
New features for CUDA GPUs
Tutorial at 18th IEEE CSE’15 and 13th IEEE EUC’15 conferences

October, 20th, 2015

Manuel Ujaldón
A/Prof. @ University of Málaga (Spain)
Conjoint Senior Lecturer @ Univ. de Newcastle (Australia)
CUDA Fellow @ Nvidia

Talk outline [30 slides]

1. Optimizing power on GPUs [8 slides]
2. Dynamic parallelism [6]
3. Hyper-Q [6]
4. Unified memory [8]
5. NV Link [1]
6. Summary [1]

2

I. Optimizing power on GPUs

The cost of data movement

Communication takes more energy than arithmetic.

4
Values for 32 nm. manufacturing process.

Energy shopping list: Past, present, future

5

Processor technology

Voltage (nominal)

40 nm.
(2005)

10 nm.
(2020)

Overall
reduction

factor0.9 v. 0.7 v.

Overall
reduction

factor

DFMA (double fused multiply-add) energy

64 bits 8 KB. SRAM read (cache memory)

Wire energy (256 bits wide, 10 mm. long)

50 pJ. 7.6 pJ. 6.57 x

14 pJ. 2.1 pJ. 6.66 x

310 pJ. 174.0 pJ. 1.78 x

Source: Vogelsang [Micro 2010], Keckler [Micro2011]

A regular floating-point operation requires a minimum of 4 pJ.

Memory technology

DRAM interface pin bandwidth

45 nm. 16 nm. Overall
reduction factor4 Gbps. 50 Gbps.

Overall
reduction factor

DRAM interface energy
(read/write bandwidth)

DRAM access energy (latency)

20-30 pJ/bit 2 pJ/bit 10-15 x

8-15 pJ/bit 2.5 pJ/bit 3-6 x

GPU Boost

Allows to speed-up the GPU clock up to 17% if the power
required by an application is low.

The base clock will be restored if we exceed 235 W.
We can set up a persistent mode which keep values

permanently, or another one for a single run.

6

Power Headroom
Performance

Highest Boost ClockBase Clock

Maximizes Graphics Clocks within
the specified power envelope

745 MHz 810 MHz 875 MHz

Every application has a different behaviour
regarding power consumption

Here we see the average power (watts) on a Tesla K20X
for a set of popular applications within the HPC field:

7

0

40

80

120

160

AMBER ANSYS Black ScholesChroma GROMACS GTC LAMMPS LSMS NAMD Nbody QMCPACK RTM SPECFEM3D

B
oa

rd
 P

ow
er

 (W
at

ts
)

Those applications which are less power
hungry can benefit from a higher clock rate

For the Tesla K40 case, 3 clocks are defined, 8.7% apart.

8

Base
clock

Workload #1
Worst case
Reference App

235W

Boosted
clock #1

Workload #2
 E.g. AMBER

235W

Boosted
clock #2

Workload #3
E.g. ANSYS Fluent

235W

875 MHz

810 MHz

745 MHz

Up to 40% higher
performance relative
to Tesla K20X.

And not only GFLOPS are
improved, but also effective
memory bandwidth.

GPU Boost compared to other approaches

It is better a stationary state for the frequency to avoid
thermal stress and improve reliability.

9

GPU
clock

Automatic clock switching

Boost Clock # 1

Boost Clock # 2

Tesla K40

Deterministic Clocks

Base Clock # 1

Other vendors

Other vendors Tesla K40

Default

Preset options

Boost interface

Target duration for boosts

Boost Base

Lock to base clock 3 levels: Base, Boost1 o Boost2

Control panel Shell command: nv-smi

Roughly 50% of run-time 100% of workload run time

GPU Boost - List of commands

10

Command Effect

nvidia-smi -q -d SUPPORTED_CLOCKS

nvidia-smi -ac <MEM clock,
Graphics clock>

nvidia-smi -pm 1

nvidia-smi -pm 0

nvidia-smi -q -d CLOCK

nvidia-smi -rac

nvidia-smi -acp 0

View the clocks supported by our GPU

Set one of the supported clocks

Enables persistent mode: The clock settings are
preserved after restarting the system or driver

Enables non-persistent mode: Clock settings revert
to base clocks after restarting the system or driver

Query the clock in use

Reset clocks back to the base clock

Allow non-root users to change clock rates

Example: Query the clock in use

nvidia-smi -q -d CLOCK —id=0000:86:00.0

11

II. Dynamic parallelism

The ability to launch new grids from the GPU:
Dynamically: Based on run-time data.
Simultaneously: From multiple threads at once.
Independently: Each thread can launch a different grid.

What is dynamic parallelism?

13

Fermi: Only CPU
can generate GPU work.

Kepler: GPU can
generate work for itself.

CPU GPU CPU GPU

The way we did things in the pre-Kepler era:
The GPU was a slave for the CPU

High data bandwidth for communications:
External: More than 10 GB/s (PCI-express 3).
Internal: More than 100 GB/s (GDDR5 video memory and 384 bits,

which is like a six channel CPU architecture).

14

Operation 1 Operation 2 Operation 3

Init

Alloc

Function Lib Lib Function Function

CPU

GPU

15

CPU GPU CPU GPU

The pre-Kepler GPU is a co-processor

Now programs run faster and

The way we do things in Kepler:
GPUs launch their own kernels

The Kepler GPU is autonomous:
Dynamic parallelism

are expressed in a more natural way.

Assign resources dynamically according to real-time
demand, making easier the computation of irregular
problems on GPU.

It broadens the application scope where it can be useful.

Example 1: Dynamic work generation

16

Coarse grid Fine grid Dynamic grid

Higher performance,
lower accuracy

Target performance
where accuracy is required

Lower performance,
higher accuracy

Example 2: Deploying
parallelism based on level of detail

17

CUDA until 2012:
• The CPU launches
kernels regularly.
• All pixels are treated
the same.

CUDA on Kepler:
• The GPU launches a
different number of
kernels/blocks for each
computational region.

Computational power
allocated to regions

of interest

Warnings when using dynamic parallelism

It is a much more powerful mechanism than it suggests
from its simplicity in the code. However...

What we write within a CUDA kernel is replicated for all
threads. Therefore, a kernel call will produce millions of
launches if it is not used within an IF statement (which, for
example, limits the launch to a single one from thread 0).

If a father block launches sons, can they use the shared
memory of their father?

No. It would be easy to implement in hardware, but very complex
for the programmer to guarantee the code correctness (avoid race
conditions).

18

III. Hyper-Q

In Fermi, several CPU processes can send thread blocks to
the same GPU, but the concurrent execution of kernels was
severely limited by hardware constraints.

In Kepler, we can execute simultaneously up to 32 kernels
launched from different:

 MPI processes, CPU threads (POSIX threads) or CUDA streams.

This increments the % of temporal occupancy on the GPU.

Hyper-Q

20

FERMI
1 MPI Task at a Time

KEPLER
32 Simultaneous MPI Tasks

An example:
3 streams, each composed of 3 kernels

21

__global__ kernel_A(pars) {body} // Same for B...Z
cudaStream_t stream_1, stream_2, stream_3;
...
cudaStreamCreatewithFlags(&stream_1, ...);
cudaStreamCreatewithFlags(&stream_2, ...);
cudaStreamCreatewithFlags(&stream_3, ...);
...
kernel_A <<< dimgridA, dimblockA, 0, stream_1 >>> (pars);
kernel_B <<< dimgridB, dimblockB, 0, stream_1 >>> (pars);
kernel_C <<< dimgridC, dimblockC, 0, stream_1 >>> (pars);
...
kernel_P <<< dimgridP, dimblockP, 0, stream_2 >>> (pars);
kernel_Q <<< dimgridQ, dimblockQ, 0, stream_2 >>> (pars);
kernel_R <<< dimgridR, dimblockR, 0, stream_2 >>> (pars);
...
kernel_X <<< dimgridX, dimblockX, 0, stream_3 >>> (pars);
kernel_Y <<< dimgridY, dimblockY, 0, stream_3 >>> (pars);
kernel_Z <<< dimgridZ, dimblockZ, 0, stream_3 >>> (pars);

st
re

a
m

 1

stream_1

kernel_A

kernel_B

kernel_C

stream_2

kernel_P

kernel_Q

kernel_R

stream_3

kernel_X

kernel_Y

kernel_Z

st
re

a
m

 2
st

re
a
m

 3

Work Distributor
Tracks blocks issued from grids

16 active grids

Stream Queue
(ordered queues of grids)

Kernel C

Kernel B

Kernel A

Kernel Z

Kernel Y

Kernel X

Kernel R

Kernel Q

Kernel P

Stream 1 Stream 2 Stream 3

Grid management unit: Fermi vs. Kepler

22

Work Distributor
Actively dispatching grids

32 active grids

Stream Queue
C

B

A

R

Q

P

Z

Y

X

Grid Management Unit
Pending & Suspended Grids

1000s of pending grids

SMX SMX SMX SMX
SM SM SM SM

Fermi Kepler GK110

CU
D

A
G

en
er

at
ed

 W
or

k

Single hardware queue
multiplexing streams

Parallel hardware streams

Allows suspending of grids

The relation between
software and hardware queues

23

P -- Q -- R

A -- B -- C

X -- Y -- Z

Stream 1

Stream 2

Stream 3

Chances for overlapping: Only at stream edges

A--B--C P--Q--R X--Y--Z
Up to 16 grids

can run at once
on GPU hardware

But CUDA streams multiplex into a single queue
Fermi:

The relation between
software and hardware queues

24

P -- Q -- R

A -- B -- C

X -- Y -- Z

Stream 1

Stream 2

Stream 3

Chances for overlapping: Only at stream edges

A--B--C P--Q--R X--Y--Z
Up to 16 grids

can run at once
on GPU hardware

But CUDA streams multiplex into a single queue
Fermi:

P -- Q -- R

A -- B -- C

X -- Y -- Z

Stream 1

Stream 2

Stream 3Concurrency at full-stream level

P--Q--R
Up to 32 grids

can run at once
on GPU hardware

No inter-stream dependenciesKepler:

A--B--C

X--Y--Z

...mapped on GPU 25

E

F

D

C

B

A

CPU processes...

Without Hyper-Q: Multiprocess by temporal division

A B C D E F

100

50

%
 G

PU
 u

til
iz

at
io

n

0
Time

Time saved
0

A

A
A

B

B B

C

C
C

D

D

D

E

E

E

F

F

F

With Hyper-Q: Symultaneous multiprocess
100

50

%
 G

PU
 u

til
iz

at
io

n

0

IV. Unified memory in Maxwell

Today

27

GPU CPU

DDR4 MemoryGDDR5 Memory

PCIe
16 GB/s

DDR4
50-75 GB/s

GDDR5
250-350 GB/s

A 2014/15 graphics card:
Kepler/Maxwell GPU with GDDR5 memory

28

In two years

29

GPU CPU

DDR42.5D memory

NVLINK
80 GB/s

DDR4
100 GB/s

Memory stacked
in 4 layers: 1 TB/s

A 2016 graphics card:
Pascal GPU with Stacked DRAM

30

A Pascal GPU prototype

31

In four years:
All communications internal to the 3D chip

32

GPU
CPU

Boundary
of the
silicon
die

SRAM

3D-DRAM

The idea: Accustom the programmer
to see the memory that way

33

GPUCPU

DDR3 GDDR5

Main memory Video memory

PCI-express

Maxwell
 GPUCPU

DDR3 GDDR5Unified
memory

The old hardware
and software model:
Different memories,
performances
and address spaces.

The new API:
Same memory,
a single global
address space.

Performance sensitive
to data proximity.

CUDA 2007-2014 CUDA 2015 on

NV-Link: High-speed GPU interconnect

34

NVLink

NVLink

POWER CPU

POWER CPUX86 ARM64
POWER CPU

2016/17: Pascal2014/15: Kepler

PCIe PCIe

Summary

Kepler contributes to irregular computing. Now, more
applications and domains can adopt CUDA. Focus:
Functionality.

Maxwell simplifies the GPU model to reduce power
consumption and programming effort. Focus: Low power
and memory friendly.

NV-Link helps to communicate CPUs and GPUs on a
transition phase towards SoC (System-on-Chip), where all
main components of a computer are integrated on a single
chip: CPU, GPU, SRAM, DRAM and all controllers.

35

Thanks for coming!

You can always reach me in Spain
at the Computer Architecture Department
of the University of Malaga:

e-mail: ujaldon@uma.es
Phone: +34 952 13 28 24.
Web page: http://manuel.ujaldon.es

(english/spanish versions available).

Or, more specifically on GPUs,
visit my web page as Nvidia CUDA Fellow:

http://research.nvidia.com/users/manuel-ujaldon

36

