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. . . . . .

AEP and Source Coding

Asymptotic Equipartition Property: Summary

Definition of typical set:

2−n(H(X)+ϵ) ≤ pXn(xn) ≤ 2−n(H(X)−ϵ)

Size of typical set:

(1 − δ)2n(H(X)−ϵ) ≤ |A(n)
ϵ | ≤ 2n(H(X)+ϵ)
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. . . . . .

AEP and Source Coding

Source coding in the light of the AEP

A source coder operating on strings of n source symbols need only
provide a codeword for each string xn in the typical set A

(n)
ϵ .

If a sequence xn occurs that is not the typical set A
(n)
ϵ , then a source

coding failure is declared.
The probability of failure can be made arbitrarily small by choosing a
n large enough.

Since |A(n)
ϵ | ≤ 2n(H(X)+ϵ), the number of source codewords that need

to be provided is fewer than 2n(H(X)+ϵ).
So, fixed length codewords of length ⌈n(H(X) + ϵ)⌉ is enough.

L ≤ H(X) + ϵ + 1/n
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. . . . . .

AEP and Source Coding

Source coding theorem

For any discrete memoryless source with entropy H(X), any ϵ > 0,
any δ > 0, and any sufficiently large n, there is a fixed-to-fixed-length
source code with P (failure) ≤ δ that maps blocks of n source symbols
into fixed-length codewords of length L ≤ H(X) + ϵ + 1/n bps.
Compare this result with log M for fixed-length source codes without
failures.
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AEP and Source Coding

Source coding theorem: converse

Let Xn be a string of n discrete random variables Xi, i = 1, . . . , n
each with entropy H(X). For any ν > 0, let Xn be encoded into
fixed-length codewords of length ⌊n(H(X) − ν)⌋ bits. For any δ > 0
and for all sufficiently large n,

P (failure) > 1 − δ − 2−νn/2

Going from a fixed-length code with codeword lengths slightly larger
than the entropy to a fixed-length code with codeword lengths slightly
smaller than the entropy makes the probability of failure jump from
almost 0 to almost 1.
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Markov Sources and Entropy Rate

Sources with dependent symbols

AEP established that nH(X) bits is enough, on average, to describe n
independent and identically distributed random variables.
What happens when the variables are dependent?
What if the sequence of random variables form a stationary stochastic
process?
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Markov Sources and Entropy Rate

Stochastic Processes

A stochastic process is an indexed sequence of random variables.
Characterized by the joint probability distribution
pX1,...,Xn(x1, . . . , xn). where (x1, . . . , xn) ∈ X n
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Markov Sources and Entropy Rate

Stochastic Processes

Stationarity: Joint probability distribution does not change with
time-shifts.

pX1+d,...,Xn+d(x1, . . . , xn) = pX1,...,Xn(x1, . . . , xn)

for every shift d and for all where x1, . . . , xn ∈ X
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Markov Sources and Entropy Rate

Markov Process or Markov Chain

Each random variable depends on the one preceding it and is
conditionally independent of all other preceding random variables.

P (Xn+1 = xn+1|Xn = xn, . . . X1 = x1) = P (Xn+1 = xn+1|Xn = xn)

for all where x1, . . . , xn+1 ∈ X
Joint probability distribution

pX1,...,Xn(x1, . . . , xn) = pX1(x1)pX2|X1=x1
(x2)pX3|X2=x2

(x3) . . . pXn|Xn−1=xn−1
(xn)
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Markov Sources and Entropy Rate

Markov Process or Markov Chain

A Markov chain is irreducible if it is possible to go from any state to
any other state in a finite number of steps
A Markov chain is time invariant if the conditional probability does not
depend on the time index n.

P (Xn+1 = a|Xn = b) = P (X2 = a|X1 = b)

for all a, b ∈ X .
Xn is the state of the Markov chain in time n.
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Markov Sources and Entropy Rate

Markov Process or Markov Chain

A time invariant Markov chain is characterized by its initial state and a
probability transition matrix P, whose element (i, j) is given by

P (Xn+1 = j|Xn = i)

Stationary distributions
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Markov Sources and Entropy Rate

Entropy Rate

Given a sequence of random variables X1, X2, . . . , Xn.
How does the entropy of the sequence grows with n?
The entropy rate is defined as this rate of growth.

H(X ) = lim
n→∞

1
n

H(X1, X2, . . . , Xn)

when the limit exists.
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Markov Sources and Entropy Rate

Entropy Rate: Examples

Typewriter with m equally likely output letters. After n keystrokes, we
have mn possible sequences. H(X1, . . . , Xn) = log mn.

H(X ) = lim
n→∞

1
n

H(X1, X2, . . . , Xn) = lim
n→∞

1
n

log mn = log m

X1, X2, . . . are indepdendent and identically distributed random
variables. H(X1, . . . , Xn) = nH(X1).

H(X ) = lim
n→∞

1
n

H(X1, X2, . . . , Xn) = H(X1)
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Markov Sources and Entropy Rate

Entropy Rate

Other definition of entropy rate:

H ′(X ) = lim
n→∞

H(Xn|Xn−1, . . . , X1)

when the limit exists.
For stationary stochastic processes H(X ) = H ′(X )
For a stationary Markov chain H(X ) = H(X2|X1).
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. . . . . .

Markov Sources and Entropy Rate

Why entropy rate is important?

There is a version of the AEP for stationary ergodic sources.

− 1
n

pXn(xn) → H(X )

Like the AEP presented last class: 2nH(X ) typical sequences with
probability 2−nH(X )

We can represent typical sequences of length n using nH(X ) bits.
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Other Source Codes

Other Source Codes

Shannon-Fano-Elias codes.
Arithmetic codes.
Lempel-Ziv codes.
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Other Source Codes Shannon-Fano-Elias codes

Shannon-Fano-Elias Codes

Simple encoding procedure based on the cumulative distribution
function (CDF) to allot codewords.

FX(x) =
∑
a≤x

pX(a)

Modified CDF

FX(x) =
∑
a<x

pX(a) +
1
2
; P (X = x)

FX(x) is known, x is known.
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Other Source Codes Shannon-Fano-Elias codes

Shannon-Fano-Elias Codes

From last class: We know that l(xi) = − log pX(xi) gives good codes.
Use binary expansion of FX(x) as code for x. Rounding needed. We
will round to ∼ − log pX(xi).
Use base 2 fractions.

z ∈ [0, 1) → z =
∞∑
i=1

zi2−i

Taking the first k bits ⌊z⌋k = z1z2 . . . zk, zi ∈ {0, 1}.
Example: 2/3 = 0.10101010 . . . = 0.10 → ⌊2/3⌋5 = 10101
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Other Source Codes Shannon-Fano-Elias codes

Shannon-Fano-Elias Codes

Coding procedure

l(xi) =
⌈
log

1
pX(xi)

⌉
+ 1

C(xi) = ⌊FX(xi)⌋l(xi)
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Other Source Codes Shannon-Fano-Elias codes

Shannon-Fano-Elias Codes

Example:
pX(xi) l(xi) FX(xi) C(xi)

x1 1/3 3 1/6 001
x2 1/6 4 5/12 0110
x3 1/6 4 7/12 1001
x4 1/3 3 5/6 110
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Other Source Codes Shannon-Fano-Elias codes

Dyadic Intervals

A binary string can represent a subinterval of [0, 1)
From the usual binary representation of a number

z1z2 . . . zn ∈ {0, 1}m → z =
m∑

i=1

zi2m−i ∈ {0, 1, . . . , 2m − 1}.

We get

z1z2 . . . zn →
[

z

2m
,
z + 1
2m

)
Example: 110 → [3/4, 7/8).
Codewords of Shannon-Fano-Elias code are disjoint intervals.
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Other Source Codes Arithmetic Codes

Arithmetic Codes

Arithmetic Codes: invented by Elias, by Rissanen and by Pasco, and
made practical by Witten et al in 1987.
More practical than Huffman coding for large number of source
symbols.
Why? Huffman need to generate and store all codewords.
Arithmetic Code generate codeword without needing to compute all
the others.
Protected by several US patents: not widely used.
Original bzip used an arithmetic coder, its replacement bzip2
employed a Huffman coder.
Based on Shannon-Fano-Elias code.
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Other Source Codes Arithmetic Codes

Arithmetic Codes

Example: Discrete memoryless source X ∈ {1, 2, 3, 4}
p1 = 0.25, p2 = 0.5, p3 = 0.2 and p4 = 0.05.
We want the binary codeword for 2313.
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Other Source Codes Lempel-Ziv Codes

Lempel-Ziv Codes

Do not require knowledge of the source statistics. They adapt so that
the average codeword length L per source-symbol is minimized in
some sense.
Such algorithms are called universal.
Widely used in practice.
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Other Source Codes Lempel-Ziv Codes

Lempel-Ziv Codes: Algorithms

LZ77: string-matching on a sliding window.
Most popular LZ77 based compression method is called DEFLATE; it
combines LZ77 with Huffman coding.
LZ78: adaptive dictionary.
UNIX compress is based on LZ78.
A lot of variants: LZW, LZWA.
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Other Source Codes Lempel-Ziv Codes

Lempel-Ziv Codes: LZ78 Example

String: 1011010100010

Encoded String: 100011101100001000010
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Other Source Codes Lempel-Ziv Codes

Lempel-Ziv Codes: LZ78 Example

String: 1011010100010
Encoded String: 100011101100001000010
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Channel Coding Types of Channel

Communications Channel

Channel: source of randomness (interference, fading, noise, etc.).
Random nature of the channel is described by a probability
distribution over the output of the channel.
That distribution will often be dependent on the input chosen to be
transmitted.
Discrete case: Both input and output symbols belong to a finite
alphabet.
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Channel Coding Types of Channel

Discrete Channel

If we apply a sequence x1, x2, . . . , xn from an alphabet X at the input
of a channel, then at the output we will receive a sequence
y1, y2, . . . , yn belonging to an alphabet Y.
Usually the probability distribution over the outputs depend on the
input and on the state of the channel.
Some channels have memory. For example, the output symbol yn

might be dependent on previous inputs or outputs.
Causal behavior: In general y1, y2, . . . , yn do not need to consider
inputs beyiond x1, y2, . . . , xn.
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Channel Coding Types of Channel

Discrete Channel

Given an input alphabet X , an output alphabet Y and a set of states
S, a discrete channel is defined as a system of conditional probability
distributions

P (y1, y2, . . . , yn|x1, x2, . . . , xn; s)

where x1, x2, . . . , xn ∈ X , y1, y2, . . . , yn ∈ Y and s ∈ S.
P (y1, y2, . . . , yn|x1, x2, . . . , xn; s) can be interpreted as the probability
that the sequence y1, y2, . . . , yn will appear at the output of the
channel if the sequence x1, x2, . . . , xn is applied at the input and the
initial state of the channel is s.
Initial state here is defined as the state before applying x1 at the input.
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Channel Coding Types of Channel

Discrete Memoryless Channel

A discrete channel is memoryless if
P (y1, y2, . . . , yn|x1, x2, . . . , xn; s) does not depend on s so it can be
written as P (y1, y2, . . . , yn|x1, x2, . . . , xn)
P (y1, y2, . . . , yn|x1, x2, . . . , xn) = P (y1|x1) P (y2|x2) . . . P (yn|xn).
where x1, x2, . . . , xn ∈ X , y1, y2, . . . , yn ∈ Y and s ∈ S.
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Channel Coding Channel Capacity

Information Processed by a Channel

Let the input uncertainty be H(X), H(Y ) is the output uncertainty
and the conditional uncertainties H(X|Y ) and H(Y |X). We define
the information processed by the channel as

I(X; Y ) = H(X) − H(X|Y ) = H(Y ) − H(Y |X)

The information processed by a channel depends on the input
distribution pX(x).
We may vary the input distribution until the information reaches a
maximum; the maximum information is called the channel capacity.

C = max
pX(x)

I(X; Y ).
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Channel Coding Channel Capacity

Channel Capacity

Properties of channel capacity
C ≥ 0, since I(X; Y ) ≥ 0.
C ≤ log |X |, since C = max I(X; Y ) ≤ maxH(X) = log |X |
C ≤ log |Y|, for the same reason.
I(X;Y ) is a continuous function on pX(x).
I(X;Y ) is a concave function of pX(x).

Global maximum.
Convex optimization techniques.
Blahut-Arimoto algorithm
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Channel Coding Channel Capacity

Classification of Channels

A channel is lossless if H(X|Y ) = 0 for all input distributions.
Input is determined from the output and no transmission errors can
occur.
A channel is deterministic if P (Y = yi|X = xj) = 1 or 0 for all i, j.
The output is determined by the input, that is, H(Y |X) = 0 for all
input distributions.
A channel is noiseless is is lossless and deterministic.
A channel is useless (or zero-capacity) if I(X; Y ) = 0 for all input
distributions. Input X and output Y are independent.
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Channel Coding Channel Capacity

Symmetric Channels

A channel is symmetric if the rows of the channel transition matrix are
permutations of each other, and the column are permutations of each
other

P (Y |X) =
[

1/3 1/3 1/6 1/6
1/6 1/6 1/3 1/3

]

P (Y |X) =

 1/2 1/3 1/6
1/6 1/2 1/3
1/3 1/6 1/2


The entry at the i-th row and j-th column denotes the conditional
probability P (Y = yj |X = xi) that yj is received given that xi was
sent.
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Channel Coding Channel Capacity

Symmetric Channels

A channel is weakly symmetric if the rows of the channel transition
matrix are permutations of each other, and the sums of the columns
are equal.

P (Y |X) =
[

1/3 1/6 1/2
1/3 1/2 1/6

]
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Channel Coding Channel Capacity

Binary Symmetric Channels

It is the basic example of a noisy communication system
Binary input and binary output. The output is equal to the input with
probability 1 − p. With probability p a 0 is received as 1, and
vice-versa.

P (Y |X) =
[

1 − p p
p 1 − p

]
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Channel Coding Channel Capacity

Binary Erasure Channel

Bits are lost instead of being flipped.
A fraction α of bits is lost and the receiver knows that a bit was
supposed to arrive.
Packet communications

P (Y |X) =
[

1 − α α 0
0 α 1 − α

]
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Channel Coding Channel Capacity

Channel Capacity: Toy Examples

Noiseless Binary Channel
One error-free bit can be transmitted per use of the channel.
C = 1 bit, and is achieved with uniform input distribution.

Lossless channel
Input can be determined from the output. Every transmitted bit can be
recovered without error.
For our example, C = 1 bit, and is achieved with uniform input
distribution.

Noisy Typewriter
Channel input is either received unchanged at the output with
probability 1/2 or it is transformed to the next letter with probability
1/2. That is, if A is transmitted, we can receive A or B. Each with
probability 1/2.
Input has 26 symbols. If we use alternate input symbols (A, C, E), we
can transmit 13 symbols without error.

C = max H(Y ) − H(Y |X) = max H(Y ) − 1 = log 26 − 1 = log 13.
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Channel Coding Channel Capacity

Channel Capacity for BSC

Bounding the mutual information for the BSC:

I(X;Y ) = H(Y ) − H(Y |X)

= H(Y ) −
∑
x∈X

H(Y |X = x)pX(x)

= H(Y ) −
∑
x∈X

H(p)pX(x)

= H(Y ) − H(p)
≤ 1 − H(p)

Equality is achieved when the input distribution is uniform.

C = 1 − H(p)
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Channel Coding Channel Capacity

Channel Capacity for BEC

C = 1 − α.
This result is somewhat intuitive: since a fraction α of the input bits is
erased, we can recover (at most) 1 − α of the bits.
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Channel Coding Channel Capacity

Why the channel capacity is important?

Shannon proved that the channel capacity is the maximum number of
bits that can be reliably transmitted over the channel.
Reliably = probability of error can be made arbitrarily small.
Channel coding theorem.
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