Research interests and past experience

"VARIABILITY IN LIQUID COMPOSITE MOULDING TECHNIQUES: PROCESS ANALYSIS AND CONTROL"

Nuno Correia

FEUP 17 November 2005

INEGI Composite Materials and Structures Research Unit

OUTLINE

MY PhD.

The RoadLite project

Liquid composite moulding (LCM)

Variability in LCM

Manufacturing repeatability

Control techniques

MY Current interests

Vehicle applications - expertise

Control of liquid composite moulding (LCM)

ROADLITE FIRST PROTOTYPE

SECOND PROTOTYPE

Table 1.	Trailer cost	analysis
Chassis type	description	value k£
Steel	Total	7 to 12
Composite	Materials	~ 3
	Labour	~ 5
Running gear		r ~ 4
Total		~12

Table 2. Weight savings on composite trailer							
		in total	in chassis				
Chassis	Steel	4130 kg	1930 kg				
type	Composite	3740 kg	1540 kg				

Weight saving	~ 390	kg
Saving ratio	~ 9.5 %	~ 20 %

VACUUM INFUSION - VI

COMPACTION IN VI

ADDING VI TO LIMS

VI SIMULATIONS RoadLite DEMONSTRATOR

- 1124 compliant shell elements
- Compliance of 12 layers of Formax FGE 117
- μ = 120 mPa.s

VARIABILITY

 Inlet system

 Quantity of resin
 Viscosity
 Height of container
 Piping layout

Outlet system
 –Pump pressure
 –Leaks

 Inside the mould -Reinforcement permeability -Reinforcement density -HPM placement -Flow brake position -Mould geometry -Vac. bag folds -Inlet positioning and cross section

MATERIAL PROPERTIES: VARIABILITY

Examples of variability in fibre angle, permeability and compliance of textiles

HOES, K., DINESCU, D., VANHEULE, M., SOL, H., PARNAS, R., BELOV, E. AND LOMOV, S. (2002) Statistical distribution of permeability values of different porous materials. Proc. of the Tenth European Conference on Composite Materials (ECCM10) June 3-7, 2002, Brugges, Belgium.

Fig. b. Permeability distribution for Syncoglas twill woven RE 144/255 (Hoes et al., 2002)

Fig. a. Fibre orientation on a ±45° stitched textile. BTI EBXHD 936

Fig. c. Distribution of observed fibre volume fractions for three layers of FORMAX FGE 117

RELIABILITY RTM

- Monte-Carlo method
- •4 gates
- •Syncoglas RE 144/255
- •1xSTD
- 15000 simulations
- •800 elements

However, due to the large number of elements it is not possible to use Monte-Carlo to estimate the number of simulations required for statistical convergence of results

TRAILER SIMULATIONS <u>RTM</u> $\sigma_{K} = 0.10 \text{ K}$

Flow

The ideal case is replaced by any number of possible variable scenarios allowing numerical experimentation and reliability characterization

Flow fronts

Fig. a. Distribution of mould filling time

VIRTUAL ON-LINE CONTROL RTM EXAMPLE

Table 3. Material data used in simulations						
	Permeability data		Fibre v. fraction			
		K	σ / Κ	V_{f}		
RE	144/255	$26.2 \cdot 10^{-10} \text{ m}^2$	21.70%		50%	

Computer selects between two injection pressure levels (0.3 and 1 bar) at each of the four corner gates in five steps.

Results show a high degree of flow front steering when compared with non controlled simulation Conclusions: Expertise

Development of LCM models

Stochastic modelling: Monte-Carlo

Monte-Carlo based control strategies (online control)

Applied research

Applied research - Vehicles

Applied research - Smart materials

•ESF S3T: Fibre optic monitored wind turbine blades with PZT actuators

\ Inf

Work in progress

APPLIED

Vehicles: UUV, UAV, Bus bodies, chassis, trailers.

FUNDAMENTAL

Control (stochastic results and neural networks)

Wind energy – smart materials

Models for the compaction of fibre

Magnetic nano-fluids (viscosity control) Possible collaboration

INEGI

CCM U. Delaware

University of Nottingham

Timisoara - Romania

Europrojects

Southfields

VT Group