
Dataflow Model Property Verification Using Petri
net Translation Techniques

José-Inácio Rocha∗†‖§, Luı́s Gomes†‖‡ and Octávio Páscoa Dias∗¶
∗Escola Superior de Tecnologia de Setúbal

Rua Vale de Chaves, Estefanilha, Setúbal, Portugal
†Universidade Nova de Lisboa

Faculdade de Ciências e Tecnologia, Campus da FCT/UNL, Portugal
‖UNINOVA-Centro de Tecnologia e Sistemas, Portugal

‡Email: lugo@uninova.pt
§Email: jose.rocha@estsetubal.ips.pt

¶Email: octavio.dias@estsetubal.ips.pt

Abstract—Dataflow process networks lead to different the-
oretical model approaches and have demonstrated their ade-
quacy in data-dominated intensive systems, namely Synchronous
Dataflows. Since their appearance, dataflow models became too
focused and specialized in their target applications. The paper
presents a set of translating mechanisms allowing the mapping
from dataflow models into Petri nets. This mapping allows
taking advantage of Petri nets well-known properties verification
capabilities and enriching dataflow models concerning scheduler
information and resource allocation. This allows one to find out
some hidden embedded features (model semantics and syntax)
not normally addressed in dataflow analysis tools, which is briefly
characterized. Dataflow model translation into Petri net domain
give support to attain the required resource allocation under
dataflow static scheduling list. This scheme allows one to make
conclusion in Petri net domain to be applied in dataflow models
to foresee the necessary amount of storage resources for each
arc. An application example is used to illustrate the concept and
effectiveness of the outlined approach.

I. MOTIVATION AND INTRODUCTION

Since data flows arise along with synchronous dataflow [1],
many extensions emerged to model digital signal processing
applications, including cyclo-static dataflow [2], scalable syn-
chronous dataflow [3] and boolean dataflow [4] to increase
its power expressivity, and more recently meta-modeling tech-
niques, such as Parameterized Synchronous Data flows (PSDF)
and Homogeneous Parameterized Dataflow (HPDF). They
allow the specification of a system, serve for simulation and
may generate automatic code for real time synthesis.

Data flows graphs [5], [6] and meta-modeling techniques
[7], [8], [9] that can be applied to different dataflow base
models, as well as Petri Nets [10], [11] have demonstrate
their adequacy in modeling systems, namely data-dominated
systems as in digital signal processing intensive applications.
Data flows can be viewed as a natural representation of target
digital signal processing (DSP) because their representation
exposes the parallel and concurrent processing for DSP sys-
tems and the constraints involved in their order evaluation are
minimal, devised by a scheduler.

In distributed processing system, resources and information
are shared among several processors. This sharing must be

controlled or synchronized to insure the correct operation
of the overall system. Petri net have been used to model a
variety of synchronization mechanisms, including the mutual
exclusion, readers-writers and producers-consumers problems.

Due to the lack of or reduced verification mechanisms in
dataflow graphs, a major issue of our research is to devise
techniques to increase the knowledge about intrinsic features
of these dataflow graphs. We propose to translate dataflows
into a different domain, where it is possible to reasoning about
specific properties of the model, which will be mapped back
into dataflow properties. For that we proposed to use Petri nets,
where a set of verification techniques are available namely the
invariant analysis.

With a similar goal in mind, the modeling of biological
systems using Petri nets was introduced by Reddy et al.
[12], and the research is nowadays govern into the domain
of understanding the process in a living cell [13]. Petri nets
were introduced as a modeling mechanism due to their simi-
larity with biological systems, since the systems are bipartite
(species/substrates and interactions), concurrent, stochastic and
non-deterministic. Petri nets provide a mathematically repre-
sentation of the inherently complex structures of biochemical
pathways. Besides, with Petri net analysis techniques, biolog-
ical system models may be validated qualitatively. In [13]
behavior properties of the Petri nets are employed to check
the model consistency and correctness using T-invariants. T-
invariants are a set of events returning to a given state, and any
system behavior may be decomposed into a linear combination
of these basic behaviors reached by T-invariant analysis. To
explore the validation of Petri net apoptosis [14] models Ian
Wee Jin Low et al. [15] introduce P-invariant analysis. With
this approach they validate and increase the confidence on
transduction pathways [16] models’ level, as well as based on
definition of P-invariant, guarantees that certain parts of the
net always maintain a fixed amount of tokens which can be
understood as a conservation of the biological signal inside
the modeled system.

The paper is organized as follows: In section II a summa-
rized introduction of Petri nets is given. Section III presents a

978-1-4577-0434-5/11/$26.00 ©2011 IEEE 783

brief overview of dataflows. The translation between dataflows
and Petri nets is revealed and unmasked in section IV. A
working example is presented in section V to exemplify the
translation of a Synchronous Dataflows into a Petri net graph.
Results are discussed based on P-Invariants and T-Invariants
analysis in section VI. The final section gives a summary of
the results reached so far and addresses an outlook on future
research directions concerning the duality of dataflows and
Petri nets, namely the translation analysis of macro structures.

II. INTRODUCTION TO PETRI NETS

In order to introduce Petri nets a summarized view is
provided, for a more complete and formal description of Petri
nets see for example [10], [17] or [18]. In this work we use
Place-Transitions nets as our reference class of Petri nets.

Petri nets benefit from having a mathematical representation
(which allows tool support and formal analysis) and graphical
representation (which support easy production of documenta-
tion). Coming into the graphical representation, in Petri nets
we can distinguish two basic elements, one that embodies the
passive nature of the structure and the active part of the system
to be modeled. Passive elements are represented by circles or
ellipses which model normally conditions, states, resources
or objects, while the active elements known as transitions,
denoted by rectangles or boxes, models events, actions or
activities that changes the values of the supposed conditions or
objects. Petri nets also comprise tokens, which represent the
value of a condition or object, drawn by black dots inside
places. Arcs are used to describe interactions between the
active and passive elements. It is only possible to connect
nodes (transition/place) of different type, the so called bipartite
graphs. An arc may has attached a natural number written near
the corresponding arc, the arc weight, which specifies that a
transition is enabled only when the input places has at least
as many tokens as given by the arc weight. When an enabled
transition fires, an equal number of tokens given by the arc
weight in the input place is destroyed. Firing a transition will
also create an amount of tokens specified by the associated
arc weight in the output places.

The token distribution, called Petri net marking changes
with the firing of enabled transitions in a net. A firing sequence
will determine a sequence of new marking distribution. If a
Petri net has m places, their marking is represented by a (mx1)
vector M, where each element correspond to the number of
the tokens in each corresponding place.

To describe the initial state of a model, a set of tokens
is associated to the places, known as initial marking M0. A
Petri net can be defined formally by a 5 tuple structure as
PN=(P, T, I, O,M0) [17], where:

• P={p1, p2, ..., pm} is a finite set of places;
• T={t1, t2, ..., tn} is a finite set of transitions, with P ∪

T 6= ∅ and P ∩ T = ∅;
• I : (P × T) 7−→ N is an input function that defines

directed arcs from P to T, where N is a set of natural
numbers;

• O : (T × P) 7−→ N is an output function that defines
directed arcs from T to P;

• M0 : P 7−→ N0 is the initial marking.
In the structural analysis, our attention is focused on two

properties:
• Place Invariant. The existence of a place invariant

means that the weighted token sum on a group of places
remains invariant, i.e., constant, for any new marking.
This property is useful to detect possible regions where
the number of tokens grow indefinitely, requiring the
allocation of infinite resources. In engineering domain
[19] a place invariant reflects a conservation property of
the protocol;

• Transition Invariant. In this case, a group of transitions
may fire that it does not affect the new marking on the
Petri net.

A. P-Invariant Analysis

Every Petri net with m places and n transitions can be
transformed into a matrix called the incidence matrix C = [cij]
with dimension m×n. The entries cij of the incidence matrix
are integers obtained as

cij = c+ij − c−ij (1)

where c+ij defines the arc weight from transition j to place
i, and c−ij the arc weight from input place i to transition j,
therefore equation (1) represent the tokens balance associated
to the firing of transition j. The entries of the incidence
matrix are expected to be positive values if there is a token
gain, negative if exists a loss and zero if there is no change
concerning the transition j and place i.

In invariant analysis, our concern is to design systems
without inconsistencies that cope with properties which remain
constant during execution of the model.

Using these P-Invariants in fundamental equation M =
M0 + C · f , with firing sequence f, where we multiply it by
vT ,

vT ·M = vT ·M0 + vT · C · f (2)

If there exist a v ∈ Zn such that v 6= 0, then v is a P-
Invariant if only if in the equation (2), the right most part
vT · C · f is null, i.e.,

vT · C = 0 (3)

B. T-Invariant Analysis

T-invariant analysis is another important property related
to the incidence matrix. The nonzero entries in the T-invariant
represent the number of firings of the corresponding transitions
that belongs to a firing sequence allowing the Petri net to start
with a marking Mn and goes back to Mn.

The integer solution w of the following equation,

C · w = 0 (4)

784

is called a T-invariant. With the T-invariant it is only possible
to know the number of times each transition fires till it ends
the cycle. In this sequence of firings the order of firings is not
predictable. However with the reachability tree one can find
the exact firing sequence, if exists.

III. INTRODUCTION TO DATAFLOWS

Gilles Kahn introduced in 1974 the principles of a lan-
guage for parallel programming. The paper [6] presented the
semantics, syntax and the graphical representation of simple
processes to explore the concepts of the proposed outlined
formulation approach. The basic idea was to represent pro-
grams using nodes and arcs. Nodes are associated to processes
and arcs connect nodes to represent the flow of information
between processes. These arcs are first-in first-out (FIFO)
communication queue channels, where read operations are
blocking and write operations non-blocking. Kahn Process
Networks (KPN) are monotonic and continuous. Monotonicity
implies that if nodes process more input information then
also generate more output stream information. This is an
important property since it allow parallel computation. The
continuity property establish that a increasing continuous chain
of information is mapped (processed) into another increasing
chain.

Synchronous Dataflow (SDF) is an extension of dataflow
where the number of data samples (tokens) are known in
advance at compile time. In [20], Lee and Messerchmitt,
point out conditions for correctness of SDF for homogeneous
parallel processors sharing memory. Under this paradigm,
algorithms are described by nodes and arcs. Nodes represent
computations and the arcs are associated to data paths. Nodes
may have no incoming arcs. In this case, the program ex-
ecution may start at any time. If a node has data available
on its incoming or outgoing arcs, it may fire (tokens or
data samples are consumed or produced) whenever desires.
SDF dataflow uses two types of nodes: (1) Synchronous and
(2) Asynchronous. Asynchronous nodes are useful to control
conditional execution of a subgraph, in similar way to a
structured construct programming statement if-then-else. SDF
is suitable for systems where all sample rates are rational
multiples of other sample rates. In synchronous dataflow the
number of tokens produced and consumed are fixed, which
allows to perform a static schedule.

Since SDFs are limited in their representation of large parts
of a program, a more general model is required to represent
data-dependent and conditional execution using the balance
equations. The addition of two actors (switch and select)
allowed conditional statements like if-then-else and do-while
loops of token consumption and production, as introduced in
[4]. A switch actor has two inputs (input and control) and two
output (one for the true, T condition and another for false, F
condition). The Boolean value of the control token determined
which output (T or F) receives a copy of a token from data
input. Selector actor has three inputs (T, F and control) and
one output. When a control token is received a token copy

Dataflow Domain Space Petri net Domain Space

Dataflow model

Transformation

Transformed Model

Analysis

Mapping

Transformation Properties

Properties

Fig. 1: Dataflow and Petri net domains

of the appropriate input (T or F) is transferred to the output,
based on the Boolean value of the control token.

IV. TRANSLATING SYNCHRONOUS DATAFLOW INTO PETRI
NET

In signal processing domain, signals are commonly repre-
sented in the time domain, but most signal analysis techniques
are done in the frequency domain. Signals can indeed be
represented in both forms since they are equivalent ways of
describing the same signal. Analyzing signals in time domain
precludes and hide important signal features, so it is necessary
to make a ”bridge” between the two domains (time and
frequency). And sometimes problems are more easily solved
in the time domain, while others are better settled in the
frequency domain.

The time and frequency domains are linked by consid-
ering complex exponencial signals and impedances. Solving
a differential equation relating the input and output of a
circuit is easier if one provides the transformation to frequency
domain. One method to switch from one domain to another is
known as Fourier transform. With the Fourier transform (under
certain signal conditions) its possible to make a bound to the
frequency domain and achieve a continuous spectrum from a
time signal, as well as it is also possible to perform the inverse
operation.

Likewise by analogy with the signal processing domain,
our idea is to perform a switching method between two
domains: (1) Dataflow (DF) domain space; (2) And Petri net
(PN) domain space. Figure 1 depicts the whole picture of
the proposed mapping approach. In dataflow domain space
it is common to obtain a static scheduling using one balance
equation per arc. And sometimes this type of analysis leads to
a dead end since, some dataflow do not hold a static schedule.
Due to this drawback and the lack of a formal analysis well
established a mapping is outlined to take advantage of Petri
nets well-known properties verification capabilities and at the
same time enriching dataflow models concerning scheduler
information and resource allocation performing an inverse
transformation.

A. Translation rules

In table I one can find the proposed mapping in between
dataflow domain space and Petri net domain space. A process

785

or function in dataflow domain is represented as a circle,
whereas a resource, e.g. a First In First Out (FIFO) queue,
is represented by an edge (arc) marked with an arrowhead
to show the direction of the information flow. Arcs can also
include weights to denote the amount of information that goes
in and out of a resource. Taking into account the concepts of
passivity and activity it is easy to make a connection between
dataflow and Petri net components (nodes). Where one can
find activity in dataflow domain (DD) the associated node
in Petri net domain (PND) will be a transition, while if the
component shows passivity in DD it will be mapped into a
place in PND. Arc weights in DD will be mapped directly into
arc weights in PND. As what concerns the initial marking there
is a unequivocal direct mapping between dataflow domain and
Petri net domain.

TABLE I: Translation Table from Synchronous Dataflows
(DF) to Petri nets (PN)

Proc./Function Resource Arc weight Initial Marking

DF

PN
a b

V. WORKING EXAMPLE

Our analysis starts with a simple dataflow model depicted
in figure 2. In signal processing systems it is important to
know if there exists a static scheduling where a process
can be repeated forever. This cycle (static scheduling list)
can be determined establishing one balance equation per arc.
This equation states that on every arc the amount of tokens
produced by an origin node is equal to the amount of tokens
consumed by a destination node. For the model considered
later on and showed in figure 2, a set of balance equations (in
our case five, one per arc) is obtained:

2 · a− 4 · b = 0

b− 2 · c = 0

2 · c− d = 0

2 · b− 2 · d = 0

2 · d− a = 0

Solving this trivial linear set of equation, the achieved
solutions are:

a = 4, b = 2, c = 1, d = 2,

which states that in every cycle node a acts four times, nodes b
and d act twice, and node c act just once, which correspondes
to the static scheduling. Although it is important to note that
there are situations where this set of equation does not have
a root, which means that it is not possible to achieve a static
schedule; This is not the case for our example. Applying the
translation rules presented in table I we obtain Petri net model

of figure 3 which allows us to gain a better insight of the
functionality of the modeled system to be analyzed in the next
section.

Fig. 2: Dataflow model. (From [21]).

Fig. 3: Petri model obtained using the associated translation
table I.

VI. ANALYSIS

Two different software tools were used to produce anal-
ysis. INA (Integrated Net Analyzer) [22] is a software that
allows modeling and analysis of Place/Transition nets and
time/untimed nets using a text editor or the alphanumeric
editor in a DOS window. With this alphanumeric editor the
user can manage all functions necessary to enter, merge
and edit nets. In fact the lack of a graphic user interface
constrains the user to know the proposed semantic, to model
nets. And TINA (TIme Petri Net Analyser) [23] is a software
environment that cope with editing and analyzing of Petri nets
and Time Petri nets.

Using INA to analyze the transformed dataflow into a Petri
net in figure 3, two elementary properties are displayed, to
mention:

• The net is structurally bounded, i.e., the net is bounded
for every initial marking;

• The net is bounded, meaning that no place has never an
unlimited number of tokens.

These two properties states that in the Petri net domain
the former dataflow needs a limited amount of resources
to perform their functionalities or activities. On other end
the structurally bounded property reinforce that the behavior

786

of dataflow always require a limited amount of resources
independently of the initial marking. This evaluation states that
we must be aware of aspects related to problems with overflow
since in communication processes places are associated to
information storage areas, besides information must be stored
without any kind of corruption or problem in the buffer areas.

In invariant analysis the incidence matrix (hereafter denoted
by C) plays a center role. The components of each invariant
vector denotes weights. For P-invariant, the associated vector
reflects a constant weighted amount of tokens in a set of
places independently of the firing sequence. Whereas for T-
invariants, their vector components guarantees that after firing
all transitions (as many times as indicated by each component
value) the model reaches the same marking as before. The
incidence matrix (where places are committed to rows and
transition to columns) for this example is as follows:

C =




−1 0 0 2
2 −4 0 0
0 1 −2 0
0 0 2 −1
0 2 0 −2




(5)

Performing a P-invariant analysis with INA/TINA, i.e, solv-
ing the system of linear equations vT · C = 0 yields the
following P-Invariants vectors of the invariant basis space:

v = {(2 1 4 4 0)T , (2 1 0 0 2)T } (6)

Therefore (2) reduces to vT · M = vT · M0, and with the
obtained P-Invariants we get,

2 ·M(p1) +M(p2) + 4 ·M(p3) + 4 ·M(p4) =

2 ·M0(p1) +M0(p2) + 4 ·M0(p3)

+4 ·M0(p4) = 8(7)
2 ·M(p1) +M(p2) + 2 ·M(p5) = 2 ·M0(p1)

+M0(p2) + 2 ·M0(p5) = 8(8)

where M(pi) denotes the marking in place pi and M0(pi)
represents the initial marking in pi.

To describe the P-invariants in (7) and (8) we can represent
both expression as follow:

∑

i

kni ·M(pi) = Kn (9)

where kni represents the individual components of n P-
invariant and Kn the result of the n components in vT ·M0.
In this example both are Kn = 8.

It is important to note that based on equations (9) we can
conclude about the maximum potencial number of tokens in
each places belonging to P-invariant using,

M(pi)max =
Kn

kni

(10)

Analyzing the reachability tree we can see that the effective
maximum number of tokens are exactly the same as the
potencial maximum number of tokens for this situation. In
general in every Petri net the maximum potencial number of
tokens is less or equal then the maximum effective number of
tokens.

On the other end with T-invariant analysis performed by
INA/TINA, the Petri net shows just one vector in the basis
space:

w = {(4 2 1 2)} (11)

As one can see in (11), this result was also achieved using a
linear system formed by the balance equation of each node in
dataflow domain. Furthermore this was expected in T-invariant
analysis due to the performed translation between the two
domains (dataflow and Petri net). On the other hand it is
also important to outline that this T-invariant correspond to
the static scheduling of the corresponding dataflow.

Another important issue in designing a signal processing
system is whether a system exhibits a particular functional
behavior, or the system requires a limited amount of resources.
To find out if the system behaves in a certain specific way, one
must search a sequence of firing transitions which enables the
system to go along from a marking M0 to Mn, where Mn is
the specific state, and the sequence of firing in between defines
the particular functional behavior.

Fig. 4: Reachability tree of the Petri net shown in Fig. 3.

The coverability tree shown in figure 4 allows the study
of these two former stated problems. Since resulting Petri net
is bounded, the coverability tree may be called reachability
tree. Observing figure 4 one finds out fourteen distinct states
(marked in gray background elipses). Table II presents all
reachable states obtained from the coverability tree.

Analyzing this table, without forgetting that each place
represents a particular resource (for example a FIFO queue),

787

TABLE II: States of the Petri net shown in figure 3.

States p1 p2 p3 p4 p5
M1 4 0 0 0 0
M2 3 2 0 0 0
M3 2 4 0 0 0
M4 1 6 0 0 0
M5 0 8 0 0 0
M6 0 4 1 0 2
M7 0 0 2 0 4
M8 0 0 0 2 4
M9 2 0 0 1 2
M10 1 2 0 1 2
M11 0 4 0 1 2
M12 0 0 0 1 4
M13 2 0 1 0 2
M14 1 2 1 0 2

one can foresee in each queue the necessary amount of space
to perform the static scheduling. The states in table II that
comprise the static scheduling includes state M0 to state M9.
Therefore for resource p1 it is required a maximum buffer
size of 4, for p2 a maximum of 8 positions, for {p3, p4} a
maximum of 2 and finally for p5 a maximum buffer size of 4.

VII. CONCLUSION AND RESULTS

Table III summarizes the relationship outlined and analyzed
in section VI. To conlcude k-bounded places in Petri nets
can be associated to buffers with length k in the dataflow
domain. Regarding T-invariants there is a direct relation with
the static scheduling of the dataflow, as focused in the former
section. Places involved in P-invariants at Petri nets matches
the potencial maximum buffer size at the dataflow models.

TABLE III: Properties mapping table

Petri net Properties Dataflow Properties
k-bounded place buffer with length k

T-invariant static scheduling
place involved in P-invariant Potencial maximum buffer size

To exploit and gain a better insight between dataflow
domain and Petri net domain further refinement, improvement
or extensions will be investigated later on.

Study on invariants focused on misbehaving dataflow, in
which there is no static scheduling will be explored in future
work to find out more hidden embedded features not normally
addressed in dataflow analysis tools.

We intend to expand the analysis to complex and huge
systems, meaning that a single node/place or arc/transition
may represent a macro object; In this case we are saying that
a single entity may contain inside a (sub)net or (sub)dataflow
expanding the concept in order to introduce hierarchical struc-
turing.

Also the integration of the proposed translation mechanisms
within an embedded systems development framework based in
Petri nets will be addressed in a near future.

REFERENCES

[1] E. Lee and D. Messerschmitt, “Synchronous data flow,” Proceedings of
the IEEE, vol. 75, no. 9, pp. 1235–1245, May 1987.

[2] R. L. G.Bilsen, M. Engels and J. Peperstraete, “Cyclo-static dataflow,”
IEEE Trans. Signal Processing, vol. 44, pp. 397–408, February 1996.

[3] S. Ritz, M. Pankert, V. Zivojnovic, and H. Meyr, “Optimum Vectori-
sation of Scalable Synchronous Dataflow Graphs Scalable synchronous
dataflow,” Methods, pp. 285–296, 1993.

[4] J. Buck and E. Lee, “Scheduling Dynamic Dataflow Graphs with
Bounded Memory using the Token Flow Model,” in Acoustics, Speech,
and Signal Processing, 1993. ICASSP-93., 1993 IEEE International
Conference on, vol. 1, Apr. 1993, pp. 429 –432 vol.1.

[5] E. Lee and T. Parks, “Dataflow process networks,” Proceedings of the
IEEE, vol. 83, no. 5, pp. 773–801, May 1995. [Online]. Available:
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=381846

[6] G. Kahn, “The Semantic of a Simple Language for Parallel Program-
ming,” in in Proc. of the IFIP Congress 74. North-Holland Publishing
Co, 1974.

[7] M. Sen, I. Corretjer, F. Haim, S. Saha, J. Schlessman, T. Lv,
S. S. Bhattacharyya, and W. Wolf, “Dataflow-Based Mapping of
Computer Vision Algorithms onto FPGAs,” EURASIP Journal on
Embedded Systems, vol. 2007, pp. 1–13, 2007. [Online]. Available:
http://www.hindawi.com/journals/es/2007/049236.abs.html

[8] M. Sen, S. S. Bhattacharyya, T. Lv, and W. Wolf, “Modeling image
processing systems with homogeneous parameterized dataflow graphs,”
Computer, no. March, pp. 133–136, 2005.

[9] B. Bhattacharya, S. S. Bhattacharyya, and S. Member, “Parameterized
Dataflow Modeling for DSP Systems,” October, vol. 49, no. 10, pp.
2408–2421, 2001.

[10] C.Giraud and R.Valk, Petri Nets for Systems Engineering. A Guide to
Modeling, Verification, and Applications. Berlin - Heidelberg - New
York: Springer, 2003.

[11] A. Yakovlev, L. Gomes, and L. Lavagno, Eds., Hardware Design and
Petri Nets. Kluwer Academic Publishers, 2000, ”ISBN 0-7923-7791-5,
331 pgs”.

[12] V. N. Reddy, M. L. Mavrovouniotis, and M. N. Liebman, “Petri
net representations in metabolic pathways,” in Proceedings of the
1st International Conference on Intelligent Systems for Molecular
Biology. AAAI Press, 1993, pp. 328–336. [Online]. Available:
http://portal.acm.org/citation.cfm?id=645630.662699

[13] M. Heiner, I. Koch, and J. Will, “Model validation of biological
pathways using Petri nets demonstrated for apoptosis,” Biosystems,
vol. 75, pp. 15–28, 2004.

[14] M. Heiner and I. Koch, “Petri net based model validation in systems
biology,” in Applications and Theory of Petri Nets 2004, ser. Lecture
Notes in Computer Science, J. Cortadella and W. Reisig, Eds. Springer
Berlin / Heidelberg, 2004, vol. 3099, pp. 216–237. [Online]. Available:
http://dx.doi.org/10.1007/

[15] I. Low, Y. Yang, and H. Lin, “Validation of Petri net apoptosis models
using p-invariant analysis,” in Control and Automation, 2009. ICCA
2009. IEEE International Conference on, 2009, pp. 416 –421.

[16] A. Sackmann, M. Heiner, and I. Koch, “Application of Petri net
based analysis techniques to signal transduction pathways,” BMC
Bioinformatics, vol. 7, no. 1, p. 482, 2006. [Online]. Available:
http://www.biomedcentral.com/1471-2105/7/482

[17] T. Murata, “Petri Nets : Properties , Analysis and Applications,” Pro-
ceedings of the IEEE, vol. 77, no. 4, pp. 541–580, 1989.

[18] J. L. Peterson, Petri Net Theory and the Modeling of Systems. Upper
Saddle River, NJ, USA: Prentice Hall PTR, 1981.

[19] To-Yat Cheung, “Petri Nets for Protocol Engineering,”
Computer Communications, vol. 19, no. 14, pp. 1250
– 1257, 1996, Protocol Engineering. [Online]. Avail-
able: http://www.sciencedirect.com/science/article/B6TYP-3XDS917-
C/2/20ad02e2dad7df361fc5553cae15cb32

[20] E. A. Lee and D. G. Messerschmitt, “Synchronous data flow,” Proceed-
ings of the IEEE, vol. 75, no. 9, pp. 1235–1245, September 1987.

[21] L. Gomes and J. P. Barros, “Models of computation for embedded
systems,” in The Industrial Information Technology Handbook, Section
VI - Real Time and Embedded Systems, R. Zurwaski, Ed. Boca Raton,
FL: CRC Press, 2005.

[22] INA - Integrated Net Analyser, Humboldt - Universita zu Berlin. [On-
line]. Available: http://www2.informatik.hu-berlin.de/ starke/ina.html

[23] TINA-TIme Petri Net Analyzer, Laboratoire d’Analyse et d’Architecture
des Systèmes. [Online]. Available: http://homepages.laas.fr/bernard/tina/

788

