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• In-situ monitoring of the cure process to improve the 
composite final quality.

• In-situ real time health monitoring procedure to 
guarantee the structure integrity.

Introduction



• Optical fibre sensors 

– Fibre Bragg gratings

– Extrinsic Fabry-Pérot interferometers

• Piezoelectric transducers

Sensors



• Appropriate for embedding in composite materials.

• Translates the alterations observed in the 
characteristics of light.

• It is possible to associate those alterations to these 
variations.

Optical fibre sensors



• Fibre Bragg grating sensor
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Fiber Bragg grating principle 
FBG reflected and transmitted 

optical spectrum
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A longitudinal strain variation, Δε, induces a variation, ΔλΒ, 
of the wavelength of Bragg as follow

: photoelastic coefficient
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A temperature variation, ΔT, induces a variation, ΔλΒ, of the 
wavelength of Bragg 

α : fibre thermal-expansion coefficient,
ξ: fibre thermo-optic coefficient



• Low finesse extrinsic Fabry-Pérot interferometer (EFPI)

• Based on the interference of two beams.
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R. de Oliveira, O. Frazão, J.L. Santos, A.T. Marques, “Development of an optic fibre sensor system for acoustic emission sensing in FRP”, 
accepted for publication in Material Science Forum, 2005, www.scientific.net.



• Piezoelectric transducer
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- Crystals which acquire a charge when compressed,
twisted or distorted.

- Provides a convenient transducer effect between 
electrical and mechanical oscillations.



• A FBG sensor calibration is required.

• FEM modelling.

Optimisation of optic fibre sensor embedding



Composite cure monitoring

• Residual stress measurement using FBG sensor in 
composite materials made in autoclave .

• To obtain the optimal cure conditions

• Resin flow, temperature, pressure, internal stress 
measurement during RTM  process.



In-service health monitoring

• From strain monitoring
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A.C. Ramos, R. de Oliveira, A.T. Marques, “Health monitoring of composite structures by embedded FBG’s and interferometric Fabry-
Pérot sensors”, II ECCOMAS Thematic Conference on Smart Structures and Materials”, Lisbon, 18-21 July 2005.

FBG sensor and electrical strain 
gages answers to dynamic solicitations

EFPI sensor and electrical strain 
gages answers to dynamic solicitations



• Damage sequence of a

– transverse matrix cracking 
in 90° plies,

– fibre/matrix decohesion,
– delamination,
– longitudinal matrix cracking 

which develops along the 
fibre direction of 0° plies,

– fibre fracture in 0° plies

cross-ply laminate

• From AE monitoring



• An on-line health monitoring procedure capable to 
detect, acquire, and identify damage in fibre 
reinforced plastic composite materials is proposed to 
guarantee their safety

• The acoustic emission (AE) was chosen for its ability 
to detect evolutive defects during in-service life of 
structures



• The monitoring of the structure state requires the 
simultaneous processing of a lot of information.

• The artificial neuronal networks (ANN) have the 
capacity to process, in parallel, a great amount of 
operations.



Acoustic Emission
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When loading a material, it starts to deform elastically. 
Elastic strain energy storage is associated with this 
deformation. Part of the elastic strain energy is rapidly 
released, at local stress redistribution such as that 
caused by growing cracks, in the form of elastic waves

Basic principle of AE method



• AE waves are related to the damage mechanisms.
Depending on the type of damage, AE signals with 
specific characteristics may be expected. 

• An unsupervised learning method seems to be more 
appropriate, in an attempt to discover specific 
characteristics in the AE signals.

• Chosen classifier: Self-organizing maps of Kohonen
(SOM). 



• The damage initiation could be determined from the
AE activity
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R. de Oliveira, A.C. Ramos, A.T. Marques, “Health monitoring 
of FRP using acoustic emission and artificial neural network”,
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and Materials”, Lisbon, 18-21 July 2005.
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R. de Oliveira, A.C. Ramos, A.T. Marques, “Health monitoring 
of FRP using acoustic emission and artificial neural network”,
II ECCOMAS Thematic Conference on Smart Structures
and Materials”, Lisbon, 18-21 July 2005.

• Damage mechanisms were identified from the classified
AE signals



• AE detection using low finesse EFPI sensor
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Optical power spectrum of the
interferometric signal and the 

reflected light by the fibre
Bragg gratings

Experimental setup for generation 
of quadrature phase-shifted outputs

R. de Oliveira, O. Frazão, J. Ferreira, J.L. Santos, A.T. Marques, “Optic fibre sensor for real time damage detection in smart composite”,
Computers & Structures, Vol. 82, Issue 17-19, 2004, pp. 1315-1321.
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• Response to simulated AE waves
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A.C. Ramos, R. de Oliveira, A.T. Marques, “Health monitoring of composite structures by embedded FBG’s and interferometric Fabry-
Pérot sensors”, II ECCOMAS Thematic Conference on Smart Structures and Materials”, Lisbon, 18-21 July 2005.



• Discussion

– Optic fibre sensors are appropriate for the conception 
of a nervous system for smart structures

– The association of embedded sensors with processing 
techniques such as Neural networks permits to get 
real-time information about the composite structure.

– A procedure was proposed to permit AE to be used for 
damage identification.

– The fabrication monitoring will permit its optimization.  
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