Damage Tolerance of Tow-Placed, Variable Stiffness Laminates

Cláudio Lopes

Zafer Gürdal Delft University of Technology

And Pedro Camanho Faculdade de Engenharia da Universidade do Porto

work supported by:

17 November 2005

1 of 14

Delft University of Technology

Main Goal

Experimental Investigation

- Material testing
- Progressive damage leading to structural collapse
- Structural damage produced by low-velocity impacts

Numerical Simulations

- Physically-based constitutive models able to represent damage onset, progress and failure
- Finite Element Analysis
- Micromechanical models

2 of 14

Tow-Placement Technology

Tow-Placement Systems

(e.g. Cicinnati, Hercules, Automated Dynamics)

- 7 degrees of freedom
- Full automation
- Off-line programming and simulation
- Fabrication of parts over 10m in length
- Multi-purpose tow-placement head

Tow-Placement Technology: Tow-Placement Head

Tow: ~3mm wide bundle of (graphite, fibreglass, kevlar...) fibres pre-impregnated with "tacky" termoset epoxies, i.e. adheres to a surface.

Damage Tolerance of Tow-Placed, Variable-Stiffness Laminates

Tow-Placement Technology: Advantages

Individual tow handling • 16 to 32 tows are fed individually							
Tow cut and restart capabilities							
 Path overlapping can be prevented 							
Differential payout system							
 Curved tow-paths are allowed (75cm min. turning radius to avoid fibre-buckling) 							
Controlled compaction & Low-tension positioning							
Curved tow-paths							
 Concave surfaces are possible (within the limits of the placement head dimensions) 							
Precise output control							
 Part design is accurately reproduced. "Exact" replicas can be manufactured 							
Reduced material scrap and post-cure machining							
 Tow-cut capability used to handle part edges 							
Speed							
Up to 7 times faster than hand-layup							
Design flexibility							

"Comparable" to hand-layup

5 of 14

Delft University of Technology

Tow-Placed, Variable-Stiffness Laminates Current Designs

Linear variation of the fibre orientation angle: $\varphi(r) = (T_1 - T_0)\frac{r}{L} + T_0$

Notation: $\Phi \langle T_0 | T_1 \rangle$

Examples: $0\langle 30|60\rangle, 90\pm\langle 75|30\rangle_2, [\pm 45/90\pm\langle 0|45\rangle_2]_s$

Damage Tolerance of Tow-Placed, Variable-Stiffness Laminates

Construction Methods

Parallel Tow Paths

• Two-dimensional stiffness variation

Shifted Tow Paths

 One-dimensional stiffness variation (along the r-direction)

TUDelft

Construction Methods

Parallel Tow Paths

Shifted Tow Paths

No overlaps or gaps

• Gaps or overlaps

Damage Tolerance of Tow-Placed, Variable-Stiffness Laminates

Shifted Tow-Paths

Tow-Drop Method

Overlap Method

Constant Thickness

Thickness Build-up

9 of 14

Shifted Tow-Paths

Overlap Method

Tow-Drop Method

10 of 14

Delft University of Technology

- 1. Global progressive failure analysis of tow-steered laminates
 - Physically-based failure criteria (e.g. LaRC04)
- 2. Homogenization of *tow-drop* and *overlap* regions by the *Method of Inclusions*.

• Development of a visualization tool capable of describing the exact tows+matrix geometry, perform homogenization and export to FEM (if necessary)

- 3. In-depth failure analysis of *tow-drop* and *overlap* regions.
 - Micromechanical analysis
- 4. Structural experiments
 - Static and impact tests on critical configurations. Focus on *tow-drop* and *overlap* regions.
 - Characterization of the damage onset, progression and failure behavior.
- 5. Validation of numerical simulations.
- 6. Optimization of tow-steered laminates for damage propagation and failure.

Failure Analysis of Tow-Steered Laminates

Example: 20 layer panel under tension load

Layups, optimized for compressive buckling loads:

Straight-fibre

 $\left[\pm 45_2/\pm 30/\pm 45/\pm 15\right]_{\rm S}$

Parallel, Shifted (tow-drop & overlap)

 $\left[\pm45/0\pm\left\langle45|60\right\rangle_{2}/0\pm\left\langle30|15\right\rangle/0\pm\left\langle45|60\right\rangle\right]_{S}$

AS4/9773 graphite-epoxy

E ₁₁	E ₂₂	G ₁₂	<i>v</i> ₁₂	t
130GPa	9.2GPa	5.1GPa	0.36	0.1905mm
XT	Xc	Υ ^τ	үc	S∟
2.1GPa	1.2GPa	29.0MPa	157.9MPa	91.0MPa

Delft University of Technology

Failure Analysis of Tow-Steered Laminates

Results

Configuration		Compressive Buckling		First Ply Failure			
		Load (kN)	Diff. %	LaRC03 (kN)	Diff. %	Tsai-Wu (kN)	Diff. %
Straight-Fibre		52	-	105	-	98	-
Parallel		54	3.8	143	36	120	22
Shifted	Tow-Drop	62	19.2	190	80	170	73
	Overlap	94	80.8	450	328	400	308

Damage Tolerance of Tow-Placed, Variable-Stiffness Laminates

Damage Tolerance of VS Laminates

Acknowledgements

Financiamento FCT/POCI

União Europeia FEDER

Governo da República Portuguesa

14 of 14

Delft University of Technology

