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Abstract— Motivated by the proliferation of dual radio devices,
we consider a wireless network model in which all devices have
short-range transmission capability, but a subset of the nodes has
a secondary long-range wireless interface. For the resulting class
of random graph models, we present analytical bounds for both
the connectivity and the max-flow min-cut capacity. Perhaps the
most striking conclusion to be drawn from our results is that
the capacity of this class grows quadratically with the fraction
of dual radio devices, thus indicating that a small percentage of
such devices is sufficient to improve significantly the capacity of
the network.

I. INTRODUCTION

As wireless interfaces become standard commodities and
communication devices with multiple radio interfaces appear
in various products, it is only natural to ask whether the
aforementioned devices can lead to substantial performance
gains in wireless communication networks. Promising exam-
ples include [1], where multiple radios are used to provide
better performance and greater functionality for users, and [2],
where it is shown that using radio hierarchies can reduce
power consumption. In addition, [3] presents a link-layer
protocol that works with multiple IEEE 802.11 radios and
improves TCP throughput and latency. This growing interest
in wireless systems with multiple radios (for example, a
Bluetooth interface and an IEEE 802.11 wi-fi card) motivates
us to study the impact of dual radio devices on the connectivity
and capacity of wireless networks.

For classical single-radio networks, random geometric
graphs provide a widely accepted model, whose connectivity
is well understood. In [4] Penrose shows a relation between
connectivity and minimum degree in terms of the value of the
radio range. Gupta and Kumar derive in [5], the critical radio
range for which the probability that the network is connected
goes to one as the number of nodes goes to infinity. Ganesh
and Xue [6] studied the connectivity and diameter of a class
of networks similar to random geometric graphs, with the
new feature of adding random shortcuts to the network, thus
creating a so called small-world network.

The capacity of networks (described by general weighted
graphs) supporting multiple communicating parties is largely
unknown, although progress has recently been reported in sev-
eral relevant instances of this problem. In the case where the
network has one or more independent sources of information
but only one sink, it is known that routing offers an optimal
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Fig. 1. Illustration of Dual Radio Networks. The square nodes represent the
devices with two wireless technologies, and the circular nodes represent the
nodes with only one wireless technology. The small and large circumferences
represent the coverage area of the short-range and long-range wireless
interfaces, respectively.

solution for transporting messages [7] — in this case the
transmitted information behaves like water in pipes and the
capacity can be obtained by classical network flow methods.
Specifically, the capacity of the network follows from the well-
known Ford-Fulkerson max-flow min-cut theorem [8], which
asserts that the maximal amount of a flow (provided by the
network) is equal to the capacity of a minimal cut, i.e. a
nontrivial partition of the graph node set V into two parts
such that the sum of the capacities of the edges connecting
the two parts (the cut capacity) is minimum.

The case of general multicast networks, in which a single
source broadcasts a number of messages to a set of sinks,
is considered in [9], where it is shown that applying coding
operations at intermediate nodes (i.e. network coding) is nec-
essary to achieve the max-flow/min-cut bound of the network.
In other words, if k messages are to be sent then the minimum
cut between the source and each sink must be of size at least
k. A converse proof for this problem, known as the network
information flow problem, was provided by [10], whereas
linear network codes were proposed and discussed in [11]
and [12]. Max-flow min-cut capacity bounds for Erdös-Rényi



graphs and random geometric graphs were presented in [13].
For small-world networks, capacity bounds were presented
in [14], [15].

Our main contributions are as follows:

• Network Model: We introduce a simple random graph
model, the Dual Radio Network (DRN), where nodes with
low-range radios are represented by a primary random
geometric graph and the set of dual radio nodes with their
additional long-range wireless links form a secondary
random geometric graph (see Fig. 1).

• Connectivity Bounds: For this class of networks, we
provide upper and lower bounds for the probability that
an instance of a Dual Radio Network is connected;

• Capacity Bounds: Using a set of probabilistic tools, we
derive upper and lower bounds for the max-flow min-cut
capacity of this class of random networks.

The rest of the paper is organized as follows. Section II offers
a formal problem statem. Our main results with respect to
connectivity and capacity are stated and proved in Sections
III and IV, respectively. The paper concludes with Section V.

II. PROBLEM STATEMENT

In this section, we give a rigorous definition for the class
of networks under consideration in the rest of the paper.

Definition 1: A Dual Radio Network (DRN) is a graph
G (n, p, rs, rL) = (V, E) constructed by the following pro-
cedure. Assign n nodes uniformly at random in the set T ,
where T is the torus obtained by identifying the opposite sides
of the box [0, 1]2, and define V as the set of these n nodes.
For a parameter rS , each pair of nodes (a, b), with a, b ∈ V ,
is connected if their euclidian distance verifies d (a, b) ≤ rS ,
and let ES be the set of edges created in this step. Now, for
a parameter p, define the set VL by the following: for node i,
i ∈ VL with probability p, and repeat this procedure ∀i ∈ V .
For a parameter rL, each pair of nodes (a, b), a, b ∈ VL is
connected if their euclidian distance verifies d (a, b) ≤ rL,
and let EL be the set of edges created in this step. Finally, the
set of edges of a DRN is defined by E = ES ∪ EL.

Fig. 1 provides an illustration of Dual Radio Networks. In
the definition above, notice that, for two nodes a, b ∈ V such
that rS < d(a, b) ≤ rL, they are connected only if both are
elements of the set VL. In terms of the wireless systems that
this class of networks pretends to model, this is a realistic
feature, since devices with the higher-level wireless technology
can only communicate, using this technology, with devices that
have the higher-level wireless technology as well.

In the rest of the paper, we study this class of networks in
terms of connectivity and capacity. We say that a network
is connected if for each pair of nodes there exist a path
connecting them. In the spirit of the max-flow min-cut theorem
of Ford and Fulkerson [8], we will refer to the global minimum
cut of a graph as the max-flow min-cut capacity (or simply
the capacity) of the graph.

III. RESULTS ON THE CONNECTIVITY OF A DUAL RADIO

NETWORK

In this section, we study the connectivity of the class of
networks introduced in Section II, providing an upper and a
lower bound on the probability of an instance of a Dual Radio
Network being connected.

Lemma 1: For rS ≤ 1/
√

π and rL ≤ 1/
√

π, the probability
that there is no isolated node in G (n, p, rS , rL) verifies:

P{no isolated node}≤1− (
1− πr2

S − πp2(r2
L − r2

S)
)n−1

.

Proof: First, we calculate the probability that a
node Y is connected to node X, given the position
of X. This probability is given by P(X↔Y|X) =
P({d (X,Y)≤rS}∪({X∈VL}∩{Y∈VL}∩{d (X,Y) ≤ rL})|X).
Using the notation P (A|X) = PX(A) and d(X,Y) = D,
we have the following:

PX(X↔Y)
(a)
=PX(D ≤ rS)+PX({X∈VL}∩{Y∈VL}∩{D≤rL})
−PX({D≤rS}∩{X∈VL}∩{Y∈VL}∩{D≤rL})

(b)
=PX(D≤rS)+PX({X∈VL}∩{Y∈VL}∩{D≤rL})
−PX({D≤rS}∩{X∈VL}∩{Y∈VL})

where (a) follows from the fact that for any two events A and
B, P(A∪B) = P(A)+P(B)−P(A∩B), and (b) is justified
by noticing that D ≤ rS ⇒ D ≤ rL, thus {D ≤ rS} ∩ {D ≤
rL} = {D ≤ rS}.

The events {D ≤ rL} and {X ∈ VL} are independent, and
the same is true for the events {D ≤ rL} and {Y ∈ VL}.
Because the set of nodes VL is formed by nodes selected at
random and in an independent fashion, we have that the events
{X ∈ VL} and {Y ∈ VL} are independent. Therefore,

PX({X ∈ VL} ∩ {Y ∈ VL} ∩ {D ≤ rL}) =

= PX(X ∈ VL) · PX(Y ∈ VL) · PX(D ≤ rL).

Using analogous arguments, we have that

PX({X ∈ VL} ∩ {Y ∈ VL} ∩ {D ≤ rS}) =

= PX(X ∈ VL) · PX(Y ∈ VL) · PX(D ≤ rS).

Noticing that the events {X ∈ VL} and {Y ∈ VL} are
independent of the position of X, we have that PX(X ↔
Y) = PX(D ≤ rS) + P(X ∈ VL) · P(Y ∈ VL) ·
(PX(D ≤ rL)− PX(D ≤ rS)) .

Because the set where the nodes are placed is a torus, we
have that PX(D ≤ ρ) = πρ2, with ρ ≤ 1/

√
π. Noticing that

P(X ∈ VL) = P(Y ∈ VL) = p, we have that:

PX(X ↔ Y) = πr2
S + πp2(r2

L − r2
S).

Now, to compute the probability that a node at a position
X is isolated, we argue that the events {X ↔ Y1}, {X ↔
Y2}, . . . , {X ↔ Yn−1}, conditioning on the fact that the
position of node X is given (say X = (x1, x2) = x), are
mutually independent. Without loss of generality, we may
write:

P(X ↔ Y1|X ↔ Y2, . . . ,X ↔ Yn−1,X = x)

= P(Y1 ↔ x|Y2 ↔ x, . . . ,Yn−1 ↔ x),
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where we exploited the fact that the position of X is fixed.
Now, notice that none of the events {Y2 ↔ x}, . . . , {Yn−1 ↔
x} afects the event {Y1 ↔ x}, because we do not have
information about the existence of connection between Y1 and
any of the Yi. Therefore, P(X ↔ Y1|X ↔ Y2, . . . ,X ↔
Yn−1,X = x) = P(X ↔ Y1|X = x). Since we can
use similar arguments for different subsets of the collection
{{X ↔ Y1}, {X ↔ Y2}, . . . , {X ↔ Yn−1}}, we have that
the events {X ↔ Y1}, {X ↔ Y2}, . . . , {X ↔ Yn−1} are
mutually independent, conditioned on the fact that the position
of node X is given.

Thus, the probability that a node at a position X is isolated
is given by:

PX({X is isolated}) =
(
1− πr2

S − πp2(r2
L − r2

S)
)n−1

.

Therefore, the probability of a node being isolated is given
by:

P({a node is isolated}) =
∫ 1

0

∫ 1

0

PX({X is isolated})dx

=
(
1− πr2

S − πp2(r2
L − r2

S)
)n−1

.(1)

Now, let X1,X2, . . . ,Xn represent the nodes of the graph.
We have that:

P({no isolated node}) = P({X1 is not isolated} ∩ . . .

· · · ∩ {Xn is not isolated})
= 1−P({X1 is isolated} ∪ . . .

· · · ∪ {Xn is isolated}).
Now, notice that

P({X1 is isolated}∪· · ·∪{Xn is isolated})≥P(X1 is isolated).

Therefore, by (1), we have that

P({X1 is isolated}∪. . .∪{Xn is isolated})≥(
1−πr2

S−πp2(r2
L−r2

S)
)n−1

and the result follows.

After determining the probability of having an isolated node
in a DRN, we calculate a bound on the probability that a DRN
is disconnected.

Lemma 2: For rS ≤ 1/
√

π and rL ≤ 1/
√

π, the probability
that G(n, p, rS , rL) is disconnected, Pd(n, p, rS , rL), verifies

Pd(n, p, rS , rL) ≤ 1− (
1− πr2

S − πp2(r2
L − r2

S)
)n

πr2
S + πp2(r2

L − r2
S)

− 1.

Proof: For k > 1, select a node from G(k, p, rS , rL),
say node k. To G(k, p, rS , rL) be disconnected, or
node k is isolated, or the subgraph obtained by re-
moving node k and all its edges (which can be
viewed as G(k − 1, p, rS , rL)) is disconnected. Thus, we
have that {G(k, p, rS , rL) is disconnected} = {G(k −
1, p, rS , rL) is disconnected} ∪ {node k is isolated}. There-
fore

Pd(k, p, rS , rL) ≤ P(node k is isolated in G(k, p, rS , rL))

+Pd(k − 1, p, rS , rL).

After recursion, we have that:

Pd(n, p, rS , rL)≤P(a node is isolated in G(2, p, rS , rL))

+
n∑

k=3

P(node k is isolated in G(k, p, rS , rL))

≤1− πr2
S − πp2(r2

L − r2
S)

+
n∑

k=3

(
1− πr2

S − πp2(r2
L − r2

S)
)k−1

≤1− πr2
S − πp2(r2

L − r2
S)

+
n−1∑

k=2

(
1− πr2

S − πp2(r2
L − r2

S)
)k

≤
n−1∑

k=1

(
1− πr2

S − πp2(r2
L − r2

S)
)k

.

Because
n∑

k=1

ak = a−an+1

1−a , we have that Pd(n, p, rS , rL) ≤
1−πr2

S−πp2(r2
L−r2

S)−(1−πr2
S−πp2(r2

L−r2
S))n

πr2
S+πp2(r2

L−r2
S)

and the result fol-
lows.

Using the previous two lemmas, we are able to state our main
result in terms of connectivity.

Theorem 1: For rS ≤ 1/
√

π and rL ≤ 1/
√

π, the probabil-
ity that G(n, p, rS , rL) is connected, Pc(n, p, rS , rL), verifies

Pc(n, p, rS , rL)≥max{2−1−(
1− πr2

S − πp2(r2
L − r2

S)
)n

πr2
S + πp2(r2

L − r2
S)

, 0}

and

Pc(n, p, rS , rL) ≤ 1− (
1− πr2

S − πp2(r2
L − r2

S)
)n−1

.

Proof: It is easy to see that

Pc(n, p, rS , rL) ≤ P ({no isolated node in G(n, p, rS , rL)}) .

Thus, using Lemma 1, we have the upper bound for
Pc(n, p, rS , rL). Noticing that Pc(n, p, rS , rL) = 1 −
Pd(n, p, rS , rL), using Lemma 2 and taking the maximum
between the lower bound obtained and zero (because a prob-
ability is always lower bounded by zero), the result follows.

IV. CAPACITY RESULTS FOR DUAL RADIO NETWORKS

We consider a multiple-source multiple-terminal transmis-
sion on a DRN with n nodes, denoting by s1, . . . , sα the set
of the α sources and by t1, . . . , tβ the set of the β terminals.
Let i and j be two nodes of a DRN. Cij is the capacity
of the edge (i, j), defined by Cij = 1, if d(i, j) ≤ rS or
i ∈ VL ∧ j ∈ VL ∧ d(i, j) ≤ rL, and Cij = 0 otherwise.
This means that Cij = 1 if nodes i and j are connected, and
Cij = 0 otherwise. Notice that E [Cij ] = P(i ↔ j) and, as
we have seen in Section III, P(i ↔ j) = πr2

S +πp2(r2
L−r2

S),
with rS ≤ 1/

√
π and rL ≤ 1/

√
π, which we assume in the

following. Let µ = πr2
S + πp2(r2

L− r2
S). The techniques used

for proving the following results are similar to those used in
[13]. In the following, we consider unitary weight for all the
edges in an instance of a DRN, for simplicity.
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First, we determine an upper bound on the probability that
the capacity of a cut does not takes a value much greater than
its expected value.

Lemma 3: Let G be a random instance of a DRN, and
consider a single-source single-terminal transmission (i.e. α =
β = 1). Let N be the number of relay nodes, i.e. N = n− 2.
Let Ck be the capacity of a cut in G in which one of the
partitions consists of k nodes and the source. For ε > 0 and
N ≥ 2,

P(Ck ≤ (1− ε)E [Ck]) ≤ e−(N+1+k(N−k))µ2ε2/N2
.

Proof: We have that

P(Ck ≤ (1− ε)E(Ck))=P(−Ck − E(−Ck) ≥ εE(Ck)). (2)

To compute the desired upper bound, we shall use the Hoeffd-
ing’s inequality [16], which states that, for X1, X2, . . . , Xm

independent random variables with P(Xi ∈ [ai, bi]) = 1, ∀i ∈
{1, 2, . . . , m}, if we define S = X1 + X2 + · · ·+ Xm, then

P(S − E(S) ≥ mt) ≤ exp


−

2m2t2

m∑
i=1

(bi − ai)2


 .

More precisely, we shall use this inequality for m = 1. First,
notice that Ck is upper bounded by the value of a similar cut
in the complete graph, i.e.

Ck ≤ (k + 1)(N − k + 1) = N + 1 + k(N − k).

Therefore, we have that Ck ∈ [0, N + 1 + k(N − k)]. Thus,
applying Hoeffding’s inequality in (2), we have that

P(Ck ≤(1− ε)E(Ck))≤exp
(
− 2ε2(E(Ck))2

(N + 1 + k(N − k))2

)
. (3)

Now, notice that Ck is the sum of N + 1 + k(N − k) random
variables of the form Cij , with Cij = 1, if i ↔ j and Cij =
0, if i = j, i.e. i is not connected to j. Therefore, for each of
these random variables, we have that E(Cij) = P(i ↔ j) =
µ. Thus

E(Ck) = (N + 1 + k(N − k))µ.

Now, notice that N + 1 + k(N − k) ≤ 2N2, for N ≥ 2,
thus 1

N+1+k(N−k) ≥ 1
2N2 , for N ≥ 2. Therefore

exp
(
− 2ε2(E(Ck))2

(N+1+k(N−k))2

)
≤exp

(
− (N+1+k(N−k))µ2ε2

N2

)
.

Thus, by (3), the result follows.

Corollary 1: Let Ck and N be as defined in Lemma 3 and
let Ak be the event {Ck < (1− ε)E [Ck]}. Then

P(∪kAk) ≤ 2e−µ2ε2/N ·
[
1 + e−µ2ε2/2N

]N

.

Proof: By Lemma 3, we have that P(Ak) ≤
e−(N+1+k(N−k)µ2)ε2/N2

, which also gives

P(Ak) ≤ e−(N+k(N−k))µ2ε2/N2
.

Notice that, for each k ∈ {0, ..., N}, there are
(
N
k

)
cuts in

which one of the partitions consists on k nodes and the source.
Therefore,

P(∪kAk) ≤
N∑

k=0

(
N

k

)
P(Ak)

≤
N∑

k=0

(
N

k

)
e−(N+k(N−k))µ2ε2/N2

Let β = e−µ2ε2/N . Then:

P(∪kAk)≤β

N∑

k=0

(
N

k

)
βN k

N (1− k
N )

=β



bN/2c∑

k=0

(
N

k

)
βN k

N (1− k
N )+

N∑

k=bN/2c+1

(
N

k

)
βN k

N (1− k
N )


.

Notice that, when k
N ∈ [0, 1/2],

k

N
(1− k

N
) ≥ k

2N
,

and when k
N ∈ [1/2, 1],

k

N
(1− k

N
) ≥ N − k

2N
.

Therefore:

P(∪kAk)≤β



bN/2c∑

k=0

(
N

k

)
βN k

2N +
N∑

k=bN/2c+1

(
N

k

)
βN 1

2 (1− k
N )




≤β

(
N∑

k=0

(
N

k

) (
β

1
2

)k

+
N∑

k=0

(
N

k

) (
β

1
2

)N−k
)

(a)

≤2β(1 +
√

β)N

(b)

≤2e−µ2ε2/N ·
[
1 + e−µ2ε2/2N

]N

where (a) follows from the fact that (x + y)m =
m∑

k=0

(
m
k

)
xkym−k, thus

N∑

k=0

(√
β
)k

= (1 +
√

β)N =
N∑

k=0

(√
β
)N−k

,

and (b) follows from substituting β by e−µ2ε2/N .

Now, using Corollary 1, we obtain the first result related to
the capacity of a DRN, which is valid for the single-source
single-terminal transmission problem.

Corollary 2: Let Cmin(s1 → t1) be the global minimum cut
in an instance of DRN. Then

P(Cmin(s1→t1)≤(1−ε)(N+1)µ)≤2e−µ2ε2/N ·
[
1 + e−µ2ε2/2N

]N

.

Proof: Let Ãk be the event {Ck < (1−ε)E [C0]} and let
Ak be the event {Ck < (1−ε)E [Ck]}. We have that E [Ck] =
(N + 1 + k(N − k))µ. Therefore, E [Ck] ≥ E [C0] , ∀k ∈
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0, ..., N . Thus Ãk ⊆ Ak, which implies that ∪kÃk ⊆ ∪kAk.
Therefore,

P(Cmin(s1 → t1) ≤ (1− ε)E [C0]) = P(∪kÃk)

≤ P(∪kAk).

Using Corollary 1 and noticing that E [C0] = (N + 1)µ, the
result follows.

Now, we are ready to state our main result in terms of capacity
of a DRN:

Theorem 2: Let Cmin(α, β) be the global minimum cut for
a transmission with α sources and β terminals, in an instance
of a DRN. Let ε =

√
2(n−2)d ln(n−2)

µ2 with d > 0, and µ =
πr2

S + πp2(r2
L − r2

S). Then

Cmin(α, β) > (1− ε)(n− 1)µ

with probability 1− O
(

αβ
n2d

)
, and

Cmin(α, β) < (1 + ε)α(n− α)µ

with probability 1− O
(

1
n4nd

)
.

Proof: Recall that, for a single-source single terminal
transmission, N = n − 2. Therefore P(Cmin(s1 → t1) ≤
(1 − ε)(n − 1)µ) = P(Cmin(s1 → t1) ≤ (1 − ε)(N +
1)µ). Thus, replacing ε in Corollary 2 by the expression√

2(n−2)d ln(n−2)
µ2 =

√
2Nd ln N

µ2 , we have that:

P(Cmin(s1→t1)≤(1−ε)(n−1)µ)≤2e
−2dNµ2 ln N

Nµ2 ·[1+e
−2dNµ2 ln N

2Nµ2 ]N

≤ 2
N2d

·
[
1 +

1
Nd

]N

.

We have that (x + y)N =
N∑

k=0

(
N
k

)
xkyN−k, thus

[
1 +

1
Nd

]N

=
N∑

k=0

(
N

k

)(
1

Nd

)k

.

Therefore, we have that:

P(Cmin(s1→t1)≤(1−ε)(n−1)µ)≤ 2
N2d

·
N∑

k=0

(
N

k

)(
1

Nd

)k

(a)

≤ 2
N2d

·
∞∑

k=0

(
N

Nd

)k

(b)

≤ 2
N2d −Nd+1

≈O

(
1

N2d

)

=O

(
1

n2d

)

where:

• (a) follows from the fact that
(
N
k

)
= N !

(N−k)!k! =
N×(N−1)×···×(N−k+1)

k! , thus
(
N
k

) ≤ N × (N −1)×· · ·×
(N − k + 1) ≤ Nk;

• (b) follows from the fact that
∞∑

k=0

xk = 1
1−x , for |x| < 1,

therefore ∞∑

k=0

(
N

Nd

)k

=
1

1−N1−d
,

which implies that 2
N2d ·

∞∑
k=0

(
N
Nd

)k
= 2

N2d−Nd+1

Now, back to the multiple-source multiple-terminal trans-
mission, we have that

P( Cmin(α, β) ≤ (1− ε)(n− 1)µ) =

= P
(
∪α

i=1 ∪β
j=1 {Cmin(si → tj) ≤ (1− ε)(n− 1)µ}

)
.

Therefore, by the union bound,

P( Cmin(α, β) ≤ (1− ε)(n− 1)µ) ≤

≤
α∑

i=1

β∑

j=1

P (Cmin(si → tj) ≤ (1− ε)(n− 1)µ) .

From the fact that, as we derive in Corollary 2,
P (Cmin(si → tj) ≤ (1− ε)(n− 1)µ) does not depend on
nodes i and j, we have that P(Cmin(α, β) ≤ (1−ε)(n−1)µ) ≤
αβP (Cmin(s1 → t1) ≤ (1− ε)(n− 1)µ). Therefore, we have
that

P( Cmin(α, β) ≥ (1− ε)(n− 1)µ) ≥
≥ 1− αβ · P (Cmin(s1 → t1) ≤ (1− ε)(n− 1)µ)

and, because we already proved that P(Cmin(s1 → t1) ≤ (1−
ε)(n− 1)µ) = O

(
1

n2d

)
, the first part of the theorem follows.

Now, to compute the upper bound on P(Cmin(α, β) ≥
(1 + ε)α(n − α)µ), notice that, by definition, any cut (that
contains in one partition the source nodes and in the other
partition the terminal nodes) is greater or equal to Cmin(α, β).
Thus, the value of the cut in which one of the partitions
consists of source nodes only (denoted by C∗(α, β)) is greater
or equal to Cmin(α, β). This means that, if Cmin(α, β) ≥
(1 + ε)α(n − α)µ, then C∗(α, β) ≥ (1 + ε)α(n − α)µ.
Therefore, because P (Cmin(α, β) ≥ (1 + ε)α(n− α)µ) =
P (Cmin(α, β) ≥ (1 + ε)α(N + β)µ), we have that

P( Cmin(α, β) ≥ (1 + ε)α(n− α)µ) ≤
≤ P(C∗(α, β) ≥ (1 + ε)α(N + β)µ),

which is equivalent to

P( Cmin(α, β) ≥ (1 + ε)α(n− α)µ) ≤
≤ P(C∗(α, β)− α(N + β)µ ≥ εα(N + β)µ).

Noticing that C∗(α, β) ∈ [0, α(N + β)], E(C∗(α, β)) =
α(N +β)µ, and applying Hoeffding’s inequality [16], we have
that

P( C∗(α, β)− α(N + β)µ ≥ εα(N + β)µ) ≤
≤ exp

(
−2ε2α2(N + β)2µ2

α2(N + β)2

)
.

Therefore
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P (Cmin(α, β) ≥ (1 + ε)α(n− α)µ) ≤ exp
(−2ε2µ2

)
(a)

≤ 1
N4Nd

where (a) follows from the substitution of ε by√
2(n−2)d ln(n−2)

µ2 . Thus, we have that

P (Cmin(α, β) ≥ (1 + ε)α(n− α)µ) = O
(

1
n4nd

)

and the result follows.

This result shows that the capacity for a multiple-source
multiple-terminal transmission grows quadratically in function
of the parameter p, which represents the percentage of nodes
with two wireless technologies. Thus, this result shows that
there is a significant benefit (in terms of capacity) by using
dual-radio schemes in wireless systems.

Setting α = β = 1 in Theorem 2, we obtain the following
bounds for the capacity of a single-source single-terminal
transmission:

Corollary 3: Let Cmin be the global minimum cut for a
single-source single-terminal transmission in an instance of a
DRN. Let ε =

√
2(n−2)d ln(n−2)

µ2 , and µ = πr2
S+πp2(r2

L−r2
S).

Then
Cmin > (1− ε)(n− 1)µ

with probability 1− O
(

1
n2d

)
, and

Cmin < (1 + ε)(n− 1)µ

with probability 1− O
(

1
n4nd

)
.

V. CONCLUSIONS

We defined a class of random geometric graphs that models
a wireless network in which all devices share the same short-
range radio capability, and some of them have a secondary
long-range wireless interface. For this class of networks,
we provided upper and lower bounds on the probability of
its connectivity. We also provided bounds for the capacity
of this class of networks, evidencing that the use of dual
radio technologies can improve the capacity of the network.
Specifically, we showed that the capacity of our model grows
quadratically with the fraction of devices with two wireless
interfaces. As part of our ongoing work, we are analyzing the
diameter and the clustering coefficient of dual radio networks
and explore their relationship with small world networks.
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