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I. INTRODUCTION

One of the most important problems in cryptography is the transmission of a secret message between
two legitimate users (the sender Alice and the receiver Bob)over an insecure communication channel
such that an enemy (Eve) with access to the channel is unable to get useful information about the message
being sent.

With the goal of solving this problem (or some of its instances), cryptography has provided schemes
(ciphers) that “assure security”, in some sense. In our days, almost all the ciphers used are based on
the assumption that an enemy has full access to the cryptogram, i.e. the enemy receives an exact copy
of the cryptogram, and the goal of these ciphers is to guarantee that there exists no efficient algorithm
for breaking, for some reasonable definition of breaking. The problem is that for no existing cipher can
this so called “computational security” be proved, withoutinvoking an unproven intractability result. The
security of the majority of the most used ciphers is based on the (unproven) difficulty of factoring large
integers (for example, the RSA public-key crytosystem [1])or on the unproven difficulty of computing
discrete logarithms in certain groups (for example, see [2]).

On the other hand, information-theoretic (or unconditional) security gives us the strongest definition
of security, but it was, in its beginning, impractical. To bemore precise, [3] introduced a model of
a cryptosystem (see Figure 1). In this model, Eve has perfectaccess to the insecure channel, i.e. she
receives an exact copy of the cryptogramC, whereC is obtained by Alice as a function of the plaintext
M and a secret keyK, shared by Alice and Bob. According to Shannon’s definition,a cipher system is
perfect if

I(M ; C) = 0,

i.e. Eve gains no knowledge aboutM by knowing C. Notice that in this definition of a secure cipher
system, no assumption about the enemy’s computational power is made, therefore making the information-
theoretic security more desirable in cryptography than computational security.

Alice DeciphererEncipherer Bob

Eve

Fig. 1. Shannon’s model for a secrecy system.

Shannon also presents an example of a perfect cipher called the one-time pad, in which the cryptogram
is obtained by adding modulo 2 the plaintext and a random binary secret key of the same length. Obviously,
this system is impractical, because it requires a key of the same length as the plaintext. But Shannon
proved an even more pessimistic result: he proved that perfect secrecy can be achieved only when the
secret key is at least of the size of the plaintext, i.e.

H(K) ≥ H(M),

making, under these conditions, perfect secrecy unachievable in practice.

II. THE WIRETAP CHANNEL

One of the features in Shannon’s model that leads to his pessimistic result is the fact that he assumes
that the enemy Eve has perfect access to the cryptogramC, i.e. it is assumed that the channel from Alice
to Eve has the same capacity as the channel from Alice to Bob. Therefore, the key to guarantee perfect
secrecy is to modify Shannon’s model such that the enemy has not the same information as the legitimate
receiver. Wyner [4] and later Csiszár and Körner [5] proposed a new model, called thewiretap channel.
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In this model, the legitimate users communicate over a main channel and an eavesdropper has access to
the messages received by the legitimate receiver over a wiretap channel. The general setup for this model
is shown in Figure 2.

Alice
Main

Channel

Eve

BobEncoder Decoder

Channel
Wiretap

Sk Xn Y n Ŝk

Zn

Fig. 2. The wiretap channel model.

In this section, we will study Wyner’s wiretap model. First,to be able to describe properly Wyner’s
main results [4], we need a rigorous definition for the model presented in Figure 2.

Definition 1: The Wyner’s wiretap model is defined by the following:
• the sourceis the sequence{Si}

∞
i=1, whereSi are i.i.d. random variables that take values in the finite

setS . Let H(Si) = HS;
• themain channelis a discrete memoryless channel (DMC) with finite input alphabetX , finite output

alphabetY and transition probabilityQM(y|x), x ∈ X , y ∈ Y . For n vectors,

Q
(n)
M (y|x) =

n
∏

i=1

QM (yi|xi).

Let CM denote the main channel capacity;
• the wiretap channelis a DMC with input alphabetY , finite output alphabetZ and transition

probabilityQW (z|y), y ∈ Y , z ∈ Z. For n vectors,Q(n)
W (z|y) =

∏n

i=1 QW (zi|yi). Let CW denote the
main channel capacity;

• the channel between Alice and Eve is also a DMC, with transition probability

QMW (z|x) =
∑

y∈Y

QM(y|x)QW (z|y).

The capacity of the channelQMW is denoted byCMW ;
• the encoder, with parameters(k, n), is a (possibly probabilistic) functione : Sk → X n and the

decoderis a functiond : Yn → Sk.
Next, we define a quantity to measure the ability of Bob to readproperly the confidential messages

sent by Alice (through the main channel).
Definition 2: For Ŝ = (Ŝ1, ..., Ŝk) = d(Y ), the error-rate is defined byPe = 1

k

∑k

i=1 P
(

Si 6= Ŝi

)

.
Now, we define the quantity that will be used to characterize the confidentiality of the messages sent

through the main channel, with respect to Eve.
Definition 3: Let Y n andZn be the output of the channelsQ(n)

M andQ
(n)
MW , respectively, when the input

is Xn. The equivocationof the source (the confidential messages to be sent) at the output of the wiretap
channel (what Eve receives) is defined by:

∆ =
1

k
H

(

Sk|Zn
)

.

We will refer to the encoder-decoder described inDefinition 1as a(k, n, ∆, Pe) encoder-decoder.

3



Ideally, we want for the channel to have a small error-rate, while keeping Eve’s equivocation high.
Thus, the first question that arises is the following: is it possible to communicate over the main channel
at a transmission rateR with small error-rate, while keeping Eve with no significantinformation about
the confidential messages sent through the main channel? To answer this question, Wyner characterizes
the region of all(R, d) achievable pairs:

Definition 4: For R > 0 andd > 0,1 we say that the pair(R, d) is achievableif, for every ǫ > 0, there
exists an(n, k, ∆, Pe) encoder-decoder such that:

• k · HS/n ≥ R − ǫ;
• ∆ ≥ d − ǫ;
• Pe ≤ ǫ.

Let R denote the set of all(R, d) achievable pairs.
In order to characterize the setR, we need to study first the following quantity.
Definition 5: Let pX(x), x ∈ X , be a probability mass function and letP(R) denote the set of all

distributionspX such thatI(X; Y ) ≥ R.2 For 0 ≤ R ≤ CM , let

Γ(R) = sup
pX∈P(R)

I(X; Y |Z).

Because, for any distributionpX on X , the correspondingX, Y andZ form a Markov chain, we have
that

Γ(R) = sup
pX∈P(R)

[I(X; Y ) − I(X; Z)] .

Lemma 1:For 0 ≤ R ≤ CM , Γ(R) satisfies the following:
• for eachR, there existspX ∈ P(R) such thatI(X; Y |Z) = Γ(R);
• Γ(R) is a concave function ofR;
• Γ(R) is nonincreasing inR;
• Γ(R) is continuous inR;
• CM − CMW ≤ Γ(R) ≤ CM

Now, we are able to state Wyner’s main result on the set of all achievable pairs.
Theorem 1:The set of all achievable pairs is given by

R =

{

(R, d) : 0 ≤ R ≤ CM , 0 ≤ d ≤ HS,
d

HS

≤
Γ(R)

R

}

.

In Figure 3, it is presented a sketch of the regionR of the (R, d) achievable pairs. The points in this
region for whichd = HS are of special interest, because these correspond to the maximum equivocation
possible for Eve, i.e. perfect secrecy. Thus, a quantity of interest is the maximum rate for which(R, HS)
is achievable.

Definition 6: The secrecy capacityof the channel pair(QM , QW ) is defined by

CS = max
(R,HS)∈R

R.

The following theorem proves that the secrecy capacity is well defined, gives a way to compute the
secrecy capacity and also provides bounds on it.

Theorem 2:If CM > CMW , there exists a unique solutionCS of

CS = Γ(CS).

Further,CS is the maximumR such that(R, HS) ∈ R and verifies

0 < CM − CMW ≤ Γ(CM) ≤ CS ≤ CM .
Notice that, in the previous result, it is required thatCM > CMW to have strictly positive secrecy

capacity. This means that, in order to be able to communicatewith perfect secrecy, Alice and Bob must
have a better channel than Alice.

1Do not confuse parameterd in the definition, which is the amount of Eve’s equivocation,with the decoderd().
2Notice that, forR > CM , P(R) = ∅.
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Fig. 3. Region of(R, d) achievable pairs.

III. U SING PUBLIC DISCUSSION TO ACHIEVE A PERFECT SECRET KEY

Due to the fact that the results in the previous section demand that Alice and Bob have significant
advantage over the eavesdropper, and also to the development of the RSA public-key crytosystem [1],
Wyner’s work [4] had a limited impact. More recently, Maurer[6] made a breakthrough, by developing a
new model and proving that, for this model, a strictly positive secrecy capacity is possible, even if Eve’s
channel is stronger than the legitimate users’ channel. Themain feature about Maurer’s model is that a
public insecure channel (yet authenticated) is used to generate a secret key.

First, we start by defining the model without the public channel, and stating Maurer’s definition for
secrecy capacity. An illustration of this model can be seen in Figure 4.

Alice BobEncoder Decoder
Main

Channel

Wiretap
Channel

Eve

Sk Y nXn Ŝk

Zn

Fig. 4. Maurer’s broadcast channel without a public channel.

Definition 7: The broadcast channel of interest in the following is definedas:
• the sourceis the sequence{Si}

∞
i=1, whereSi is a binary random variable,∀i;

• the main channelhas a finite input alphabetX and a finite output alphabetY ;
• the wiretap channelhas the same input as the main channel, and a finite output alphabetZ;
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• the channel behavior is completely specified by the conditional probability distributionP(Y = y, Z =
z|X = x), which we refer to asPY Z|X ;

• theencoderis a (possibly probabilistic) functione : {0, 1}k → X n, whereR is the rate andk = ⌊nR⌋;
the decoderis a functiond : Yn → {0, 1}k.

Definition 8: The secrecy capacityof a broadcast channel specified byPY Z|X is the maximum rateR
for which, for everyǫ > 0, for all sufficiently largen, there exists an encoder-decoder such that forS
uniformly distributed over{0, 1}k the following two conditions are satisfied:

• P(d(Y ) 6= S) < ǫ, whereX = e(S);
•

1
k
H(S|Zn) > 1 − ǫ.

Maurer also noticed that, in the previous definition, it would be equivalent the two conditions to hold
for all probability distributions.

Now, consider a broadcast channel for which both the main andthe wiretap channel are independent
binary symmetric channels, i.e.

PY Z|X = PY |XPZ|X,

PY |X(y|x) =

{

1 − ǫ if x = y
ǫ if x 6= y

and

PZ|X(z|x) =

{

1 − δ if x = z
δ if x 6= z

Without loss of generality, consider the caseǫ ≤ 1/2, δ ≤ 1/2. Denote this channel byD(ǫ, δ). The next
result characterizes the secrecy capacity for this channel. It shows that, as expected, the secrecy capacity
for this channel is only strictly positive if the legitimateusers’ channel is better than Eve’s channel.

Lemma 2:The secrecy capacity of the binary broadcast channelD(ǫ, δ) is given by:

CS(D(ǫ, δ)) =

{

h(δ) − h(ǫ) if δ > ǫ
0 otherwise

,

whereh(p) is the binary entropy function, i.e.h(p) = −p log(p) − (1 − p) log(1 − p).
To overcome the need of an advantage of the legitimate users over the eavesdropper, Maurer introduced

a public channel, insecure but with unconditional secure authentication3. Moreover, it is assumed that Eve
can listen to the communication over the public channel, butcannot perform an identity spoofing attack.
For an illustration of this model, see Figure 5.

Definition 9: The secrecy capacity with public discussion, denotedĈ(PY Z|Z), is the secrecy capacity
of the broadcast channel defined inDefinition 7 with the additional feature that Alice and Bob can
communicate over an insecure (yet authenticated) public channel.

The next theorem characterizes the secrecy capacity with public discussion, showing that, even if the
eavesdropper has a better channel than the legitimate users, perfect secure communication can still be
performed.

Theorem 3:The secrecy capacity with public discussion of a broadcast channel is given by

Ĉ(D(ǫ, δ)) = h(ǫ + δ − 2ǫδ) − h(ǫ).

Moreover,Ĉ(D(ǫ, δ)) is stricly positive unlessǫ = 0.5, δ = 0 or δ = 1, i.e. unlessX andY are statistically
independent orZ uniquely determinesX.

Although the goal of this work is not to provide rigorous proofs for the results presented, but to present
an overview of the main results on Information Theoretic Security, it is worthwile to study a sketch of
proof for Theorem 3. The idea is to construct a conceptual broadcast channel similar to the broadcast
channel of Wyner [4], such that the conceptual main channel is equivalent to the real main channel between

3In order to guarantee unconditional secure authentication, one can use, for example, the scheme of [7], which is based onuniversal
hashing and only requires that a short key is shared initially by the legitimate users.
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Fig. 5. Maurer’s broadcast channel with a public channel.

Alice and Bob, and the conceptual wiretap channel is a cascade of the real main channel and the real
wiretap channel.

Alice sends a random bitX over the real broadcast channel, withP(X = 0) = P(X = 1) = 1/2.
Let E andD denote the (independent) error bits of the main and of Eve’s channel, respectively, i.e. let
Y = X + E andZ = X + D whereP(E = 1) = ǫ andP(D = 1) = δ. Bob chooses a bitV and sends
W = Y + V over the public channel. Alice computes

W + X = V + E,

thus Alice receivesV with error probabilityǫ. Eve knowsZ = X + D andW = X + E + V , and can
compute

Z + W = V + E + D.

In fact, it is easy to prove that
H(V |ZW ) = H(V |Z + W ),

thus Eve can indeed computeZ + W and discardZ andW . Now, it is easy to prove that the conceptual
broadcast channel can be seen asD(ǫ, ǫ + δ − 2ǫδ).

Next, Maurer studies the use of this broadcast channel with apublic channel to develop unconditional
secure secret key agreement protocols. Consider the following general key agreement problem. Alice,
Bob and Eve know random variablesX,Y andZ, respectively, with joint probability distributionPXY Z .
Assume that Eve has no information aboutX and Y other than through her knowledge ofZ, i.e. if T
represents all the information that Eve has, thenI(XY ; T |Z) = 0. Alice and Bob share no secret key
initially (other than a short key required for authentication in the public channel), but they are assumed
to know PXY Z , or at least an upper bound on the quality of Eve’s channel. Assume also that Eve knows
the protocol and the codes used.

Without loss of generality, consider only protocols in which Alice sends messages at odd steps (C1, C3, . . . )
and Bob sends messages at even steps (C2, C4, . . . ). At the end of thet-step protocol, Alice computes a
key S as a function ofX andCt = [C1, . . . , Ct], and Bob computes a keyS ′ as a function ofY andCt.

Definition 10: A secret key agreement protocol as described above is(ǫ, δ)-secureif, for some specified
(small) ǫ andδ, the following conditions hold:

1) For oddi, H(Ci|C
i−1X) = 0;

2) For eveni, H(Ci|C
i−1Y ) = 0;

3) H(S|CtX) = 0;
4) H(S ′|CtY ) = 0;
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5) P(S 6= S ′) ≤ ǫ;
6) I(S; CtZ) ≤ δ.
Conditions 1-4 guarantee that Alice and Bob have no uncertainty regarding the protocol procedures.

Condition 5 guarantees that Alice and Bob agree on the same key with probability1−ǫ. Finally, condition
6 guarantees that, given that Eve knows all the messages exchanged between Alice and Bob over the public
channel during the protocol and also the output of her channel, the information on the key that Eve has
is upperbounded byδ.

The next theorem provides an upper bound on the size of the keythat Alice and Bob agree via a
(ǫ, δ)-secure key agreement protocol.

Theorem 4:For every(ǫ, δ)-secure key agreement protocol, we have that

H(S) ≤ min [I(X; Y ), I(X; Y |Z)] + δ + h(ǫ) + ǫ log(|S| − 1).
To be able to provide a lower bound on the key size, we need to make further assumptions. Consider

the case when Alice, Bob and Eve receiveXN = [X1, ..., XN ], Y N = [Y1, ..., YN ] andZN = [Z1, ..., ZN ],
wherePXNY N ZN =

∏n

i=1 PXiYiZi
. Next, we define the secret key rate, a quantity of interest inthe rest of

this section.
Definition 11: Thesecret key rateof X andY with respect toZ, denotedS(X; Y ||Z), is the maximum

rate R such that, for everyǫ > 0, there exists a protocol, for sufficiently largen, satisfying conditions
1-5 in Definition 10 (with X and Y replaced byXn and Y n, respectively) and also the two following
conditions:

•
1
n
I(S; CtZn) ≤ ǫ;

•
1
n
H(S) ≥ R − ǫ.

The next result provides an upper and a lower bound for the secret key rate.
Theorem 5:The secret key rateS(X; Y ||Z) verifies
• S(X; Y ||Z) ≤ min [I(X; Y ), I(X; Y |Z)];
• S(X; Y ||Z) ≥ max [I(Y ; X) − I(Z; X), I(X; Y ) − I(Z; Y )].
The upper bound for the secret key rate in the previous theorem shows that if Eve has less information

aboutY than Alice or less information aboutX than Bob, then such a difference of information can be
exploited.

The next theorem provides bounds on the secrecy capacity with public discussion of a general broadcast
channel.

Theorem 6:The secrecy capacity with public discussion,ĈS(PY Z|X), of a broadcast channel specified
by PY Z|X verifies:

max
PX

S(X; Y ||Z) ≤ ĈS(PY Z|X) ≤ min

[

max
PX

I(X; Y ), max
PX

I(X; Y |Z)

]

.

IV. W IRELESS INFORMATION-THEORETIC SECURITY

More recently, Barros and Rodrigues [8] studied information-theoretic security in a wireless environ-
ment. The authors provide a characterization of the maximumrate at which the eavesdropper cannot
decode any information. They prove that, even if the eavesdropper has a better channel than the legitimate
users, information-theoretic security is achievable. Thus, and quoting, “fading turns out to be a friend and
not a foe”. In [9], Barroset al present a complete set of results (which we will describe in the rest of
this report) for this model and in [10] the authors develop practical secret key agreement protocols, that
exploit the presence of fading in order to ensure information-theoretic security.

The model of interest in this section is illustrated in Figure 6. Before stating the main results related
to the model, we need to provide a rigorous definition of the wireless broadcast channel.

Definition 12: The wireless broadcast channel, illustrated in Figure 6, isdefine by the following.
• the sourceis a sequence{Si}

∞
i=1;
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• the main channelis a discrete-time Rayleigh fading channel, with input alphabetX n and output
alphabetYn

M , i.e.
yM(i) = hM(i)x(i) + nM(i),

wherehM(i) represents the main channel fading coefficient and is a circularly symmetric complex
Gaussian random variable with zero-mean and unit variance,andnM(i) represents the noise in the
main channel and is a circularly symmetric complex Gaussianrandom variable with zero-mean;

• the wiretap channelis also a discrete-time Rayleigh fading channel, with inputalphabetX n and
output alphabetYn

W , described by

yW (i) = hW (i)x(i) + nW (i),

where hW (i) and nW (i) are defined similarly tohM(i) and nM(i), respectively, but now for the
wiretap channel;

• it is assumed that the channels’ inputs, the channels’ fading coefficients and the channels’ noises are
all independent;

• it is also assumed that both the main and the wiretap channel are quasi-staticfading channels, i.e.
the fading coefficients, although random, are constant during the transmission of an entire codeword
(hM(i) = hM andhW (i) = hW , ∀i = 1, . . . , n) and independent from codeword to codeword;

• Alice’s encoder, with parameters(k, n), is a (possibly probabilistic) functione : Sk → X n, Bob’s
and Eve’sdecodersare mappingsdB : Yn

M → Sk anddE : Yn
W → Sk, respectively. Let̂Sk

B = dB(Y n
M)

and Ŝk
W = dB(Y n

W ).

Alice BobDecoderEncoder X +

Decoder EveX +

Sk Xn

hn

M
nn

M

Y n

M

hn

W
nn

W

Y n

W
Ŝk

E

Ŝk

B

Fig. 6. Wireless broadcast channel.hM andhW represent the fading coefficients of the main channel and thewiretap channel, respectively,
andnM andnW represent the noise of the main channel and the wiretap channel, respectively.

Let P be the average transmit power, i.e.

1

n

n
∑

i=1

E[|X(i)|2] ≤ P,

and the average noise power in the main and in the wiretap channels to beNM and NW , respectively.
Thus, the instantaneoussignal-to-noise ratio(SNR) at Bob’s receiver is

γM(i) =
P · |hM(i)|2

NM

=
P · |hM |2

NM

= γM ,

and its average valueγM = P ·E[|hM |2]
NM

.
Analogously, the instantaneous SNR at Eve’s receiver is

γW , =
P |hW |2

NW

,
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and its average valueγW = P ·E[|hW |2]
NW

.
After defining the model of interest in this section, we now define important quantities that describe

the quality of the channel.
Definition 13: For the channel described inDefinition 12,
• the transmission ratebetween Alice and Bob isR = 1

n
H(Sk);

• the equivocation rateis defined as∆ =
H(Sk|Y n

W
)

H(Sk)
;

• the error probability is Pe = P(Sk 6= Ŝk
B).

Next, we define the notion of an achievable rate-equivocation pair, and the rate-equivocation region.
Definition 14: A pair (R′, d′) is achievableif, for every ǫ > 0, there exists an encoder-decoder such

that R ≥ R′ − ǫ, ∆ ≥ d′ − ǫ andPe ≤ ǫ. The rate-equivocation regionis the set of all(R′, d′) achievable
pairs

Using the notion of achievability of a rate-equivocation pair, we define the secrecy capacity of the
channel defined inDefinition 12, which is the maximum transmission rate such that Eve’s equivocation
is the maximum possible.

Definition 15: Thesecrecy capacity, CS, is the maximum rateR such that the pair(R, 1) is achievable,
i.e.

CS = max{R : (R, 1)) is achievable}.
In the rest of this section, it is assumed that
• Alice and Bob have perfect knowledge of the main channel fading coefficient;
• Eve has perfect knowledge of the wiretap channel fading coefficient.
We will consider different channel state information (CSI)regimes for Alice’s knowledge of the

eavesdropper channel.

A. No CSI on the eavesdropper’s channel

Now, we consider the case where Alice has no knowledge of the wiretap fading coefficient. The next
result computes the value of the instantaneous secrecy capacity in terms of the SNR of both the main
channel (γM ) and the wiretap channel (γW ).

Lemma 3:The secrecy capacity for one realization of the quasi-static complex fading wiretap channel
is given by

CS =

{

log(1 + γM) − log(1 + γW ) if γM > γW

0 if γM ≤ γW

Next, we compute the probability of having a strictly positive secrecy capacity.
Lemma 4:For average SNRγM and γW of the main channel and the wiretap channel, respectively,

we have that
P(CS > 0) =

γM

γM + γW

.

Using the previous lemma, we can directly compute the probability of having strictly positive secrecy
capacity as a function of the distances between Alice and Boband between Alice and Eve.

Corollary 1: For distancedM between Alice and Bob, distancedW between Alice and Eve, and pathloss
exponentα, we have that

P(CS > 0) =
1

1 + (dM/dW )α
.

The previous two results show that whenγM >> γW (or dM << dW ) thenP(CS > 0) ≈ 1, and when
γM << γW (or dM >> dW ) thenP(CS > 0) ≈ 0. It also shows that to ensure that the secrecy capacity
is strictly positive with probability greater thanp0, then it is necessary to impose

γM

γW

>
p0

1 − p0

,
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or, equivalently,
dM

dW

< α

√

1 − p0

p0
.

In particular, a strictly positive secrecy capacity existseven whenγM < γW (or dM > dW ), although with
probability less than1/2.

Definition 16: The outage probability, Pout(RS), is the probability that the instantaneous secrecy ca-
pacity is less than a target secrecy rateRS, i.e.

Pout(RS) = P(CS < RS).
The significance of the outage probability is that, when setting the secrecy rateRS, Alice is assuming

that the capacity of the wiretap channel is given byC ′
W = CM − RS. Thus, if CS ≥ RS, Alice estimate

of Eve’s channel is better than the real wiretap channel, i.e. C ′
M > CM , thus perfect secrecy is ensured.

On the other hand, ifCS < RS, C ′
M < CM thus Alice and Bob lose information-theoretic security.

Theorem 7:The outage probability of the quasi-static complex fading wiretap channel is given by

Pout(RS) = 1 −
γM

γM + 2RSγW

exp

(

−
2RS − 1

γM

)

.

From the previous result, we can see that whenRS → 0, Pout(RS) → γM

γM +γW

, and whenRS → ∞,

Pout(RS) → 1. It can also be seen that whenγM >> γW , Pout(RS) ≈ 1 − exp
(

−2RS−1
γM

)

, thus for high

SNR regime,Pout(RS) ≈ 2RS−1
γM

, i.e. it decays proporcional to1/γM . On the other hand, ifγM << γW ,
Pout(RS) ≈ 1.

B. Imperfect CSI on the eavesdropper’s channel

Now, assume that Alice has imperfect information of the wiretap channel fading coefficient. The next
definition gives a precise notion on this assumption.

Definition 17: Alice’s estimate of Eve’s channel iŝhW = hW + δW , whereĥW is the estimate fading
coefficient of the wiretap channel andδW is a circularly symmetric complex Gaussian random variable
with mean zero and varianceσ2 per dimension.

Next, we define Alice’s estimate of secrecy capacity.
Definition 18: Alice’s instantaneous secrecy capacity estimate,ĈS is

ĈS =

{

ĈM − ĈW if ĈM > ĈW

0 if ĈM ≤ ĈW

whereĈM = log(1 + γM) is the instantaneous main channel capacity estimate, andĈW = log(1 + γW )
is the instantaneous wiretap channel capacity estimate.

The next result presents an upper bound on the probability that Alice’s estimate of secrecy capacity is
greater than the real secrecy capacity.

Theorem 8:The probability of a secrecy outage,Pout = P(ĈW < CM , ĈW < CW ), is upper bounded
by

Pout ≤
1

2
−

1

2

1
√

1 + 2/σ2
.

From the previous result, we see that whenσ2 → ∞ (i.e. the error in Alice’s estimate of the eavesdropper
channel goes to infinity),Pout → 0. But in this case, Alice will always estimate the secrecy capacity by
0.
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V. CONCLUSIONS

The computational model for security is based on unproven intractability results, thus it is not possible
to state unconditional security results for the most chiphers used in our days. Although this unproven
security problem is present in almost all used ciphers, there are so far no known efficient attacks for the
majority of the ciphers, so they are applicable to a vast set of problems. Another advantage of the classical
cryptography is the fact that no assumption about the plaintext to be encoded, and also the technology is
inexpensive and widely deployed. But classical cryptography present some more disadvantages besides the
unproven intractability assumptions. For example, the security of a cryptografic protocol is measured by
whether it survives to a set of attacks or not. Moreover, for wireless networks, state-of-art key distribution
schemes require a trusted third party, as well as complex protocols.

Information-theoretic provides a proper definition of security, because nothing is assumed on the
computational capacity of the eavesdropper. It also allowsfor precise security results to be stated. In
this report, we presented an overview on Information-Theoretic Security, stating some of the most famous
results related to this subject and, in Section IV, a state-of-art set results on wireless fading channels
information-theoretic security. It turns out that “fadingis a friend, not a foe”: even when the eavesdropper
has a better channel than the legitimate users, it is possible to have strictly positive secrecy capacity.

One possible future direction is to develop practical codesthat, in fact, achieve the secrecy capacity,
and to design new models for different security problems.
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