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Abstract 

This paper presents a methodology to align plantar pressure image sequences simultaneously in time and 

space. The spatial position and orientation of a foot in a sequence are changed to match the foot 

represented in a second sequence. Simultaneously with the spatial alignment, the temporal scale of the 

first sequence is transformed with the aim of synchronizing the two input footsteps. Consequently, the 

spatial correspondence of the foot regions along the sequences as well as the temporal synchronizing is 

automatically attained, making the study easier and more straightforward. In terms of spatial alignment, 

the methodology can use one of four possible geometric transformation models: rigid, similarity, affine or 

projective. In the temporal alignment, a polynomial transformation up to the 4th degree can be adopted in 

order to model linear and curved time behaviors. Suitable geometric and temporal transformations are 

found by minimizing the mean squared error (MSE) between the input sequences. The methodology was 

tested on a set of real image sequences acquired from a common pedobarographic device. When used in 

experimental cases generated by applying geometric and temporal control transformations, the 

methodology revealed high accuracy. Additionally, the intra-subject alignment tests from real plantar 

pressure image sequences showed that the curved temporal models produced better MSE results 

(p<0.001) than the linear temporal model. This paper represents an important step forward in the 

alignment of pedobarographic image data, since previous methods can only be applied on static images. 

Keywords Biomechanics; Geometric and temporal transformations; Image registration; 

Intra-subject alignment; Plantar pressure. 
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1. Introduction 

The foot and ankle provide the necessary support and flexibility for weight-bearing and 

weight-shifting. Plantar pressure measurements provide relevant information on the foot 

and ankle role during gait and other functional activities [4, 22]. Although plantar 

pressure data is an important element in the assessment and prevention of ulceration of 

patients with diabetes [1, 5] and peripheral neuropathy, the information derived can also 

assist in the diagnosis and rehabilitation of impairments associated with various 

musculoskeletal, integumentary, and neurological disorders. The information gathered 

can be used to define suitable rehabilitation programs through alterations of footwear [1, 

2], foot orthoses, exercise programs, and restrictions in the amount of weight-bearing 

[19, 20]. Additionally, from a research perspective, the information is also useful to 

address questions regarding the relationship between plantar pressure and lower-

extremity posture [14]. 

Usually, pedobarographic data can be converted to a discrete rectangular array at a point 

in time or over a period of time, giving rising to static images or to image sequences. In 

addition, efficient and robust techniques of image processing and analysis can assist 

clinicians and researchers to extract relevant information from images. For instance, 

methods of image alignment, i.e. methods to optimally align or register homologous 

image entities, can help in identifying the main plantar pressure areas and foot type. 

Furthermore, image alignment may assist clinicians in making accurate comparisons of 

a patient’s plantar pressure distribution over time or between patients. 

There are some studies on the alignment of pedobarographic image pairs; for example, 

those based on: principal axes transformation [6]; modal matching [3, 17, 23, 24]; 

principal axes combined with a search based on the steepest descent gradient 

optimization algorithm [15]; optimization based on genetic algorithms [16]; foot size 

and foot progression angle [8]; matching the contours represented in the input images 

[13]; optimization of the cross-correlation or phase correlation computed in the 

frequency domain [11]; and using a hybrid approach that combines a feature based 

solution with an intensity based solution [12]. 

The aforementioned solutions can only be used to align static pedobarographic images. 

Notwithstanding the value of the static information attained, when the footstep is 

considered in a natural progression, supplementary and pertinent information can be 
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obtained, which may assist clinicians and researchers to carry out accurate studies on 

complete footsteps of patients before and after rehabilitation programs as well as 

making comparisons against well documented cases. In addition, the number of trials 

required to obtain reliable representations of the
 
plantar pressure pattern is an important 

factor in dynamic data acquisition [9]. According to Hughes et al. [7], three to five 

walking trials enhances the reliability of the pressure measurement. As such, the spatio-

temporal alignment of several trials of a subject can build a mean model image 

sequence automatically, which is more reliable than a single image sequence trial. 

Despite the relevance of a computational spatio-temporal alignment of dynamic 

pedobarographic image sequences, as far as we know, no efficient or accurate solution 

has been proposed. This paper tries to overcome this limitation by proposing an 

efficient, accurate and fast computational solution for the spatio-temporal alignment of 

dynamic pedobarographic image sequences. 

2. Methods 

At first glance, to carry out the temporal alignment of two plantar pressure image 

sequences, one may be led to think that the first and last footstep images, i.e. the first 

and last images representing the footstep plantar pressure, of one sequence, need to be 

linearly transformed in the first and last footstep images of the second sequence. 

However, this simple approach would discard the information in the intermediate 

images, i.e. the plantar pressure distribution over time. Thus, in the proposed 

methodology, the temporal alignment is based on the pressure distribution of all the 

images in the sequences. 

To align the footsteps represented in two image sequences the need for a time shift is 

evident, since the footsteps do not necessarily start at the same point of time in the two 

sequences, i.e. in the images with the same index in the sequences. In addition, subjects 

cannot be expected to walk at constant speeds, thus a linear time scaling is also needed. 

Furthermore, as small variations in speed can occur during footsteps, non-linear 

temporal transformations are required as well. Thus, linear and curved temporal 

transformations modeled by polynomials up to 4
th

 degree were integrated in the 

methodology. 
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2.1 Methodology 

The developed methodology entails the following steps (Fig. 1): 

I) Build a peak pressure image representing the whole foot from each input image 

sequence; 

II) Compute the spatial transformation that aligns the two peak pressure images built; 

III) Compute an initial temporal alignment based on the linear mapping of the first and 

last images of the two footsteps; 

IV) Use an optimization algorithm to find the parameters of the spatial and temporal 

transformations that optimize a (dis)similarity measure computed from the two 

sequences, starting from the spatial and temporal transformations previously found; 

V) Finally, perform the alignment of the input sequences in time and space using the 

optimal spatial and temporal transformations found. 

 

(Insert Fig. 1 about here) 

 

2.1.1 Peak pressure image 

Let S be a sequence of n plantar pressure images, where  , ,S x y i  represents the pixel 

intensity (i.e. the related pressure at the correspondent sensor) at the spatial position 

 ,x y  of an image with index i  in the sequence S . Hence, the peak pressure image is 

given by      1,...,0:,,max,  niiyxSyxP . 

2.1.2 Initial spatial transformation 

The algorithm described in Oliveira and Tavares [12] is used to align the two peak 

pressure images. This 2D alignment algorithm can be divided into two main steps: First, 

an initial alignment is obtained by maximizing the cross-correlation between the peak 

plantar pressure images [11]. Afterwards, a multidimensional optimization algorithm is 

used to optimize the adopted (dis)similarity measure. The inputs of the optimization 

algorithm are the parameters of the initial geometric transformation computed in the 
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previous step, and the outputs are the new parameters of the geometric transformation 

that optimize the (dis)similarity measure. 

2.1.3 Initial temporal shift and scaling 

The initial temporal transformation establishes a linear correspondence between the 

indexes of the images in the sequences to be aligned, and is found by considering that 

the first and last images of a footstep image sequence correspond to the first and last 

images of the second footstep image sequence, respectively. However, it should be 

noted that these first and last images of a footstep are not necessarily the initial and final 

images of the correspondent image sequence: Since, as we are only interested in images 

conveying relevant plantar information, found by evaluating their pixel intensity, the 

remainder images, e.g. the ones acquired before or after the interaction foot/ sensor 

plate, are discarded from the alignment process. 

Therefore, by considering the temporal transformation f  and the first, 1t  and 1s , and 

the last, mt  and ns , images of the footsteps to be aligned, we have   11 tsf   and 

 n mf s t . Consequently, the transformation that represents a shift and a linear time 

scaling is given by a 1
st
 degree polynomial as: 

  1 1
1 1

1 1

m m

n n

t t t t
f i i t s

s s s s

 
  

 
. (1) 

2.1.4 Final optimization 

The spatial and temporal transformations obtained in the previous steps are then used as 

the initial solution in a multidimensional optimization algorithm. Hence, from this 

solution the optimization algorithm searches simultaneously and concurrently for the 

parameters of the spatial and temporal transformations that optimize the desired 

(dis)similarity measure. The optimization algorithm used is based on Powell's method, 

and the line optimization is carried out following Brent’s method [18]. 

The spatial transformation model used to align the two input sequences can be rigid, 

similarity, affine or projective, and the time transformation can be modeled by 

polynomials up to the 4
th

 degree. The spatial transformation can be given in 

homogenous coordinates as: 
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where  1
T

x y  and  ' '
T

x y w  are the original and the transformed homogeneous 

coordinates. In this equation, a, b, c and d are parameters that represent the deformation, 

e and f stand for the spatial shift, and r and q define the projection point. For rigid, 

similarity and affine transformations, the parameters r and q are set equal to 0 (zero). 

The polynomial model adopted for the temporal transformation is given by: 

  01
2

2
3

3
4

4' aiaiaiaiaifi  , (3) 

where i  and 'i  are the image indexes in the original and transformed sequences, and 

4a , 3a , 2a , 1a  and 0a  are the coefficients of the 4
th

 degree polynomial. For lower 

degree polynomials, the higher degree coefficients are set as constants with a value 

equal to 0 (zero). 

Two different schemes were set up to optimize the temporal alignment: an 

unconstrained and a constrained optimization scheme. In the former, all parameters of 

the adopted polynomial model can vary independently. In the latter, the first and last 

images of a footstep must map the first and last images, respectively, of the second 

footstep. 

It should be noted that using the constrained optimization scheme, if a 1
st
 degree 

polynomial is chosen as the temporal transformation model, then only one solution 

exists (Equation 1) and the spatial optimization is performed solo. 

2.2 Dissimilarity measure 

In the results presented in this work, the MSE among the pixel intensity values was used 

as the dissimilarity measure; however, another intensity based measure could be 

considered. Let T and S be two discrete image sequences of N M Z   pixels. The 

adopted MSE is given as: 

    
21

, , , ,
N M Z

x y i

MSE T x y i S x y i
N M Z

 
 

 . (4) 

Thus, the lower the MSE value is, the better aligned the input image sequences are. 
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2.3 Dataset 

The experimental dataset was acquired using an EMED system (Novel GmbH, 

Germany) with a spatial resolution of 2 sensors per cm
2
, and a pressure sensibility of 5 

kPa with minimum threshold value of 10 kPa. The pressure measurement technology of 

this system offers good reliability for most force/pressure variables when a single 

measurement is used, and an excellent reliability when the mean value of three or more 

measurements is used [7]. 

The dataset of 168 image sequences was acquired at frequency rate of 25 frames per 

second from 28 subjects with three image sequences representing each foot of each 

subject at normal walking speed. The sample included 7 men (18.4±0.5 years, 173±7 

cm, 68.6±6.0 kg) and 21 women (20.4±2.3 years, 164±5 cm, 58.3±6.3 kg), who were 

selected according to: no history of recent osteoarticular or musculotendon injury of the 

lower limb or signs of neurological dysfunction which could affect lower limb motor 

performance; no history of lower limb surgery, of lower limb anatomical deformities, 

congenital or acquired, or any other disability that might in some way affect gait; 

absence of callus formation on plantar pressure surface [27]. 

Before the data acquisition, all subjects walked over the pedobarographic system several 

times until they felt comfortable under the experiment conditions. The subjects were 

invited to walk at a normal pace along a walkway and were asked to look straight ahead 

while walking. Each subject performed two series of three trials. The order of the series 

was randomized, and it was guaranteed that only one foot had contact on the pressure 

system at a time. Normal speed was selected as a number of authors have shown that 

plantar pressure distribution is dependent upon walking speed [10, 21, 25]. 

The study was conducted according to the ethical norms of the Institutions involved and 

the Declaration of Helsinki, and informed consent was obtained from all participants. 

2.4 Alignment accuracy assessment using control image sequences 

The alignment accuracy was assessed by applying a set of spatial and temporal control 

transformations to a real pedobarographic image sequence randomly chosen from the 

dataset. Afterwards, the transformed sequences were aligned with the original sequence. 

Then, the spatial and temporal transformations obtained were compared against the 

control transformations. The residual error (RE), that is, the square root of the mean 
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squared difference between the expected position for each pixel and the estimated 

position from the proposed solution, was used to assess the accuracy. 

The temporal control transformations were chosen to simulate the natural speed 

variations that can occur on footsteps during normal walking, and the spatial control 

transformations were defined to simulate the walking along any direction. Additionally, 

to simulate the real behavior of pedobarographic systems, the transformed image 

sequences were pre-processed before the alignment process: pixel intensities were 

rounded off to multiples of 5 kPa (representing the addition of noise uniformly 

distributed between -2.5 and 2.5 kPa) and the intensities inferior to 10 kPa were set 

equal to 0 (zero). 

2.5 Alignment quality assessment using real image sequences 

In the tests regarding the quality assessment, just pairs of sequences of the same subject 

were aligned; that is, intra-subject image sequences alignment. Hence, the goal was to 

search for the geometric and temporal transformations that generate the best results, i.e. 

the minimum MSE value. In all alignment experiments, a rigid model was considered 

for the spatial alignment, since intra-subject alignment was to be performed. The 

accuracy was statistically compared using two-sided t tests. Additionally, the alignment 

quality was also accessed by visual evaluation. 

Six different alignment experiments were done per subject, three per foot. Thus, there 

were 168 image sequence pairs in total for the intra-subject alignment experiments. 

2.6 Implementation 

The methodology developed was fully implemented in C
++

, using Microsoft Visual 

Studio 8, and tested on a PC notebook with an AMD Turion 64 2.0 GHz 

microprocessor, 1.0 GB of RAM and running Microsoft Windows XP. 

In the experiments described in the next section, the image transformations were 

performed using bilinear interpolation resampling [26]. 
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3. Results 

3.1 Accuracy assessment using control image sequences 

Table 1 shows the maximum RE obtained for all tests done using the spatial and 

temporal control transformations. The time scale of the control sequence was warped 

using four models:   5.015.11  iif ,   1204.0 2

2  iiif , 

  3 2

3 0.0025 0.1 0.125 0.5f i i i i      and  4 3sin
5

i
f i i

 
   

 
, where i is the image 

index in the original sequence (Fig. 2), and, for each, ten rotation angles were used to 

warp the space domain: 5º, 41º, 77º, 113º,…, 329º. This way, 40 warped control 

sequences were built. 

The temporal warp control transformations used were chosen in accordance to the 

expected walking speed variations. As can be seen in Figure 2, the functions used 

traduce the usual speed variations along footstep sequences; for instance, relatively to 

the original footstep sequence,  4f i  decreases the speed at the beginning of the 

footstep and increases the speed at the end. 

In the first experiment, the 10 image sequences warped by the selected rotation angles 

and the temporal transformation  1f i  were used. Then the developed alignment 

framework was successively configured to use each of the adopted temporal alignment 

models and optimization schemes. The higher RE values for each temporal 

model/optimization scheme combination were stored. The following three experiments 

done were similar to this one, but using the sequences temporally warped by the 

functions  2f i ,  3f i  and  4f i , instead (Table 1). 

 

(Insert Fig. 2 and Table 1 about here) 

 

3.2 Alignment quality assessment using real image sequences 

There are no reference values to evaluate the accuracy of the geometric and temporal 

transformations obtained from the alignment of real pedobarographic image sequences. 
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Therefore, the alignment accuracy of the methodology was assessed from the MSE 

values (Fig. 3). 

 

(Insert Fig. 3 about here) 

 

The intra-subject alignment tests were carried out using a rigid transformation model for 

the spatial alignment and all four polynomial temporal models with the constrained and 

unconstrained optimization schemes were used (Fig. 3). Figure 4 shows an example of 

the alignment obtained from two pedobarographic image sequences. From this figure, 

one can realize that the sequence aligned using a 4
th

 degree temporal transformation 

model with unconstrained optimization is visually more similar to the reference 

sequence than the sequence aligned using a 1
st
 degree temporal transformation model 

with constrained optimization. 

 

(Insert Fig. 4 about here) 

 

The average computational processing times for the intra-subject alignment with the 

unconstrained optimization scheme were: 2.1±0.6, 4.4±1.3, 8.1±2.5 and 11.2±4.7 

seconds, using 1
st
, 2

nd
, 3

rd
 and 4

th
 degree polynomials, respectively. Using the 

constrained optimization scheme instead, the processing times were: 0.9±0.3, 1.1±0.3, 

2.7±0.9 and 5.7±1.6 seconds, respectively. 

4. Discussion 

The methodology proposed revealed to be very accurate in the spatio-temporal 

alignment of pedobarographic image sequences, mainly when the unconstrained 

optimization scheme is used, as is confirmed in Table 1. 

In the tests using the spatial and temporal control warp transformations and the 

polynomials of the 3
rd

 and 4
th

 degrees as temporal models, the maximum spatial RE 

values were equal to 0.0061 pixel (approximately 0.043 mm) and 0.021 pixel (around 

0.148 mm) considering the unconstrained and constrained optimization schemes, 

respectively (Table 1). The maximum temporal RE value was also very low when 
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polynomials of 3
rd

 and 4
th

 degree were considered as temporal models together with the 

unconstrained optimization scheme (Table 1). 

The temporal RE values obtained on using the unconstrained optimization scheme were 

always inferior to the values obtained when the constrained optimization scheme was 

used. This was already expected, since the temporal scale is discrete (25 fps) and so, the 

first and last images of a footstep can be associated to any point of time in a period of 

40 ms. 

The visual evaluation of the resultant intra-subject alignments from the real image 

sequences showed that the curved temporal transformations are more suitable than the 

linear temporal transformation. In fact, in most cases, the visual similarity between the 

aligned sequences was superior when curved temporal models were used instead of the 

linear temporal model. In the remaining cases, the visual similarity between the aligned 

sequences was indistinguishable. 

By assessing the accuracy of the alignment results from real image sequences based on 

the MSE, we concluded that higher degree polynomials produced lower MSE values 

(p<0.001), independently of the optimization scheme used (Fig. 3). From the mean 

MSE values presented in Figure 3, one can see that for each type of temporal 

transformation model adopted, the MSE values obtained using the unconstrained 

optimization scheme were lower (p<0.001) than the correspondent values obtained 

using the constrained optimization scheme. This is in agreement with the results 

obtained using the control transformations, which proves the superior accuracy of the 

unconstrained optimization scheme. Additionally, from Figure 3 one can realize that the 

mean MSE undertaken a small reduction with the increasing of the polynomial degree; 

however, an exhaustive analysis on the experimental results revealed that in the 

alignment of some footsteps that reduction was significant. 

Although this methodology permits the use of similarity, affine and projective 

transformations, we did not use them in the experiments, since the goal was the 

alignment of pedobarographic image sequences from the same foot. Nevertheless, these 

non-rigid spatial transformations are useful in the alignment of image sequences from 

different feet. 

In this work, the MSE was used as the image dissimilarity measure to be minimized 

since in previous works it was shown to be very suitable for the alignment of plantar 
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pressure images [12, 16]. Besides, the squared root of the MSE represents the mean 

pressure differences between the plantar pressure images that are relevant 

biomechanical information and important for statistical analysis. However, as already 

mentioned, other intensity based measures could be considered. 

Even using a not up-to-dated PC, the processing time was always quite low. Thus, the 

low processing time and the high accuracy guarantee that the proposed spatio-temporal 

alignment methodology is appropriate for pedobarographic image sequence studies in 

clinics or laboratories. 
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FIGURE CAPTIONS 

 

Fig. 1 Proposed methodology for the spatio-temporal alignment of pedobarographic image sequences 

Fig. 2 Representation of the temporal warp functions used as control transformations in the temporal 

region of interest 

Fig. 3 Mean MSE values obtained by using each temporal transformation model in the alignment of 168 

pairs of real pedobarographic image sequences. (Only the pixels with non-zero value were used in the 

MSE calculus.) 

Fig. 4 Two alignment examples from pedobarographic image sequences: In the first row, the sequence 

used as reference; in the second row, the sequence to be aligned; in the third row, the aligned sequence 

using a 1st degree temporal transformation model with constrained optimization; and finally, in the last 

row, the aligned sequence using a 4th degree temporal transformation model with unconstrained 

optimization. (To simplify the visualization, only half of all images are shown) 
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TABLE CAPTION 

 

Table 1 Maximum residual errors obtained in the alignment of image sequences that were synthetically 

spatio-temporal warped 
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Table 1 

Applied temporal 

transformation 

Degree of the 

polynomial 

model used in 

the temporal 

alignment 

Unconstrained 

optimization 
Constrained optimization 

Maximum 

spatial RE 

[pixel] 

Maximum 

temporal RE 

[s] 

Maximum 

spatial RE 

[pixel] 

Maximum 

temporal RE 

[s] 

 1f i  

1 0.0017 0.0002 0.0367 0.0112 

2 0.0017 0.0002 0.0119 0.0083 

3 0.0017 0.0003 0.0071 0.0052 

4 0.0016 0.0003 0.0075 0.0049 

 2f i  

1 0.0629 0.0501 0.9018 0.2211 

2 0.0022 0.0002 0.0221 0.0124 

3 0.0021 0.0003 0.0183 0.0104 

4 0.0024 0.0020 0.0135 0.0073 

 3f i  

1 0.0096 0.0127 0.1154 0.0435 

2 0.0119 0.0080 0.0371 0.0200 

3 0.0024 0.0002 0.0031 0.0025 

4 0.0028 0.0014 0.0026 0.0019 

 4f i  

1 0.0228 0.0540 0.1161 0.0860 

2 0.0682 0.0340 0.0747 0.0485 

3 0.0061 0.0056 0.0188 0.0104 

4 0.0049 0.0030 0.0201 0.0095 
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Figure 2 
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Figure 3 

 

 

Figure 4 

 


