faying surface. This suggests that first 
approximations to modelling may be 
based on mode I only.  
The EIFS concept was applied to these 
tests, using the SIF solutions obtained and 
the Paris law. EIFS values could not be 
confirmed by the SEM analyses; they have 
no proper physical meaning, being just 
another way of presenting the distribution 
of fatigue lives. 
Regarding the lap joint panel, a good 
agreement was found between the 
experimental measurement of crack 

growth and the prediction using the FE 
package FRANC2D/L. However, this 
simple model involves simplifications 
concerning for example crack geometry, 
the behaviour of rivets (holes not 
modelled) and the bending effects is not 
taken into account. 
This paper briefly presented studies with 
various levels of detail or complexity, 
either experimental or numerical, 
including very detailed SEM analysis of 
crack surfaces, X-ray residual stress field 
measurement in textured Al alloys, and 
macroscopic modelling of crack growth 
without concern to fine details. Time 
consuming experiments and/or detailed 
modelling versus comparatively rough 
approximations: each level of study must 
be understood, and it is up to the designer 
and stress analyst to decide what depth of 
analysis to use for each intended case. The 
results concerning lap joints presented in 
the paper suggest that acceptable answers 
for some complex problems may be 
obtained using simplifications as, for 
example, 2D models or consideration of 
mode I only. 
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Abstract 

 
Shell-and-tube heat exchanger is widely used 

in oil refinery, chemical industry, power plant, 
light industry and so on. In the New-type 
high-efficiency heat exchanger with 
longitudinal flow of shellside fluid, difform 
new support structures, such as rod, ring, 
whole circular plate and so on, replace 
traditional segmental plate. The direction of 
fluid flow is changed from cross flow to 
longitudinal flow in shellside and there are 
extraordinary advantages such as higher heat 
transfer coefficient, lower pressure drop and 
better antivibration performance. Especially it 
is successfully used in engineering for heat 
exchanger with longitudinal flow of shellside 
fluid in which there is a new three-elements 
combination structure including rod-baffle 
support structure, distributor with varying 
cross section and jacket. 

In above new type heat exchanger, H-type 
welded combination structure, which consists 
of the three-element including inner cylinder, 
ring plate and outer cylinder, is formed. Under 
the multi-factor coupling loading of pressure, 
temperature and medium erosion, the structure 
design method could not be found from 
common shell-and-tube heat exchanger design 
criterions and handbooks. It is critical for safe 
use of new type heat exchanger. So it is needed 

to search a scientific design method for 
designing and checking the structure strength. 

In this paper, a detailed analysis of stress and 
temperature field is completed in the whole 
structure of the New-type heat exchanger and 
an instructional proposal is provided to design 
ring plate. A formula calculating the biggest 
stress of new heat exchanger is presented and 
is used in engineering design. 

 
Keywords: numerical simulation, heat 
exchanger, H-type structure 
 
1. Introduction 

 
Shell-and-tube heat exchangers are widely 

used in process industries such as petroleum 
industry, chemical industry, power industry 
and light industry etc. In recent years, a new 
type of high-efficiency heat exchanger with 
longitudinal flow of shellside fluid has been 
used in such industries. The traditional 
segmental baffle is replaced by various kinds 
of new support structures such as rod-baffle, 
ring-baffle and whole-circle plate baffle and so 
on in the shellside of the new kind of heat 
exchanger. The direction of fluid flow in the 
shellside changes from cross flow to 
longitudinal flow. This new kind of heat 
exchanger has some advantages such as higher 
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efficiency of heat transfer, lower pressure drop 
of fluid flow and better anti-vibration 
performance. 

 
Distributors are equipped at the inlet, as well 

as at the outlet in the shellside of the new type 
heat exchanger with longitudinal flow of 
shellside fluid, which not only prevent the 
direct impact on the tube bundle from the 
high-velocity fluid flow at the inlet, but also 
benefit to the relative uniform fluid 
distribution in the shellside. Consequently, the 
heat transfer area at the inlet and outlet fields 
of tube bundle is well used and the 
inefficacious heat transfer area is decreased, at 
the same time, the possible flow-induced 
vibration of the tube bundle at the inlet and 
outlet fields is reduced. Especially, the heat 
exchanger with longitudinal flow of shellside 
fluid (HELFSF) with the varying cross-section 
distributor has been successfully used in 
process industry.  

 
The HELFSF is usually attached with the 

jacket in order to meet some processes’ 
requirements. For example, during the heat 
exchange between the semiwater gas and the 
converter gas in fertilizer industry, the 
semiwater gas is usually preheated from 

0130 C  to 0160 ~ 170 C  before it enters 
tubeside of heat exchanger, which benefits to 
abate the dewpoint corrosion in heat exchanger. 
Upon that, a new type of structure is presented 
composed of inside distributor, ring-plate and 
outside cylinder. The new type of structure 
looks like the character H, so it can be called 
H-type structure. The H-type structure is 
shown in Fig.1. 

 
With the couple load action of various 

factors such as pressure, temperature 

difference and corrosion medium etc, the 
design method of the structure strength of the 
new type of HELFSF with H-type structure is 
complex. Furthermore, there are not reference 
book and design principle about the new type 
of heat exchanger. So, in order to ensure the 
safety of the whole process of design, 
manufacture and operating, the method of 
scientific and reasonable design should be 
further developed. 

 
2. Basic parameters of heat exchanger 
 

The new type of heat exchanger has been 
widely applied in fertilizer industry and its 
basic technical parameters are as follows. The 
design pressure of both tubeside and shellside 
is1.6MPa . The semiwater gas enters tubeside 
through the jacket at the 
temperature 0130 C and the converter gas 
enters shellside through distributor at the 
temperature 0470 C . The tubes are weldless 
steel tubes ( 25 2.5Φ × ), which is 6 meters 
long. The outside cylinder diameter is 
1000 ~ 1400mm mm  and the inside cylinder 
diameter is 800 ~ 1200mm mm . The 
materials of the main components are high 
quality mild steel or mild alloy steel. 

 
3.  Numerical simulation of stress in heat 
exchanger 
 

The ANSYS software is used to perform the 
numerical analysis of the heat exchanger with 
longitudinal flow of shellside fluid and the 
H-type structure. 

 
3.1. Model establishing 
 

The geometric form of the H-type structure 
in the HELFSF is quite complex and its 



 

geometric dimension is too big to be simulated 
directly. Furthermore, the stress resulted from 
the interaction of quite a few component parts 
of the heat exchanger is to be taken into 
account. So, the process of calculation and 
analysis is rather complex. Based on the actual 
condition of the heat exchanger, for 
simplifying the assumptions about the 
structure and material of heat exchanger are 
made as follows: 
1) The end of the varying cross-section 
distributor with the jacket can freely displace 
along the axial direction without constraint. 
The incline section of the distributor is 
regarded as plane section and vertical with the 
axial direction. The whole structure of heat 
exchanger is an axisymmetric body, therefore, 
it is feasible to extract a quarter of the whole 
body as the model. 
2) The material of the component parts of 
heat exchanger is isotropic, homogeneous and 
continuous. The physical character of the two 
kinds of main material is almost the same as 
each other, so they are dealt as the same 
material in the process of numerical analysis. 
3) With regarding the arithmetic mean 
temperature of the medium at inlet and outlet 
of the heat exchanger as the qualitative 
temperature, so the physical and mechanical 
character of medium and material can be 
determined. 
4) The tubesheet and the cylinder are jointed 
together with the welding means, as well as the 
tube bundle and the tubesheet jointed together. 
There is not slip between the component parts 
of heat exchanger. 
5) The action between the support structure 
and tube bundle in the shellside of the 
HELFSF is ignored. 
6�The influence of the action of the equipment 
weight and outside constraints on the strength 

of heat exchanger is ignored.  
7) The outside wall of heat exchanger is 
adiabatic, that is to say / 0dt dr = . 

 
Because structure discontinuity and edge 

effectiveness at the linkage of cylindrical shell 
and cover in heat exchanger, the edge stress 
occurs at the area of connection. The effect 
scope of edge in the cylindrical shell is 
estimated by using Eq. 2.5 RS and the 
length of model is to be chosen felicitously. 

 
According to the above consideration, the 

3D model and the physical model of heat 
exchanger are established, which is shown in 
Fig. 1 and Fig. 2 respectively. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig.1  Heat exchanger 3D model 
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Fig. 2  Heat exchanger physical model 

 
3.2 Elements and mesh 
 

It is very important to select element type for 
getting the correct analysis results. The 
following elements are used in this paper, 
shown in Table 1.  

 
Table 1  element selection 

 

element type 
element 

name 
remark 

structure solid 
element�2D� 

PLANE  
82 

8-node 
quadrangle 

element 

structure solid 
element�3D� 

SOLID  
45 

8-node 
hexahedron 

element 

thermal solid 
element�2D� 

PLANE  
77 

8-node 
quadrangle 

element 

thermal solid 
element�3D� 

SOLID  
70 

8-node 
hexahedron 

element 

 
In the paper, the method of indirect coupling 

is applied for calculation and analysis. Those 
elements presented in Table 1 are enough to 
deal with the temperature field and stress 
analysis of the H-type structure in this kind of 
heat exchanger. The 3D model and the 2D 
model are analyzed respectively. The 2D 
model analysis is responsible for calibration of 
the 3D model analysis result.  

 
It is important to partition mesh reasonably 

for ensuring the dependability of analysis 
result. If the mesh is too dense or the number 
of the nodes is too many, it is difficult to 
perform the calculation. The mesh is generated 
by the order flow program of the ANSYS 
software. Fig. 3 and Fig. 4 show the whole 
structure mesh and the H-type structure mesh 
of heat exchanger, respectively. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 3  Whole structure mesh of heat 

exchanger 
 
 



 
 
 
 
 
 
 
 

 
Fig.4  H-type structure mesh  

of heat exchanger 
 

3.3 Temperature load 
 

In order to analyze the distribution of the 
temperature field, the surface temperatures of 
the component parts of heat exchanger are 
reasonably estimated. The fluid flow velocity 
on the up surface and down surface of the 
tubesheet are estimated and the flow modality 
on the two sides of surfaces of tubesheet are 
determined (turbulent flow or laminar flow). 
Sequentially, the temperature is obtained by 
calculating the heat transfer coefficients. 
Because the locality of the ring-plate is invalid 
area for fluid flow, flow modality on the two 
sides of surfaces is quite different from that of 
the tubesheet. The free convection heat 
transfer equation is used to perform the 
calculation in this area and the reasonable 
result is obtained. At the same time, the 
reasonable result is also obtained in the jacket 
outside cylinder and the equation referred from 
the traditional heat transfer book is applied to 
calculating the heat transfer coefficient. The 
layout of walls for heat exchange is shown in 
Fig. 5. The temperature estimated is shown in 
Table 2. 

 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 5  Temperature estimated for wall of 

heat exchanger 
 

Table 2  temperature estimated for the walls 
of the component parts in heat exchanger 

 
3.4 Numerical simulation of thermal stress 

 

location code 
heat 

transfer 
wall 

temp. 0C
jacket 

outside 
cylinder 

1T  237.3 233.5 

2T  237.0 
shellside 

6T  
233.2 

297.5 

tubeside 5T  199.4 297.3 

7T  16.1 250.7 
ring-plate 

8T  23.7 251.5 

3T  127.3 298.5 
tubesheet 

4T  82.8 297.1 

T1 T2 

T3 

T4 

T7 

T8 

T6 

T5 



 

Firstly, numerical simulation of the 
temperature field of the HELFSF is performed 
by the following steps. The 8-node hexahedron 
3D thermal elements are selected, as well as 
the material codes of component parts. All of 
the models of component parts of heat 
exchanger are linked by the functions of glue 
and overlap of Boolean operation in the 
ANSYS software. By using three functions of 
mapping, scan and freedom, the partition, 
inspection and modification of mesh are 
performed to decrease the error occurrence 
when the calculation is proceeded. The results 
of numerical simulation of temperature field in 
the whole body of heat exchanger, the 
ring-plate of H-type structure and the 
expansion joint are shown in Fig. 6, Fig. 7 and 
Fig. 8, respectively.  
                  
 
 

Fig. 6  Temperature contour of whole heat 
exchanger 

 
 
 
 
 
      
 
 
 
 

Fig.7  Temperature contour of H-type 

structure 
 

Fig.8  Temperature contour of expansion joint 
 
Secondly, the 8-node hexahedron 3D thermal 

elements are replaced by the 8-node 
hexahedron 3D structure elements. The 
boundary conditions and the results of 
temperature field obtainded in above section 
are led into the calculation process of the stress 
field. The results of numerical simulation of 
stress field in the whole body of heat 
exchanger, the ring-plate of H-type structure 
and the expansion joint are shown in Fig. 9, 
Fig. 10 and Fig. 11, respectively. 

 
 
 
 
 
 
 
 
 
 

 
Fig. 9  Stress and deformation distribution of 

whole heat exchanger 
 

 
 
 



 

 
 

 
 
 
 
 
 
 
 

Fig. 
10  Stress and deformation distribution of 

H-type structure 
 

 
 
 
 
 
 
 
 
 

 
Fig. 11  Stress and deformation distribution of 

expansion joint 
 

4. Numerical simulation results and 
synthesized analysis 

 
Base on the series of this kind of heat 

exchanger and the same process condition, 
which are applied in the fertilizer industry, the 
numerical analysis of the biggest stress of heat 
exchanger, as well as the ring-plate are 
completed in this research, including five 
series of different cylinder diameters and nine 
kinds of different ring-plate thickness. 

 
A heat exchanger with the outside cylinder 

diameter of 1200mm  and the inside cylinder 

diameter of 1000mm  is given as an example. 
The influence of ring-plate with different 
thickness on the biggest stress of the heat 
exchanger, ring-plate and expansion joint is 
analyzed. Analysis results are shown in Fig. 12, 
Fig. 13 and Fig.14, respectively. 

 
 
 
 
 
 
 
 
 
 

 
Fig. 12  Ring-plate thickness and biggest 

stress of heat exchanger 
 

 
 
 
 
 
 
 
 

 
 

 
Fig. 13  Ring-plate thickness and biggest 

stress of ring-plate 
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Fig.14  
Ring-plate 

thickness and biggest stress of expansion joint 
 

 
 
 
 
 
 
 

 

 
 

 
Fig.15  Ring-plate thickness and biggest 

stress increment 
 
By use of the dimensional analysis method 

the numerical simulation results and curve 
diagrams are analyzed and concluded. The 
relational expression between the biggest 
stress of heat exchanger and the cylindrical 
shell diameter D, the thickness of ring-plate S 
is presented, shown in the following equation. 

2 3
1

4

.c c Dc
S c

σ += +
−

 

where 
parameters: 
1 434c = , 2 694c = − , 3 0.8c = , 4 13.7c =  

D = shell diameter ( mm ) 
S = ring-plate thickness ( mm ) 
σ = the biggest stress of heat exchanger 
( MPa ) 

 
The biggest relative error between the 

calculation result by the above equation and 

the analysis result by the ANSYS software is 
less than5% . When the ring-plate is too thin, 
which oversteps the scope of practical 
engineering application, the biggest relative 
error is less than10% . This kind of error can 
meet the practical engineering requirement. 

 
From the above studies, some conclusions 

can be got as follows: 
1) The thickness of the ring-plate in the 
H-type structure in this kind of heat exchanger 
has a notable influence on the biggest stress of 
the heat exchanger, the ring-plate and the 
expansion joint. So, it is significant to select 
reasonably the thickness of the ring-plate for 
the safety of heat exchanger (shown in Fig.15). 
Within the scope of process condition and 
cylindrical shell dimension of this research, 
when the thickness of the ring-plate is less 
than 20mm  the stress in heat exchanger, 
ring-plate and expansion joint will be 
significantly increasing. The thickness of the 
ring-plate is usually selected within the scope 
of 25 ~ 30mm mm . 
2) The biggest stress of heat exchanger 
occurs at the area of the middle of the 
expansion joint which connects with outside 
shell and the area where the ring-plate 
connects with outside shell and inside shell. 
3) Besides the axial stress, the stress is 
membrane stress in the outside cylindrical 
shell of heat exchanger. Temperature 
difference has a notable influence on the axial 
stress, which is overlapped by the membrane 
stress resulted from the pressure and the 
thermal stress resulted from the temperature 
difference, as well as the axial direction stress 
in the inside shell. The biggest stress is 
increased with increasing the shell diameter. 
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Abstract  
 
The investigated γ-TiAl was of the 
nominal composition Ti-46.5Al-2.5V-
1.0Cr (at%) and was radiant heated in air. 
Thermal fatigue tests were performed in 
the temperature ranges of 200-700�and 
200-900�. Tests of dead-load thermo-
mechanical fatigue were conducted under 
the following conditions: 200-700�with 
70MPa and 140MPa dead-load tensile 
stress, respectively, and 200-900� with 
70MPa. At the vested cycle, the dynamic 
elastic modulus and electrical resistance 
were measured at room temperature. The 
relative change of modulus DE and that of 
electrical resistance DR were employed to 
characterize damage. In the shorter 
thermal cycling, the damage parameters 
increased intensely, and the discrepancy 
between DE and DR was very limited. 
Then, the damage parameters increased 
very slowly as the number of cycles 
increased and approached a constant, and 
the discrepancy also trended to a stable 
constant. The negative increase of DE at 
200-700oC with 70MPa and 140MPa 
dead-load stress occurred at the very start, 
and increased after a few cycles. Then, the 
negative increase emerged again, and DE 
increased slowly as the number of cycles 
increased and finally reached a constant 
value; At 200-900 oC with 70MPa dead-
load stress, at the beginning of cycling, DE 
increased intensely, and decreased slightly 
at the 20th cycle. Thereafter, DE increased 
slightly and then remained at a constant. 
DR did not increase negatively like DE. DR 
increased intensely in the first few cycles 
and followed by fluctuation. Then the 
stable damage stage occurred. 
Temperature drop affected DR more than 

dead-load stress. The fine and dark γ phase 
increased and the size of lamellar colony 
reduced obviously after thermal cycling. 
This occurs not only in thermal fatigue but 
also in dead-load thermo-mechanical 
fatigue. After thermal cycling the damage 
appear as micro-pores and micro-cracks, 
etc. 
 
Keywords: γ-TiAl; Thermal Fatigue; 
Dead-load Thermo-mechanical Fatigue; 
Damage; Elastic Modulus; Electrical 
Resistance.   
 
 
1. Introduction 
 
γ-TiAl alloys have low density, high 
specific strength and specific modulus, 
and excellent creep and oxidation 
resistance. Such properties make them 
come to be one of the candidate high-
temperature structural materials. However, 
the applications of γ-TiAl alloys are 
impeded by their poor machinability and 
ambient temperature ductility. At present, 
the majority of research work has focused 
on alloy modifications through 
compositional controls by alloying with 
additional metallic elements and by 
improving fabrication techniques, which 
improve the low temperature ductility and 
toughness, high temperature creep 
resistance, and processing properties, etc 
[1-4].  
It’s inevitable that the service 
environments for γ-TiAl alloys, as a high-
temperature structural material, involve 
thermal transients or in combination with 
mechanical stress or strain. The laws 
governing γ-TiAl alloys under thermal 
fatigue and dead-load thermo-mechanical 



fatigue, to the authors` knowledge, are still 
unclear. There exists only limited 
publication regarding these aspects [6-10]. 
The present work aimed to develop a basic 
understanding of the laws governing γ-
TiAl alloys under thermal fatigue and 
combination of thermal cycling and dead-
load stress, including the transformations 
of microstructure and phases, the damage 
behavior and the effect of mechanical 
stress, etc. In addition, the damage 
mechanisms were also discussed. 
 
 
2. Experimental procedures  
 
The investigated alloy was of the nominal 
composition of Ti-46.5Al-2.5V-1.0Cr 
(at%). The ingots, prepared by vacuum 
induction magnetic suspension melting 
technology, were hot isostatically pressed 
(HIP) at 1290oC under 150MPa in an 
argon atmosphere for 2.2h to remove 
casting porosity and to increase sample 
uniformity. The as-received microstructure 
of alloy was nearly lamellar, consisting of 
lamellar colonies containing alternating γ 
and α2 platelets, and equiaxed γ phase in 
the lamellar colony boundaries. The cross-
section macrostructure of ingot and the 
sketch map of sampling were shown in Fig. 
1. 
 

 
Figure 1: The cross-section 

macrostructure of ingot and sampling 
schematic diagram (cross-section) 

 
Columnar crystals grew along the radial 
direction, which can ensure the 
microstructures of samples were consistent. 
The samples, 65mm (length)х2mmх3mm 
in size for thermal fatigue and 
85mm(length)х2mmх3mm for thermal-
mechanical fatigue ,were cut using 
Electrical Discharge Machine (EDM), and 
annealed at 100oC in oven for 2h to 
remove any machining stress.  

The specimen was radiant heated in air, 
and the apparatus, employed to tests, was 
described in Refs [9]. Thermal fatigue 
tests were carried out in the temperature 
ranges of 200-700 and 200-900oC. Three 
different testing conditions for dead-load 
thermo-mechanical fatigue were used. 
They were temperature range of 200-
700�with 70MPa and 140MPa dead-load 
tensile stress, respectively, and 200-900� 
with 70MPa.  
A platinum-rhodium thermocouple was 
used to measure the surface temperature. 
The heating and cooling time of thermal 
cycles are shown in table 1. 
 

Table 1: The parameters of thermal 
cycling 
 
At a predetermined number of cycles, the 
dynamic elastic modulus of sample was 
measured by forced resonance techniques. 
The resolution of resonance frequency is 
0.1 Hz. A QJ84 digital constant-current 
electric bridge was employed to measure 
electrical resistance. The measurement 
range and precision of electric bridge is 
0~20KΩ and 10-6Ω, respectively. 
Electrical resistance was measured five 
times at the same position on the sample, 
and the average was reported as the 
measurement value. 
Samples were etched in a solution of 
1%HF+2%HNO3+97%H2O (vol%), and 
Scanning Electron Microscopy (SEM) was 
employed to observe the microstructure 
pattern of the samples. XRD analysis was 
carried out on a D/Max-3C X-ray 
Diffraction apparatus for primary and 
subsequent phase identification and for 
quantitative analysis of the specimens.  
 
 
3. Damage assessment 
 
Two non-destructive examination methods 
were employed to characterize the damage 
under thermal cycling. 
The extent of damage can be represented 
by the retained elastic modulus after 
thermal cycling and was defined in Eqs. 
(1) [10-13]: 

Temperature 
ranges 

Heating 
time 

Cooling 
time 

200-700� 16[s] 50[s] 
200-900� 25[s] 55[s] 



2
N N

m 2
0 0

1 1E fD
E f

= − = −                (1) 

Where E0 is the elastic modulus of as-
received sample, EN is elastic modulus 
after N cycles; f0 is the resonance 
frequency of as-received sample, fN is the 
resonance frequency after N cycles. The 
right hand side of the above equation is 
obtained in accordance with the law of 
elastic modulus which states that the 
elastic modulus is proportional to f2 [10-
13]. DE is a modulus damage parameter. 
DE can vary from 0 to 1. 
Another damage parameter DR can be 
defined to represent the relative change of 

electrical resistance after thermal cycling 
[14-15]: 

01R
N

RD
R

= −                                            (2) 

Where RN is electrical resistance after N 
cycles, R0 is the electrical resistance of as-
received sample, and DR is electrical 
resistance damage parameter. DR also can 
vary from 0 to 1. 
 
 
4. Results  
 
4.1 Damage curve 
4.1.1 The thermal fatigue 

 

 
Figure 2: Damage parameters as a function of the number of cycles under thermal 

fatigue: (a) Modulus damage parameter DE; (b) Electrical resistance damage 
parameter DR. 

 
The damage parameters DE and DR as a 
function of the number of cycles under 
thermal fatigue were shown in Fig. 2. As 
can be seen, the trend of the two damage 
curves, determined by the two non-
destructive examination methods, was 
consistent. In the shorter cycles, the 
damage parameter increased intensely, and 
the discrepancy between two damage 
parameters was very limited. Then, the 
damage parameter increased very slowly 
after a few cycles and approached a 
constant. This is referred to as the stable 
damage stage. At this stage, the 
discrepancy between DE and DR increased 
as the number of thermal cycling increased, 
and trended to a stable constant. Fig. 2 
also shows that the damage of the 
specimen with big temperature difference 
(or high maximum temperature), at the 
stable damage stage, was greater than that 
with small one. The higher the 
temperature difference the sample had, the 

larger the thermal stress in the sample, 
caused by temperature gradient, and the 
larger the damage generated. Such 
phenomena coincide with the general law 
of thermal fatigue. In addition, the 
inflexions appeared at about the 30th cycle 
on the two damage curves of thermal 
fatigue at 200-900oC. It is revealed that DE 
and DR had well corresponding 
relationships, and could be used to 
characterize the damage of γ-TiAl under 
thermal fatigue.  
 
 
4.1.2 dead-load thermo-mechanical 
fatigue 
 
Fig. 3 shows the damage parameter DE and 
DR as a function of the number of cycles 
under three different dead-load thermo-
mechanical fatigue conditions (It was 
found that the damage parameter DE
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 Figure 3: Damage parameters as a function of the number of cycles under dead-load 

thermo-mechanical fatigue: (a) DE; (b) DR. 
 

showed limited rise after examination at 
200-700 oC with 140MPa dead-load stress 
and 200-900oC with 70MPa, so the 
measurement of 200-700 oC with 70MPa 
ceased at 240th cycle). As can be seen 
from fig. 3a, the damage parameters DE, at 
some stage in the shorter cycles, also 
increased negatively. The differences 
among three testing conditions are as 
follow: The negative increase of DE of 
200-700oC with 70MPa and 140MPa 
dead-load stress occurred at the very start, 
and increased after a few cycles. Then, the 
negative increase emerged again when the 
number of cycles increased, and DE 
increased slowly and almost held at a 
constant; DE of 200-900oC with 70MPa 
dead-load stress, at the beginning of 
cycling, increased intensely, and 
descended slightly after the 20th cycle. 
Thereafter, DE increased slightly and 
maintained at a constant.   
At the stable damage stage, DE hardly 
changed. The DE at 200-700oC with 
140MPa dead-load stress was the biggest 
among three testing conditions, and that of 
200-900oC with 70Mpa was larger than 
200-700oC with 70MPa. It was shown that 
the samples with bigger stress presented 
larger damage than that with lesser stress 
under the same temperature drop; and, the 
samples with bigger temperature drop 
(higher maximum temperature) exhibited 
larger damage than that with lower one 
under the same stress. It was also shown 
that the temperature drop (or maximum 
temperature), at the shorter cycles, was 
more sensitive to the damage parameter 
DE, and the effect of dead-load stress on 

DE was remarkable as the number of 
cycles increased,� 
As can be seen form Fig. 3b, the negative 
increase of DE did not occur on DR. The 
trend of the three curves was consistent 
with each other, and all of them increased 
intensely in the first few cycles and 
followed by fluctuation. Then, the stable 
damage stage occurred. At the stable 
damage stage, DR at 200-900oC with 
70MPa dead-load stress, among the three 
testing conditions, was the biggest, and 
that at 200-700oC with 140MPa and 
70MPa took second and third place, 
respectively. It is obvious that the 
influence of temperature drop on DR was 
more pronounced to dead-load stress. 
Comparing to the two plot of Fig. 3, it was 
concluded that the DE, for dead-load 
thermo-mechanical fatigue with lower 
stress (70MPa), was smaller than DR and 
the DE, for that with bigger stress 
(140MPa), was also smaller than DR at the 
earlier cycles, the opposite is true at the 
stable damage stage. 
 
 
4.2 Microstructure observation 
 
Fig.4 shows microstructures of the as-
received sample and that of the samples 
after thermal cycling. Comparing to as-
received microstructure, the fine and dark 
γ phase increased and the size of lamellar 
colony reduced obviously after thermal 
cycling, which occurred not only in 
thermal fatigue tests but also in dead-load 
thermo-mechanical fatigue tests. This was
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 Figure 4: The microstructures of γ–TiAl: (a) As-received ;(b)200-700� after160 cycles; 

(c) 200-900� after160 cycles;(d) 200-700� with 140MPa dead-load tensile stress 
after160 cycles. 

 

   
Figure 5: The microstructures of γ–TiAl after thermal cycling: (a) 200-700�; (b) 200-

700� with 140MPa dead-load tensile stress. 
 
subsequently validated by XRD analysis. 
The more fine transformations were found 
by higher power microstructure 
observation. After thermal fatigue Micro-
pores emerged in equiaxed γ phase and the 
lamellar colony, micro-cracks did not 
come forth. Nevertheless, micro-cracks 

appeared across the whole lamellar colony 
after dead-load thermo-mechanical fatigue 
 
 
5. Discussion  
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σM 
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Based on the Ti–Al alloy phase diagram 
(Fig. 7), the content of γ phase is large, 
and that of α2 is very small at 46.5%Al 
content. At the heating stage of thermal 
cycling, the content of γ phase enhanced 
relatively, and that of α2 decreased 

 

 
Figure 7: Ti-Al alloy phase diagram [1] 

 
correspondingly; this phase change is 
reversible and the reverse occurs during 
the cooling stage. α2 is an ordered phase of 
hexagonal symmetric structure , and γ is 
an ordered type of face-centered tetragonal 
structure. Owing to the difference in 
crystal structure, the stack faults at the 
interfaces of γ/α2 transferred, driven by the 
volume free energy, to the direction of 
decreasing α2 and increasing γ at the 
heating stage of thermal cycling [17]. In 
addition, the heating and cooling rates 
were fast during testing, which made the 
material stay at a non-equilibrium state at 
all times. The γ and α2 were ordered 
phases, and formed by diffusion. During 
thermal cycling, the elastic strain energy 
generated by thermal stress becomes the 
driving force for diffusion [18]. The 
enthalpy of γ phase formation is lower 
than that of α2 phase [19]. Therefore, it is 
difficult for α2 phase to form by diffusion, 
and α2 phase dissolved into γ phase during 
thermal cycling. The thermal stress 
generated by heating and cooling could 
also induce the break up of lamellar 
colony, and thinner lamellar colony would 
form. Therefore, after thermal cycling, the 
content of γ phase increased, and α2 
decreased accordingly (Fig. 4). The size of 
lamellar, simultaneously, reduced (Fig. 4), 
and flaws, such as micro- pores and micro-
cracks (Fig. 5), appeared. The increase of 
γ phase generated by heating and cooling 
can also be found during elevated 

temperature dynamic stretching of γ-TiAl 
alloy [20]. 
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 Figure 8: The XRD pattern of samples 
before and after thermal fatigue 

 
XRD analysis further validated these 
conclusions and microstructure 
observations. Fig. 8 shows the XRD 
pattern of samples before and after thermal 
cycling. Since the main factor influencing 
the phase transformation was temperature 
not dead-load stress, we did not perform 
XRD analysis of samples after dead-load 
thermo-mechanical fatigue. As can be seen, 
diffraction peak of γ-TiAl was still 
obvious after thermal cycling, and its 
intensity enhanced. The diffraction peak 
intensity of 200-900oC was bigger than 
that of 200-700oC after the same number 
of thermal cycles. After thermal cycling, 
the diffraction peak intensity of α2 reduced 
dramatically in samples tested at 200-
700oC, and nearly disappeared in samples 
tested at 200-900oC. It was concluded that 
the content of γ phase increased and the 
integrity of crystal elevated at the same 
time. And the content of α2 phase 
decreased accordingly. The contents of γ 
and α2 phases before and after thermal 
cycling were analyzed by XRD 
quantitatively, and the results are shown in 
Table. 2. 
Generally, the mode of release for thermal 
stress is as follow: when the elastic misfit 
strain of the two phases, generated by 
thermal stress, is high enough, dislocation 
would launch from the phase boundary to  



 

 
Table 2: The contents of γ and α2 in 
microstructure before and after thermal 
fatigue 
 
the bulk phase; If dislocations could not 
activate due to unfavorable crystal 
orientation, stack faults and deformation 
twins will form first [18]. Thermal stress 
and volume internal stress generated due 
to the changes of phase content increased 
the probability for the formation of 
dislocations and twins [21]. Such changes 
caused the increase in the electrical 
resistance damage parameter DR. On the 
one hand, the probability of conductive 
electron scattering increased because of 
the reduction in size of the lamellar 
colonies and because of the microscopic 
flaws, this in turn caused an increase in 
electrical resistance [22]. On the other 
hand, the electrical resistance of alloy also 
increased owing to the decrease of 
effective loaded area because of the 
formation of micro-pores [15]. In addition, 
the increase in micro-pores and the 
intragranular and interphase damages 
could also weaken interatomic combining 
force and reduce the elastic modulus 
simultaneously, resulting in an increase in 
the elastic modulus damage parameter DE.  
In the present work, we have shown that 
the damage of thermal fatigue mainly 
emerged in the form of micro-pores. 
According to the damage mechanics, the 
damage measured by the electric method 
should be less than that by the mechanical 
method [22]. The damage characterized by 
the elastic modulus indicates the overall 
damage of material [23], while that 
characterized by electrical resistance is 
usually related to the influence of flaws on 
electron conduction. Therefore, DE is 
larger than DR,and there were differences 
existed on the damage curves between DE 
and DR(Fig. 2). 
The damages caused by dead-load thermo-
mechanical fatigue appear in the form of 
micro-cracks (Fig. 5b). Micro-cracks have 

more significant influence than micro-
pores on electrical resistance value [22]. 
Considering other factors affecting 
damage, DR would become larger when 
there are micro-cracks. Comparing the two 
damage curves of dead-load thermo-
mechanical fatigue, it is concluded that the 
DE, measured by mechanical method, was 
more sensitive to dead-load stress, while 
temperature drop (or higher maximum 
temperature) has a more significant effect 
on DR measured by the electric method. 
In our opinion, the negative increase of DE 
shown in the Fig. 3 could be caused by 
cyclic hardening. Cyclic hardening occurs 
in many materials after thermo-mechanical 
fatigue, and decreases at higher 
temperatures [6, 20]. The reduction of 
cyclic hardening was found in dead-load 
thermo-mechanical fatigue at 200-900� 
with 70MPa stress, which coincides with 
that reported in Refs [6]. However, further 
research is needed to determine the 
validity of such hypothesis. 
 
 
6. Conclusion  
 
1. During shorter thermal cycles, the 
damage parameter increased intensely, and 
the difference between the two damage 
parameters was very limited � Then, the 
damage parameter increased very slowly 
as the number of cycles increased 
gradually and finally approached a 
constant, and the difference between DE 
and DR also become stable. 
2. The negative increase of DE at 200-
700oC with 70MPa and 140MPa dead-load 
stress occurred at the very start, and 
increased after the first few cycles. Then, 
The negative increase of emerged again, 
and DE increased slowly as the number of 
cycles increased until reaching a constant; 
DE at 200-900oC with 70MPa dead-load 
stress, at the beginning of cycling, 
increased intensely, and decreased slightly 
at the 20th cycle. Thereafter, DE increased 
slightly until reached a constant. The 
negative increase of DE did not occur in 
DR. DR increased intensely in the first few 
cycles and followed by fluctuation. Then 
the stable damage stage occurred. 
Temperature drop affected DR more than 
dead-load stress. 
3. The fine and dark γ phase increased and 
the size of lamellar colony reduced 
obviously after thermal cycling. This 
occurs not only in thermal fatigue but also 

Microstructures 
states 

Contents 
of γ 

Contents 
of α2 

As-received 
microstructure 88� 12� 
200-700� 160 
Cycles 90� 10� 
200-900� 160 
Cycles 95� 5� 



in dead-load thermo-mechanical fatigue. 
After thermal cycling the damages appear 
as micro-pores and micro-cracks, etc. 
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Abstract 
 
A thermoelectric hydrogen sensor was 
fabricated based on the Seebeck effect of 
Bi0.5Sb1.5Te3 and the hydrogen oxidation 
on Pt / α-Al2O3 catalyst. Bi0.5Sb1.5Te3 
film was deposited by RF magnetron 
sputtering and then the catalytic layer 
was dip-coated on its surface. The phase 
structure and morphology of thermoe-
lectric and catalyst layers were studied. 
The Seebeck coefficient of Bi0.5Sb1.5Te3 
film showed a high value of 400μV/K 
and excellent temperature stability 
ranging from RT to 160oC. The porous 
Pt/α-Al2O3 layer increased the reacting 
area surface and displayed a large tem-
perature difference of 50oC around RT 
with a short response time of 25s. 
As-composed sensor demonstrated many 
merits such as simple structure, low en-
ergy consumption, high sensitivity, quick 
response and recoverability. Experimen-
tal results showed that when exposing to 
3vol% H2 / air, the sensor gave out a 
strong output signal of 26.6mv with re-
sponse time of 50s and recovering time 
of 100s.  
 
Keywords: hydrogen sensor, thermoe-
lectric film, Bi0.5Sb1.5Te3, Pt catalyst 
 
 
1. Introduction 
 
Hydrogen is the most potential energy 
carrier due to its wide resources, burning 
cleanness and high exothermic value. At 
the same time, hydrogen is among the 
most dangerous gases because of its high 
propensity to leak, explode, and com-
bustion. The technology for sensors on 
detection and monitoring of gaseous hy-
drogen is essentially demanded. Large 

varieties of hydrogen sensor were de-
signed and fabricated according to their 
different principle and requirement of ap-
plications. Traditional sensors are mostly 
made from semiconductor, thermal con-
ductor, and optical fiber. Recently, with 
the increasing development of 
nano-technology, new kinds of sensors 
come into appearance, such as carbon 
nano-tube[1], palladium nano wire[2], and 
TiO2 nano-tube[3]. Though conventional 
hydrogen sensors have been widely 
commercialized, but their shortages of 
high operating temperature (200-400oC), 
low reliability, broad spectrum response 
to combustible gases like methane and 
carbon monoxide limited their applica-
tions and accuracy. While nano types hy-
drogen sensors normally respond to very 
low concentration of hydrogen. Therefore 
development of new types of hydrogen 
sensor with compact structure, high sen-
sitivity at low temperature, unitary selec-
tivity is therefore an emergent urgency.    
 
TE hydrogen sensor takes advantages 
from TE effect and the exothermic reac-
tion of hydrogen oxidation on Pt catalyst. 
TE materials have attracted much atten-
tion as clean energy system on power 
generation and refrigeration [4-6]. More-
over some special functions have also 
been reported as temperature monitor-
ing[7], infrared radiation detection[8], 
fluid flow and pressure measure-
ment[9-10]. In this paper, a small-sized 
and highly sensitive hydrogen sensor 
based on TE material was studied. 
  
Figure 1 displayed the structural mecha-
nism of TE hydrogen sensor composing of 
two layers. The higher part is hydrogen 
catalyst layer, on the surface of which the 
hydrogen and oxygen molecules react and 



give out certain heat concurrently. The 
heat generated resulted in a temperature 
increase. Therefore a temperature dif-
ference between the both sides of the TE 
film substrate is established. Belonging 
to the Seebeck effect, the TE film gener-
ates voltage output as a function of 
temperature difference and the TE film’s 
Seebeck coefficient. Because the See-
beck coefficient has no relationship with 
the material’s size, TE sensor can be 
fabricated into a small space. Moreover, 
theoretical analysis declared that low 
dimensional materials showed high 
Seebeck coefficient due to its enhanced 
phonon scattering. Comparing with other 
hydrogen sensors, the TE film hydrogen 
sensor owns advantages of simple 
structure, low power consumption, high 
sensitivity and quick response.  Shin’s 
[11-12] investigation showed that such 
sensor has wide sensitive ability from 
50ppm to several percents, high voltage 
of 25.3mv to 3% hydrogen at 28�. In 
this study, we chose Bi0.5Sb1.5Te3 as the 
TE film candidate due to its high See-
beck coefficient at room temperature, 
and a porous structure of catalyst to in-
crease the sensibility. The processing 
parameters were intensively investigated; 
the phase structure and morphology were 
studied. As a result, a small size hydro-
gen sensor with high sensitivity was ob-
tained.  
 
 
2. Experimental 
 
2.1 Preparation of hydrogen sensor 

Bi2Te3-based solid solutions exhibited 
high TE properties around room tem-
perature and were widely applied for 
cooling and temperature control. Several 
methods have been explored to grow their 
film, including flash evaporation, reactive 
evaporation, MOCVD, MBE, and mag-
netron sputtering method. Here RF mag-
netron sputtering was used to deposit 
Bi0.5Sb1.5Te3 film owing to the method’s 
high efficiency and easily-controlled op-
eration. Quartz glass was used as the sub-
strate with a dimension of 18×10×1mm. 
Powder mixture of high purity bismuth, 
antimony and tellurium composed the 
sputtering target. Before sputtering, sub-
strate was intensively cleaned with for-
maldehyde, distilled water and absolute 
alcohol in ultrasonic agitator.  
 
As for the catalyst layer, magnetron sput-
tering method was firstly used for fabri-
cation of pure Pt film. But the layer’s 
smooth surface depressed its catalytic re-
activity. Wet chemical method was then 
adopted to increase the contact area, and 
amount of α-Al2O3 was added in to estab-
lish a porous structure. Aqueous solution 
of Pt chloride was used as the starting 
material of Pt, and it was homogeneously 
mixed with organic vehicle, a blend of 
terpineol and ethyl cellulose. Then the 
mixture was dropped onto the half surface 
of TE film, and then dried in oven. After 
several times of dropping and drying, a 
certain thickness of paste layer was 
formed. The sample was then sintered to 
get the porous structure of Pt / α-Al2O3 
film. 

 
Figure 1: Structure of thermoelectric hydrogen sensor 



 
2.2 Properties observation and meas-
urement  
 
The crystal structure of TE and catalyst 
films was investigated by XRD (Rigaku 
D/max 2550, Japan), The surface mor-
phology of Pt / α-Al2O3 was observed 
with SEM (JEOL JSM-6360LV). The 
Seebeck coefficient of Bi0.5Sb1.5Te3 film 
was measured from RT to 150� with a 
temperature difference of 10k between 
both sides, the temperature was moni-
tored by two thermocouples with an ac-

curacy of 0.1�. The catalytic and sensor 
activities were performed in a 3vol% H2 
gas flowing system with a pressure of 
3Mpa. The gas flow rate was controlled in 
the regime of 0-100 ml/min by a 
flow-meter. Acquired data was automati-
cally collected via data collector produced 
by NI Corp. USA. 
 
 
3. Results and Discussions 
 
3.1 Thermoelectric film properties 
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Figure 2: XRD pattern of thermoelectric film prepared by RF magnetron  
sputtering 
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Figure 3: Seebeck coefficient of thermoelectric film as a function of 

 temperature 



Figure 2 showed the XRD pattern of RF 
magnetron sputtered Bi0.5Sb1.5Te3. It was 
found that besides the expected phase of 
Bi0.5Sb1.5Te3 a little amount of Te was 
also emerged. This was because that 
among the three elements of Bi, Sb and 
Te, Te owned the highest vapor pressure, 
and displayed a high depositing ratio 
during sputtering process.  
 

Figure 3 displayed the Seebeck coefficient 
of TE film between 40 and 160oC. It can 
be clearly found that the Seebeck coeffi-
cient of the TE film were positive in 
whole range which indicated that the 
electric hole was the main conducting 
carrier. And the measuring value of See-
beck coefficient was relatively stabilized 
at a high value of 400μv/k.  
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Figure 4: XRD patterns of catalyst film prepared by wet 
chemical method as a function of sintering temperature 

 

Figure 5: SEM image of catalytic layer sintered at 400 oC for 2hr 



 
3.2 Catalytic properties 
 
Pt is a commonly used catalyst for hy-
drogen sensor. Here some α-Al2O3 was 
mixed in by wet chemical method in or-
der to increase the active ability. Figure 4 
showed the XRD patterns of catalyst 
sintered at different temperature. It was 
displayed that at 200oC Pt chloride 
(H2PtCl6

.6H2O) finished its conversion 
to Pt, while most of α-Al2O3 was still in 
amorphous state. More α-Al2O3 crystals 
showed up with the increase of sintering 
temperature. At 400oC, the sample be-
came a crystallized mixture of Pt and  
α-Al2O3.  
 
Figure 5 was the SEM image of catalyst 
sintered at 400oC for 2hr with magnifi-
cation 2000. It can be clearly seen that 
α-Al2O3 established a porous structure 
for Pt powders, and the latter dispersedly 
overspread on the structure, which of-
fered lots of contacting surface between 
the reaction gases. 
 
The sensitive catalytic ability was car-
ried out, and the measuring results of 
temperature difference caused by the 
exothermic reaction of 3 vol% hydrogen 
on the catalyst surface as a function of 
operating temperature was shown in fig-
ure 6. A strong sensitivity was found af-
ter the catalyst was exposed in 3vol% H2. 
An exiting temperature difference (ΔT) 
was generated along the both sides of 
substrate with a quick response. The 

highest value of 50oC was appeared at 
35oC. With the increase of operating 
temperature, ΔT gradually reduced. But 
even at 135oC, the gave-off heat can still 
generate a ΔT of 25oC. Moreover, the re-
sponse time was perfectly short as 25s, 
and showed no relation with operating 
temperature. The recovery test declared 
that the catalyst had a good recoverability 
of about 50s.  
 
3.3 Hydrogen sensing properties 
 
After combined catalytic layer with the 
TE film, a simple-structured hydrogen 
sensor was formed. The sensor’s proper-
ties depended on the characteristic of both 
catalyst and TE material. The 
film-structured TE materials offer a high 
Seebeck coefficient of 400μv/k. The po-
rous frame Pt catalyst increased the cata-
lytic sensitivity. As composed TE sensor 
showed a high output voltage of 26.6mv 
 
 
with a quick response time about 50s (in 
figure 7). The recover properties ensure 
the repeatability of the sensor. When the 
mixed gas flow was shut down, the volt-
age signal quickly reduced to the original 
state in 100s.   
 
4. Conclusion 
 
In this paper, a TE hydrogen sensor of a 
composition of Bi0.5Sb1.5Te3 TE film and 
Pt / α-Al2O3 catalytic layer was demon-
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Figure 6: Pt / α-Al2O3 catalytic activity 
as a function of temperature 
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Figure 7: Voltage output of thermoelectric 
sensor with 3vol% H2 at RT 



strated. The TE film was fabricated by 
RF magnetron sputtering.   Its phase 
structure was studied. Seebeck coeffi-
cient was measured as a high average 
value of 400μv/k. Wet chemical method 
was applied to prepare a po-
rous-structured   Pt / α-Al2O3, which 
greatly increased the catalytic properties, 
and the temperature difference generated 
was as high as 50oC. As-prepared sensor 
showed simple structure, low cost and 
high sensitivity to hydrogen. Output 
signal of 26.6mv was obtained with a 
response time of 50s when the sensor 
was exposed in a mixed atmosphere with 
3 vol% hydrogen. 
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Abstract 
 
A multiaxial Thermo-Mechanical Fatigue 
test device has been developed at ONERA 
to be able to test materials, and also to 
validate the capability of lifetime 
prediction methods, under more realistic 
and complex loading. A detailed 
description of the testing equipment and of 
the specific experimental procedure 
specially developed for tension-torsional 
TMF test is first given. We present then 
the experimental results obtained in 
tension, torsion and in tension-torsion with 
AM1 single crystal superalloy for turbine 
blade application. Finally, we discuss 
about the results of the life analysis of the 
tests realised by simulating and calculating 
the response of the material under tension-
torsional loading with a specific Finite 
Element calculation method, before the 
application, as a post-treatment to the F.E. 
analysis, of a fatigue-creep-oxidation 
interaction damage model developed and 
extended here to account for the specific 
behaviour of such anisotropic under axial-
torsional fatigue loading. 
 
Keywords: Thermo-Mechanical Fatigue, 
Numerical simulation, Tension-Torsion 
tests, Single crystal superalloy, Crack 
initiation, Lifetime prediction model. 
 
1. Introduction 
 
Critical engine components, such as 
Aircraft Gas Turbine blades, are subjected 
to multiaxial states of stress under non-
isothermal cyclic conditions. Several 
constitutive models have been proposed to 
describe the cyclic viscoplastic behaviour 
of anisotropic material and applied with 

success for the design of single crystal 
blades [1-4]. Thermo-Mechanical Fatigue 
tests were developed for turbine blade 
alloys over the past 20 years, first to be as 
close as possible to the real blade in 
service, and also to validate constitutive 
equations and damage models. These 
experiments are generally performed on a 
material volume element simultaneously 
submitted to controlled uniaxial load and 
temperature [5-7]. However, this kind of 
test may not be sufficiently representative 
of the multiaxial loading that can be 
generated in turbine blades, and for which 
complex experimental tests machines were 
developed [8-9]. 
 
An axial-torsional TMF test device has 
been developed and designed to be able to 
test materials, and also to validate the 
capability of lifetime prediction methods, 
under more realistic loading [10]. A 
description of the testing equipment and of 
the specific experimental procedure 
specially proposed for multiaxial TMF test 
is given in the first section. We present 
then the experimental results obtained in 
tension, torsion and in tension-torsion. We 
discuss in a third section about the 
difficulties to simulate and model the 
response of the non-isothermal TMF 
loading particularly with torsional loading 
for which a specific Finite Element 
calculation algorithm is needed. Finally, in 
fourth and last section, we present the 
fatigue predictions given by the 
application of a fatigue-creep-oxidation 
interaction model and the recent 
developments we propose to account for 
the resistance of the single crystal 
specifically in torsion loading. 
 



2. Development of tension/torsion 
Thermo-Mechanical fatigue test device 
 
Experimental procedure.  
TMF consists in applying a mechanical 
loading during the heating of the specimen 
in non-isothermal conditions (Fig. 1). The 
main difficulty is to perform the fatigue 
test with a mechanical strain control. Thus, 
the thermal strain has to be subtracted to 
the measured total strain. The testing 
procedure we developed is divided in three 
sequences. We first apply the thermal 
loading with a force control equal to zero, 
to record the axial thermal strain. 
Afterwards, we impose only the thermal 
strain cycle previously recorded during the 
heating and verify the thermal 
compensation. If this is correct, we 
measure no significant force on the 
dynamometer. The last sequence consists 
in launching the real TMF test.  

 
Figure 1: Schematic description of the 
standard S axial-torsional TMF cycle. 

 
In previous papers [11, 12], we described 
in details the experimental procedure we 
finalised, concerning particularly the 
signal treatment to execute a feedback of 
the real thermal strain signal, extracted 
from the first sequence, in the servo loop. 
Two closed-loop control loops are used for 
mechanical actuators (axial and torsional). 
The heating of the specimen is obtained by 
giving the triangular tension command to 
an induction unit. The procedure has been 
developed to conduct any axial-torsional 
loading. In Fig. 2, it is shown the quite 
good results we obtain on the thermal 
compensation by reporting the measured 

stress with time. Indeed, a comparison of 
the measured stress with the high 
frequency noise (in black on the figure) of 
the acquisition-generation cards has been 
performed in terms of stress. Measured 
during many cycles, this is about ± 5 MPa, 
which implies a response of the system 
equivalent to the error induced by the 
electronic unit. 

 
Figure 2: Validation of the thermal 

compensation. 
 
Experimental validation with tension 
tests.  
Validation tests have been performed with 
the thermo-mechanical cycle defined in 
Fig. 1, with a minimal temperature of 
650°C and a maximum temperature of 
1100°C. The period of the cycle is 180 
seconds. The tests were carried out on thin 
wall tubular specimens (1 mm in the 
thickness) of AM1 Nickel-based single 
crystal superalloy, with C1A industrial 
coating, to be as representative as possible 
to the real blade in service. Moreover, the 
substrate exhibits the cubic symmetry and 
the specimens are oriented along <001> 
principal crystallographic orientation. The 
disorientation and secondary orientation 
have been located by the Laüe method. As 
a matter of fact, tension-torsion multiaxial 
test requires noticing the crystallographic 
orientation along which the torsional strain 
is applied on and measured. The validation 
consisted in the realisation of a uniaxial 
TMF test, in tension. A measurement of 
the Young’s modulus, realised in 
preliminary with the test, made it possible 
to obtain the inelastic strain during the 
fatigue test. The comparison with a 
Volume Element calculation (specimen 
with low disorientation along <001> 
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submitted to tension loading) with 
viscoplastic single-crystal constitutive 
models allowed us to validate the TMF 
device, in term of stress response of the 
material to the thermo-mechanical loading 
(Fig. 3), and also in term of life duration 
(compared to similar tension tests 
performed in other laboratories [5, 6]). 

 
Figure 3: Tension test: stress/mechanical-

inelastic strain loop at stabilised cycle. 
 
The specificity of TMF tension-torsion 
tests. 
Due to the cubic symmetry, the thermal 
expansion is hydrostatic and isotropic, and 
then does not intervene on the torsion 
strain components. So, two  possible  
definitions can be proposed for a TMF 
torsion test. The first one consists in 
compensating the axial thermal strain and 
in controlling the torsional one. The 
second one is to keep the axial actuator 
free, i.e to perform the test with a zero-
force control. 

 
Figure 4: Torsion test: stress/temperature 

loops from first to stabilised cycles. 

We verified, in such configuration, that the 
torsional loading had no significant effect 
on the axial strain measurement, and so 
that those two kinds of tests are identical. 
The first torsion test was carried out by 
positioning the extensometer arms in the 
<100> secondary direction. Fig. 4 presents 
the torsion strain evolution versus the 
temperature until the end of the test. 
Whatever the test, the rupture of the 
specimen is given by a force or torque 
drop up of to 50 %. In Fig. 5, we can 
observe the macroscopic crack oriented 
along the specimen axis, that is not 
singular for a torsion test, but exactly in 
the <110> secondary crystallographic 
orientation. This has to be validated by the 
prediction of the damage models applied 
to the results of the Finite Element 
analysis. 
 

 
Figure 5: View of the macroscopic crack 

observed in pure torsion test for high 
mechanical strain level. 

 
 
3. Simulation and calculation of tension-
torsion TMF tests 
 
To simulate the response of the anisotropic 
material due to a combined thermal and 
mechanical cycle, a 3D Finite Element 
simulation is required if a torsion loading 
is generated in the specimen. The mesh of 
the problem considers four elements in the 
specimen thickness to account for 
accurately the stress and strain gradients in 
the tube wall as soon as a torsion loading 
is considered. The difficulty of such 
calculation concerns the application of 
specific boundary conditions to obtain 
locally, in the gage length, the strain 
imposed experimentally by the axial-
torsional extensometer. As a matter of 
fact, it is no possible to impose, as 
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boundary conditions, the displacement and 
angle recorded experimentally, due to the 
transducers inaccuracy and the existence 
of a lot of unknowns, like the temperature 
gradient in the grip of the specimen. 
 
Specific simulation algorithm. 
We tried first to proceed in performing the 
calculation using a computation method 
with successive approximations, by 
incorporating patch terms. But such 
approached calculations and the non 
linearity induced by plasticity to obtain in 
the specimen gage length the resulting 
strain, make this computation technique 
inadequate. Therefore, to apply the 
adequate boundary conditions to obtain 
locally the resulting mechanical strain, it is 
necessary to build an algorithm of 
calculation allowing to execute the same 
control, as the experimental P.I.D. servo. 
The scheme below (Fig. 6) gives a 
simplified view of this algorithm we 
developed in the ZéBuLoN Finite Element 
code. 

 
Figure 6: Specific algorithm developed to 

simulate tension-torsion TMF tests. 
 
At each increment of time, the functional 
to resolve for all the integration points is 
expressed as F . This algorithm based on a 
perturbation method is thus the numerical 
equivalent of the closed-loop servo of the 
TMF test. Let us notice its general 
character, i.e. it makes possible to impose 
the accurate boundary conditions to 
control any observable variable. 
  
Finite element analysis of tension-
torsion TMF tests. 
The simulation of around ten successive 
cycles is required to have a stabilised state 
of stress and strain in the specimen (Fig. 
7). The specific calculation algorithm is 
more time consuming (factor 2) in 
comparison to classical calculation, the 
computation time reaching three days per 

test simulation. As precised previously, 
the possible disorientation of the single 
crystal specimen has to be taken into 
account for accurate simulation, as well as 
the exact location of the arms of the 
extensometer.  
 

 
Figure 7: Example of Finite Element 

simulation of tension-torsion test with 
cubic single crystal material. 

 
To compare the results of the calculations 
to the experimental data, it is needed to 
calculate, as a post-treatment, the torsion 
effort (global value deduced from nodal 
forces). The inelastic strains are also 
deduced from the total mechanical strains, 
from previous calculations of the elastic 
strains (a dynamic method consisting to 
apply thermal loading with low force 
control gives measurements of apparent 
axial and transversal elastic modulus of 
the specimen). On Fig. 8 are reported the 
experimental and calculated cycles at the 
stabilised state for both axial and torsion 
components. As it can be observed, there 
is a very good agreement between the 
simulation and the experimental data in 
term of elastic and inelastic strains. 
 
It is worth to note that the constitutive 
model in tension-torsion, more precisely 
the Schmid plasticity criterion, with the 
respect of the cubic symmetries, was only 
validated in previous works [4] at room 
temperature. The hypothesis formulated 
on the evolution of the material properties 
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under multiaxial loading in then validated 
on the entire temperature domain by such 
simulation of complex tension-torsion 
TMF test. 

 
Figure 8: Comparison of calculated and 
experimental responses of the material 

(stress/strain loop) submitted to complex 
axial-torsional TMF cycle. 

 
 
4. Fatigue life analysis of axial/torsional 
tests in isothermal and non isothermal 
conditions 
 
General multiaxial non-isothermal 
writing of the damage model. 
This model, specifically developed for 
coated single-crystal superalloys has 
already been applied successfully to the 
fatigue life prediction of isothermal and 
thermo-mechanical tests but only with 
tension loading. The model supposes 
isotropic damage. It has been detailed 
elsewhere [13-14], and we shortly recall 
here its main characteristics. To take into 
account the effect of the coating on the 
fatigue strength of the superalloy at low 

temperature, the model differentiates two 
distinct damage processes: a micro-
initiation phase and a micro-propagation 
phase respectively described by DI and DP 
scalar variables. Interaction effects are 
introduced between fatigue and oxidation 
damage process (traduced by Dox variable) 
during the micro-initiation phase only. The 
variable Dc is related to creep damage. It 
can be developed during the micro-
initiation phase, but it interacts with the 
fatigue damage during the micro-
propagation phase. 
 
The important assumption for this model 
concerns the non-isothermal writing. As a 
matter in fact, micro-initiation and micro-
propagation fatigue laws can be suppose 
temperature independent, by using a 
notion of reduced stress. These reduced 
stresses are defined by SI = σ/σuI(T) and 
SP = σ/σuP(T), and are considered as 
describing the thermo-mechanical fatigue 
cycle, where σuI and σuP are respectively 
the ultimate stresses in micro-initiation 
and in micro-propagation which are 
temperature dependent, the fatigue laws 
can then be supposed temperature 
independent. Only time dependent and 
thermally activated phenomena, such as 
creep and oxidation, are described by 
temperature dependent laws. 

 
Table 1: Equations of the fatigue-creep-

oxidation interaction damage model. 
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Damage evolutions due to micro-initiation 
(Eq. (1)) and micro-propagation (Eq. (2)) 
in fatigue, to creep (Eq. (3)) and to 
oxidation (Eq. (4)) are summarized in 
Table 1. Indices I and P in the equations 
stand respectively for initiation and 
propagation. SII is the octahedral shear 
amplitude, SPH or SIH is the mean 
hydrostatic pressure as defined by Sines, 
Seq is the Hill equivalent stress. Limit 
stresses Sl are defined by: SlI = SlIo (1-h1 
Mean (tr SP)), SlP = SlPo (1-h2 Mean (tr 
SP)), and Slox = Sloxo (1-h3 Mean (tr SP)) + 
Mean (tr SP). Similar relation is used for 
the parameter M*

 = M*
o (1-h4 Mean (tr 

SP)). For damage creep law, Hayhurst's 
multiaxial criterion has been extended to 
account for material anisotropy of the 
single crystal.  
 
This writing makes the model attractive 
for its identification on a large temperature 
domain. Pure fatigue tests results 
performed at one temperature are then 
sufficient to identify all the parameters of 
micro-initiation and micro-propagation 
laws. Micro-initiation and micro-
propagation laws evolve with temperature 
through the variations of the ultimate 
stresses σuI(T) and σuP(T). Fatigue creep 
tests results conducted at lower 
frequencies at the same or another 
temperature allow us to identify the 
oxidation law. Pure creep tests are 
nevertheless required to identify the 
damage creep law at several temperatures. 
Material anisotropy effects in fatigue 
regime could be taken into account by four 
fourth-order tensor introduced in SII and 
Seq writing. For cubic anisotropy, only two 
independent material constants are 
required.  
 
Application to AM1 single crystal 
superalloy for isothermal and TMF 
tension-torsion tests. 
The identification of the parameters of the 
different functions of the damage model 
was realised on the based of tension and 
isothermal fatigue tests obtained at 950°C 
and 1100°C. The available fatigue data 
(tests performed with a force control along 
three different orientations, <001>, <110> 
and <111>) did not indicate a significant 
effect of the anisotropy and the material is 
supposed here to be isotropic in term of 
life duration. 
 

 

 
Figure 9: Comparison between calculated 

and experimental lifetime for various 
tension tests in isothermal and TMF 

conditions. 
 
We reported in Fig. 9 the results of the 
lifetime predictions of many isothermal 
tests (circular symbols) performed in 
several laboratories at different 
temperatures and for several loading 
conditions (loading frequencies from 50 
Hz to tests with hold of 90s, different 
stress ratios). The star symbols represent 
the tests used for the identification of the 
model parameters. The square symbols are 
relative to the prediction of uniaxial TMF 
tests representatives to critical cycles (two 
different standard S and W cycles were 
studied) defined from the analysis of 
loading applied in blades for both civil and 
military applications. The predictions are 
fairly good whatever the loading 
conditions. 

 
Figure 10: Calculated and experimental 

lifetime of tension-torsion tests. 
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The results of the predictions of the 
torsion and tension-torsion tests in 
isothermal and TMF conditions are given 
in Fig. 10. As it can be seen, the damage 
model, applied as the post-treatment to the 
Finite Element analysis predicts 
systematically too much long life 
durations as soon torsion loading is 
applied. In term of Von Mises equivalent 
stress, it appears that the single crystal 
material exhibits a much lower resistance 
than in tension. We reported in Fig. 11 the 
Woehler curves obtained at 950°C (total 
reversed loading, Rσ=-1) for fatigue (5 Hz) 
and with hold time tests. The hollow 
symbols represent the results of the 
tension tests realised with the specimens 
oriented along different crystallographic 
orientations.  

 
Figure 11: Calculated and predicted 

Woehler curves at 950°C. 
 
The predictions are no more satisfying 
when the plasticity threshold is reached 
(perfectly plastic behaviour in torsion). In 
such a case, the rupture domain is very 
close. The previous rupture criteria were 
based on the comparison of the maximum 
of the Von Mises equivalent stress to the 
ultimate tension stress σuI (Eq. (1)) or σuP 
(Eq. (2)) supposed to be isotropic and non 
dependant to the material orientation. A 
new rupture criterion (Eq. (6)) based on 
Schmid law can then be proposed to 
describe more correctly the rupture 
behaviour of the anisotropic material: 
 ( )siii

res
i
res

i
u lnwith ⊗== :στττ  (6) 

 

i
uτ  is the ultimate shear stress ( i  is a cubic 

or octahedral plane) to be compared to the 
resolved shear stress in plane i . As a 
mater of fact, for a tube <001> oriented 
and submitted to torsion loading, the 
criterion is reached along the secondary 
orientation <110> in agreement with the 
localisation of the macroscopic crack (Fig. 
5). The model also leads to more 
conservative predictions, in the way of the 
security (Fig. 12) as confirmed in Fig. 11 
with the calculated Woehler curves. 

 

Figure 12: Calculated and experimental 
lifetime of tension-torsion tests with the 

new rupture criterion. 
 
 
5. Conclusions 
 
An axial-torsional thermo-mechanical 
fatigue test device was developed in order 
to study the effects of multiaxial loading 
on the fatigue life resistance of anisotropic 
materials such as single crystal superalloys 
for turbine blade applications. The 
experimental procedure has been validated 
in tension, in torsion and also by 
considering an in-phase tension-torsion 
thermo-mechanical loading. The 
difficulties encountered in the Finite 
Element simulations in the case of 
multiaxial loading, have constrained us to 
develop an algorithm of calculation 
allowing to apply specific boundary 
conditions to obtain locally, in the gage 
length, the strain imposed experimentally 
by the axial-torsional extensometer. The 
fatigue life prediction is then given by a 
creep-fatigue-oxidation interaction model, 
developed for coated single crystal 
superalloy, applied as a post-treatment to 
the Finite Element analysis. To be in the 
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way of the security, a new rupture 
criterion, based on Schmid law, has been 
proposed to describe correctly the specific 
behaviour of anisotropic material observed 
under torsion loading. 
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Abstract  
 
Scope of the present work is the 
determination of the residual stresses in a 
2¼CrMo plate, containing an 18-pass 
repair weld of the same material. The 
configuration under investigation concerns 
a 20 mm thick steel plate with dimensions 
of 200 mm x 100 mm, containing a 15 mm 
deep machined central cavity, with 
dimensions of 92 x 30 mm at its opening 
and 75 mm x 25 mm at its bottom. 
Uncoupled thermal and mechanical 
analyses and the “birth and death of 
elements” technique is the basis of the 
simulation procedure. Each weld pass is 
discretized in a number of increments and 
these are “deposited” sequentially. An 
optimized finite element mesh of a 
preliminary 2-D analysis is used as basis 
for the construction of a 3-D mesh and the 
implementation of a 3-D analysis where 
the 18 beads are lumped into 4 passes. The 
lumping approach is a pre-requisite for the 
3-D analysis to be cost effective in terms 
of CPU time. The proposed modelling 
technique is assessed through comparison 
of predicted stresses with neutron 
diffraction testing data. In general a good 
agreement between numerical and 
experimental results was found. 
 
Keywords: Residual Stress, Prediction, 
Repair Weld, FEM, Sensitivity, Neutron 
Diffraction. 
 
1. Introduction 
 
Repair welds are a common way in 
industry of repairing cracks or other forms 

of defects in steel components and 
structures. The material around the crack 
is excavated through machining. The 
groove, which has usually letterbox 
geometry, is filled with a weld metal of – 
mostly - a composition similar to the 
parent material. Since the welding 
procedure is of a multi-pass type, a repair 
weld is considered an extreme case of a 
multi-pass weld. 
 
Prediction of the residual stress field in 
repair welds has attracted the researchers.  
Dong et al [1-2] inferred that residual 
stresses in such welds typically exhibit 
strong three-dimensional features, 
depending on both component and repair 
geometry. Several repair cases were 
investigated through 3D computational 
models and revealed that repair welds 
increase the magnitude of transverse 
residual stresses along the weldments and 
the shorter the repair length the greater the 
increase in transverse stresses. Moreover, 
welding parameters such as heat content 
and pass sequencing play a more 
important role when analyzing repairs than 
normal fabrication welds. Lant et al [3] 
concentrated on practical weld repair 
procedures for low alloy steels. During the 
design phase of structures and their 
components or during evaluation of a 
potential crack initiation and growth, it is 
important to have a complete description 
of the residual stress distribution. In 
addition, there is the potential for stress 
distributions to become even more 
complicated, when weld repairs are 
performed in regions where other welds 
are already present. Indeed, in the 



construction of new plants and for their 
continued operation, local repair welds are 
undertaken, so it is necessary to be able to 
certify these for safe operation. As a 
consequence, knowledge of the residual 
stresses and their distribution is an 
important input to an overall structural 
integrity assessment. Weld simulation 
involves complicated aspects of modelling 
like metallurgical phase transformation, 
temperature dependent material properties, 
creep, phase change, radiation, heat input 
models, etc. The impact of these on the 
accuracy of the predicted residual stress 
has attracted researchers for some time 
now. Lindgren in his review [4] 
demonstrates the complexity of weld 
simulation models if aspects such as solid-
state phase transformations and hot 
cracking are involved in order to achieve a 
more accurate analysis. 
 
Analysis of multipass welds as a series of 
single pass welds is probably the most 
accurate methodology as it can take into 
account the effect of interpass 
temperatures for every single bead and the 
exact heat input in the weldments. Each 
weld bead increment alters the 
temperature and displacement fields 
caused by previous increments and the 
effects, while cumulative, are not simply 
additive. As a result, simulation of multi-
pass welding can be very time consuming. 
Lumping successive passes together is one 
way to reduce the cost. Several researchers 
adopted this technique in the past. Hong et 
al [5] evaluated the approximations due to 
pass lumping. They tried to lump a 5-pass 
weld into a 3-pass weld. They introduced a 
weight factor to decrease the heat input 
and thereby also reduce the zone with 
large residual stresses so that the results 
compared with more favourably with the 
5-pass simulation. Lumping approach used 
by Hyde et al [6] in a 3D finite element 
model to simulate a pressurized CrMoV 
pipe and the same technique has also been 
adopted in recent studies [7-8] as costly 
effective. 
 
Measurement of residual stresses with 
non-destructive techniques is very 
important for safety assessment of welded 
components and the experimental results 
can be used for verification of numerical 
models. Ohms et al [9] have used a novel 
and very promising non-destructive 
method, in order to evaluate large welded 

components, such as dissimilar metal 
welded pipe joints and RPV walls, used in 
the nuclear industry, within the context of 
structural integrity assessment. They have 
used the neutron diffraction method to 
measure residual stresses, induced in such 
components during welding and have 
compared successfully their results to data 
of other experimental and computational 
methods. The neutron diffraction 
technique was also used in [10] to obtain 
through thickness residual stress profiles 
in repair welded stainless steel pipes. 
 
Scope of the present work is the 
determination of the residual stresses in a 
2¼CrMo plate, containing an 18-pass 
repair weld of the same material. 
Uncoupled thermal and mechanical 
analyses and the “birth and death of 
elements” technique is the basis of the 
simulation procedure. Each weld bead is 
discretized in a number of increments and 
these are “deposited” sequentially. 
“Deposited” means, in numerical terms, 
activated and that refers to the elements 
that constitute the weld bead. The 
deactivation and activation of elements 
during the simulation is achieved through 
the well known “birth & death of 
elements” technique, a feature common to 
many commercial FE codes. Element 
deactivation or “death”, as it is called, is 
not achieved by actual removal of "killed" 
elements, but by multiplying their 
stiffness, conductivity, etc, by a severe 
reduction factor. When an element is 
reactivated, its stiffness, conductivity, etc. 
return to their original values.  The 
influence of weld bead lumping on the 
evaluation of residual stresses field is 
examined in a sensitivity analysis. 
Metallurgical phase transformation effects 
are not included in the model, although it 
is general knowledge that its role in the 
formation of a residual stress field can be 
quite significant.  
 
The proposed modelling technique is 
assessed through comparison of predicted 
stresses of 2-D plane strain analysis and 
lumped 3-D analysis with neutron 
diffraction testing data. The overall 
objective of the present study is the 
development of a residual stress predictive 
tool for repair welds, based on the 
evaluation of currently developed finite 
element techniques, as encountered in 
industrial applications. Emphasis is given 



on the applicability of such a tool in 
problems of industrial relevance, in 
respect of the computational cost of its 
implementation. In fact the work presented 
in this paper constitutes an exercise 
towards development of simulation of 
multi-pass repair welds, which is currently 
pursued within the NET European 
Network - Neutron Techniques 
Standardization for Structural Integrity. 
 
2. Methodology of welding simulation 
and assumptions 
 
The weld material region consists of 18 
beads. (Fig. 2). The weld beads can be 
modelled one by one separately (Fig. 3), 
or they can be lumped into 6 layers, each 
one consisting of 3 sequential beads (Fig. 
4). In this case it is assumed that the 3 
beads of a layer are laid simultaneously 
into the weld groove. In a further 
simplification, the first two layers are 
lumped to one pass and layers 3 and 4 to 
another single pass (Fig. 5).  In this 
approach 12 of the original 18 beads have 
been incorporated into the first 2 lumps (6 
and 6) and the other 6 beads are shared 
between lump 3 and lump 4. The 
decrement of the initially 18 beads to only 
4 distinct lumps aims to the reduction of 
simulation time, which in case of a 3-D 
model may be too long for a bead-by-bead 
analysis. However, before proceeding to a 
lumped 3-D approach, a 2-D sensitivity 
analysis concerning the number of distinct 
weld passes is carried out. 
 

 
                 Figure 1: Plate geometry. 
 
Thermal analysis 
The weld simulation procedure that is 
followed here is incremental as is the real 
process of weld bead deposition. 10 
increments have been used for each pass 

(lump) in the present 3-D analysis and the 
deactivation and activation of elements 
during the simulation is achieved through 
the “birth & death of elements” technique. 
The elements that constitute the each weld 
pass, although generated from the 
beginning of the meshing remain inactive 
until the moment in time Ti

act when the 
pass increment they belong to is 
“deposited”. That time point is calculated 
by dividing the total bead deposition time 
Ttot by the total number of increments used 
in the simulation. 
 

( ) ( )
10

11 tot
act

T
iTiT i −=Δ−=          (1) 

 

 
                Figure 2: Bead sequence. 
 

 
               Figure 3:  Bead modelling. 
 

 
              Figure 4: Layer modelling. 
 

 
              Figure 5: Lump modelling. 
 
                                                                                              
Before starting the simulation analysis 
procedure, the whole base plate including 
the weld region is meshed (Fig. 6). The 
elements corresponding to the weld 
material are “killed”. To start the 1st weld 
pass increment analysis, the elements 
corresponding to this are activated. If the 
“prescribed temperature approach”[4] is 
followed then on the nodes of these 
elements a constant temperature load of 
1450oC (melting temperature) is applied 



for the duration Ti
act - Ti+1

act, where for the 
1st increment i=1. This time is in fact the 
time the weld pool needs to come through 
a specific cross section and it is taken th = 
1.5 sec. A free convection boundary 
condition is assumed over all free surfaces 
except the longitudinal plane of symmetry. 
The film coefficient is set to 10 W/m2 K. 
The 1st pass increment transient non-linear 
thermal analysis is performed starting at 
time point T1

act and ending at time point 
T2

act. Before moving to the 2nd pass 
increment, all temperature loads are 
removed from the 1st increment elements 
and nodes, thus allowing it to cool under 
free convection during analysis of the 2nd 
increment. For the 2nd increment the 
procedure is repeated, the only difference 
being that the resulting temperature 
distribution of the 1st increment is used as 
initial condition. The procedure goes on 
until all increments are analyzed and the 
fisrt weld pass is complete. The same steps 
are followed for the simulation of the rest 
passes. The cooling period after the 
completion of all passes deposition is 
regulated from the inter-pass temperature 
of 250oC. Finally a series of transient 
thermal analyses that simulate the cooling 
period in order to achieve a uniform 
temperature distribution over the plate 
equal to room temperature. 
 
Mechanical analysis 
The mechanical analysis is a close follow-
through of the thermal analysis and is 
constituted by a sequence of static 
structural analyses, which use as loads the 
temporal temperature fields predicted in 
each of the time steps. The final structural 
analysis, which corresponds to a 
completely cooled down specimen, 
produces the residual stress field. To start 
the 1st weld pass increment analysis, the 
elements corresponding to this are 
activated. The temperature field, obtained 
from the 1st pass increment transient non-
linear thermal analysis, is applied as a 
temperature load and a static non-linear 
structural analysis is performed. Using as 
initial stress field the result of the previous 
structural analysis, the temperature field, 
obtained of the 2nd increment transient 
non-linear thermal analysis, is applied as a 
temperature load and a static non-linear 
structural analysis is performed for the 2nd 
pass increment. Procedure goes on until all 
increments are analyzed and the whole 
pass is completed. What follows is a series 

of static structural analyses that simulate 
the cooling period up to the predefined 
interpass temperature. The whole 
procedure is repeated for rest passes and 
finally a number of static analyses 
simulating the overall plate cooling are 
carried out in order to obtain the residual 
stress field when the temperature over the 
whole plate has reached room temperature. 
 
It is assumed that the temperature field is 
independent from the displacement field (the 
heat produced due to dissipation or internal 
friction, is negligible when compared to the 
heat input due to welding). It is also assumed 
that the thermal transient evolves much 
faster than the resulting changes in the 
displacement field, thus the present is treated 
as an uncoupled quasi-static thermo-
elasticity problem. In this treatment the 
mechanical part of analysis is a series of 
static analyses that use as an initial 
displacement field, the one produced by the 
previous mechanical analysis and as a 
thermal load, the temperature field at the 
corresponding time point that was produced 
by the transient thermal analysis. 
 
Numerical tests have shown that the 
maximum strain does not exceed 3% 
(equivalent strain < 5%), which corresponds 
to negligible changes in geometry. Therefore 
a small displacement formulation was 
followed. 
 
Both parent plate and weld bead material 
behaviors were modeled using a kinematc 
hardening law. Kinematic hardening 
assumes that the total stress range is equal 
to twice the yield stress, so that the 
Bauschinger effect is included. This option 
is recommended for generally small-strain 
use for materials that obey Von Mises 
yield criteria, which includes most metals, 
and of course, the case under investigation 
and it is not recommended for large-strain 
applications. It is also appropriate for 
cyclic load histories, which is the case in 
sequential bead deposition.    
 
3. The multipass repair weld 
 
Twelve identical machined 2¼CrMo base 
plates, 200 mm x 100 mm x 20 mm, 
containing a central cavity, 92.3 mm x 
30.3 mm at the opening, 75 mm x 25 mm 
at the base, and 15 mm deep, were 
manufactured by Belleli Energy, I, (Fig.1). 
The plates were not heat treated to remove 



fabrication residual stresses prior to 
welding. An 18-bead submerged arc weld 
was deposited along each cavity, as shown 
in Fig. 2. The electrodes used were AL 
CROMO S 225 2¼CrMo, 4 mm diameter,. 
The welding conditions for each pass are 
given in Table 1. Each pass was allowed 
to cool to the specified inter-pass 
temperature of 250oC, before proceeding 
with the next. The base plate was pre-
heated to 200oC before welding 
commenced and was strongly restrained 
on the welding bench by 4 tack welds 5 
mm x 5 mm x 50 mm (Fig.1).  The base 
plate material is DIN 17175, grade 
10CrMo9-10, low alloy steel and the 
electrodes used were AL CROMO S 225 
2¼CrMo, 4 mm diameter. Stress-strain 
data, for the base plate parent material and 
filler material at different temperatures, as 
well as for thermal and physical properties 
can be found in reference [11] 
 

 
          Table 1: Welding parameters. 
 
4. Finite element mesh 
 
A 2-D model is constructed initially, 
representing the mid-section of the plate 
(Fig. 6).  
 

 
(a) 819 nodes 

 

 
(b) 1239 nodes 

 

 
(c) 2145 nodes 

 
Figure 6: 2-D FE meshes. 

 

Three mesh configurations were examined 
for convergence as shown in Fig 6.  The 
optimum configuration was used for 
sensitivity analysis regarding the number 
of weld passes as described earlier. 
 
Using as basis the 2-D model, a 3-D 
model is also produced (Fig. 7-8).  A total 
of 11578 brick 20-node thermal elements 
and totally 51472 nodes having 1 degree 
of freedom (temperature) each, were used 
in the thermal analysis. Free convection 
boundary is assigned over all free surfaces 
The same mesh was used for the 
mechanical analysis switching the element 
type to brick 20-node solid elements 
having 3 degrees of freedom (x, y, z 
translation) each. In the transverse to the 
weld bead direction the optimised mesh 
configuration from the 2D analysis is 
maintained. Restraints preventing rigid-
body-motion are applied. The plate is 
considered clamped during welding 
according to Fig. 1. 

 

 
Figure 7: 3-D FE mesh - 51472 nodes. 

 
 

 
Figure 8: 3-D FE mesh detail 

 
5. Results and discussion 
 
Mesh convergence 
In Fig. 9 the convergence diagram 
regarding the prediction of the transverse 
residual stress via different 2-D mesh 
configurations is provided. The results 
refer to the mid-section of the plate (line A 
in Fig. 1), 3 mm below the top surface. 
The intermediate mesh density of 1239 fits 
well the finest mesh of 2145 nodes. In the 
case of   819-nodes mesh stresses are 
overestimated near the weld-plate 
interface. Thus the 1239-nodes mesh is 
indicated as optimum for further 
investigations. Restricted node numbers is 



beneficial for the following 3-D analysis, 
since the 3-D mesh is based on the 
converged 2-D mesh. 
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Figure 9: Mesh convergence. 
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Figure 10: Effect of bead lumping. 
Transverse stresses along line A 
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Figure 11: Effect of bead lumping. 
        Longitudinal stress along line A 

 

Bead lumping  
Fig 10, 11 illustrate the distribution of 
residual stresses along line A, if bead-by-
bead or lump-by-lump approach is used. 
Concerning the transverse stress, 
discrepancies are observed only within the 
welded region (Fig. 10), where the 6-layer 
case is characterized by a spike of a 
relatively high compressive stress. Curves 
for the bead-by-bead approach and 4-lump 
approach come in better agreement 
throughout this section. In the case of 
longitudinal stresses (Fig.11), 
discrepancies between the 6-layer analysis 
and the other two cases are most 
significant near the weld-plate interface on 
the base metal side. Again the 4-lump 
curve matches better the bead-by-bead 
curve. However in all cases, the magnitude 
of longitudinal stresses is very high due to 
the hypothesis of plane strain condition.  
 
The total run time (thermal and 
mechanical analysis) for each simulation, 
based on a Pentium IV 3.0 GHz with 1Gb 
of RAM machine is 30 min for the bead-
by-bead approach, 11 min for the 6-layer 
and 6 min for the 4-lump approach. The 
difference in time between the first and 
last case is large while the loss in accuracy 
is not considerable. Therefore, the current 
conclusions will be reclaimed in the 3-D 
analysis where the computation time is 
expected to be very long. 
 
2-D and 3-D finite element analyses vs. 
neutron diffraction measurements 
In Fig. 12-13, residual stress predictions 
from 2-D and 3-D analyses are directly 
compared to neutron diffraction (ND) 
measurements, which were performed at 
the High Flux Reactor of the Joint 
Research Centre - Institute for Energy of 
the European Commission. All 
measurements have been carried out along 
the transverse and longitudinal planes of 
symmetry of the plate (line A and B 
respectively and), 3 mm beneath the top 
surface.  
 
For the transverse stress along the mid-
section of the plate (Fig 12a), 2-D and 3-D 
analyses give quite similar results. 
However, prediction through 3-D 
modelling is the one, which come in better 
agreement with the experimental data. It is 
clear that welding cause relatively low 
transverse residual stresses in this 
direction. 
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Figure 12: Residual stress along line A 

(a) transverse, (b) longitudinal 
 
On the other hand, the longitudinal 
residual stresses are higher with 
magnitude up to 600 MPa as Fig. 12b 
presents. In this case, 2-D analysis gives 
completely unrealistic results with 
overestimated stress values. This is on 
account of the plane strain assumption, 
which neglects the short repair length with 
regard to the width and the consequent 
intense edge effect. On the contrary 3-D 
numerical results fit well the experimental 
data. Therefore, 3-D analysis is inevitable 
for reliable determination of longitudinal 
residual stresses in short repairs welds. 
 
Fig. 13 depicts the comparison of 3-D 
finite element prediction with ND 
measurements along the longitudinal plane 
of symmetry. As measurements reveal, 
both residual stress components take high 
values (400 Mpa) in this direction. 
Transverse stress distribution is 
determined satisfactorily through the 3-D 
finite element analysis (Fig.13a), however, 
concerning the longitudinal stress field,  
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Figure 13: Residual stress along line B 
(a) transverse, (b) longitudinal 

 
prediction misfits the ND points around 
the weld-plate interface.  
 
Metallurgical phenomena taking place in 
this region, the so-called heat affected 
region (HAZ), may be responsible for this 
behaviour. When the weld material is 
deposited, part of the parent material 
adjacent to the fusion line, which stands at 
lower temperature, melts. It may be 
supposed that this region does not 
conserve its original mechanical properties 
but it obtains weld material properties. 
That practically means enlargement of the 
fusion zone. Actually, this region has 
mixed material. Moreover, it experiences 
annealing and solid-state phase 
transformations. All these phenomena 
demand intricate finite element models 
and knowledge of the exact fusion 
boundary in order to be taken into account. 
In the present study a simplified lumped 3-
D analysis was followed to reduce the 
computational cost. However the total 
processing time was about 95 hours, in 



fact very long. Neglecting the 
metallurgical effects and the precise pass 
sequencing, which increase the modelling 
complexity, satisfying results for the 
residual stress field can be derived 
 
A clearer view of what happens in the 
weld material may be given if transverse 
and longitudinal scans performed at 
different distances from the top surface. A 
revised set of yield strength data is to be 
released within the project and as soon as 
this is done, a revised set of simulations 
based on the new material data will be 
performed. 
 
6. Conclusions 
 
Numerical analysis of an 18-bead short 
repair weld has been conducted. 2-D 
models can give relatively good results for 
the transverse stress along the weld mid- 
section but unreliable ones for the 
longitudinal stress. The main utility of the 
2-D models is the numerical optimisation 
prior to a 3-D analysis, since the 
performance of the mesh configuration 
and lumping approach can be assessed. 
Using a simplified 3-D model with 
reduced number of weld passes and 
omitting the complex metallurgical 
changes, which accompany the welding 
procedure, a satisfying numerical 
prediction of residual stresses can be 
achieved. This is very important if the 
proposed simulation methodology is to be 
used in industrial applications. 
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Abstract:  
 

The effects of multiple repairing-weld 
and TIG-dressing on the fatigue property 
of high strength steel weld joints used in 
platform have been investigated. The 
principle and technological process of 
TIG-dressing of welding bead is studied 
on an important basis for our study of the 
offshore drilling platform. Through the 
fatigue tests on high strength welding 
joint samples, the life estimating formula 
is obtained after as-weld and 
TIG-dressing. The S-N curve and the 
equation after as-weld and TIG-dressing 
are given. By comparison and analysis 
tests’ results of each time, thus prolong 
the platform’s life and reduce the times of 

repairing weld has been examined. The 
work in this paper offers an important 
basis for the multiple repairing-weld of 
platforms.  

 
Key words:  high strength steel, 
multiple repairing-weld, TIG-dressing, 
weld bead, fatigue strength 
 
1. Introduction 

 
The ocean platform is very important 

structures for ocean oil industry. Due to 
the alternate loadings, fatigue cracks 
inevitably appear in its welded parts 
during service period. The safety 
operated is critically affected by the 
cracks of the ocean platforms. As a result, 



engineers have immersed themselves in 
programs about it, and they brought 
forward varieties of force condition being 
improved more reasonable to the 
structure, and also methods to increase 
the fatigue life of the joints.  

 
Weld bead property of the high 

strength steel welding joints is studied in 
this paper. According to the specification 
of classification society all over the world, 
the using times after repaired welding 
high strength steel in general can’t exceed 
twice. And then the service period, the 
cracks that have been had and already 
twice repairing weld would be rejected if 
it can’t be repaired. This will lost a lot for 
the company, instead the using life of the 
platforms will be prolonged much longer 
if be repaired over twice. At the same 
time, studying modern technique and 
improving fatigue life after repaired 
welding will reduce production costs and 
repairing times. Spend on it both in add 
the working time on platforms and 
increase financial profit. As a result, it is 
pressed for that TIG-dressing and 
improving fatigue strength of weld line. 
The repaired welding technique also has 
strong practical significance and both 
financial and social profit. 

 
2. Types of welding joints and test 
materials 
 
2.1 Types of welding joints 

The fatigue cracks of the ocean 
platforms emerge in the legs welding 
joint corresponding to the specific legs. 
The welding line of the legs welding joint 
that makes the materials hardly to be 
welded, but easily to splits there will be 

severe stress concentration and plenty of 
cracks after all. This problem is the weak 
link for the leg of construction 
consequently. Therefore the T-shape of 
welding joint is chosen for this 
experiment of the high strength steel [1] .  

 
2.2 Welding materials 

The materials used for the test were 
high strength steel. The mechanical 
properties of the steels are given in 
Table1. 

 
Mechanical properties 

σb [MPa] σs [MPa] δ 

490 343 22% 

Tab.1 The mechanical properties of 
experimental materials 

 
3. TIG-dressing procedure 

 
3.1 The TIG-dressing is fusion repaired 

in the position of toes used by tungsten 
inert gas when the structure has already 
been the first welding repaired. And it is 
applied using the ordinary TIG-welding 
equipment by which the metal on the toes 
of welding line can be remolded and 
appears as smooth transition. And all 
above is in a particular way that remands 
the special dressing sequences and 
dressing parameters. Consequently the 
transition will be more smoothly with the 
remanded metal here more compact and 
also free of inclusion with better property. 

The position of the cracks is actually 
not certain to appear at one side of the 
T-shape welding line, instead, both sides 
of it will undergo the identical fatigue 
procedure. Therefore for guarantee to 
experiment of unity, make specimen the 
both sides is placed in the same groove 



all and together, ignoring when which 
side appear the crack, welding repaired, 
the both sides all makes same grooves, 

repair with the same specification 
proceeding welding repaired and 
TIG-dressing. See Fig.1. 

  

Fig.1 TIG-dressing.                 Fig.2. TIG-dressing by translational  
motion back and forth.  

 

3.2 The TIG-dressing by translational 

motion back and forth is proceeding after 

the weld bead cutting apart. And then the 

weld bead is preheated with electricity 

before the TIG-dressing, and then is 

repaired by TIG-dressing. See Fig.2. The 

purpose of the TIG-dressing by 

translational motion back and forth is 

reducing the cooling velocity in 

heat-affected zone of the weld bead so 

that the hardness descends and the 

toughness is made better. 
 

3.3 The technology and parameter 
TIG-dressing affects the fatigue strength 
of welding joints awfully. The technology 
and parameter TIG-dressing is chosen 
mainly according the base metal property 
and chemical composition of the weld 
bead in repairing area so that the better 
weld bead metal-lographic structure. The 
energy input is adopted so that the test 
proceeded by three standards. See Tab.2.

 
 

     The standard   1�   2�   �� 
 The hardness in heat-affected zone / HV   377   335   328 

             Tab.2. The energy input.  
 
The metal-lographic structure in 

heat-affected zone of specimen 3 is 
bainite +sorbite +ferribite + a little 
amount martensite, and ones’ specimen 1 
is more martensite than the specimen 3. 
The hardness exceeds 350HV and it is 
377HV so that it exceeds the construction 
standard of platform. 

  
4. TIG-dressing procedure of the 

fatigue specimen and data 

treatment  

 

4.1 TIG-dressing procedure of the 



fatigue specimen 

The specimen after weld-repaired is 

proceeding TIG-dressing in weld toe. 

�  The crack is cleaned.  

�  It is repaired welding by the 

repair welding technology and 

standard.  

�  The weld toe is cleaned without 

corrosion and inclusions. 

�  The TIG-dressing is proceeding 

according to the standard 

technology parameters, and the 

welding velocity must be even. 

�  The ultrasonic inspection is 

proceeding after the 

TIG-dressing.  

 

4.2. Data treatment of the fatigue 

specimen 

The fatigue test is proceeding for the 

specimen after TIG-dressing and the 

welding repair.  The fatigue test adopts 

the system of the 4-point bending test [2]. 

It is divided two stresses class and the 

test parameter is following table3.  

 
 High stress Low stress(TIG-dressed) Low stress    (as-weld) 
Mean stress 299.52[MPa] 167.68[MPa] 137.28[MPa] 
Stress amplitude 161.28[MPa] 90.38[MPa] 73.92[MPa] 
Ratio of stress 0.3 0.3 0.3 
Frequency 10[Hz] 95-98[Hz]  

 Tab.3. The stresses class for TIG-dressed and as-weld 
 

 
Fig.3 The S-N curves used by 

TIG-dressing and as-weld  
 
The fatigue test result of the 

TIG-dressing and as-weld according to 
each one, the logarithms normal 
distribution is adopted the proceeding 
data processing. The fatigue life formulae 
are given by results of the fatigue test 

data [3]. The equations are refer to (1), (2). 
The as-weld and TIG-dressing fatigue 
based on statistic analysis is shown in 
Fig.3. 

 

As-weld: lgN =12.5141-3.3079lgσ      (1)  

 

TIG-dressing: lgN =12.7524-3.2420lgσ  (2) 

 

In figure 3, we can see clearly that 

the fatigue life of specimen after 

TIG-dressing is much higher than ones 

after as-weld.  

 

5. The effect of welding repaired 

TIG-dressing on fatigue properties of 



the weld bead 

 

5.1 The fatigue life of specimen after 

TIG-dressed increases 1 time than that 

hasn’t been TIG-dressed. From that we 

can see, not only the fatigue strength, but 

also the fatigue life after TIG-dressed 

materials that even are more safety 

conduct procedure, can still be much 

more improved. TIG-dressed repairing 

will obviously increase the fatigue 

strength. For inspecting the TIG-dressed 

the effect and the practical applicability, 

it is shown to us for the practice on a drill 

platform that was in repairing. After TIG- 

dressed, the surface of the welding line 

transited clearly and smoothly, none 

cracks, none inclusion and none undercut 

that sort of imperfection. With the perfect 

result, that platform has already been in 

use since 1999, the crack did not appear 

up to now. 

 

5.2 The effect of TIG-dressing 

repaired on material property of the weld 

bead: 

Because the outside of welding lines 

prolonged after as-weld, the shape change 

of welding line made the curve radius of 

position of welding toe transition and the 

angle of position of welding toe to 

change. The position of welding toe 

transition and the welding toe after 

TIG-dressed are amplified by 10 times 

and by 100 times. See Fig.4.5.6.7. In 

Fig.4, Fig5 and Fig6, we can see clearly 

to that shape of welding toe is change by 

TIG-dressing and the transition of 

welding toe is level and smooth. 

Therefore the stress concentration is 

lower. From the formula of Nishida [4], 

the coefficient of stress concentrations 

after repaired welding and TIG-dressing 

are obtained. See the Tab.4. 

From the Fig.4 and Fig.5, we can 

see that the surface of welding toe 

without TIG-dressing is not smooth and 

the micro-cracks and micro-imperfections 

is on welding toe.  The fatigue crack 

source is caused on the weld bead. See 

Fig.7. But the surface of welding toe after 

TIG-dressing is more smooth and level. 

The micro-cracks and 

micro-imperfections on welding toe are 

eliminated. See Fig.6. The considerable 

improvement of welding toe property is 

obtained by the application of the 

TIG-dressing. The transition angle of 

welding toe is changed and the stress 

concentration is lower by TIG-dressing. 

The stress concentration after 

TIG-dressing is lower 30%-75% than that 

after as-weld. The fatigue crack is not 

caused on the weld bead and the 

considerable improvement of the fatigue 

life is obtained. 



 

Welding toe after as-weld  θ=150--170O ρ=2—4 h=12 K=2.3—3.1 

Welding toe after TIG-dressing θ=150--170O ρ=10 h=12 K=1.3—1.7 

Tab.4. The coefficient of stress concentrations after as-weld and TIG-dressing 

 

Fig.4 The welding toe shape (a) 10X           Fig.5 The welding toe shape (b) 10X       

  

Fig.6 The welding toe shape after               Fig.7 The welding toe shape without  

TIG-dressing 10X                            TIG-dressing 100X     

 

 

6. The conclusion 

 

The imperfection in welding toe is the 

key factor of the fatigue life. The 

probability of the imperfection appeared 

on welding toe of welding line under the 

same technology and condition is equal 

in amount so that the fatigue life after 

repaired welding is almost no difference. 

The strain concentration of thermal cycle 

stress and residual stress as-weld makes 

the micro-cracks produced on welding 

line. The stress concentration is lower by 

TIG-dressing. Therefore, the stress 

concentration coefficient by TIG-dressing 

is lower 30%-75% than that after as-weld. 



The considerable improvement of fatigue 

strength and life is made by TIG-dressed 

technology in the present test so that the 

technology is used for offshore drilling 

platform and the result is better. 
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Abstract  
 
Multiple Site Damage is a key problem in 
aging aircraft. The subject has been treated 
since about 15 years. The author – as some 
other authors from Europe – looks at the 
problem as a stochastic problem. A 
Monte-Carlo Simulation seems to be a 
good way to treat it, but it needs a very 
high number of scenarios to be calculated. 
This has been described in a set of papers. 
The problem behind this approach is that 
the deterministic model part of the MCS 
process must be very time efficient, since 
many calculations are needed. This is to 
some extent limiting the accuracy of the 
model. 
 
One way to save a large amount of time-
consuming calculations is to try to use 
importance sampling in this case. A 
number of approaches in this direction are 
presented in this paper.  
 
The current paper looks at the problem by 
starting from an existing MCS model and 
tries to combine modern methods of 
feature detection via wavelet transform 
with the results of this MCS model in 
order to find a means for importance 
sampling, which is not a simple task in 
MSD cases. The idea is to find patterns of 
damage in an early stage of the process, 
which may be used to conclude that the 
pattern is critical or non-critical. This 
means that only few scenarios really have 
to be calculated, and may be calculated by 
a more sophisticated method. 
 
The method and an example are presented.  
 

 
Keywords: Multiple Site Damage, 
Widespread Fatigue Damage, Monte Carlo 
Simulation, Importance Sampling, 
Wavelet Transform.  
 
 
1. Introduction 
 
As pointed out in the paper [1] Monte-
Carlo (MC) simulations are the best 
possible way to assess Multiple Site 
Damage (MSD) and Widespread Fatigue 
Damage (WFD) in aerospace structures. 
Other methods as e.g. first order reliability 
methods (FORM) etc. are not successful in 
this case, since too many stochastic 
parameters are involved. The biggest 
drawback of the MC approach is the high 
numerical effort needed in this case. 
Different methods are at hand to assess the 
number of scenarios to be simulated in 
such a MC simulation in order to find a 
certain probability of failure. As pointed 
out in [1], the method given by Brodin et 
al. [3] results in nearly 75,000 scenarios in 
the case of a probability of failure pf = 4 x 
10-5 and a confidence level of 0.95. This 
illustrates the problem of pursuing this 
way. Importance sampling is the way how 
to try to minimize the number of 
scenarios, which really have to be 
analyzed completely. This is not an easy 
task to set up, as the following sections 
will show. 
 
The general outline of the MC simulation 
used in this paper is given in Horst [1] and 
some other papers. This is also true for 
several different methods of crack 
propagation calculation by other authors. 



 
In paper [1] and [2] a wavelet transform 
has been used to build up typical patterns 
of MSD critical scenarios. This is a way of 
performing data compression. A Haar 
transform (see [4]) has been used in the 
case of a uniformly loaded/stressed lap 
joint, which is a classical WFD susceptible 
part. 
 
In this paper this approach is extended in 
the way that the effort and possible benefit 
from this approach is investigated. This is 
done by using one extensive example, 
which is given in the next section. 
 
 
2. The Example 
 
The example consists of a three-rivet row 
lap joint: pitch 20 mm, rivet diameter 4 
mm, material 2024 T3, thickness 1.6 mm 
and a remote stress of 84 MPa at R = 0.0. 
The example has 16 rivets at this highly 
fatigue critical location, as e.g. in the case 
of a single frame-bay. The number of 16 
rivets results in 32 fatigue critical 
locations. Further details concerning both, 
the crack initiation parameters as well as 
crack growth behavior of the material are 
given in [2]. 
 
A typical result of a MC simulation of 
such an example is given in Figure 1. 
 
 
 
 
 
 
 
 
 
 
 
 
 Figure 1: The Graph. 
 

Figure 1: Typical result of a MC 
simulation using different numbers of 

scenarios 
 
This figure shows the inspection interval 
plotted versus the threshold up to 
detectable crack length for the case of a 
detectable crack length of 5 mm, and only 
the crack initiation as a stochastic 
parameter. What can be seen easily is the 
fact that only a few scenarios are needed 

to predict the general trend and mean 
values of the distributions, since the 
regression line converges quite fast. But 
this is in general not the point in structural 
reliability. What mainly is interesting are 
the extreme values. 
 
Figure 2 shows another typical result of a 
single scenario, i.e. the crack growth in the 
case of a minimum inspection interval. 
This scenario is meant in the way that the 
left and right hand side position of the 
fatigue crack is plotted versus the number 
of loading cycles. In this minimum case, 
the cracks are typically nearly of the same 
size in a certain domain. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2: Typical crack growth pattern in 

the case of minimum interval 
 
 
Data compression by means of a Haar 
transform. 
It is now the question what to use for the 
importance sampling. A first impulse 
would be to use the initial damage 
scenario, which is found by means of a 
random process, based on fatigue data 
found by coupon tests. Unfortunately, it 
turns out that this is not very well linked to 
the inspection interval, which usually is 
the most interesting parameter with 
respect to certification. The next 
interesting parameters could be the crack 
scenario at the point in time, when the first 
crack reaches detectable crack length, i.e. 
5 mm in this case. 
 
This second approach still has the 
advantage that the crack propagation up to 
this point may be calculated by highly 
effective means without taking into 
account the interaction of the cracks, since 
the interaction effect is quite low at crack 
sizes below this value. 
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In the case of 250 scenarios, the Haar 
transform of the minimum and maximum 
interval scenario is given in figures 3 and 
4. 
 
It is quite simple to see that the two 
transforms are quite different at higher 
levels. This is exactly what is intended. 
Higher levels of Haar transforms may 
obviously been used for the purpose of 
feature detection. (for further comments 
on Haar transform, see [1] and [2]). 
 
 
 
 
 
 
 
 
 
 
 
Figure 3: Haar transform of the minimum 

interval case 
 
 
 
 
 
 
 
 
 
 
 
Figure 4: Haar transform of the maximum 

interval case 
 
In order to have a closer look at the 
performance of the new way of using 
higher levels of the Haar transform of the 
5 mm crack scenario, a simulation of 
25,000 different initial damage scenarios 
has been performed for the case described 
above. The result of these scenarios is 
given in figure 5. It may be used as a kind 
of reference data set for the importance 
sampling discussed in the following 
sections. 
 
The problem now is the way to find a 
minimum level 5 Haar transform number 
for a given inspection interval to be 
assessed. The importance sampling 
method has to decide, which level 5 
number will guarantee that all critical 
inspection interval cases are calculated, 

while most of the non-critical cases are not 
looked at. 
 
 
 
 
 
 
 
… 
 
 
 
 
 
 
 
 
 

Figure 5: Results of 25,000 scenarios – 
inspection interval vs. level 5 Haar 

transform 
 
 
 
Possible tactic for an optimal 
importance sampling. 
As mentioned above, the tactic must 
provide a most accurate guess of the 
minimum level 5 parameter per inspection 
interval. The question is how to do this. 
One first attempt must be to use only a 
small number of scenarios, which are 
completely calculated, e.g. 1 % of the 
number of total scenarios as a basis of this 
prediction. This would be 250 scenarios in 
this case of 25,000 overall scenarios, as 
given in figure 1. 
 
Figure 6 shows the minimum level 5 line 
from 250 calculated scenarios as well as 
the minimum line from 25,000 scenarios. 
The question is how to do the 
extrapolation from one line to the other. 
 
The extrapolation may be performed on 
the basis of different methods, e.g. 
Students distribution, Gumbel distribution 
etc.. Up to now, no optimal criterion has 
been found. The problem is that the 
method must provide a conservative 
extrapolation on the one hand, but a really 
conservative guess would result in a quite 
reduced benefit from the importance 
sampling, i.e. the benefit vanishes quite 
fast. 
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Figure 6: Minimum values per inspection 

interval vs. level 5 value 
 
This last point may be assessed or at least 
understood by means of figure 7. Figure 7 
uses the results of the 25,000 scenarios 
and just shows the minimum number of 
scenarios to be analyzed completely, 
provided an optimal criterion on the 
criticality would be known. This optimal 
criterion will not be at hand anyway, i.e. 
this line shows something like an 
unreachable limit line. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 7: Relation of critical to overall 
scenarios in the 25,000 scenario case 

 
 
What may be observed from figure 7 is the 
steep rise in the number of scenarios 
which have to be analyzed completely, 
even in the case of a perfect criterion, if 
the required inspection interval and 
therefore the probability of failure rises. 
This is again a hint that this type of work 
on importance sampling only makes sense, 

if low probabilities of failure are of 
interest. 
 
 
Conclusions 
 
From the short presentation given in this 
paper, the following conclusions may be 
drawn: 
 

• a MC simulation is a means to 
assess certain interesting features 
of aging aircraft by means of a 
stochastic approach 

 
• this approach is quite versatile, but 

it needs a high computational 
effort 

 
• MC simulations would not change 

their general outline, if further 
probabilistic parameters would be 
included, as e.g. in the probability 
of detection etc. 

 
• one way to reduce the 

computational effort is importance 
sampling by means of a Haar 
transform of the crack scenario at 
the point in time, when the first 
crack reaches 5 mm 

 
• the benefit may only been found in 

cases where small probabilities of 
failure are of interest 

 
• a realistic criterion for the 

extrapolation of results from a few 
scenarios to a large ensemble is 
still needed. 
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Abstract  
 
Recent developments in micromechanical 
damage modelling of flat fracture 
mechanism in X100 gas line pipe steel are 
reported in this paper. Gurson-Tvergaard-
Needleman (GTN) and the Rousselier 
damage models, with the assumption of 
isotropic behaviour, were tuned to 
experimental load-displacement data to 
calibrate the appropriated micro-
mechanical parameters to fracture in the 
through wall thickness orientation. 
 
Two sets of 3D computational analyses 
were conducted and the results compared. 
The first set was a conventional finite 
element (FE) method in which the element 
size must be chosen with regard to the 
micro-structural scale of the ductile 
damage process. The second set of 
analyses used the hybrid cellular automata 
finite element, CAFE, technique. The 
finite element in this case only needs to be 
refined enough to capture the deformation 
behaviour and the cellular automata deal 
with the evolution of damage at the correct 
micro-structural scale. 
 
Comparison of the results from the two 
computational modelling strategies 
demonstrates the effectiveness of the 
CAFE technique in reducing the 
simulation time whilst maintaining 
satisfactory deformation and damage 
predictions. 
 
Keywords: GTN model, Rousselier 
model, micromechanical parameters, finite 
element (FE), cellular automata (CA), flat 
fracture, 3D computational analyses, 
thickness direction, X100 pipeline steel. 

1. Introduction 
 
Interest in using micromechanical damage 
modelling has increased in recent decades. 
Extensive research on macro and micro 
mechanic has showed that ductile fracture 
in metals can be predicted by micro-
mechanisms of failure. An example of this 
interest, in industrial line pipe application, 
is to control the fracture propagation of 
gas transmission pipelines by specifying 
upper shelf Charpy energy. Recently, it 
has been suggested by e.g. Leis [1] and 
Andrews et al. [2] that the fracture energy 
in Charpy impact test of high grade 
pipeline materials associated with fracture 
propagation can be split in two parts. One 
is related to flat fracture at the centre of 
the typical Charpy fracture surface and the 
other to slant fracture at the edges. As the 
dominant failure mechanism in gas line 
pipes is fast propagating ductile shear, the 
latter is the most important portion of the 
fracture energy which can be reasonably 
attributed to the real failure mode of the 
pipe.  
 
Accordingly, specimens with different flat 
and slant fracture characteristics are 
needed for a comprehensive failure 
analysis of Charpy specimens. This paper 
reports on preliminary studies on the 
application of two damage models, one 
proposed by Tvergaard - Needleman 
(GTN model) [3] and that introduced by 
Rousselier [4], to describe the material 
behaviour and flat fracture prediction in 
the assumption of effective material 
damage isotropy in the through thickness 
direction of X100 material. There is also a 
discussion of classic FE modelling 
compared with the more recent CAFE 



technique, as a potential tool to reduce the 
time of simulation, whilst maintaining a 
good prediction of damage. 
 
 
2. Numerical work on ductile fracture  
 
Two damage models, GTN and 
Rousselier, were employed as the 
mechanisms to characterise the process of 
void growth and coalescence driving 
material failure. The material was assumed 
to have a Young’s modulus E  of 210 
GPa, a Poisson’s ratio υ  of 0.3, a yield 
stress and tensile strength, estimated from 
the true stress strain curve, of 715 MPa 
and 840 MPa respectively. 
 
GTN and Rousselier models. 
The GTN model is typically expressed in 
the form of the yield potential [3]: 
 
   
   
   
  (1) 
 
 
The function ( )ff ∗  was chosen as: 
 
 
 
  (2) 
 
 
 
 
Where eqσ  is the von Mises equivalent 
stress, Yσ  the material yield strength, p  
the hydrostatic pressure, 1q , 2q  and 3q  are 
material constants, cf  is the critical value 
of void volume fraction, Ff  is void 
volume fraction at final fracture and 

11 qfu =∗  
 
In this model, fracture propagates when 
the damage parameter reaches its critical 
value designated by cf  (threshold of rapid 
loss of load carrying capacity). So that, the 
damage elements are removed from the 
analysis simulating crack growth through 
the microstructure. The parameters cf , 

Ff , 1q  and 2q  have to be determined. As 
well as these parameters, there is a 
parameter cL , the cell size, which is 
representative of the spacing of the large 
inclusions in the material. In total five 
parameters should be calculated to 
perform the damage simulation. 

Another consistent and simple ductile 
damage theory was introduced by 
Rousselier [4]. The plastic potential in this 
model has the form: 
 
 
   
  (3) 
 
 
 
 
Where: 
 
 
  (4) 
 
 
 
  (5) 
 
 
 
  (6) 
 
 
 
Where β  is a scalar damage variable, and 
its evolution is determined by Eq. (4). B  
is the damage function, ρ  is 
dimensionless, D  and 1σ  are material 
constants and ( )p

eqH ε  is a term describing 
the hardening properties of the material. 
The term 0f  is the initial void volume 
fraction, which can be calculated from 
Franklin’s formula [5]: 
 
 
 
  (7) 
 
   
 
 
  (8) 
 
 
 
Where xd , yd  and zd  are the average 
dimension of the inclusions. If a spherical 
inclusion shape is assumed, Eq. (7) 
gives vff =0 . From this an initial void 
volume fraction 5

0 103 −= xf  was found for 
this steel. 
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CAFE technique. 
The main idea of the CAFE approach is to 
separate the structural analysis from the 
material properties. This means that a 
finite element model is constructed only to 
represent the macro strain gradients 
adequately. On the other hand, the cellular 
automata arrays with a suitable cell size 
represent the appropriate material 
behaviour. The CAFE model implemented 
by Shterenlikht [6] for transitional ductile 
brittle fracture has been used in this work. 
In this CAFE the brittle mode has been 
switched off, so the model parameters for 
ductile fracture have been calibrated 
independently for an investigation of 
damage modelling to characterise the flat 
fracture behaviour of a modern line pipe 
steel. The general strategy for ductile 
fracture in this CAFE is that an array of 
CA is connected to the FE in question. In 
this array the Rousselier continuums 
ductile damage model is used, principally 
because of its combination of simplicity 
and realism. Therefore the total number of 
cells per ductile CA, DM , has to be 
chosen so that the linear size of an 
individual CA cell is close to the ductile 
damage cell size, DL . If a cubic finite 
element of size FEL × FEL × FEL  is assumed 
then the Eq. (9) can be used to choose DM  
 
   
  (9) 
 
 
Where 3

DM  is the number of cells per 
dimension of a cubic ductile CA. 
 
 
3D finite element modelling and 
representation of damaged elements. 
The numerical calculations were 
conducted on cylindrical tensile specimens 
in order to tune the material constitutive 
parameters and on square tensile samples 
to validate the calibrated model by 
reproducing the full field strain 
deformation of the experimental data [7]. 
The commercial code ABAQUS/Explicit 
6.4 [8] was used to build and analyse the 
FE models and, for CAFE analysis, a user 
material subroutine VUMAT was 
employed. Due to symmetry, only one 
quarter of the cylindrical tensile specimen 
was modelled. For the square tensile 
sample, in spite of symmetry conditions, 
the complete model was represented to 
obtain the whole field strain deformation 

in the damage zone. All analyses were 
carried out using 3D elements (C3D8R). 
 
In the GTN damage model, fracture starts 
when the void volume fraction reaches its 
critical value, simulating the state where 
the cavities link. This process is simulated 
in finite element modelling by the 
extinction of the damage elements. Figs. 1 
and 2 show the elements removed in the 
centre of the 3D cylindrical and square 
tensile tests due to the severe triaxiality 
and the initial maximum cavity in that 
place. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1: 3D cylindrical tensile FE 
modelling and crack growth 
representation for the GTN model. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2: 3D square tensile FE modelling 
and crack growth representation for the 
GTN model. 
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Applying similar computational procedure 
as used for the classical FE model, in the 
CAFE technique fracture starts when its 
damage variable, distributed across a CA 
cell, exceeds the critical value according to 
the local strain concentration. When all 
ductile CA cells assigned at one finite 
element die at the microscopic level, a 
dead element at the macroscopic scale is 
produced as well. Figs. 3 and 4 show the 
fracture propagation. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3: 3D cylindrical tensile FE 
modelling and crack growth 
representation for CAFE technique. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4: 3D square tensile FE modelling 
and crack growth representation for 
CAFE technique. 
 
 
 

3. Results and discussion 
 
This section describes and discusses 
numerical calculations carried out to study 
the flat fracture in special laboratory tests 
in the through wall thickness direction of 
X100 line pipe. Two sets of numerical 
predictions, GTN damage theory + classic 
FE modelling and Rousselier damage 
theory + CAFE technique, were carried 
out and compared. The effect of the 
damage parameters and computing time 
were investigated. All simulations were 
performed in a PC Pentium 4 CPU 3.2 
GHz, 1 GB of ram and 40 GB disk 
capacity. 
 
In the first set of 3D numerical studies on 
cylindrical tensile testing, five 
micromechanical parameters ( 1q , 2q , cf , 

Ff  and cL ) were calibrated. For the initial 
simulation the critical mesh size 
( mlc μ200= ) and typical values of the q  
parameter ( 5.11 =q , 0.12 =q , 2

13 qq = ) 
were used. The GTN damage parameters 
were determined by a series of trial and 
error finite element analyses comparing 
the experimental (Load – Diametral 
contraction) record until the model 
response matched the experimental data. 
The load was calculated from the reaction 
at the top surface of the specimen since 
displacement loading was used, whilst the 
contraction was monitored in the damage 
zone. In the trial and error procedure it has 
been observed that higher values of 2q  
and cf  cause a delay in the material 
damage process and vice versa smaller 
values of them accelerate the failure of the 
material. Values of the final calibration of 
damage parameters are set out in Table 1. 
Plots of the test data and result of the best 
fitted simulation are shown in Fig. 5 
 
 

1q  2q  cf  Ff  cL  
mm 

Time 
min. 

1.5 0.87 0.001 0.005 0.2 50:18

 
Table 1: Damage modelling parameters 
calibrated for the first set of numerical 
studies. 
 
 
 
 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5: Experimental and best fitted data 
for the first set of numerical studies. 
 
 
In the second set of 3D numerical 
predictions, the two micromechanical 
damage parameters for Rousselier model 
( D  and 1σ ) were adjusted by trial and 
error. It was observed that the general 
effect of increasing D  is to cause the 
damage at an earlier stage of loading and a 
higher value of 1σ   delayed the failure 
process. The initial void volume fraction 

0f  was obtained from Franklin’s formula 
[5]. The other three values needed were 
adjusted for the best prediction of the 
material behaviour: number of cells per 
linear FE ( 3

DM ), mean critical value of 
the damage variable (BFM) and standard 
deviation of the critical value of the 
damage variable (BFSTD). 
 
A suitable FE size of 0.8mm was chosen 
to give adequate resolution of the stress-
strain field behaviour in the damage zone, 
such that four ductile cell elements were 
attached at each FE providing a cell size of 
0.2mm, which is representative of the 
large inclusion spacing in the material. 
Initial input value of MPa7801 =σ , 

25.1=BFSTD  and 8=BFM  were 
initially used as proposed in [6]. The best 
fitted data of damage parameters in CAFE 
technique are set out in Table 2, and the 
plot of its final tuning simulation to the 
experimental data is shown in Fig. 6 
 

1σ  780 [MPa] 
D  3.5 

0f  5100.3 −x  
FEL  0.8 mm 
DL  0.2 mm 

 
3

DM  
 
4 

BFSTD  1.3 
BFM  8 
time  3:29 min. 

 
Table 2: Damage modelling parameters 
calibrated for the second set of numerical 
studies. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6: Experimental and best fitted data 
for the second set of numerical studies. 
 
 
With the aim of showing the effectiveness 
of the CAFE technique in reducing 
computing time to obtain comparable 
results of damage prediction, four 
cylindrical tensile specimens with 
different size element, but the same cell 
size in the damage zone were created. A 
value of mmLD 1.0=  for the cell size was 
chosen and models with element size 

FEL of 0.2mm, 0.4mm 0.6mm and 0.8mm 
were made. These models decreased the 
number of FE with VUMAT properties 
( NEL ) in the damage zone from 131 to 30, 
15 and 8 elements respectively. 
 
Calibration was achieved using the model 
with  mmLFE 8.0=  and the fitted data was 
input to the other three models. CAFE 
simulations demonstrated that for the same 
values of Rousselier damage parameters 
with different element size but equal 
internal cell size, the results are 
comparable and the running time is 
reduced considerably. Fig. 7 shows the 
plots of the simulated results and 
experimental data. Specific values of each 



simulation are set out in Tables (3) and 
(4). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 7: Plots results of different element 
sizes FEL , but equal cell size DL . 
 

 1 2 
1σ  780 [MPa] 780 [MPa] 

D  3.5 3.5 
0f  5100.3 −x  5100.3 −x  

FEL  0.8 mm 0.6 mm 
DL  0.1 mm 0.1 mm 
 

3
DM  

8 6 

BFSTD  1.3 1.3 
BFM  8 8 
NEL  8 15 
time  4:10 min. 7:28 min. 

 
Table 3: Damage modelling parameters 
calibrated for: mmLFE 8.0=  and 

mmLFE 6.0=  tensile models. 
 

 3 4 
1σ  780 [MPa] 780 [MPa] 

D  3.5 3.5 
0f  5100.3 −x  5100.3 −x  

FEL  0.4 mm 0.2 mm 
DL  0.1 mm 0.1 mm 
 

3
DM  

4 2 

BFSTD  1.3 1.3 
BFM  8 8 
NEL  30 131 
time  15:05 min. 57:38 min. 

 
Table 4: Damage modelling parameters 
calibrated for: mmLFE 4.0=  and 

mmLFE 2.0=  tensile models. 
 
 

Validation of calibrated micromechanical 
parameters for the damage prediction was 
carried out with square tensile section 
specimens. In these samples, vertical and 
horizontal lines were marked on the 
specimen gauge face (Fig. 8) and using an 
imaging method, grid technique, the whole 
field strain deformations were extracted 
[7]. From this experimental information, 
logarithmic strain deformation in thickness 
direction was taken and input directly in 
[9] representing contours at the end of the 
test (Fig. 9). It was with the aim of 
validating the numerical damage 
prediction in terms of comparing 
deformation contours of experimental and 
simulation results, having used the 
previous calibrated micromechanical 
parameters. 
 
3D numerical simulations on square 
tensile tests were conducted using the 
same information listed in Tables 1 and 2. 
Accordingly FE models in the damage 
zone with identical characteristics were 
created. Figs. 10 and 11 show the contour 
results for the FE model and CAFE model 
at the end of the simulations. 
 
Taking values e.g. from the final 
simulations in the centre of the specimen, 

25.1log =finalε  for the classic FE and 
06.1log =finalε  for CAFE technique, 

demonstrated that the damage parameters 
previously calibrated were transferable to 
predict with sufficient accuracy the 
experimental logarithmic strain in 
thickness direction ( 25.1log exp =erimentalε ). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 8: Experimental data (Shape 
deformation of the square tensile specimen 
at fracture initiation in the centre of the 
test). 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 9: Contour of the experimental 
logarithmic strain (thickness direction) at 
fracture initiation. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 10: Contour of the simulated 
logarithmic strain (thickness direction) at 
fracture initiation, “FE model” 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 11: Contour of the simulated 
logarithmic strain (thickness direction) at 
fracture initiation, “CAFE  model” 
 
 
4. Conclusions 
 
The Cellular Automata – Finite Element 
(CAFE) technique has been shown to be a 
powerful tool in reducing simulation time 
whilst maintaining good predictions of 

damage. Micromechanical damage 
parameters tunned to cylindrical tensile 
test data were transferable to reproduce the 
experimentally observed data on square 
tensile samples. 
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Abstract 
 
The aim of this paper is to report on recent 
experimental work carried out to measure 
the deformation behaviour of X100 line 
pipe steel when loaded in the through wall 
direction. The laboratory tests were 
conducted on specially designed 
cylindrical and square tensile specimens. 
The through wall pieces were friction 
welded to steel grip extensions. Scanning 
Electron Microscope (SEM) photographs 
were taken before and after the friction 
welding to confirm that the process did not 
change the microstructure of the line pipe 
steel. 
 
Two methods were used to monitor 
deformation during the tensile loading. 
Firstly, transverse and axial extensometers 
were used on cylindrical tension 
specimens to capture the diametral 
contraction and axial deformation 
throughout the loading process. Secondly, 
a fine grid was marked on the faces of the 
square section tensile specimens and 
images were recorded using still and video 
digital cameras during loading. A full field 
map of the deformation of the test material 
was captured using this technique. 
 
The experimental results obtained 
demonstrate the effectiveness of the 
proposed specimen designs and 
deformation measurement techniques to 
obtain the mechanical properties of 
modern pipeline steel in the through 
thickness direction. 
 
Keywords: X100 pipe line steel, thickness 
direction, friction welding, SEM, grid 
technique, specimen designs for through 
wall direction 
 

1. Introduction 
 
For the safe and economical transportation 
of natural gas, pipelines play a vital role in 
gas field development. Gas companies 
have shown increasing interest in the use 
of higher grade steels for the construction 
of long distance pipelines. The use of a 
high strength grade offers potential 
benefits, in terms of using a higher service 
pressure without increasing the pipe wall 
thickness. This in turn offers financial 
advantages in transportation and 
fabrication costs. Recent progress in the 
technology for the controlled-rolling (CR) 
process and thermo-mechanical control 
(TMC) process, has allowed high grade 
line pipes to be obtained, such as API 5L 
[1] X80, X100 and X120. However, to 
construct pipelines with those materials, 
the characteristics of high-strength steel 
need to be investigated carefully in terms 
of deformation behaviour and tearing 
toughness. 
 
The research reported here describes 
recent results on the experimental work to 
investigate the effectiveness of the 
proposed designs and measurement 
techniques to obtain the deformation 
behaviour and mechanical properties in 
the through wall direction of X100 line 
pipe. The data obtained from these tests is 
required for a complete analysis of the 
plastic anisotropic behaviour induced in 
this modern material by the fabrication 
process. 
 
 
 
 
 
 



2. Design of tensile specimens for 
thickness direction 
 
The material under investigation was an 
X100 grade gas pipeline (36” O.D X 
19mm W.T). To measure the pipe tensile 
properties through wall direction, a plate 
was taken from the original pipe. From 
this plate, cubic pieces (20×20×18 mm in 
the thickness direction) and round bars 
(φ =20mm and 100mm long) were 
machined. The manufacturing process 
consisted (Fig. 1) of pre-machining the 
above pieces, then friction welding each 
sample to the bar extensions, and finally 
machining the tensile specimens. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1: Specimen manufacture process. 

 
According to the dimensions of the 
original gas pipe and the requirement of 
the friction welding process, two special 
designs (cylindrical and square section 
tensile specimens) were proposed as can 
be seen in Fig. 2. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2: Designs of the tensile specimens. 

The cylindrical specimen was designed 
with a 6mm gauge length and a 5mm 
gauge diameter. The ends of this specimen 
were machined with flats for a better fit in 
the hydraulic grips; this also made it 
possible to identify the thickness direction 
in the tested specimen. The square section 
specimen was created with a gauge area of 
5×5mm length. Fig. 3 shows the machined 
specimens. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3: Machined specimens. 
 
 
3. Welded specimens 
 
The friction welding process was carried 
out in the following steps: a) one 
component is rotated while the other is 
advanced into pressure contact with it, b) 
heat is produced at the faying surface. 
Overheating of metal can not occur as the 
weld zone temperature is always stabilised 
below the melting point, c) softened 
material begins to extrude in response to 
the applied pressure, creating an annular 
upset, d) heat is conducted away from the 
interfacial area for forging to take place, e) 
rotation is stopped and a forge force is 
applied to complete the weld, f) the joint 
undergoes hot working to form a 
homogenous, full surface, full diameter, 
high integrity weld. 
 
Scanning Electron Microscope (SEM) 
images were taken before and after the 
friction welding to confirm that the 
process did not change the microstructure 
of the line pipe steel. A welded specimen 
and a steel piece of the original pipeline 
were taken randomly. These two samples 
were ground, polished and etched (nital 
2%) for metallographic analysis. The 
microstructure of the welded specimen 
was revealed in three main zones as is 



shown in Fig. 4. Zone one: on the annular 
upset created by the friction welding 
process, zone two: on the edge close of the 
welding and zone three in the centre of the 
piece test. Fig. 5 shows in detail the 
microstructures of those zones. In the 
original pipeline sample, the 
microstructure was revealed at the centre 
(Fig. 6). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4: Welded specimen 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5: Microstructure of the three zones 

in the welded sample (X2000). 

 
 
 
 
 
 
 
 
 
 
 

Figure 6: Microstructure of the original 
pipeline sample. 

 
The SEM images showed that the 
microstructure of zone three is similar to 
the original microstructure, so that the 
mechanical properties were not affected in 
that zone by the friction welding process. 
The microstructures of zones one and two 
are different from the original pipeline. 
However, this is not important as the test 
area is confined to the centre of the 
specimen, corresponding to zone three. 
 
 
4. Experimental work on cylindrical 
tensile specimen 
 
All cylindrical specimens were loaded in 
uni-axial tension in a servo-hydraulic 
Instron 8501 machine under displacement 
control of 0.01 mm/s. The load, 
displacement, axial and transverse strains 
were recorded in each tests. An Instron 
strain gauge (model 2620-604) and an 
Epsilon extensometer (model 3575-100-
ST) were used to capture the axial and 
diametral strains respectively. Two grip 
extensions were made and calibrated with 
a dial indicator (Fig. 7) for the Instron 
strain gauge (axial extensometer) due the 
short gauge length. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 7: Calibration set-up. 



5. Experimental work on square section 
tensile specimen 
 
For the measurement of the displacement 
field an optical method, using a grid, was 
utilised [2]. The gauge area (5×5mm) of 
the sample was prepared using 
engineering blue spray-paint, and a 
crossed grating pattern in a series of well-
defined parallel lines of 0.5mm pitch was 
produced on it. The fine pitch of the mesh 
was created carefully with a height gauge. 
 
The experimental set-up (Fig. 8) for the 
acquisition of the images consisted of a 
still camera (EOS 20D Canon) and a 
digital video camera (NV-GS400 fixed at 
two perpendicular gauge areas to capture 
the full displacement field. The gauge 
surface with the grid pattern was lit by a 
lamp in order to improve the contrast and 
consequently the acquisition of the 
images. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 8: Experimental set-up. 
 
 
The square section tensile specimens were 
tested on the same servo-hydraulic Instron 
8501 and were steadily loaded at the same 
low strain rate under displacement control 
0.1 mm/s as the previous cylindrical 
tensile samples. In this laboratory test the 
load, displacement, and images from the 
still and video cameras were synchronised 
at the same starting time of the test. 
Information on load and displacement was 
recorded by the controlling computer 
every two seconds. The video frame and 

the photographs with a time sequence of 
six seconds were recorded in another 
computer. Thus at the end of the 
experiment, the two computers acquired 
and stored complete load-time and 
displacement-time curves, together with 
the video and photographs of the whole 
field deformation of the specimen. 
 
 
6. Experimental results and discussions 
 
Four cylindrical and four square section 
tensile specimens were carried out. 
Experimental data on axial deformation-
load of three cylindrical samples and load-
time of four square section specimens 
have shown that the recorded information 
was consistent with each other. (Figs. 9 
and 10) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 9: Axial deformation-load curves. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 10: Load-time curves. 
 
 
 



Regarding the cylindrical tests, the 
diametral contraction was monitored by 
the transverse extensometer. It was fixed 
on the cross section area in two 
orientations in order to capture the 
considerable ovalisation of the specimens 
at the end of the test.  In two of the tests, 
the transverse extensometer was attached 
in the longitudinal direction. Whilst in the 
other two tests, it was positioned in the 
transverse direction. The plotted results 
(Fig. 11) show that deformation up to the 
point of hardening displays isotropic 
behaviour, but softening shows anisotropic 
damage since the transverse orientation 
deforms more than the longitudinal 
direction. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 11: Load-diametral contraction 
curves. 

 
 
To obtain the full field deformation 
behaviour in the through wall direction of 
the line pipe, four square section 
specimens were tested. The calculation of 
the displacements was achieved by 
comparing the deformed grid with the 
original one. It was possible by the use of 
video frames (e.g. Fig. 12) and a series of 
photographs (e.g. Fig. 13) that were taken 
of the gauge surface. Acquisition of the 
images from the still camera was not as 
good as the ones obtained from the video 
camera, due to the difficulty of focussing 
on the small grid pattern through the 
loading process. This is important since 
the reliability of this method depends 
firstly upon the quality of the pictures in 
terms of contrast, uniform and width of the 
engrave lines. 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 12: Example of images from the 
video camera 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 13: Example of images from the 
still camera 
 
 
A MATLAB script [3] was used to extract 
the deformation measurement, at the 
centroid of each single grating, when 
clicking on grid intersections. In the script 
text output files can be created, as 
deformation gradients, logarithmic and 
principal strains of the grid.  These text 
output files can be utilised to plot the 
contours of the whole field deformation 
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behaviour by using [4]. Fig. 14 shows the 
logarithmic strain contours produced. 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 14: Contours of logarithmic strains 
in thickness direction 
 
 
A power law function of the form 

n
TT Kεσ =  (where n  is the strain hardening 

exponent and K  is the strength 
coefficient), was fitted to the experimental 
data obtained in the tensile tests in terms 
of true stress-strain. The power law fit was 
used to extrapolate the yield curve beyond 
uniform elongation of the specimen. Fig. 
15 shows the fitted stress-strain curves of 
the cylindrical and square section 
specimen. Tables 1 and 2 show the values 
of the measured mechanical properties 
obtained from the cylindrical and square 
section specimens. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 15: stress-strain curves. 
 
 
 
Property Value 
Young’s modulus 210 [GPa] 
Yield strength 
(0.2% proof stress) 

 
718 [MPa] 

Tensile stress 836 [MPa] 

n = 0.064 Strain hardening 
law n

TT Kεσ =  k =1017 
 
Table 1: Mechanical properties in 
thickness direction obtained from 
cylindrical tensile specimen. 
 
 
Property Value 
Young’s modulus 210 [GPa] 
Yield strength 
(0.2% proof stress) 

 
721 [MPa] 

Tensile stress 844 [MPa] 
n = 0.067 Strain hardening 

law n
TT Kεσ =  k =1073 

 
Table 2: Mechanical properties in 
thickness direction obtained from square 
section tensile specimen. 
 
The mechanical properties obtained from 
the two different tensile specimens are 
comparable, as they can be seen in the Fig 
15 and tables 1 and 2. The two designed 
specimens and the two proposed methods 
to monitor the deformation during the 
tensile loading proved to be reliable for an 
experimental evaluation of the mechanical 
properties in the through thickness 
direction. 
 
 
Conclusions 
 
The stress-strain characteristics of high 
strength gas line pipe steel were obtained 
for the through pipe wall thickness 
direction. Two different techniques were 
employed: axial and diametral 
extensometry on cylindrical tensile 
specimens; and optical deformation 
mapping on square cross-section tensile 
specimens. SEM images confirmed that 
the welding process used to make the 
specimens did not change the 
microstructure of the gauge area in the 
tests. The proposed specimen designs and 
the data collection technique demonstrated 
the efficacy of the whole process to get the 
mechanical properties. 
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Abstract 
 

The engineering project of west-to-east gas 
transportation is carried out in China which 
covers 4000 kilometers and the piping goes 
from Xinjiang province to Shanghai city, 
across nine provinces, including Henan 
province . 

In this paper the damage of buried piping 
caused by natural environment in Henan 
district are explored from two aspects. First, 
destructive factors come from corrosive 
environment. In this aspect the soil 
physicochemical properties of Henan district 
are analyzed. The properties include the type 
of soil, corrosion rate, PH value, percent 
moisture content and chemical constitution of 
soluble salt. The characteristics of soil 
corrosion in Henan district are generalized and 
the corrosive actions which are likely to be 
caused by these physicochemical properties 
are presented. The mechanism of corrosion 
and effect generated by stray current corrosion 
of buried piping are analyzed. Because of the 
diversity of the scale of public facilities 
between the large cities and small cities, the 
different measures depending on stray current 
corrosion are taken in different cities. The 
features of main microbes in the soil are 
analyzed and the corrosive behaviors of buried 
piping caused by microbes are explored. 

Second, destructive factors are from stress 

environments. At the present, the design 
pressure of buried piping has reached 10 MPa. 
The characteristics of environments 
combination include working stress and 
conveying medium are analyzed. The potential 
existence stress corrosion is proofed through 
experiments. Because of mal-condition 
constructed buried piping, it is very difficult to 
do the annealing heat treatment of weld 
residual stress. The theoretical value of weld 
residual stresses on joints and weldments are 
calculated by using of computer program. The 
author’s outlooks of quality monitoring of 
welds are presented. In this paper the Henan 
geological structure and 50-years-periodic 
geological rules of motion are analyzed. The 
potential existence seismic loads are simulated 
with cyclic loading by incremental amplitudes. 
The stress category and estimation of buried 
piping under limit loads are completed with 
finite element method analysis. The safety and 
reliability under the limit loads are forecasted. 
In the paper, the main influence of buried 
piping caused by environments are fully 
analyzed. 

 
Keywords: Buried piping, Environmental 
corrosion, Stray current, Seismic loads 
 
1. Introduction 

The corrosion of buried piping is mainly 
caused by soil and transported media. The 

* Crresponding author: Min-Shan Liu, Thermal Energy Engineering Research Center, Institute of Technology, Zhengzhou 
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engineering project of west-to-east gas 
transportation is carried out in China, which 
covers 4000 kilometers and the pipeline goes 
across Xinjiang, Gansu, Ningxia, Shanxi, 
Shaanxi, Henan, Anhui, Jiangsu, Shanghai. 
The total investment amounts to 120 billion 
RMB yuan. Because the gross pipeline is very 
long and covers various zones with many 
kinds of environment, it is very important to 
consider some technical economical 
assessment such as pipeline management, 
transportation safety and pipeline protection, 
etc. 

Buried piping are subject to the corrosion of 
soil. And the soil environments in different 
zones have different corrosiveness. Henan 
province is locate in the middle of China and 
belongs to the river basin of Yellow River. The 
pipeline of west to east gas transportation goes 
mainly through the areas of Zhengzhou and 
Zhoukou in Henan province of China, which 
belong to the alluvion plain of Yellow River 
basin and have unique soil environment. The 
soil environment couples with buried pipes 
and forms unique corrosion environment, 
especially for steel buried pipe when compared 
to other zones. In this paper, based on the 
physicochemical index that represents the 
corrosion environment of soil, the macro 
corrosion battery influencing steel buried pipes, 
the corrosion action on pipes of stray current in 
different cities and the corrosion behavior of 
the major microbes in soil are analyzed. For 
the destruction factors caused by stress 
environment, the numerical analysis of design 
working load, residual stress at welding joint 
and possible earthquake load is carried out. 
And the stress evaluation of steel buried pipe 
under ultimate load is also done. 

 
2. Influencing factors from corrosive 

environment 
Henan zone is located in the middle of China, 

and the buried piping of west to east gas 
transportation passes through Zhengzhou and 
Zhou zone . The two zones lie on the alluvion 
plain of Yellow River, where the soil is the 
compoundsubstance of clay, sand ,soil and 
loam in layer[1]. 

The corrosion of steel buried piping is 
primarily decided by the basic properties of 
soil and the grade scales of soil corrosivity for 
carbon steel are listed in table 1. The properties 
of soil in Henan zone have been investigated 
and the main influencing factors of soil 
corrosion include salt content, electrical 
resistivity, moisture content, PH value, ionic 
component of soil (e.g. 
SO42-,Cl,CO32-,HCO3-) and the type of soil, 
etc. According to the experimentation and 
collected data, the soil physicochemical data of 
Henan zone are concluded and listed in table 2. 
The average rate of corrosion approximates to 
3.54g/dm2 /a by test, which fits to corrosion 
grade III. 

 
Table 1 The grade scales of soil corrosivity 

for carbon steel 
Corrosion 
grade I II III IV V 

Corrosion 
rate g/dm2 

•a 
<1 1~3 3~5 5~7 >7 

Corrosion 
depth mm/a <0.1 0.1~

0.3 
0.3~
0.6 

0.6~
0.9 >0.9 

 
 
 
 
 
 
 
 



Table 2 The main soil physicochemical data of Henan zone 

 
2.1 Influence of soil fractor on macro 
corrosion battery 
 

Many factors influence macro corrosion 
battery of steel buried piping, which interact 
and work together. So it is difficult to estimate 
the soil corrosiveness accurately. In the below, 
in allusion to the terrene characteristic of 
Henan, the properties of soil of Henan zone are 
analyzed in the aspects of moisture content, 
salt content, electrical resistivity and PH value.  

Moisture Content: The average moisture 
content approximates 14% in the soil of Henan. 
Certain moisture content may dissolve Soluble 
salt and form electrolyte, so moisture content 
has an important influence on the corrosion 
and the salt dissolved in soil increases with the 
increasing moisture content. In the basin of 
Yellow River, soil is sandy silt having less than 
20% moisture content and the ground water 
appears and disappears on occasion. It causes 
that the oxygen content is not uniform in the 
soil. Then the differential oxygen 
concentration macro corrosion battery is easy 
to come into being and make the most serious 
corrosion to steel buried piping[1]. 

Salt Content: The distribution of salt 
content is complicated in Henan with the  
regional imbalance. The content percent of 
Sulfate, carbonate and chloride is about 
0.008�2.1%, 2.0�30� and 0.005�2.4� 
 

respectively. According to the grade scale of 
soil corrosivity and salt content, the corrosivity 
grade of this kind of soil spans a large scale. In 
common place, the increase of soluble salt in 
soil causes the enhancement of ionic 
conductivity. The existing Cl� destroies the 
passivating film on the surface of melt and 
increase the electric conductivity. In some 
local part of Henan, the percent of Cl� content 
reaches 2.4%, it greatly accelerates the anode 
process of soil corrosion. The reaction between 
� � 4

2- and steel produces sulfide and 
accelerates the corrosion of steel. This reaction 
is concerned with the reducibility of sulfate. 
The accumulation and separation of soluble 
salt in soil causes the production of differential 
salt concentration battery and increase the 
corrosivity of macro corrosion battery. 

Electrical Resistivity: Generally there is 
inverse relation between soil corrosivity and 
electrical resistivity. Electrical resistivity is 
affected by soil state, moisture content and salt 
content. The soil with bigger void fraction has 
a less moisture content , reversely, the soil with 
smaller void fraction has a more moisture 
content and more soluble salt dissolved. So the 
electrical resistivity of the latter is lower and 
corrosivity is stronger. The electrical resistivity 
of soil in Henan is about 30. It belongs to 
middling corrosivity to soil and has an 
important influence on the long distance macro 
corrosion battery. 

PH Value:The soil in Henan appears a little 

Zone Type of 
soil 

PH 
value 

Electrical 
resistivity 

Ω•m 

Percent 
moisture 
content� 

Soluble 
salt 
� 

Chloride 
ion 
� 

Sulfate 
radical

� 

Carbonas
� 

Zhengzhou deposit 7.8 32 13.5 0.23 0.005�
2.4 

0.008�
2.1 2.0�30 

Zhoukou deposit 8.5 30 26 0.15 0.007�
2.5 

0.006�
1.8 2.5�30 



alkaline, which is mainly composed of loam 
and alkaline saline soil. The PH value of soil in 
Zhengzhou is almost 7.8 and in Zhoukou the 
value is 8.5. In common place, buried piping is 
easy to be corroded in soil with strong acidity. 
So the direct corrosion behavior caused by PH 
value is not obvious in Henan. 

In conclusion, in Henan the primary soil 
corrosion is macro corrosion battery caused by 
the inhomogeneity of moisture content, the 
rather high level of soluble salt, the low level 
of electrical resistivity and the proper PH value. 
There is a rule that where the electrical 
resistivity of soil is lower, the corrosion 
electric potential of metal is higher. So the 
buried piping is generally located at the anode 
region of corrosion, then punch corrosion 
occurs very easily; The accumulation and 
separation of soluble salt in soil causes the 
production of salinity battery; The difference 
in moisture content makes the difference in the 
density of electrolyte and the non-uniform 
distribution of moisture content produces the 
differential oxygen concentration macro 
corrosion battery. 

 
2.2 The corrosion effect of Stray Current on 
buried piping  

 
Some times the severe damage of steel 

buried piping is coming from corrosion under 
stray current .The harm created by direct stray 
current is the biggest. Under alternate stray 
current the corrosion is reducing with the 
increasing of frequency. Generally, the damage 
of alternating current with 50Hz is as large as 
the same direct stray current in 1%. Meanwhile, 
because of the diversity of the cities scale and 
the plants proportion, the corrosion status of 
stray current is different. The intensity of stray 
current has been estimated by measuring 

electric potential gradient of buried piping. In 
Zhengzhou, which is the capital of Henan 
province, the scale of commonality facilities is 
rather large. The electric potential gradient of 
the soil near buried piping in Zhengzhou and 
Zhoukou have been measured separately. The 
results of measure show that the average value 
of electric potential gradient is 8.0 mV/m in 
Zhengzhou. In addition, the biggest value of 
electric potential gradient of Zhoukou is 
0.24mV/m and the least is 0mV/m[3]. 

According to some degree electric potential 
gradient, approximate arithmetic is presented 
to calculate the density of stray current and the 
rate of corrosion. 

( )0ARLUi dc ••=  

0ALR ρ=  

where, 
Ud—electric potential gradient �V/m�; 
A0 — cross-section area of electricity 

conduction (m2); 
ρ —electrical resistivity  (Ωm); 

  L—length changing with electric potential 
gradient (m); 

ic—the density of current�amp/m2�. 
The corrosion rate of steel is obtained by 

Faraday’s law and is expressed as a quantity of 
electricity. 

If the value of electric potential gradient is 
8.0 mV/m, the corrosion rate under stray 
current is 0.21μm/a. 

This corrosion rate under the stray current 
belongs to feebleness corrosion. It can be 
inferred that there is direct current interference 
in the steel buried piping. Furthermore, 
because there is less direct current interference 
in Zhoukou zone, the corrosion rate may 
belong to less feebleness corrosion. 
2.3 The corrosion of main microbes in soil 



 
Generally, it is difficult to generate corrosion 

when the soil lacks oxygen. On the other hand, 
the steel was severely corrupted when 
microbes especially Sulfate Reducing Bacteria 
(SRB) exist in the soil. The breeding 
environment of SRB is that the PH value is 
within 4.5�9.0. Because the PH value of soil 
in Henan zone is within 7.1�8.5, which is 
suitable for the reproduction of SRB. The 
deoxidation reaction is described as follows: 

SHSO SRB
2

2
4 ⎯⎯→⎯−

 

Due to the existence of H2S and other 
corrosive gas, Fe was corroded into black FeS 
and secondary corrosion products Fe(OH)2. 
The decomposition of Fe caused by SRB is a 
synthesis galvano-chemistry process. This 
deoxidation reaction engaged by Sulfate needs 
hydrogen. The microbes can slowly release 
hydrogen from soil and then promote the 
corrosion of steel in soil. The deoxidation 
reaction can not only corrode the steel surface, 
but also can corrode through the wall. This 
process can be narrated as follows: 

FeSSFe →+ −+ 22
  

(Fe2+ came from the anode dissolving process) 
 

3. Influencing factors from 
stress-corrosive environment 

While it is quite possible to occur potential 
SCC(stress corrosion cracking) in the gas 
transportation pipingline under complicated 
environment, investigations on mechanical and 
material behavior of long distance 
transmission pipelines are necessary and 
important.  

Stress corrosion cracking is conducted by 
coupling actions of tensional stress and 
medium corrosion, which leads to metal failure. 

There are many loading type producing the 
tensional stress. Buried pipelines subjecting a 
series of loading during service undergo a 
rather significant tensional stress, such as the 
operation stress caused by internal pressure, 
residual stress resulted from nonuniform 
heating, cooling, transition and constraints 
when welding, as well as other reasons like 
seismic waves or local fundamental 
subsidence. 

When stress exceeds yielding strength at 
material’s crack initiation zone, that is one of 
two necessary conditions to arise SCC. 
Therefore it is valuable to study the stresses of 
structure. 

Numerical analysis of stresses has been done 
taking into account residual stress and seismic 
loading. 

 
3.1 Numerical analysis of welding residual 
stress 

 
More attentions have been paid to residual 

stress of pipeline welding. The analysis of 
residual stress and strain of a welding joint has 
been performed by using elastoplastic FEM 
and von Mises yielding criterion. The 
simulation has illustrated whole evolution 
process of welding temperature and 
deformation, which are shown in Fig.1, Fig.2, 
and Fig.3[4]. 

 

 
Fig.1  Contour of gross residual stress 



 

 
Fig.2  Curve of residual stress in thickness 

direction 
 

 
 

Fig.3  Distribution of longitudinal stress in 
length direction 

 
Such conclusions can be drawn:  
(1) According to Fig.1, the maximum stress 

is 622 MPa, which has overstepped the yield 
limit and reached critical value of cracking. At 
the fusion line, the stress value is 415 MPa and 
approaches the yield limit. 

(2) From Fig.2, it is showed that the weld 
residual stresses along axis are approximately 
symmetry between exterior surface and inner 
surface. The axial tension stress in inner 
surface is 260 MPa. The stress values is 
distributing by sequence linearity along wall 
thickness. 

(3)The stress values in inner surface are 
higher than in exterior surface. The stresses at 

inner welding line or near it are tension stress, 
but those are compression stresses at middle 
part of wall. 

(4) From Fig.3, it is showed that the stress 
value is very low and leaves away from the 
fusion line. At that time the distance from the 
middle of welding line is 23mm. Near the 
fusion line, the stress value reaches a higher 
level, so that may be a reason for creating 
easily coll crack. 
 
3.2 Numerical analysis of seismic loads 

 
In terms of records, the highest seismic 

intensity factor in Henan zone is grade 7. 
Supposing the period to 0.8s, wave speed Cp = 
1.7×105mm/s. The maximum axial stress in 
pipes can be calculated � 

MPaEA
a

a 6.1722
max ==

λ
πασ

 

where  
A — amplitude of earthquake 

displacement wave, mm� 
E—Elastic modulus of pipeline�N/mm2; 

37.0))2(1( 12 =+= −

aak
ES

λ
πα

 
λ a — — wave length of earthquake 

displacement wave�mm; mTC pa 136==λ
 

3.3 Behavior under co-action of stress and 
corrosion  

 
Based on difference of PH value in soil 

environment, SCC can be caused by high or 
near litmusless PH value. The PH value of soil 
in Henan zone locates in the range of bringing 
SCC[6]. First of all, the cracking is formed at 
the surface of steel under tension stress.  

According to the above numerical analysis: 



(1). If design pressure of pipeline is 10MPa, 
the axial tension stress at piping wall 
is181MPa and the circumferential stress is 362 
MPa, which makeup the origin of tensional 
stress. 

(2). The high weld residual stress of pipe 
connection is another origin of tension stress. 

The existence of tension stress is the major 
factor to generate SCC. The experiment done 
by MiYunqing et al has shown that critical 
stress in welding line is near half of the critical 
stress in base metal if welding joint of high 
strength pipe is not heat treated. It proves that 
the zone near welding line is easiest to bring 
SCC[7].The experiment has shown that the 
critical stress value of SCC for this pipe steel is 
about 340MPa, so SCC is very easy to occur at 
welding line without heat treatment. 

(3). In life-span, limit loads that perhaps 
exist are estimated and sorted by stress. For 
instance, the potential existence seismic loads 
in 50 years are calculated. Supposing that 70� 
of residual stress can be eliminated, 
superimposed the working stress, degree of 
safety is predicted under limiting stress: 

( ) ( )a

serewaxis

MP5401737.01
622181

=+−
×+£½£«£«£½ σσσσ

 

where, axisσ , wσ , reσ , seσ  are total axial 
stress, axial working stress, axial residual 
stress and axial seismic stress, respectively. 

The prediction results show that the stress 
value under limit load has overstepped the 
yield limit and approached the breaking point. 

 
4. Conclusion and measures 
 

(1) It is the synthesizing actions of macro 
corrosion battery of buried pipes created by 
soil characteristics in Henan zone�corroding of 
direct stray current and the rot of microbes in 

soil that make assessment of soil environment 
corrosion up to class � , middle corrosion 
environment� 

(2) By use of integrating cathodic 
protection and outer protection coatings, that is 
an effective measure for long distance 
transmission pipelines and the best scheme for 
avoiding the occurrence of macro corrosion 
battery. 

(3) Epoxy powders are suggested to be used 
as an anticorrosive coating which is the main 
part of the combined protection, particularly 
adapting the soil characteristics in Henan Zone. 
They have a strong bonding property with steel 
surface, a preferable corrosion resistance and 
mechanical properties, mostly be used in 
intensely corroded environment and a zone 
consisting of fine soil particles. 

(4) The sand clay with well ventilation, 
mixed or calcareous soils ought to be utilized 
when filling the buried pipes so as to lower 
corrosion, prevent the breeding of anaerobic 
microbes and better the corrosion behavior of 
soil environment. 

(5) It is difficult to select an appropriate 
annealing technology at grouped construction 
site for eliminating the welding residual stress 
which is a principle factor causing stress 
corrosion cracking. Break arc welding with 
temperature in melting pool effectively 
controlled is recommended as it can release the 
residual stress as welded.  

(6) Under limit loading, the calculation 
result indicates that the magnitude of 
combined stress has been beyond the yielding 
strength, close to the value of ultimate strength. 
Therefore it is particularly significant to apply 
numerical method to assess the safety margin 
of the pipeline under limit loading. 
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Abstract 
 
Numerous engineering structures operate 
under the presence of residual stresses, 
arising from various thermo-mechanical 
processes, such as, welding, forming, 
cutting, milling etc. In such situations the 
development of cracks at the influenced 
regions demands additional attention. In 
the present work numerical analysis by 
means of the Finite Element Method 
(FEM) has been performed for the 
calculation of two of the main crack 
parameters, i.e. Stress Intensity Factor 
(SIF) and strain energy density. Both 
parameters are required in the prediction 
of fatigue crack propagation and residual 
strength of structures under mixed mode 
loading conditions. The methodology is 
initially validated in simple loading cases 
by comparison of numerical results with 
existing analytical solutions. The 
numerical procedure is then applied to the 
study of the effect of more complicated 
residual stress fields on SIF value and 
crack propagation angle. 

Keywords: Crack behaviour, Residual 
stresses, FE analysis. 
 
1. Introduction 
 
The application of modern manufacturing 
techniques, like laser beam welding and 
forming, friction stir welding, high-speed 
cutting, milling, etc., leads to the 
development of residual stresses [1-2]. 
The effect of these residual stresses may 
be the undesired distortion of the geometry 
[3-4], the reduction of structural integrity 
and fatigue life of the structure [5-6] etc. 
Furthermore, the behaviour of cracks 
located near the effected zone may be 
influenced. Crack initiation period, crack 
propagation rate and critical crack size 
may be significantly influenced by the 
presence of residual stresses at the vicinity 
of the cracked area.  
 
A common methodology for assessing the 
behaviour of cracked structures is the 
utilization of Stress Intensity Factors 
(SIFs). By knowing the values of SIFs, 



crack propagation and residual strength of 
a structure may be calculated, using 
simple formulas e.g. Paris law [7] for 
fatigue crack propagation, or well 
established laws and criteria, like the 
strain energy density criterion for stable or 
unstable crack propagation [8]. For the 
calculation of SIFs under residual stress 
fields limited works have been published. 
Tada et al. [9] and Terada [10-11] have 
used a customary method based on the 
superposition principle and 
Muskhelishvili’s stress functions for the 
calculation of SIFs at cracks situated 
perpendicular to the welding bead. 
However, in all the above mentioned 
works cracks only perpendicular to one-
dimensional residual stress field have been 
considered, which is not realistic in 
practical applications and does not always 
represent the most critical situation. 
 
In the present work the influence of a two-
dimensional residual stress field on the 
stress intensity factor of cracks affected by 
a residual stress field is studied. The 
residual stress distribution considered for 
the present analysis is represented by a 
simple function, which is chosen, such as, 
to satisfy the requirements for a residual 
stress field and simultaneous to resemble 
the commonly observed distribution of 
residual stresses at welded structures. 
Finite element analysis is used for the 
calculation of SIFs at cracks directed at 
different angles with regard to the weld 
line. For the validation of the numerical 
methodology analytical solutions for the 
case of cracks normal to a one-
dimensional residual stress filed, for which 
analytical SIFs expressions are provided in 
[12], are used. Excellent agreement is 
observed between the results of the 
numerical simulation and the analytical 
solution. The effect of the various residual 
stress field parameters on the direction of 
crack propagation predicted by the 
minimum strain energy density criterion is 
also examined. The strain energy density 
theory, proposed by Sih [13], suggests that 
a crack propagates when the minimum 

strain energy density at a specific distance 
away from the crack tip reaches a critical 
value. The propagation angle is defined by 
the angle θ, along which the strain energy 
density becomes minimum, i.e. crack 
propagates along the path of minimum 
resistance. In the present work the 
required strain energy density values along 
a cyclic path around the crack tip are 
numerically calculated. 
 
 
2. Residual stress field considered 
 
The configuration considered is a square 
plate of 300 mm edge and 1 mm thickness, 
resulting from the welding of two plate 
segments, as shown in Fig. 1. The residual 
stress field applied at the plate has two 
components σx perpendicular to the weld 
line and σy parallel to the weld line. The 
variation of σy is schematically presented 
in Fig. 1. The values of σx and σy are 
constant at the y-direction and vary with 
the x-coordinate. The residual stress 
distributions are given by the following 
relationships: 
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(1)

where σ0x and σ0y are parameters defining 
the maximum values of the tensile stresses 
in the x- and y-directions, respectively and 
c0 is the distance from y-axis at which the 
residual stress value changes from positive 
to negative, i.e. from tension to 
compression. The functions σx(x) and 
σy(x), which qualitatively simulate the 
residual stress field caused by welding [9], 
fulfil the following conditions:  
a) the residual stresses are self-

equilibrated (σy),  



b) the functions σx(x) and σy(x) produce a 
symmetric stress field with respect to 
y-axis, which has maximum value at   
x = 0,  

c) the effect of the residual stress 
vanishes far from the welding  

d) the functions σx(x) and σy(x) decrease 
monotonically until they reach some 
negative minimum values and then 
increase again to zero without 
fluctuating, with increasing x.  

 
In the present study a crack of length 2a, 
inclined at an angle β relatively to the 
vertical axis is considered at the centre of 
the plate, as shown Fig. 2. The crack is 
under the influence of residual stress state 
in addition to the external plate loading. 
The values of the residual stress field 
parameters σ0y and σ0x are considered in 
this study to be 200 MPa and 100 MPa, 
respectively, representing typical values 
observed at welded structures. The remote 
stress of 100 MPa is applied to the panel 
in the y-direction. Various residual stress 
fields, crack lengths and orientations have 
been studied, in order to evaluate their 
influence to SIF value and crack 
propagation angle. More specifically the 
following parameters have been 
considered: 
a) The crack half-length a is varied from 

1 to 20mm. 

b) The inclination angle β of the crack 
with respect to the y-axis has been 
varied from 10 to 90 degrees, where 90 
degrees corresponds to the case when 
the crack is normal to the external load 
direction. 

c) The distance c0 where residual stresses 
changes from tensile to compressive is 
considered to vary from 2.5 to 10 mm 
simulating different heat affected 
zones due to welding.  

x 

y 

x 

β 

2a 

y 

 
Figure 2: Position and direction of the 

crack considered 

3. Numerical Methodology 
 
The Finite Element Method is used in the 
present study for stress analysis, 
calculation of Stress Intensity Factors and 
strain energy densities. The FE model of a 
plate with a central crack 2a, inclined at 
different angles β is developed. For the 
simulation of the cracked plate a Finite 
Element model is developed using the 
ANSYS FE code. ‘PLANE183’ a two-
dimensional 8-node structural shell 
element has been used, having two 
degrees of freedom at each node, i.e. 
translations in the nodal x and y directions. 
The FE model for the case of a crack 
situated at an angle β=50° is presented at 
Fig. 3(a). Special care is taken for the 
discretization of the area around the crack 
tip, as can be seen in the detail of Fig. 3(b) 
and (c). Due to the singular nature of the 
stress field in the vicinity of the crack, 
singular elements shown in Fig. 3(d) for 
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Figure 1: Residual stress distribution at 

the plate considered 



which the mid-side nodes have been 
moved to the ¼ of the edge are utilized at 
each crack tip area. 

Consequently, the residual stress values 
are calculated at element centroids 
according to Eq. (1) and are introduced in 
the FE model as initial stresses and the 
external load is applied at the edges of the 
plate. Then, linear elastic analysis of the 
structure is executed, from which stresses, 
strains and deformations of the plate are 
computed. For the calculation of SIFs, 
nodal displacements in the vicinity of the 
crack tip are used, while strain energy 
density is computed at a critical distance, 
where more dense mesh has been 
developed. 
 
In the literature analytical relationships of 
SIFs exist for cracks situated into one-
dimensional residual stress fields only, i.e. 
the field σy, shown in Fig. 1. Due to this 
reason, for the numerical model 
validation, the component σx is omitted 
from the residual stress field and SIFs are 
numerically calculated for different crack 
lengths. In Fig. 4, the computed SIFs are 
compared to those given analytically from 
[12], indicating an excellent agreement.  

 
4. Investigation of SIFs under residual 
stress fields 
 
For the cases of mixed mode fracture the 
efficient stress intensity factor, Keff, as 
proposed in [14], is currently used: 
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Figure 3: FE model of the plate 
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Figure 4: Comparison of analytical and 

numerical results for the one-dimensional 
residual stress field 
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where: 

KI and KII are mode-I and mode-II stress 
intensity factors respectively, 
G  is the shear modulus of the material, 
v  is the Poisson ratio of the material, 
θ  is the direction of crack propagation 

(see Fig. 5), which is calculated in the 
next section using the minimum strain 
energy density criterion  
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The magnitude Keff is normalized by 
dividing it to its respective value arising 
from the remote loading only. The results 
of the analyses concerning the changes of 
Keff,norm are presented in the diagrams of 
Fig. 6. From these diagrams the following 
conclusions may be drawn:  
a) The presence of residual stress field is 

of major importance for the behaviour 
of small cracks as increases the 
calculated stress intensity factors 
significantly.  
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Figure 6: Normalized efficient Stress 
Intensity Factor for different crack 
lengths, directions and c0 values. 
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Figure 5: Definition of crack propagation 
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b) The impact of residual stresses on SIFs 
increases with increased values of 
parameter c0 of the residual stress 
field. 

c) Larger values of c0 lead to a larger 
crack length range influenced by the 
residual stress field.  

d) The residual stresses impact is 
influenced by the orientation of the 
crack, as for lower values of 
inclination angle β, Keff,norm is shaded 
with significantly lower rate. 

 
 
5. Crack propagation angle 
 
The strain energy density theory is widely 
applied for the prediction of crack 
evolution, since its introduction in the 
early 1970’s [13]. The basic concept of 
strain energy density theory is that the 
strain energy density fluctuates at 
locations of material properties or 
geometry changes. The peaks and valleys 
of the fluctuation can be considered as 
material failure locations due to material 
yielding and fracture. Based on the strain 
energy density criterion, the sequence of 
fatigue crack growth can be assumed as:  
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where Sj is the strain energy density factor 
and Sc its critical value at the distance rc, 
which is consider the critical distance from 
the crack tip. When Sj reaches its critical 
value Sc, unstable fracture is expected to 
occur according to the strain energy 
density theory. For the material type 
considered in the present study (Al alloy 
2024-T3), the value of the critical strain 
energy factor is 14.31 N/mm, while the 
critical distance may be calculated to have 
the value of 0.301mm if equation (4) is 
applied with KIc considered to be 
1047N(mm)1/2:  
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For the prediction of crack growth angle θ 
(Fig. 5) using the strain energy density 
failure criterion, the strain energy density 
values have to be calculated at a circular 
path of radius rc around the crack tip. The 
angle for which strain energy density 
reaches its minimum value is the requested 
crack propagation angle. 
 
In the present work strain energy density 
values have been calculated along the 
above mentioned path using the results of 
the FE analysis. A typical strain energy 
density distribution is presented in Fig. 7 
for the case of half crack length of 2 mm, 
angle β = 60º and parameter c0 = 5 mm. It 
has to be mentioned that for the presented 
case the angle θ of crack propagation is at 
-25° where a local minimum is observed 
and not around 140° where the overall 
minimum exists. 
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Figure 7: Variation of strain energy 

density with respect to θ, for mixed mode 
loaded crack (β=600). 

 
 
The predicted crack propagation angle θ 
for various values of c0, variable crack 
length a and angle β, are presented in the 
diagrams of Fig. 8. From these diagrams a 
complicated relationship of the crack 
propagation angle θ with respect to the 
parameters c0, a and β is observed. 



Although it is difficult to analyse the 
above dependencies, a general remark is 
that the effect of residual stress field on 
the predicted propagation angle θ is 
greater for smaller inclination angles β. 
The applicability of the minimum strain 
energy density criterion for cases of 
residual stresses could not been proven 
due to lack of experimental data and 
remains to be further examined. 
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Figure 8: Effect of crack length on the 

predicted crack propagation angle θ for 
various loading parameters, crack lengths 

and angles β. 

6. Conclusions 
 
In the present work cracks under the 
influence of a two-dimensional residual 
stress field combined to remote loading 
are analyzed. A two-dimensional residual 
stress field described by simple functions 
typical for the residual stress distribution 
observed at welded structures is 
considered. The finite element method is 
utilized for the calculation of stress 
intensity factors and the variation of strain 
energy density around the crack. 
Calculated values of the strain energy 
density are used for the prediction of crack 
propagation angle, according to the 
minimum strain energy density criterion. 
Numerical results concerning SIFs are 
compared to existing analytical solutions 
for the specific case of a one-dimensional 
residual stress field, indicating an 
excellent agreement. The effect of the 
residual stress field parameter c0, crack 
length a and crack inclination angle β on 
both the effective stress intensity factor 
and the crack propagation angle is studied. 
It has been observed that residual stresses 
have a major impact on SIF values, 
especially for small cracks. However the 
predicted crack propagation angle seems 
to be less sensitive to the existence of the 
residual stress field, in the studied cases. 
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