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On the Capacity of Small-World Networks
Rui A. Costa Jõao Barros

Abstract— Recent results from statistical physics show that
large classes of complex networks, both man-made and of
natural origin, are characterized by high clustering properties
yet strikingly short path lengths between pairs of nodes.
Breaking with the traditional approach to these so called
small worlds that relies mainly on graph parameters directly
related to connectivity, we investigate thecapacity of these
networks from the perspective of network information flow.
Our contribution includes upper and lower bounds for the
capacity of standard and navigable small-world models based
on added shortcuts, and the somewhat surprising result, that,
with high probability, random rewiring does not alter the
capacity of a small-world network.

I. I NTRODUCTION

Small-World graphs, i.e. graphs with high clustering co-
efficients and small average path length, have sparked a fair
amount of interest from the scientific community, mainly
due to their ability to capture fundamental properties of
relevant phenomena and structures in sociology, biology,
statistical physics and man-made networks. Beyond well-
known examples such as Milgram’s ”six degrees of sepa-
ration” [1] between any two people in the United States
(over which some doubt has recently been casted [2]) and
the Hollywood graph with links between actors, small-
world structures appear in such diverse networks as the U.S.
electric power grid, the nervous system of the nematode
worm Caenorhabditis elegans[3], food webs [4], telephone
call graphs [5], citation networks of scientists [6], and, most
strikingly, the World Wide Web [7].

The term small-world graph itself was coined by Watts
and Strogatz, who in their seminal paper [8] defined a
class of models which interpolate between regular lattices
and random Erd̈os-Ŕenyi graphs by adding shortcuts or
rewiring edges with a certain probabilityp (see Figures
1 and 2). The most striking feature of these models is
that for increasing values ofp the average shortest-path
length diminishes sharply, whereas the clustering coefficient
remains practically constant during this transition.

Since then, most contributions in the area of complex
networks focus essentially on connectivity parameters such
as the degree distribution of the nodes, the clustering coef-
ficient of the graph, the shortest path length between two
nodes, or thebetweennessof a node (i.e. the total number
of shortest paths that pass trough it). In spite of its arguable
relevance — particularly where communication networks
are concerned — thecapacityof small-world networks has,
to the best of our knowledge, not yet been studied in any
depth by the scientific community.
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Fig. 1. Small-World model with added shortcuts for different values of the
adding probabilityp.
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Fig. 2. Small-World model with rewiring for different values of the rewiring
probability p.

The main goal of this paper is thus to provide a pre-
liminary characterization of the capacity of small-world
networks from the point of view of network information
flow. Our main contributions are as follows:

• Capacity Bounds on Small-World Networks with Added
Shortcuts:We prove a high concentration result which
gives upper and lower bounds on the capacity of
a Small-World with shortcuts of probabilityp, thus
describing the capacity growth due to the addition of
random edges.

• Capacity bounds for Navigable Small-World Networks:
We define a navigable small world network inspired
by [9], which allows for efficient distributed routing,
and prove a high concentration result for its capacity,
as well.

• Rewiring does not alter the Capacity:We construct
tight upper and lower bounds for the capacity of
small worlds with rewiring and prove that, with high
probability, capacity will not change when the edges
are altered in a random fashion.

The rest of the paper is organized as follows. Sec. II
gives an overview of related work pertaining the capacity
of communication networks and properties of small-world
models. Then, in Sec. III, we provide precise definitions for
the three small-world models of interest in this work, so
that the main results can be stated and proved in Sec. IV.
Finally, Sec. V offers some concluding remarks.



II. RELATED WORK

Although the capacity of networks (described by general
graphs with or without edge capacities) supporting multiple
communicating parties is largely unknown, progress has
recently been reported in several relevant instances of this
problem. In the case where the network has one or more
independent sources of information but only one sink, it is
known that routing offers an optimal solution for transport-
ing messages [10] — in this case the transmitted information
behaves likewater in pipesand the capacity can be obtained
by classical network flow methods. Specifically, the capacity
of the network follows from the well-known Ford-Fulkerson
max-flow min-cuttheorem [11], which asserts that the max-
imal amount of a flow (provided by the network) is equal to
the capacity of a minimal cut, i.e. a nontrivial partition of
the graph vertex setV into two parts such that the sum
of the capacities of the edges connecting the two parts
(the cut capacity) is minimum. In [12] it was shown that
network flow methods also yield the capacity for networks
with multiple correlatedsources and one sink.

The case of general multicast networks, in which a single
source broadcasts a number of messages to a set of sinks, is
considered in [13], where it is shown that applying coding
operations at intermediate nodes (i.e.network coding) is
necessary to achieve the max-flow/min-cut bound of the
network. In other words, ifk messages are to be sent then the
minimum cut between the source and each sink must be of
size at leastk. A converse proof for this problem, known as
thenetwork information flow problem, was provided by [14],
whereas linear network codes were proposed and discussed
in [15] and [16]. Max-flow min-cut capacity bounds for
Erdös-Ŕenyi graphs and random geometric graphs were
presented in [17].

Another problem in which network flow techniques have
been found useful is that of finding the maximum stable
throughput in certain networks. In this problem, posed
by Gupta and Kumar in [18], it is sought to determine
the maximum rate at which nodes can inject bits into a
network, while keeping the system stable. This problem was
reformulated in [19] as a multicommodity flow problem, for
which tight bounds were obtained using elementary counting
techniques.

Since the seminal work of [8], key properties of small-
world networks, such as clustering coefficient, characteristic
path length, and vertex degree distribution, have been stud-
ied by several authors (see e.g. [20] and references therein).
The combination of strong local connectivity and long-
range shortcut links renders small-world topologies poten-
tially attractive in the context of communication networks,
either to increase their capacity or simplify certain tasks.
Recent examples include resource discovery in wireless
networks [21], design of heterogeneous networks [22], [23],
and peer-to-peer communications [24].

When applying small-world principles to communication
networks, we would like not only that short paths exist
between any pairs of nodes, but also that such paths can
easily be found using merely local information. In [9] it
was shown that thisnavigability property, which is key to
the existence of effective distributed routing algorithms, is
lacking in the small-world models of [8] and [25]. The

alternative navigable model presented in [9] consists of
a grid to which shortcuts are added not uniformly but
according to a harmonic distribution, such that the number
of outgoing links per node is fixed and the link probability
depends on the distance between the nodes. For this class of
small-world networks agreedyrouting algorithm, in which
a message is sent through the outgoing link that takes it
closest to the destination, was shown to be effective, thus
opening the door towards a capacity-attaining solution.

III. SMALL -WORLD MODELS

We start by presenting rigorous definitions for the three
small-world models used in the rest of the paper. For
convenience, all of these models are constructed based on
a ring lattice, but it is worth pointing out that the presented
methodology can be equally applied to other classes of base
lattices. In the following, we also assume that all edges
have unitary weight. Before proceeding with the model
descriptions, we require a precise notion of distance in a
ring.

Definition 1: Consider a set ofn nodes connected by
edges that form a ring (see Fig. 3, left plot). Thering
distance between two nodes is defined as the minimum
number ofhops from one node to the other. If we number
the nodes in clockwise direction, starting from any node,
then the ring distance between nodesi and j is given by
d(i, j) = min{|i − j|, n + i − j, n − |i − j|}.

For simplicity, we refer tod(i, j) as thedistancebetween
i and j. Next, we define ak-connected ring lattice.

Fig. 3. Illustration of a k-connected ring lattice: from left to right k =

2, 4, 12.

Definition 2: A k-connected ring lattice(see Fig. 3) is a
graphL = (VL, EL) with nodesVL and edgesEL, in which
all nodes inVL are placed on a ring and are connected to
all the nodes within distancek2 .

Notice that in the definition of ak-connected ring lattice,
all the nodes have degreek. Based on this topology, we can
construct the following models (see Figs. 1 and 2).

Definition 3 (Small-World Network with Shortcuts [25]):
Consider ak-connected ring latticeL = (VL, EL) and
let EC be the set of all possible edges between nodes in
VL (i.e. (VL, EC) is a fully connected graph). To obtain
a small-world network with shortcuts, we add to the ring
lattice L each edgee ∈ EC\EL with probability p.

Definition 4 (Navigable Small-World Network):Starting
with a k-connected ring lattice, add one edge to each
node i randomly according to the probability distribution
p(i, j) = d(i, j)−r, where d(i, j) denotes the distance
between nodesi and j andr > 0 is a fixed parameter.

Definition 5 (Small-World Network with Rewiring [8]):
Consider ak-connected ring lattice and choose a vertex
and the edge that connects it to its nearest neighbor in a
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clockwise sense. With probabilityp, reconnect this edge
to a vertex chosen uniformly at random over the entire
ring. Repeat this process by moving around the ring in
clockwise direction, considering each vertex in turn until
one lap is completed. In each step ensure that none of the
edges is duplicated and that no edge that was removed
is placed again in the graph. Next, consider the edges
that connect vertices to their second-nearest neighbors
clockwise. As before, randomly rewire each of these edges
with probability p, and continue this process, circulating
around the ring and proceeding outward to more distant
neighbors after each lap, until each edge in the original
lattice has been considered once.

IV. CAPACITY OF SMALL -WORLD NETWORKS

In Sec. II, we argued that the max-flow min-cut capacity
provides the fundamental limit of communication for various
relevant network scenarios. Motivated by this observation,
we will now use network flow methods and random sam-
pling techniques in graphs to derive a set of bounds for the
capacity of the small-world network models presented in the
previous section.

A. Preliminaries

We start by introducing some notation. LetG be an
undirected and unweighted graph and letGs be the graph
obtained by sampling onG, such that each edgee has
sampling probabilitype. FromG andGs, we obtainGw by
assigning to each edgee the weightpe, i.e. w(e) = pe,∀e.
We denote the global minimum cuts ofGs and Gw by cs

and cw, respectively. It is helpful to view a cut inGs as a
sum of Bernoulli experiences, whose outcome determines if
and edgee connecting the two sides of the cut belongs to
Gs or not. It is not difficult to see that the value of a cut in
Gw is the expected value of the same cut inGs.

The next theorem gives a characterization of how close a
cut in Gs will be with respect to its expected value.

Theorem 1 (From [26]):Let ǫ =
√

2(d + 2) ln(n)/cw.
Then, with probability1 − O(1/nd), every cut inGs has
value between(1− ǫ) and(1+ ǫ) times its expected value.

Notice that althoughd is a free parameter, there is a
strict relationship between the value ofd and the value ofǫ.
In other words, the proximity to the expected value of the
cut is intertwined with how close the probability is to one.
Theorem 1yields also the following useful property.

Corollary 1: Let ǫ =
√

2(d + 2) ln(n)/cw. Then, with
high probability, the value ofcs lies between(1− ǫ)cw and
(1 + ǫ)cw.

Before using the previous random sampling results to
determine bounds for the capacities of small-world models,
we prove another useful lemma.

Lemma 1:Let L = (VL, EL) be a k-connected ring
lattice and letG = (VL, E) be a fully connected graph,
in which edgese ∈ EL have weightw1 ≥ 0 and edges
f /∈ EL have weightw2 ≥ 0. Then, the global minimum
cut in G is k · w1 + (n − 1 − k) · w2.

Proof: We start by splittingG into two subgraphs:
a k-connected ring latticeL with weightsw1 and a graph
F with nodesVL and all remaining edges of weightw2.

Clearly, the value of a cut inG is the sum of the values
of the same cut inL and in F . Moreover, both inL and
in F , the global minimum cut is a cut in which one of the
partitions consists of one node (any other partition increases
the number of outgoing edges). Since each node inL hask
edges of weightw1 and each node inF has the remaining
n − 1 − k edges of weightw2, the result follows.

B. Capacity of Small-World Networks with Added Shortcuts

With this set of tools, we are to state and prove our first
main result.

Theorem 2:With high probability, the value of the
capacity of a small-world network with added short-
cuts lies between(1 − ǫ)cw and (1 + ǫ)cw, with ǫ =
√

2(d + 2) ln(n)/cw andcw = k + (n − 1 − k)p.
Proof: Let Gw be a fully connected graph withn nodes

and with the edge weights (or equivalently, the sampling
probabilities) defined as follows:

• The weight of the edges in the initial lattice of a small-
world network with added shortcuts is one (because
they are not removed);

• The weight of the remaining edges isp, (i.e. the
probability that an edge is added).

Notice thatGw is a graph in the conditions of Lemma 1,
with w1 = 1 and w2 = p. Therefore, the global minimum
cut in Gw is cw = k + (n − 1 − k)p, wherek is the initial
number of neighbors in the lattice. Using Corollary 1, the
result follows.

The obtained bounds are illustrated in Fig. 4.
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Fig. 4. Bounds on the capacity of a small-world network with added
shortcuts, forn = 1000, k = 20, andd = 1. The dashed line represents
the expected value of the capacity, and the solid lines represent the bounds.
Naturally, the capacity increases withp, as the number of added links
become larger.

C. Capacity of a Navigable Small-World Network

For the class of navigable small-world networks defined
in Sec. III, in which the probability of a given edge being
added depends on the distance between the nodes, we obtain
the following result.

Theorem 3:With high probability, the capacity of the
navigable small-world network has a value in the interval
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[(1 − ǫ)cw), (1 + ǫ)cw)], with ǫ =
√

2(d + 2) ln(n)/cw and

cw = k + (1 + an) · (
n − an

2
)−r + 2 ·

n−an

2
−1

∑

i=k+1

i−r,

wherean = 1−(−1)n

2 .
Proof: Consider the fully connected graphGw =

(VL, E) with weights defined as follows: the weights of
edges(i, j) ∈ EL is set to one and those of(i, j) /∈ EL are
equal tow(i, j) = d(i, j)−r, i.e. the probability of adding
edge(i, j).

Notice that the ring distance between two nodes does
not depend on which node is numbered first. It is therefore
correct to state that all the nodes have the same number of
nodes at distanced. We also have that all the edges in the
ring lattice unitary weight. Based on these two observations
and the fact thatGw is a fully connected graph, it is clear
that the global minimum cut inGw, denotedcw, is a cut in
which one of the partitions consists of a single node, say
node1. Thus, we may write

cw = k +
∑

i∈A

d(1, i)−r,

with

A = {i : (1, i) /∈ EL} = {i : d(1, i) > k}.

Now, we must distinguish between two different situations:
evenn and oddn. If n is even, it is not difficult to see that
the single node that maximizes the distance to node1 is
node n

2 +1, with d(1, n
2 +1) = n

2 . Notice that, for distances
d inferior to n

2 , there are two nodes at a distanced to node
1. Therefore, ifn is even, we have

cw = k + (
n

2
)−r + 2 ·

n

2
−1

∑

i=k+1

i−r

. When n is odd, it is also easy to see that there are two
nodes that maximize the distance to node1, nodesn+1

2 and
n+3

2 , with the maximum distance beingn−1
2 . Therefore, if

n is odd,

cw = k + 2 ·

n−1

2
∑

i=k+1

i−r

Using Corollary 1 and observing thatan = 1−(−1)n

2 is equal
to 1 if n is odd and equal to0 if n is even, we obtain the
desired bounds.
The result is illustrated in Fig. 5.

D. Capacity of Small-World Networks with Rewiring

In the previous classes of small-world networks, edges
were added to ak-connected ring lattice (with minimum
cut k) and clearly the capacity could only grow withp.
The next natural step is to ask what happens when edges
are not added but rewired with probabilityp, as described
in Sec. III. Before presenting a theorem that answers this
question, we will prove the following lemma.

Lemma 2:Let Gw be a weighted, fully connected graph,
whose weights correspond to the edge probabilities of a
small-world network with rewiring, and letcw be the global
minimum cut inGw. Then,cw ≥ k.
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Fig. 5. Bounds for the capacity of a navigable small-world network for
n = 1000, k = 20, d = 1, and different values of parameterr. The
dashed line represents the expected value of the capacity and the solid
lines represent the bounds. As expected, the capacity decreases sharply
with higher r, because increasingr decreases the probability of adding
new edges.

Proof: We start with the initial lattice edges(l,m) ∈
EL, and assign the weight1−p to their counterparts inGw.
In order to determine the weight of the non-initial edges that
result from rewiring, consider the following events:

• R(i, j): “Rewire the edge(i, j) ∈ EL”;
• Ci(j, l): “Rewire (i, j) ∈ EL to (i, l) /∈ EL”.

Notice thatP(R(i, j)) = p,∀i, j.
Let i and j be two non-initially connected nodes. The
notation i ↔ j denotes the event that the nodesi and j
are connected.

P(i ↔ j)=P([∪
k/2
x=1(R(i, i + x) ∩ Ci(i + x, j))]

∪[∪
k/2
x=1(R(j, j + x) ∩ Cj(j + x, i))])

=

k/2
∑

x=1

(P(R(i, i + x) ∩ Ci(i + x, j))

+P(R(j, j + x) ∩ Cj(j + x, i)))

=

k/2
∑

x=1

(P(Ci(i + x, j)|R(i, i + x))P(R(i, i + x))

+P(Cj(j + x, i)|R(j, j + x))P(R(j, j + x)))

=p · (

k/2
∑

x=1

(P(Ci(i + x, j)|R(i, i + x))

+P(Cj(j + x, i)|R(j, j + x))))

We haveP(Ci(i + x, j)|R(i, i + x)) = 1
m , wherem is the

number of possible new connections from nodei when we
rewired the edge(i, i + x). It is possible that, occurring
some rewiring or not, none of the choices to a new link is
the nodei. In this case,m = n − k − 1. Notice that this is
the highest it can get, thereforem ≤ n − k − 1. Then

P(Ci(i + x, j)|R(i, i + x)) ≥
1

n − k − 1
.

Analogously,P(Cj(j+x, i)|R(j, j+x))) ≥ 1
n−k−1 . There-

fore,

P(i ↔ j) ≥ p · (

k/2
∑

x=1

2

n − k − 1
) =

pk

n − k − 1
.
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There arek initial edges andn− k − 1 non-initial edges in
each node.
Consider a fully connected, weighted graphF with the
weights defined as follows: all the edges(i, j) /∈ EL have
the weight pk

n−k−1 ; and all the others edges(i, j) ∈ EL have
the weight1− p. Notice thatF is a graph in the conditions
of Lemma1, with w1 = 1−p andw2 = pk

n−k−1 . Therefore,
cF = k(1 − p) + (n − k − 1) pk

n−k−1 = k. Notice that, in
this situation, all the weights inF are a lower bound of the
weights inGw. Therefore, a cut inF is a lower bound for
the corresponding cut inGw. Then, the global minimum cut
in F is a lower bound for all the cuts inGw, in particulary,
for cw: cw ≥ cF = k.
With this lemma, we are now ready to state and prove our
last result.

Theorem 4 (Rewiring does not alter capacity.):
With high probability, the capacity of a small-world
network with rewiring, cs, verifies cs ≥ (1 − ǫ)k, with
ǫ =

√

2(d + 2)ln(n)/k.
Proof: Based on Lemma 2 and Corollary 1, we have

that, with high probability,cs ≥ (1 − ǫw)k, with ǫw =
√

2(d + 2)ln(n)/cw. Now, from the fact thatcw ≥ k, we
have thatǫ =

√

2(d + 2)ln(n)/k ≥ ǫw. Then,(1− ǫw)k ≥
(1 − ǫ)k, and the first part of the result follows.

Next, we prove by contradiction thatcs ≤ k. Suppose
that the propositioncs > k is true. Let ci be the cut in
which one of the partitions consists of nodei, i = 1, ..., n.
Becausecs is the global minimum cut inGs, we have that
ci > k, ∀i = 1, ..., n. Notice thatci is the degree of node
i. Then, because in thek-connected ring lattice all nodes
have degreek and all nodes inGs have degree greater than
k (becauseci > k,∀i), we have that the number of edges
in Gs must be greater than the number of edges in thek-
connected ring lattice. But this is clearly absurd, because
in the construction ofGs, we do not add new edges to the
k-connected ring lattice, we just rewire some of the existent
edges.

V. CONCLUDING REMARKS

We studied the max-flow min-cut capacity of three fun-
damental classes of small world networks. Using classical
network flow arguments and concentration results from
random sampling in graphs, we provided bounds for both
standard and navigable small-world networks with added
shortcuts. In addition, we presented a tight result for small-
world networks with rewiring, which permits the following
interpretation:With high probability, rewiring does not alter
the capacity of the network. This observation is not obvious,
because we can easily find ways to rewire the ring lattice
in order to obtain, for instance, abottleneck. But, according
to the previous results, such instances occur with very low
probability.

Possible directions for future work include tighter ca-
pacity results, extensions to other classes of small-world
networks (e.g. weighted models and those used in peer-to-
peer networks [24]), and understanding if and how small-
world topologies can be exploited in the design of capacity-
attaining network codes. At a more conceptual level, we are
intrigued by the possibility that the notion of capacity may
help us answer a very central question:why small-world
topologies are ubiquitous in real-world networks.
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